// See LICENSE for license details. #ifndef _RISCV_MMU_H #define _RISCV_MMU_H #include "decode.h" #include "trap.h" #include "common.h" #include "config.h" #include "simif.h" #include "processor.h" #include "memtracer.h" #include "byteorder.h" #include "triggers.h" #include #include // virtual memory configuration #define PGSHIFT 12 const reg_t PGSIZE = 1 << PGSHIFT; const reg_t PGMASK = ~(PGSIZE-1); #define MAX_PADDR_BITS 56 // imposed by Sv39 / Sv48 struct insn_fetch_t { insn_func_t func; insn_t insn; }; struct icache_entry_t { reg_t tag; struct icache_entry_t* next; insn_fetch_t data; }; struct tlb_entry_t { char* host_offset; reg_t target_offset; }; // this class implements a processor's port into the virtual memory system. // an MMU and instruction cache are maintained for simulator performance. class mmu_t { private: std::map alloc_cache; std::vector> addr_tbl; public: mmu_t(simif_t* sim, processor_t* proc); ~mmu_t(); #define RISCV_XLATE_VIRT (1U << 0) #define RISCV_XLATE_VIRT_HLVX (1U << 1) inline reg_t misaligned_load(reg_t addr, size_t size, uint32_t xlate_flags) { #ifdef RISCV_ENABLE_MISALIGNED reg_t res = 0; for (size_t i = 0; i < size; i++) res += (reg_t)load_uint8(addr + (target_big_endian? size-1-i : i)) << (i * 8); return res; #else bool gva = ((proc) ? proc->state.v : false) || (RISCV_XLATE_VIRT & xlate_flags); throw trap_load_address_misaligned(gva, addr, 0, 0); #endif } inline void misaligned_store(reg_t addr, reg_t data, size_t size, uint32_t xlate_flags) { #ifdef RISCV_ENABLE_MISALIGNED for (size_t i = 0; i < size; i++) store_uint8(addr + (target_big_endian? size-1-i : i), data >> (i * 8)); #else bool gva = ((proc) ? proc->state.v : false) || (RISCV_XLATE_VIRT & xlate_flags); throw trap_store_address_misaligned(gva, addr, 0, 0); #endif } #ifndef RISCV_ENABLE_COMMITLOG # define READ_MEM(addr, size) ({}) #else # define READ_MEM(addr, size) \ proc->state.log_mem_read.push_back(std::make_tuple(addr, 0, size)); #endif // template for functions that load an aligned value from memory #define load_func(type, prefix, xlate_flags) \ inline type##_t prefix##_##type(reg_t addr, bool require_alignment = false) { \ if (unlikely(addr & (sizeof(type##_t)-1))) { \ if (require_alignment) load_reserved_address_misaligned(addr); \ else return misaligned_load(addr, sizeof(type##_t), xlate_flags); \ } \ reg_t vpn = addr >> PGSHIFT; \ size_t size = sizeof(type##_t); \ if ((xlate_flags) == 0 && likely(tlb_load_tag[vpn % TLB_ENTRIES] == vpn)) { \ if (proc) READ_MEM(addr, size); \ return from_target(*(target_endian*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr)); \ } \ if ((xlate_flags) == 0 && unlikely(tlb_load_tag[vpn % TLB_ENTRIES] == (vpn | TLB_CHECK_TRIGGERS))) { \ type##_t data = from_target(*(target_endian*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr)); \ if (!matched_trigger) { \ matched_trigger = trigger_exception(triggers::OPERATION_LOAD, addr, data); \ if (matched_trigger) \ throw *matched_trigger; \ } \ if (proc) READ_MEM(addr, size); \ return data; \ } \ target_endian res; \ load_slow_path(addr, sizeof(type##_t), (uint8_t*)&res, (xlate_flags)); \ if (proc) READ_MEM(addr, size); \ return from_target(res); \ } // load value from memory at aligned address; zero extend to register width load_func(uint8, load, 0) load_func(uint16, load, 0) load_func(uint32, load, 0) load_func(uint64, load, 0) // load value from guest memory at aligned address; zero extend to register width load_func(uint8, guest_load, RISCV_XLATE_VIRT) load_func(uint16, guest_load, RISCV_XLATE_VIRT) load_func(uint32, guest_load, RISCV_XLATE_VIRT) load_func(uint64, guest_load, RISCV_XLATE_VIRT) load_func(uint16, guest_load_x, RISCV_XLATE_VIRT|RISCV_XLATE_VIRT_HLVX) load_func(uint32, guest_load_x, RISCV_XLATE_VIRT|RISCV_XLATE_VIRT_HLVX) // load value from memory at aligned address; sign extend to register width load_func(int8, load, 0) load_func(int16, load, 0) load_func(int32, load, 0) load_func(int64, load, 0) // load value from guest memory at aligned address; sign extend to register width load_func(int8, guest_load, RISCV_XLATE_VIRT) load_func(int16, guest_load, RISCV_XLATE_VIRT) load_func(int32, guest_load, RISCV_XLATE_VIRT) load_func(int64, guest_load, RISCV_XLATE_VIRT) #ifndef RISCV_ENABLE_COMMITLOG # define WRITE_MEM(addr, value, size) ({}) #else # define WRITE_MEM(addr, val, size) \ proc->state.log_mem_write.push_back(std::make_tuple(addr, val, size)); #endif // template for functions that store an aligned value to memory #define store_func(type, prefix, xlate_flags) \ void prefix##_##type(reg_t addr, type##_t val, bool actually_store=true) { \ if (unlikely(addr & (sizeof(type##_t)-1))) \ return misaligned_store(addr, val, sizeof(type##_t), xlate_flags); \ reg_t vpn = addr >> PGSHIFT; \ size_t size = sizeof(type##_t); \ if ((xlate_flags) == 0 && likely(tlb_store_tag[vpn % TLB_ENTRIES] == vpn)) { \ if (actually_store) { \ if (proc) WRITE_MEM(addr, val, size); \ *(target_endian*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr) = to_target(val); \ } \ } \ else if ((xlate_flags) == 0 && unlikely(tlb_store_tag[vpn % TLB_ENTRIES] == (vpn | TLB_CHECK_TRIGGERS))) { \ if (actually_store) { \ if (!matched_trigger) { \ matched_trigger = trigger_exception(triggers::OPERATION_STORE, addr, val); \ if (matched_trigger) \ throw *matched_trigger; \ } \ if (proc) WRITE_MEM(addr, val, size); \ *(target_endian*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr) = to_target(val); \ } \ } \ else { \ target_endian target_val = to_target(val); \ store_slow_path(addr, sizeof(type##_t), (const uint8_t*)&target_val, (xlate_flags), actually_store); \ if (actually_store && proc) WRITE_MEM(addr, val, size); \ } \ } // AMO/Zicbom faults should be reported as store faults #define convert_load_traps_to_store_traps(BODY) \ try { \ BODY \ } catch (trap_load_address_misaligned& t) { \ /* Misaligned fault will not be triggered by Zicbom */ \ throw trap_store_address_misaligned(t.has_gva(), t.get_tval(), t.get_tval2(), t.get_tinst()); \ } catch (trap_load_page_fault& t) { \ throw trap_store_page_fault(t.has_gva(), t.get_tval(), t.get_tval2(), t.get_tinst()); \ } catch (trap_load_access_fault& t) { \ throw trap_store_access_fault(t.has_gva(), t.get_tval(), t.get_tval2(), t.get_tinst()); \ } catch (trap_load_guest_page_fault& t) { \ throw trap_store_guest_page_fault(t.get_tval(), t.get_tval2(), t.get_tinst()); \ } // template for functions that perform an atomic memory operation #define amo_func(type) \ template \ type##_t amo_##type(reg_t addr, op f) { \ convert_load_traps_to_store_traps({ \ store_##type(addr, 0, false); \ auto lhs = load_##type(addr, true); \ store_##type(addr, f(lhs)); \ return lhs; \ }) \ } void store_float128(reg_t addr, float128_t val) { #ifndef RISCV_ENABLE_MISALIGNED if (unlikely(addr & (sizeof(float128_t)-1))) throw trap_store_address_misaligned((proc) ? proc->state.v : false, addr, 0, 0); #endif store_uint64(addr, val.v[0]); store_uint64(addr + 8, val.v[1]); } float128_t load_float128(reg_t addr) { #ifndef RISCV_ENABLE_MISALIGNED if (unlikely(addr & (sizeof(float128_t)-1))) throw trap_load_address_misaligned((proc) ? proc->state.v : false, addr, 0, 0); #endif return (float128_t){load_uint64(addr), load_uint64(addr + 8)}; } // store value to memory at aligned address store_func(uint8, store, 0) store_func(uint16, store, 0) store_func(uint32, store, 0) store_func(uint64, store, 0) // store value to guest memory at aligned address store_func(uint8, guest_store, RISCV_XLATE_VIRT) store_func(uint16, guest_store, RISCV_XLATE_VIRT) store_func(uint32, guest_store, RISCV_XLATE_VIRT) store_func(uint64, guest_store, RISCV_XLATE_VIRT) // perform an atomic memory operation at an aligned address amo_func(uint32) amo_func(uint64) void cbo_zero(reg_t addr) { auto base = addr & ~(blocksz - 1); for (size_t offset = 0; offset < blocksz; offset += 1) store_uint8(base + offset, 0); } void clean_inval(reg_t addr, bool clean, bool inval) { convert_load_traps_to_store_traps({ reg_t paddr = addr & ~(blocksz - 1); paddr = translate(paddr, blocksz, LOAD, 0); if (auto host_addr = sim->addr_to_mem(paddr)) { if (tracer.interested_in_range(paddr, paddr + PGSIZE, LOAD)) tracer.clean_invalidate(paddr, blocksz, clean, inval); } else { throw trap_store_access_fault((proc) ? proc->state.v : false, addr, 0, 0); } }) } inline void yield_load_reservation() { load_reservation_address = (reg_t)-1; } inline void acquire_load_reservation(reg_t vaddr) { reg_t paddr = translate(vaddr, 1, LOAD, 0); if (auto host_addr = sim->addr_to_mem(paddr)) load_reservation_address = refill_tlb(vaddr, paddr, host_addr, LOAD).target_offset + vaddr; else throw trap_load_access_fault((proc) ? proc->state.v : false, vaddr, 0, 0); // disallow LR to I/O space } inline void load_reserved_address_misaligned(reg_t vaddr) { bool gva = proc ? proc->state.v : false; #ifdef RISCV_ENABLE_MISALIGNED throw trap_load_access_fault(gva, vaddr, 0, 0); #else throw trap_load_address_misaligned(gva, vaddr, 0, 0); #endif } inline void store_conditional_address_misaligned(reg_t vaddr) { bool gva = proc ? proc->state.v : false; #ifdef RISCV_ENABLE_MISALIGNED throw trap_store_access_fault(gva, vaddr, 0, 0); #else throw trap_store_address_misaligned(gva, vaddr, 0, 0); #endif } inline bool check_load_reservation(reg_t vaddr, size_t size) { if (vaddr & (size-1)) store_conditional_address_misaligned(vaddr); reg_t paddr = translate(vaddr, 1, STORE, 0); if (auto host_addr = sim->addr_to_mem(paddr)) return load_reservation_address == refill_tlb(vaddr, paddr, host_addr, STORE).target_offset + vaddr; else throw trap_store_access_fault((proc) ? proc->state.v : false, vaddr, 0, 0); // disallow SC to I/O space } static const reg_t ICACHE_ENTRIES = 1024; inline size_t icache_index(reg_t addr) { return (addr / PC_ALIGN) % ICACHE_ENTRIES; } inline icache_entry_t* refill_icache(reg_t addr, icache_entry_t* entry) { auto tlb_entry = translate_insn_addr(addr); insn_bits_t insn = from_le(*(uint16_t*)(tlb_entry.host_offset + addr)); int length = insn_length(insn); if (likely(length == 4)) { insn |= (insn_bits_t)from_le(*(const int16_t*)translate_insn_addr_to_host(addr + 2)) << 16; } else if (length == 2) { insn = (int16_t)insn; } else if (length == 6) { insn |= (insn_bits_t)from_le(*(const int16_t*)translate_insn_addr_to_host(addr + 4)) << 32; insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 2)) << 16; } else { static_assert(sizeof(insn_bits_t) == 8, "insn_bits_t must be uint64_t"); insn |= (insn_bits_t)from_le(*(const int16_t*)translate_insn_addr_to_host(addr + 6)) << 48; insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 4)) << 32; insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 2)) << 16; } insn_fetch_t fetch = {proc->decode_insn(insn), insn}; entry->tag = addr; entry->next = &icache[icache_index(addr + length)]; entry->data = fetch; reg_t paddr = tlb_entry.target_offset + addr;; if (tracer.interested_in_range(paddr, paddr + 1, FETCH)) { entry->tag = -1; tracer.trace(paddr, length, FETCH); } return entry; } inline icache_entry_t* access_icache(reg_t addr) { icache_entry_t* entry = &icache[icache_index(addr)]; if (likely(entry->tag == addr)) return entry; return refill_icache(addr, entry); } inline insn_fetch_t load_insn(reg_t addr) { icache_entry_t entry; return refill_icache(addr, &entry)->data; } void flush_tlb(); void flush_icache(); void register_memtracer(memtracer_t*); int is_dirty_enabled() { #ifdef RISCV_ENABLE_DIRTY return 1; #else return 0; #endif } int is_misaligned_enabled() { #ifdef RISCV_ENABLE_MISALIGNED return 1; #else return 0; #endif } void set_target_big_endian(bool enable) { #ifdef RISCV_ENABLE_DUAL_ENDIAN target_big_endian = enable; #else assert(enable == false); #endif } bool is_target_big_endian() { return target_big_endian; } template inline T from_target(target_endian n) const { return target_big_endian? n.from_be() : n.from_le(); } template inline target_endian to_target(T n) const { return target_big_endian? target_endian::to_be(n) : target_endian::to_le(n); } void set_cache_blocksz(uint64_t size) { blocksz = size; } private: simif_t* sim; processor_t* proc; memtracer_list_t tracer; reg_t load_reservation_address; uint16_t fetch_temp; uint64_t blocksz; // implement an instruction cache for simulator performance icache_entry_t icache[ICACHE_ENTRIES]; // implement a TLB for simulator performance static const reg_t TLB_ENTRIES = 256; // If a TLB tag has TLB_CHECK_TRIGGERS set, then the MMU must check for a // trigger match before completing an access. static const reg_t TLB_CHECK_TRIGGERS = reg_t(1) << 63; tlb_entry_t tlb_data[TLB_ENTRIES]; reg_t tlb_insn_tag[TLB_ENTRIES]; reg_t tlb_load_tag[TLB_ENTRIES]; reg_t tlb_store_tag[TLB_ENTRIES]; // finish translation on a TLB miss and update the TLB tlb_entry_t refill_tlb(reg_t vaddr, reg_t paddr, char* host_addr, access_type type); const char* fill_from_mmio(reg_t vaddr, reg_t paddr); // perform a stage2 translation for a given guest address reg_t s2xlate(reg_t gva, reg_t gpa, access_type type, access_type trap_type, bool virt, bool hlvx); // perform a page table walk for a given VA; set referenced/dirty bits reg_t walk(reg_t addr, access_type type, reg_t prv, bool virt, bool hlvx); // handle uncommon cases: TLB misses, page faults, MMIO tlb_entry_t fetch_slow_path(reg_t addr); void load_slow_path(reg_t addr, reg_t len, uint8_t* bytes, uint32_t xlate_flags); void store_slow_path(reg_t addr, reg_t len, const uint8_t* bytes, uint32_t xlate_flags, bool actually_store); bool mmio_load(reg_t addr, size_t len, uint8_t* bytes); bool mmio_store(reg_t addr, size_t len, const uint8_t* bytes); bool mmio_ok(reg_t addr, access_type type); reg_t translate(reg_t addr, reg_t len, access_type type, uint32_t xlate_flags); // ITLB lookup inline tlb_entry_t translate_insn_addr(reg_t addr) { reg_t vpn = addr >> PGSHIFT; if (likely(tlb_insn_tag[vpn % TLB_ENTRIES] == vpn)) return tlb_data[vpn % TLB_ENTRIES]; tlb_entry_t result; if (unlikely(tlb_insn_tag[vpn % TLB_ENTRIES] != (vpn | TLB_CHECK_TRIGGERS))) { result = fetch_slow_path(addr); } else { result = tlb_data[vpn % TLB_ENTRIES]; } if (unlikely(tlb_insn_tag[vpn % TLB_ENTRIES] == (vpn | TLB_CHECK_TRIGGERS))) { target_endian* ptr = (target_endian*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr); triggers::action_t action; auto match = proc->TM.memory_access_match(&action, triggers::OPERATION_EXECUTE, addr, from_target(*ptr)); if (match != triggers::MATCH_NONE) { throw triggers::matched_t(triggers::OPERATION_EXECUTE, addr, from_target(*ptr), action); } } return result; } inline const uint16_t* translate_insn_addr_to_host(reg_t addr) { return (uint16_t*)(translate_insn_addr(addr).host_offset + addr); } inline triggers::matched_t *trigger_exception(triggers::operation_t operation, reg_t address, reg_t data) { if (!proc) { return NULL; } triggers::action_t action; auto match = proc->TM.memory_access_match(&action, operation, address, data); if (match == triggers::MATCH_NONE) return NULL; if (match == triggers::MATCH_FIRE_BEFORE) { throw triggers::matched_t(operation, address, data, action); } return new triggers::matched_t(operation, address, data, action); } reg_t pmp_homogeneous(reg_t addr, reg_t len); bool pmp_ok(reg_t addr, reg_t len, access_type type, reg_t mode); #ifdef RISCV_ENABLE_DUAL_ENDIAN bool target_big_endian; #else static const bool target_big_endian = false; #endif bool check_triggers_fetch; bool check_triggers_load; bool check_triggers_store; // The exception describing a matched trigger, or NULL. triggers::matched_t *matched_trigger; friend class processor_t; }; struct vm_info { int levels; int idxbits; int widenbits; int ptesize; reg_t ptbase; }; inline vm_info decode_vm_info(int xlen, bool stage2, reg_t prv, reg_t satp) { if (prv == PRV_M) { return {0, 0, 0, 0, 0}; } else if (!stage2 && prv <= PRV_S && xlen == 32) { switch (get_field(satp, SATP32_MODE)) { case SATP_MODE_OFF: return {0, 0, 0, 0, 0}; case SATP_MODE_SV32: return {2, 10, 0, 4, (satp & SATP32_PPN) << PGSHIFT}; default: abort(); } } else if (!stage2 && prv <= PRV_S && xlen == 64) { switch (get_field(satp, SATP64_MODE)) { case SATP_MODE_OFF: return {0, 0, 0, 0, 0}; case SATP_MODE_SV39: return {3, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT}; case SATP_MODE_SV48: return {4, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT}; case SATP_MODE_SV57: return {5, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT}; case SATP_MODE_SV64: return {6, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT}; default: abort(); } } else if (stage2 && xlen == 32) { switch (get_field(satp, HGATP32_MODE)) { case HGATP_MODE_OFF: return {0, 0, 0, 0, 0}; case HGATP_MODE_SV32X4: return {2, 10, 2, 4, (satp & HGATP32_PPN) << PGSHIFT}; default: abort(); } } else if (stage2 && xlen == 64) { switch (get_field(satp, HGATP64_MODE)) { case HGATP_MODE_OFF: return {0, 0, 0, 0, 0}; case HGATP_MODE_SV39X4: return {3, 9, 2, 8, (satp & HGATP64_PPN) << PGSHIFT}; case HGATP_MODE_SV48X4: return {4, 9, 2, 8, (satp & HGATP64_PPN) << PGSHIFT}; case HGATP_MODE_SV57X4: return {5, 9, 2, 8, (satp & HGATP64_PPN) << PGSHIFT}; default: abort(); } } else { abort(); } } #endif