// See LICENSE for license details. #include "sim.h" #include "mmu.h" #include "remote_bitbang.h" #include #include #include #include #include #include #include #include #include #include volatile bool ctrlc_pressed = false; static void handle_signal(int sig) { if (ctrlc_pressed) exit(-1); ctrlc_pressed = true; signal(sig, &handle_signal); } sim_t::sim_t(const char* isa, size_t nprocs, bool halted, reg_t start_pc, std::vector> mems, const std::vector& args, std::vector const hartids, unsigned progsize, unsigned max_bus_master_bits, bool require_authentication) : htif_t(args), mems(mems), procs(std::max(nprocs, size_t(1))), start_pc(start_pc), current_step(0), current_proc(0), debug(false), remote_bitbang(NULL), debug_module(this, progsize, max_bus_master_bits, require_authentication) { signal(SIGINT, &handle_signal); for (auto& x : mems) bus.add_device(x.first, x.second); debug_module.add_device(&bus); debug_mmu = new mmu_t(this, NULL); if (hartids.size() == 0) { for (size_t i = 0; i < procs.size(); i++) { procs[i] = new processor_t(isa, this, i, halted); } } else { if (hartids.size() != procs.size()) { std::cerr << "Number of specified hartids doesn't match number of processors" << strerror(errno) << std::endl; exit(1); } for (size_t i = 0; i < procs.size(); i++) { procs[i] = new processor_t(isa, this, hartids[i], halted); } } clint.reset(new clint_t(procs)); bus.add_device(CLINT_BASE, clint.get()); } sim_t::~sim_t() { for (size_t i = 0; i < procs.size(); i++) delete procs[i]; delete debug_mmu; } void sim_thread_main(void* arg) { ((sim_t*)arg)->main(); } void sim_t::main() { if (!debug && log) set_procs_debug(true); while (!done()) { if (debug || ctrlc_pressed) interactive(); else step(INTERLEAVE); if (remote_bitbang) { remote_bitbang->tick(); } } } int sim_t::run() { host = context_t::current(); target.init(sim_thread_main, this); return htif_t::run(); } void sim_t::step(size_t n) { for (size_t i = 0, steps = 0; i < n; i += steps) { steps = std::min(n - i, INTERLEAVE - current_step); procs[current_proc]->step(steps); current_step += steps; if (current_step == INTERLEAVE) { current_step = 0; procs[current_proc]->yield_load_reservation(); if (++current_proc == procs.size()) { current_proc = 0; clint->increment(INTERLEAVE / INSNS_PER_RTC_TICK); } host->switch_to(); } } } void sim_t::set_debug(bool value) { debug = value; } void sim_t::set_log(bool value) { log = value; } void sim_t::set_histogram(bool value) { histogram_enabled = value; for (size_t i = 0; i < procs.size(); i++) { procs[i]->set_histogram(histogram_enabled); } } void sim_t::set_procs_debug(bool value) { for (size_t i=0; i< procs.size(); i++) procs[i]->set_debug(value); } bool sim_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes) { if (addr + len < addr) return false; return bus.load(addr, len, bytes); } bool sim_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes) { if (addr + len < addr) return false; return bus.store(addr, len, bytes); } static std::string dts_compile(const std::string& dts) { // Convert the DTS to DTB int dts_pipe[2]; pid_t dts_pid; if (pipe(dts_pipe) != 0 || (dts_pid = fork()) < 0) { std::cerr << "Failed to fork dts child: " << strerror(errno) << std::endl; exit(1); } // Child process to output dts if (dts_pid == 0) { close(dts_pipe[0]); int step, len = dts.length(); const char *buf = dts.c_str(); for (int done = 0; done < len; done += step) { step = write(dts_pipe[1], buf+done, len-done); if (step == -1) { std::cerr << "Failed to write dts: " << strerror(errno) << std::endl; exit(1); } } close(dts_pipe[1]); exit(0); } pid_t dtb_pid; int dtb_pipe[2]; if (pipe(dtb_pipe) != 0 || (dtb_pid = fork()) < 0) { std::cerr << "Failed to fork dtb child: " << strerror(errno) << std::endl; exit(1); } // Child process to output dtb if (dtb_pid == 0) { dup2(dts_pipe[0], 0); dup2(dtb_pipe[1], 1); close(dts_pipe[0]); close(dts_pipe[1]); close(dtb_pipe[0]); close(dtb_pipe[1]); execl(DTC, DTC, "-O", "dtb", 0); std::cerr << "Failed to run " DTC ": " << strerror(errno) << std::endl; exit(1); } close(dts_pipe[1]); close(dts_pipe[0]); close(dtb_pipe[1]); // Read-out dtb std::stringstream dtb; int got; char buf[4096]; while ((got = read(dtb_pipe[0], buf, sizeof(buf))) > 0) { dtb.write(buf, got); } if (got == -1) { std::cerr << "Failed to read dtb: " << strerror(errno) << std::endl; exit(1); } close(dtb_pipe[0]); // Reap children int status; waitpid(dts_pid, &status, 0); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { std::cerr << "Child dts process failed" << std::endl; exit(1); } waitpid(dtb_pid, &status, 0); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { std::cerr << "Child dtb process failed" << std::endl; exit(1); } return dtb.str(); } void sim_t::make_dtb() { const int reset_vec_size = 8; start_pc = start_pc == reg_t(-1) ? get_entry_point() : start_pc; uint32_t reset_vec[reset_vec_size] = { 0x297, // auipc t0,0x0 0x28593 + (reset_vec_size * 4 << 20), // addi a1, t0, &dtb 0xf1402573, // csrr a0, mhartid get_core(0)->get_xlen() == 32 ? 0x0182a283u : // lw t0,24(t0) 0x0182b283u, // ld t0,24(t0) 0x28067, // jr t0 0, (uint32_t) (start_pc & 0xffffffff), (uint32_t) (start_pc >> 32) }; std::vector rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec)); std::stringstream s; s << std::dec << "/dts-v1/;\n" "\n" "/ {\n" " #address-cells = <2>;\n" " #size-cells = <2>;\n" " compatible = \"ucbbar,spike-bare-dev\";\n" " model = \"ucbbar,spike-bare\";\n" " cpus {\n" " #address-cells = <1>;\n" " #size-cells = <0>;\n" " timebase-frequency = <" << (CPU_HZ/INSNS_PER_RTC_TICK) << ">;\n"; for (size_t i = 0; i < procs.size(); i++) { s << " CPU" << i << ": cpu@" << i << " {\n" " device_type = \"cpu\";\n" " reg = <" << i << ">;\n" " status = \"okay\";\n" " compatible = \"riscv\";\n" " riscv,isa = \"" << procs[i]->get_isa_string() << "\";\n" " mmu-type = \"riscv," << (procs[i]->get_max_xlen() <= 32 ? "sv32" : "sv48") << "\";\n" " clock-frequency = <" << CPU_HZ << ">;\n" " CPU" << i << "_intc: interrupt-controller {\n" " #interrupt-cells = <1>;\n" " interrupt-controller;\n" " compatible = \"riscv,cpu-intc\";\n" " };\n" " };\n"; } s << " };\n"; for (auto& m : mems) { s << std::hex << " memory@" << m.first << " {\n" " device_type = \"memory\";\n" " reg = <0x" << (m.first >> 32) << " 0x" << (m.first & (uint32_t)-1) << " 0x" << (m.second->size() >> 32) << " 0x" << (m.second->size() & (uint32_t)-1) << ">;\n" " };\n"; } s << " soc {\n" " #address-cells = <2>;\n" " #size-cells = <2>;\n" " compatible = \"ucbbar,spike-bare-soc\", \"simple-bus\";\n" " ranges;\n" " clint@" << CLINT_BASE << " {\n" " compatible = \"riscv,clint0\";\n" " interrupts-extended = <" << std::dec; for (size_t i = 0; i < procs.size(); i++) s << "&CPU" << i << "_intc 3 &CPU" << i << "_intc 7 "; reg_t clintbs = CLINT_BASE; reg_t clintsz = CLINT_SIZE; s << std::hex << ">;\n" " reg = <0x" << (clintbs >> 32) << " 0x" << (clintbs & (uint32_t)-1) << " 0x" << (clintsz >> 32) << " 0x" << (clintsz & (uint32_t)-1) << ">;\n" " };\n" " };\n" " htif {\n" " compatible = \"ucb,htif0\";\n" " };\n" "};\n"; dts = s.str(); std::string dtb = dts_compile(dts); rom.insert(rom.end(), dtb.begin(), dtb.end()); const int align = 0x1000; rom.resize((rom.size() + align - 1) / align * align); boot_rom.reset(new rom_device_t(rom)); bus.add_device(DEFAULT_RSTVEC, boot_rom.get()); } char* sim_t::addr_to_mem(reg_t addr) { auto desc = bus.find_device(addr); if (auto mem = dynamic_cast(desc.second)) if (addr - desc.first < mem->size()) return mem->contents() + (addr - desc.first); return NULL; } // htif void sim_t::reset() { make_dtb(); } void sim_t::idle() { target.switch_to(); } void sim_t::read_chunk(addr_t taddr, size_t len, void* dst) { assert(len == 8); auto data = debug_mmu->load_uint64(taddr); memcpy(dst, &data, sizeof data); } void sim_t::write_chunk(addr_t taddr, size_t len, const void* src) { assert(len == 8); uint64_t data; memcpy(&data, src, sizeof data); debug_mmu->store_uint64(taddr, data); } void sim_t::proc_reset(unsigned id) { debug_module.proc_reset(id); }