// See LICENSE for license details. #include "sim.h" #include "mmu.h" #include "dts.h" #include "remote_bitbang.h" #include "byteorder.h" #include #include #include #include #include #include #include #include #include #include volatile bool ctrlc_pressed = false; static void handle_signal(int sig) { if (ctrlc_pressed) exit(-1); ctrlc_pressed = true; signal(sig, &handle_signal); } sim_t::sim_t(const char* isa, const char* priv, const char* varch, size_t nprocs, bool halted, reg_t start_pc, std::vector> mems, std::vector> plugin_devices, const std::vector& args, std::vector const hartids, const debug_module_config_t &dm_config) : htif_t(args), mems(mems), plugin_devices(plugin_devices), procs(std::max(nprocs, size_t(1))), start_pc(start_pc), current_step(0), current_proc(0), debug(false), histogram_enabled(false), log_commits_enabled(false), dtb_enabled(true), remote_bitbang(NULL), debug_module(this, dm_config) { signal(SIGINT, &handle_signal); for (auto& x : mems) bus.add_device(x.first, x.second); for (auto& x : plugin_devices) bus.add_device(x.first, x.second); debug_module.add_device(&bus); debug_mmu = new mmu_t(this, NULL); if (hartids.size() == 0) { for (size_t i = 0; i < procs.size(); i++) { procs[i] = new processor_t(isa, priv, varch, this, i, halted); } } else { if (hartids.size() != procs.size()) { std::cerr << "Number of specified hartids doesn't match number of processors" << strerror(errno) << std::endl; exit(1); } for (size_t i = 0; i < procs.size(); i++) { procs[i] = new processor_t(isa, priv, varch, this, hartids[i], halted); } } clint.reset(new clint_t(procs)); bus.add_device(CLINT_BASE, clint.get()); } sim_t::~sim_t() { for (size_t i = 0; i < procs.size(); i++) delete procs[i]; delete debug_mmu; } void sim_thread_main(void* arg) { ((sim_t*)arg)->main(); } void sim_t::main() { if (!debug && log) set_procs_debug(true); while (!done()) { if (debug || ctrlc_pressed) interactive(); else step(INTERLEAVE); if (remote_bitbang) { remote_bitbang->tick(); } } } int sim_t::run() { host = context_t::current(); target.init(sim_thread_main, this); return htif_t::run(); } void sim_t::step(size_t n) { for (size_t i = 0, steps = 0; i < n; i += steps) { steps = std::min(n - i, INTERLEAVE - current_step); procs[current_proc]->step(steps); current_step += steps; if (current_step == INTERLEAVE) { current_step = 0; procs[current_proc]->get_mmu()->yield_load_reservation(); if (++current_proc == procs.size()) { current_proc = 0; clint->increment(INTERLEAVE / INSNS_PER_RTC_TICK); } host->switch_to(); } } } void sim_t::set_debug(bool value) { debug = value; } void sim_t::set_log(bool value) { log = value; } void sim_t::set_histogram(bool value) { histogram_enabled = value; for (size_t i = 0; i < procs.size(); i++) { procs[i]->set_histogram(histogram_enabled); } } void sim_t::set_log_commits(bool value) { log_commits_enabled = value; for (size_t i = 0; i < procs.size(); i++) { procs[i]->set_log_commits(log_commits_enabled); } } void sim_t::set_procs_debug(bool value) { for (size_t i=0; i< procs.size(); i++) procs[i]->set_debug(value); } static bool paddr_ok(reg_t addr) { return (addr >> MAX_PADDR_BITS) == 0; } bool sim_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes) { if (addr + len < addr || !paddr_ok(addr + len - 1)) return false; return bus.load(addr, len, bytes); } bool sim_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes) { if (addr + len < addr || !paddr_ok(addr + len - 1)) return false; return bus.store(addr, len, bytes); } void sim_t::make_dtb() { const int reset_vec_size = 8; start_pc = start_pc == reg_t(-1) ? get_entry_point() : start_pc; uint32_t reset_vec[reset_vec_size] = { 0x297, // auipc t0,0x0 0x28593 + (reset_vec_size * 4 << 20), // addi a1, t0, &dtb 0xf1402573, // csrr a0, mhartid get_core(0)->get_xlen() == 32 ? 0x0182a283u : // lw t0,24(t0) 0x0182b283u, // ld t0,24(t0) 0x28067, // jr t0 0, (uint32_t) (start_pc & 0xffffffff), (uint32_t) (start_pc >> 32) }; for(int i = 0; i < reset_vec_size; i++) reset_vec[i] = to_le(reset_vec[i]); std::vector rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec)); dts = make_dts(INSNS_PER_RTC_TICK, CPU_HZ, procs, mems); std::string dtb = dts_compile(dts); rom.insert(rom.end(), dtb.begin(), dtb.end()); const int align = 0x1000; rom.resize((rom.size() + align - 1) / align * align); boot_rom.reset(new rom_device_t(rom)); bus.add_device(DEFAULT_RSTVEC, boot_rom.get()); } char* sim_t::addr_to_mem(reg_t addr) { if (!paddr_ok(addr)) return NULL; auto desc = bus.find_device(addr); if (auto mem = dynamic_cast(desc.second)) if (addr - desc.first < mem->size()) return mem->contents() + (addr - desc.first); return NULL; } // htif void sim_t::reset() { if (dtb_enabled) make_dtb(); } void sim_t::idle() { target.switch_to(); } void sim_t::read_chunk(addr_t taddr, size_t len, void* dst) { assert(len == 8); auto data = to_le(debug_mmu->load_uint64(taddr)); memcpy(dst, &data, sizeof data); } void sim_t::write_chunk(addr_t taddr, size_t len, const void* src) { assert(len == 8); uint64_t data; memcpy(&data, src, sizeof data); debug_mmu->store_uint64(taddr, from_le(data)); } void sim_t::proc_reset(unsigned id) { debug_module.proc_reset(id); }