// See LICENSE for license details. #include "sim.h" #include "mmu.h" #include "dts.h" #include "remote_bitbang.h" #include "byteorder.h" #include "platform.h" #include "libfdt.h" #include #include #include #include #include #include #include #include #include #include #include volatile bool ctrlc_pressed = false; static void handle_signal(int sig) { if (ctrlc_pressed) exit(-1); ctrlc_pressed = true; signal(sig, &handle_signal); } sim_t::sim_t(const cfg_t *cfg, bool halted, std::vector> mems, std::vector> plugin_devices, const std::vector& args, const debug_module_config_t &dm_config, const char *log_path, bool dtb_enabled, const char *dtb_file, #ifdef HAVE_BOOST_ASIO boost::asio::io_service *io_service_ptr, boost::asio::ip::tcp::acceptor *acceptor_ptr, // option -s #endif FILE *cmd_file) // needed for command line option --cmd : htif_t(args), isa(cfg->isa(), cfg->priv()), cfg(cfg), mems(mems), plugin_devices(plugin_devices), procs(std::max(cfg->nprocs(), size_t(1))), dtb_file(dtb_file ? dtb_file : ""), dtb_enabled(dtb_enabled), log_file(log_path), cmd_file(cmd_file), #ifdef HAVE_BOOST_ASIO io_service_ptr(io_service_ptr), // socket interface acceptor_ptr(acceptor_ptr), #endif sout_(nullptr), current_step(0), current_proc(0), debug(false), histogram_enabled(false), log(false), remote_bitbang(NULL), debug_module(this, dm_config) { signal(SIGINT, &handle_signal); sout_.rdbuf(std::cerr.rdbuf()); // debug output goes to stderr by default for (auto& x : mems) bus.add_device(x.first, x.second); for (auto& x : plugin_devices) bus.add_device(x.first, x.second); debug_module.add_device(&bus); debug_mmu = new mmu_t(this, NULL); for (size_t i = 0; i < cfg->nprocs(); i++) { procs[i] = new processor_t(&isa, cfg->varch(), this, cfg->hartids()[i], halted, log_file.get(), sout_); } make_dtb(); void *fdt = (void *)dtb.c_str(); // Only make a CLINT (Core-Local INTerrupt controller) if one is specified in // the device tree configuration. // // This isn't *quite* as general as we could get (because you might have one // that's not bus-accessible), but it should handle the normal use cases. In // particular, the default device tree configuration that you get without // setting the dtb_file argument has one. reg_t clint_base; if (fdt_parse_clint(fdt, &clint_base, "riscv,clint0") == 0) { clint.reset(new clint_t(procs, CPU_HZ / INSNS_PER_RTC_TICK, cfg->real_time_clint())); bus.add_device(clint_base, clint.get()); } // pointer to wired interrupt controller abstract_interrupt_controller_t *intctrl = NULL; // create plic reg_t plic_base; uint32_t plic_ndev; if (fdt_parse_plic(fdt, &plic_base, &plic_ndev, "riscv,plic0") == 0) { plic.reset(new plic_t(procs, true, plic_ndev)); bus.add_device(plic_base, plic.get()); intctrl = plic.get(); } // create ns16550 reg_t ns16550_base; uint32_t ns16550_shift, ns16550_io_width; if (fdt_parse_ns16550(fdt, &ns16550_base, &ns16550_shift, &ns16550_io_width, "ns16550a") == 0) { assert(intctrl); ns16550.reset(new ns16550_t(&bus, intctrl, NS16550_INTERRUPT_ID, ns16550_shift, ns16550_io_width)); bus.add_device(ns16550_base, ns16550.get()); } //per core attribute int cpu_offset = 0, rc; size_t cpu_idx = 0; cpu_offset = fdt_get_offset(fdt, "/cpus"); if (cpu_offset < 0) return; for (cpu_offset = fdt_get_first_subnode(fdt, cpu_offset); cpu_offset >= 0; cpu_offset = fdt_get_next_subnode(fdt, cpu_offset)) { if (cpu_idx >= nprocs()) break; //handle pmp reg_t pmp_num = 0, pmp_granularity = 0; if (fdt_parse_pmp_num(fdt, cpu_offset, &pmp_num) == 0) { if (pmp_num <= 64) { procs[cpu_idx]->set_pmp_num(pmp_num); } else { std::cerr << "core (" << cpu_idx << ") doesn't have valid 'riscv,pmpregions'" << pmp_num << ").\n"; exit(1); } } else { procs[cpu_idx]->set_pmp_num(0); } if (fdt_parse_pmp_alignment(fdt, cpu_offset, &pmp_granularity) == 0) { procs[cpu_idx]->set_pmp_granularity(pmp_granularity); } //handle mmu-type const char *mmu_type; rc = fdt_parse_mmu_type(fdt, cpu_offset, &mmu_type); if (rc == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SBARE); if (strncmp(mmu_type, "riscv,sv32", strlen("riscv,sv32")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV32); } else if (strncmp(mmu_type, "riscv,sv39", strlen("riscv,sv39")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV39); } else if (strncmp(mmu_type, "riscv,sv48", strlen("riscv,sv48")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV48); } else if (strncmp(mmu_type, "riscv,sv57", strlen("riscv,sv57")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV57); } else if (strncmp(mmu_type, "riscv,sbare", strlen("riscv,sbare")) == 0) { //has been set in the beginning } else { std::cerr << "core (" << cpu_idx << ") has an invalid 'mmu-type': " << mmu_type << ").\n"; exit(1); } } else { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SBARE); } cpu_idx++; } if (cpu_idx != nprocs()) { std::cerr << "core number in dts (" << cpu_idx << ") doesn't match it in command line (" << nprocs() << ").\n"; exit(1); } } sim_t::~sim_t() { for (size_t i = 0; i < procs.size(); i++) delete procs[i]; delete debug_mmu; } void sim_thread_main(void* arg) { ((sim_t*)arg)->main(); } void sim_t::main() { if (!debug && log) set_procs_debug(true); while (!done()) { if (debug || ctrlc_pressed) interactive(); else step(INTERLEAVE); if (remote_bitbang) { remote_bitbang->tick(); } } } int sim_t::run() { host = context_t::current(); target.init(sim_thread_main, this); htif_t::set_expected_xlen(isa.get_max_xlen()); return htif_t::run(); } void sim_t::step(size_t n) { for (size_t i = 0, steps = 0; i < n; i += steps) { steps = std::min(n - i, INTERLEAVE - current_step); procs[current_proc]->step(steps); current_step += steps; if (current_step == INTERLEAVE) { current_step = 0; procs[current_proc]->get_mmu()->yield_load_reservation(); if (++current_proc == procs.size()) { current_proc = 0; if (clint) clint->increment(INTERLEAVE / INSNS_PER_RTC_TICK); if (ns16550) ns16550->tick(); } host->switch_to(); } } } void sim_t::set_debug(bool value) { debug = value; } void sim_t::set_histogram(bool value) { histogram_enabled = value; for (size_t i = 0; i < procs.size(); i++) { procs[i]->set_histogram(histogram_enabled); } } void sim_t::configure_log(bool enable_log, bool enable_commitlog) { log = enable_log; if (!enable_commitlog) return; #ifndef RISCV_ENABLE_COMMITLOG fputs("Commit logging support has not been properly enabled; " "please re-build the riscv-isa-sim project using " "\"configure --enable-commitlog\".\n", stderr); abort(); #else for (processor_t *proc : procs) { proc->enable_log_commits(); } #endif } void sim_t::set_procs_debug(bool value) { for (size_t i=0; i< procs.size(); i++) procs[i]->set_debug(value); } static bool paddr_ok(reg_t addr) { return (addr >> MAX_PADDR_BITS) == 0; } bool sim_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes) { if (addr + len < addr || !paddr_ok(addr + len - 1)) return false; return bus.load(addr, len, bytes); } bool sim_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes) { if (addr + len < addr || !paddr_ok(addr + len - 1)) return false; return bus.store(addr, len, bytes); } void sim_t::make_dtb() { if (!dtb_file.empty()) { std::ifstream fin(dtb_file.c_str(), std::ios::binary); if (!fin.good()) { std::cerr << "can't find dtb file: " << dtb_file << std::endl; exit(-1); } std::stringstream strstream; strstream << fin.rdbuf(); dtb = strstream.str(); } else { std::pair initrd_bounds = cfg->initrd_bounds(); dts = make_dts(INSNS_PER_RTC_TICK, CPU_HZ, initrd_bounds.first, initrd_bounds.second, cfg->bootargs(), cfg->pmpregions, procs, mems); dtb = dts_compile(dts); } int fdt_code = fdt_check_header(dtb.c_str()); if (fdt_code) { std::cerr << "Failed to read DTB from "; if (dtb_file.empty()) { std::cerr << "auto-generated DTS string"; } else { std::cerr << "`" << dtb_file << "'"; } std::cerr << ": " << fdt_strerror(fdt_code) << ".\n"; exit(-1); } } void sim_t::set_rom() { const int reset_vec_size = 8; reg_t start_pc = cfg->start_pc.value_or(get_entry_point()); uint32_t reset_vec[reset_vec_size] = { 0x297, // auipc t0,0x0 0x28593 + (reset_vec_size * 4 << 20), // addi a1, t0, &dtb 0xf1402573, // csrr a0, mhartid get_core(0)->get_xlen() == 32 ? 0x0182a283u : // lw t0,24(t0) 0x0182b283u, // ld t0,24(t0) 0x28067, // jr t0 0, (uint32_t) (start_pc & 0xffffffff), (uint32_t) (start_pc >> 32) }; if (get_target_endianness() == memif_endianness_big) { int i; // Instuctions are little endian for (i = 0; reset_vec[i] != 0; i++) reset_vec[i] = to_le(reset_vec[i]); // Data is big endian for (; i < reset_vec_size; i++) reset_vec[i] = to_be(reset_vec[i]); // Correct the high/low order of 64-bit start PC if (get_core(0)->get_xlen() != 32) std::swap(reset_vec[reset_vec_size-2], reset_vec[reset_vec_size-1]); } else { for (int i = 0; i < reset_vec_size; i++) reset_vec[i] = to_le(reset_vec[i]); } std::vector rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec)); rom.insert(rom.end(), dtb.begin(), dtb.end()); const int align = 0x1000; rom.resize((rom.size() + align - 1) / align * align); boot_rom.reset(new rom_device_t(rom)); bus.add_device(DEFAULT_RSTVEC, boot_rom.get()); } char* sim_t::addr_to_mem(reg_t addr) { if (!paddr_ok(addr)) return NULL; auto desc = bus.find_device(addr); if (auto mem = dynamic_cast(desc.second)) if (addr - desc.first < mem->size()) return mem->contents(addr - desc.first); return NULL; } const char* sim_t::get_symbol(uint64_t addr) { return htif_t::get_symbol(addr); } // htif void sim_t::reset() { if (dtb_enabled) set_rom(); } void sim_t::idle() { target.switch_to(); } void sim_t::read_chunk(addr_t taddr, size_t len, void* dst) { assert(len == 8); auto data = debug_mmu->to_target(debug_mmu->load_uint64(taddr)); memcpy(dst, &data, sizeof data); } void sim_t::write_chunk(addr_t taddr, size_t len, const void* src) { assert(len == 8); target_endian data; memcpy(&data, src, sizeof data); debug_mmu->store_uint64(taddr, debug_mmu->from_target(data)); } void sim_t::set_target_endianness(memif_endianness_t endianness) { #ifdef RISCV_ENABLE_DUAL_ENDIAN assert(endianness == memif_endianness_little || endianness == memif_endianness_big); bool enable = endianness == memif_endianness_big; debug_mmu->set_target_big_endian(enable); for (size_t i = 0; i < procs.size(); i++) { procs[i]->get_mmu()->set_target_big_endian(enable); procs[i]->reset(); } #else assert(endianness == memif_endianness_little); #endif } memif_endianness_t sim_t::get_target_endianness() const { return debug_mmu->is_target_big_endian()? memif_endianness_big : memif_endianness_little; } void sim_t::proc_reset(unsigned id) { debug_module.proc_reset(id); }