// See LICENSE for license details. #ifndef _RISCV_DECODE_H #define _RISCV_DECODE_H #if (-1 != ~0) || ((-1 >> 1) != -1) # error spike requires a two''s-complement c++ implementation #endif #include "../softfloat/softfloat_types.h" #include #include #include #include #include #include typedef int64_t sreg_t; typedef uint64_t reg_t; typedef float128_t freg_t; const int NXPR = 32; const int NFPR = 32; const int NVPR = 32; const int NCSR = 4096; #define X_RA 1 #define X_SP 2 #define X_T0 5 #define X_S0 8 #define X_A0 10 #define X_A1 11 #define X_Sn 16 #define VCSR_VXRM_SHIFT 1 #define VCSR_VXRM (0x3 << VCSR_VXRM_SHIFT) #define VCSR_VXSAT_SHIFT 0 #define VCSR_VXSAT (0x1 << VCSR_VXSAT_SHIFT) #define FP_RD_NE 0 #define FP_RD_0 1 #define FP_RD_DN 2 #define FP_RD_UP 3 #define FP_RD_NMM 4 #define FSR_RD_SHIFT 5 #define FSR_RD (0x7 << FSR_RD_SHIFT) #define FPEXC_NX 0x01 #define FPEXC_UF 0x02 #define FPEXC_OF 0x04 #define FPEXC_DZ 0x08 #define FPEXC_NV 0x10 #define FSR_AEXC_SHIFT 0 #define FSR_NVA (FPEXC_NV << FSR_AEXC_SHIFT) #define FSR_OFA (FPEXC_OF << FSR_AEXC_SHIFT) #define FSR_UFA (FPEXC_UF << FSR_AEXC_SHIFT) #define FSR_DZA (FPEXC_DZ << FSR_AEXC_SHIFT) #define FSR_NXA (FPEXC_NX << FSR_AEXC_SHIFT) #define FSR_AEXC (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA) #define insn_length(x) \ (((x) & 0x03) < 0x03 ? 2 : \ ((x) & 0x1f) < 0x1f ? 4 : \ ((x) & 0x3f) < 0x3f ? 6 : \ 8) #define MAX_INSN_LENGTH 8 #define PC_ALIGN 2 #define Sn(n) ((n) < 2 ? X_S0 + (n) : X_Sn + (n)) typedef uint64_t insn_bits_t; class insn_t { public: insn_t() = default; insn_t(insn_bits_t bits) : b(bits) {} insn_bits_t bits() { return b; } int length() { return insn_length(b); } int64_t i_imm() { return xs(20, 12); } int64_t shamt() { return x(20, 6); } int64_t s_imm() { return x(7, 5) + (xs(25, 7) << 5); } int64_t sb_imm() { return (x(8, 4) << 1) + (x(25, 6) << 5) + (x(7, 1) << 11) + (imm_sign() << 12); } int64_t u_imm() { return xs(12, 20) << 12; } int64_t uj_imm() { return (x(21, 10) << 1) + (x(20, 1) << 11) + (x(12, 8) << 12) + (imm_sign() << 20); } uint64_t rd() { return x(7, 5); } uint64_t rs1() { return x(15, 5); } uint64_t rs2() { return x(20, 5); } uint64_t rs3() { return x(27, 5); } uint64_t rm() { return x(12, 3); } uint64_t csr() { return x(20, 12); } uint64_t iorw() { return x(20, 8); } uint64_t bs() { return x(30, 2); } // Crypto ISE - SM4/AES32 byte select. uint64_t rcon() { return x(20, 4); } // Crypto ISE - AES64 round const. int64_t rvc_imm() { return x(2, 5) + (xs(12, 1) << 5); } int64_t rvc_zimm() { return x(2, 5) + (x(12, 1) << 5); } int64_t rvc_addi4spn_imm() { return (x(6, 1) << 2) + (x(5, 1) << 3) + (x(11, 2) << 4) + (x(7, 4) << 6); } int64_t rvc_addi16sp_imm() { return (x(6, 1) << 4) + (x(2, 1) << 5) + (x(5, 1) << 6) + (x(3, 2) << 7) + (xs(12, 1) << 9); } int64_t rvc_lwsp_imm() { return (x(4, 3) << 2) + (x(12, 1) << 5) + (x(2, 2) << 6); } int64_t rvc_ldsp_imm() { return (x(5, 2) << 3) + (x(12, 1) << 5) + (x(2, 3) << 6); } int64_t rvc_swsp_imm() { return (x(9, 4) << 2) + (x(7, 2) << 6); } int64_t rvc_sdsp_imm() { return (x(10, 3) << 3) + (x(7, 3) << 6); } int64_t rvc_lw_imm() { return (x(6, 1) << 2) + (x(10, 3) << 3) + (x(5, 1) << 6); } int64_t rvc_ld_imm() { return (x(10, 3) << 3) + (x(5, 2) << 6); } int64_t rvc_j_imm() { return (x(3, 3) << 1) + (x(11, 1) << 4) + (x(2, 1) << 5) + (x(7, 1) << 6) + (x(6, 1) << 7) + (x(9, 2) << 8) + (x(8, 1) << 10) + (xs(12, 1) << 11); } int64_t rvc_b_imm() { return (x(3, 2) << 1) + (x(10, 2) << 3) + (x(2, 1) << 5) + (x(5, 2) << 6) + (xs(12, 1) << 8); } int64_t rvc_simm3() { return x(10, 3); } uint64_t rvc_rd() { return rd(); } uint64_t rvc_rs1() { return rd(); } uint64_t rvc_rs2() { return x(2, 5); } uint64_t rvc_rs1s() { return 8 + x(7, 3); } uint64_t rvc_rs2s() { return 8 + x(2, 3); } uint64_t rvc_lbimm() { return (x(5, 1) << 1) + x(6, 1); } uint64_t rvc_lhimm() { return (x(5, 1) << 1); } uint64_t rvc_r1sc() { return x(7, 3); } uint64_t rvc_r2sc() { return x(2, 3); } uint64_t rvc_rlist() { return x(4, 4); } uint64_t rvc_spimm() { return x(2, 2) << 4; } uint64_t rvc_index() { return x(2, 8); } uint64_t v_vm() { return x(25, 1); } uint64_t v_wd() { return x(26, 1); } uint64_t v_nf() { return x(29, 3); } uint64_t v_simm5() { return xs(15, 5); } uint64_t v_zimm5() { return x(15, 5); } uint64_t v_zimm10() { return x(20, 10); } uint64_t v_zimm11() { return x(20, 11); } uint64_t v_lmul() { return x(20, 2); } uint64_t v_frac_lmul() { return x(22, 1); } uint64_t v_sew() { return 1 << (x(23, 3) + 3); } uint64_t v_width() { return x(12, 3); } uint64_t v_mop() { return x(26, 2); } uint64_t v_lumop() { return x(20, 5); } uint64_t v_sumop() { return x(20, 5); } uint64_t v_vta() { return x(26, 1); } uint64_t v_vma() { return x(27, 1); } uint64_t v_mew() { return x(28, 1); } uint64_t v_zimm6() { return x(15, 5) + (x(26, 1) << 5); } uint64_t p_imm2() { return x(20, 2); } uint64_t p_imm3() { return x(20, 3); } uint64_t p_imm4() { return x(20, 4); } uint64_t p_imm5() { return x(20, 5); } uint64_t p_imm6() { return x(20, 6); } uint64_t zcmp_regmask() { unsigned mask = 0; uint64_t rlist = rvc_rlist(); if (rlist >= 4) mask |= 1U << X_RA; for (reg_t i = 5; i <= rlist; i++) mask |= 1U << Sn(i - 5); if (rlist == 15) mask |= 1U << Sn(11); return mask; } uint64_t zcmp_stack_adjustment(int xlen) { reg_t stack_adj_base = 0; switch (rvc_rlist()) { case 15: stack_adj_base += 16; case 14: if (xlen == 64) stack_adj_base += 16; case 13: case 12: stack_adj_base += 16; case 11: case 10: if (xlen == 64) stack_adj_base += 16; case 9: case 8: stack_adj_base += 16; case 7: case 6: if (xlen == 64) stack_adj_base += 16; case 5: case 4: stack_adj_base += 16; break; } return stack_adj_base + rvc_spimm(); } private: insn_bits_t b; uint64_t x(int lo, int len) { return (b >> lo) & ((insn_bits_t(1) << len) - 1); } uint64_t xs(int lo, int len) { return int64_t(b) << (64 - lo - len) >> (64 - len); } uint64_t imm_sign() { return xs(31, 1); } }; template class regfile_t { public: void write(size_t i, T value) { if (!zero_reg || i != 0) data[i] = value; } const T& operator [] (size_t i) const { return data[i]; } regfile_t() { reset(); } void reset() { memset(data, 0, sizeof(data)); } private: T data[N]; }; #define get_field(reg, mask) \ (((reg) & (std::remove_cv::type)(mask)) / ((mask) & ~((mask) << 1))) #define set_field(reg, mask, val) \ (((reg) & ~(std::remove_cv::type)(mask)) | (((std::remove_cv::type)(val) * ((mask) & ~((mask) << 1))) & (std::remove_cv::type)(mask))) #define DEBUG_START 0x0 #define DEBUG_END (0x1000 - 1) #endif