// See LICENSE for license details. #ifndef _RISCV_SIM_H #define _RISCV_SIM_H #include "processor.h" #include "devices.h" #include "debug_module.h" #include #include #include #include #include class mmu_t; class gdbserver_t; // this class encapsulates the processors and memory in a RISC-V machine. class sim_t : public htif_t { public: sim_t(const char* isa, size_t _nprocs, size_t mem_mb, bool halted, const std::vector& args); ~sim_t(); // run the simulation to completion int run(); void set_debug(bool value); void set_log(bool value); void set_histogram(bool value); void set_procs_debug(bool value); void set_gdbserver(gdbserver_t* gdbserver) { this->gdbserver = gdbserver; } const char* get_config_string() { return config_string.c_str(); } processor_t* get_core(size_t i) { return procs.at(i); } private: char* mem; // main memory size_t memsz; // memory size in bytes mmu_t* debug_mmu; // debug port into main memory std::vector procs; std::string config_string; std::unique_ptr boot_rom; std::unique_ptr rtc; bus_t bus; debug_module_t debug_module; processor_t* get_core(const std::string& i); void step(size_t n); // step through simulation static const size_t INTERLEAVE = 5000; static const size_t INSNS_PER_RTC_TICK = 100; // 10 MHz clock for 1 BIPS core size_t current_step; size_t current_proc; bool debug; bool log; bool histogram_enabled; // provide a histogram of PCs gdbserver_t* gdbserver; // memory-mapped I/O routines bool addr_is_mem(reg_t addr) { return addr >= DRAM_BASE && addr < DRAM_BASE + memsz; } char* addr_to_mem(reg_t addr) { return mem + addr - DRAM_BASE; } reg_t mem_to_addr(char* x) { return x - mem + DRAM_BASE; } bool mmio_load(reg_t addr, size_t len, uint8_t* bytes); bool mmio_store(reg_t addr, size_t len, const uint8_t* bytes); void make_config_string(); // presents a prompt for introspection into the simulation void interactive(); // functions that help implement interactive() void interactive_help(const std::string& cmd, const std::vector& args); void interactive_quit(const std::string& cmd, const std::vector& args); void interactive_run(const std::string& cmd, const std::vector& args, bool noisy); void interactive_run_noisy(const std::string& cmd, const std::vector& args); void interactive_run_silent(const std::string& cmd, const std::vector& args); void interactive_reg(const std::string& cmd, const std::vector& args); void interactive_fregs(const std::string& cmd, const std::vector& args); void interactive_fregd(const std::string& cmd, const std::vector& args); void interactive_pc(const std::string& cmd, const std::vector& args); void interactive_mem(const std::string& cmd, const std::vector& args); void interactive_str(const std::string& cmd, const std::vector& args); void interactive_until(const std::string& cmd, const std::vector& args); reg_t get_reg(const std::vector& args); reg_t get_freg(const std::vector& args); reg_t get_mem(const std::vector& args); reg_t get_pc(const std::vector& args); friend class processor_t; friend class mmu_t; friend class gdbserver_t; // htif friend void sim_thread_main(void*); void main(); context_t* host; context_t target; void reset() { } void idle(); void read_chunk(addr_t taddr, size_t len, void* dst); void write_chunk(addr_t taddr, size_t len, const void* src); size_t chunk_align() { return 8; } size_t chunk_max_size() { return 8; } }; extern volatile bool ctrlc_pressed; #endif