// See LICENSE for license details. #include "processor.h" #include "extension.h" #include "common.h" #include "config.h" #include "simif.h" #include "mmu.h" #include "disasm.h" #include #include #include #include #include #include #include #include #include #undef STATE #define STATE state processor_t::processor_t(const char* isa, const char* priv, const char* varch, simif_t* sim, uint32_t id, bool halt_on_reset, FILE* log_file) : debug(false), halt_request(false), sim(sim), ext(NULL), id(id), xlen(0), histogram_enabled(false), log_commits_enabled(false), log_file(log_file), halt_on_reset(halt_on_reset), extension_table(256, false), last_pc(1), executions(1) { VU.p = this; parse_isa_string(isa); parse_priv_string(priv); if (supports_extension('V')) parse_varch_string(varch); register_base_instructions(); mmu = new mmu_t(sim, this); disassembler = new disassembler_t(max_xlen); if (ext) for (auto disasm_insn : ext->get_disasms()) disassembler->add_insn(disasm_insn); set_pmp_granularity(1 << PMP_SHIFT); set_pmp_num(state.max_pmp); reset(); } processor_t::~processor_t() { #ifdef RISCV_ENABLE_HISTOGRAM if (histogram_enabled) { fprintf(stderr, "PC Histogram size:%zu\n", pc_histogram.size()); for (auto it : pc_histogram) fprintf(stderr, "%0" PRIx64 " %" PRIu64 "\n", it.first, it.second); } #endif delete mmu; delete disassembler; } static void bad_option_string(const char *option, const char *value, const char *msg) { fprintf(stderr, "error: bad %s option '%s'. %s\n", option, value, msg); abort(); } static void bad_isa_string(const char* isa, const char* msg) { bad_option_string("--isa", isa, msg); } static void bad_priv_string(const char* priv) { fprintf(stderr, "error: bad --priv option %s\n", priv); abort(); } static void bad_varch_string(const char* varch, const char *msg) { bad_option_string("--varch", varch, msg); } static std::string get_string_token(std::string str, const char delimiter, size_t& pos) { size_t _pos = pos; while (pos < str.length() && str[pos] != delimiter) ++pos; return str.substr(_pos, pos - _pos); } static int get_int_token(std::string str, const char delimiter, size_t& pos) { size_t _pos = pos; while (pos < str.length() && str[pos] != delimiter) { if (!isdigit(str[pos])) bad_varch_string(str.c_str(), "Unsupported value"); // An integer is expected ++pos; } return (pos == _pos) ? 0 : stoi(str.substr(_pos, pos - _pos)); } static bool check_pow2(int val) { return ((val & (val - 1))) == 0; } void processor_t::parse_varch_string(const char* s) { std::string str, tmp; for (const char *r = s; *r; r++) str += std::tolower(*r); size_t pos = 0; size_t len = str.length(); int vlen = 0; int elen = 0; int slen = 0; int valu = 4; // default vectorUnit_t::fredsum_impl_t fredsum_impl = vectorUnit_t::ORDERED_FREDSUM_IMPL; // default while (pos < len) { std::string attr = get_string_token(str, ':', pos); ++pos; if (attr == "vlen") vlen = get_int_token(str, ',', pos); else if (attr == "slen") slen = get_int_token(str, ',', pos); else if (attr == "elen") elen = get_int_token(str, ',', pos); else if (attr == "nalu") valu = get_int_token(str, ',', pos); else if (attr == "fredsum-impl") { std::string temp = get_string_token(str, ',', pos); if (temp == "ordered") fredsum_impl = vectorUnit_t::ORDERED_FREDSUM_IMPL; else if (temp == "parallel") fredsum_impl = vectorUnit_t::PARALLEL_FREDSUM_IMPL; else fredsum_impl = vectorUnit_t::UNKNOWN_FREDSUM_IMPL; } else bad_varch_string(s, "Unsupported token"); ++pos; } if (!check_pow2(vlen) || !check_pow2(elen) || !check_pow2(slen) || !check_pow2(valu)){ bad_varch_string(s, "The integer value should be the power of 2"); } if (fredsum_impl == vectorUnit_t::UNKNOWN_FREDSUM_IMPL) { bad_varch_string(s, "fredsum-impl now only supported ordered/parallel"); } /* Vector spec requirements. */ if (vlen < elen) bad_varch_string(s, "vlen must be >= elen"); if (vlen < slen) bad_varch_string(s, "vlen must be >= slen"); if (slen < 32) bad_varch_string(s, "slen must be >= 32"); if ((unsigned) elen < std::max(max_xlen, get_flen())) bad_varch_string(s, "elen must be >= max(xlen, flen)"); if (vlen != slen) bad_varch_string(s, "vlen must be == slen for current limitation"); /* spike requirements. */ if (vlen > 4096) bad_varch_string(s, "vlen must be <= 4096"); if (valu == 0){ bad_varch_string(s, "nalu (Number of vector ALUs) must be > 0"); } VU.VLEN = vlen; VU.ELEN = elen; VU.SLEN = slen; VU.VALU = valu; VU.fredsum_impl = fredsum_impl; VU.vlenb = vlen / 8; } static std::string strtolower(const char* str) { std::string res; for (const char *r = str; *r; r++) res += std::tolower(*r); return res; } void processor_t::parse_priv_string(const char* str) { std::string lowercase = strtolower(str); bool user = false, supervisor = false; if (lowercase == "m") ; else if (lowercase == "mu") user = true; else if (lowercase == "msu") user = supervisor = true; else bad_priv_string(str); if (user) { max_isa |= reg_t(user) << ('u' - 'a'); extension_table['U'] = true; } if (supervisor) { max_isa |= reg_t(supervisor) << ('s' - 'a'); extension_table['S'] = true; } } void processor_t::parse_isa_string(const char* str) { std::string lowercase = strtolower(str), tmp; char error_msg[256]; const char* p = lowercase.c_str(); const char* all_subsets = "imafdqc" #ifdef __SIZEOF_INT128__ "v" #endif ""; max_xlen = 64; max_isa = reg_t(2) << 62; if (strncmp(p, "rv32", 4) == 0) max_xlen = 32, max_isa = reg_t(1) << 30, p += 4; else if (strncmp(p, "rv64", 4) == 0) p += 4; else if (strncmp(p, "rv", 2) == 0) p += 2; if (!*p) { p = "imafdc"; } else if (*p == 'g') { // treat "G" as "IMAFD" tmp = std::string("imafd") + (p+1); p = &tmp[0]; } isa_string = "rv" + std::to_string(max_xlen) + p; while (*p) { if (islower(*p)) { max_isa |= 1L << (*p - 'a'); extension_table[toupper(*p)] = true; if (strchr(all_subsets, *p)) { p++; } else if (*p == 'x') { const char* ext = p + 1, *end = ext; while (islower(*end)) end++; auto ext_str = std::string(ext, end - ext); if (ext_str != "dummy") register_extension(find_extension(ext_str.c_str())()); p = end; } else { sprintf(error_msg, "unsupported extension '%c'", *p); bad_isa_string(str, error_msg); } } else if (*p == '_') { const char* ext = p + 1, *end = ext; while (islower(*end)) end++; auto ext_str = std::string(ext, end - ext); if (ext_str == "zfh") { extension_table[EXT_ZFH] = true; } else if (ext_str == "zvamo") { extension_table[EXT_ZVAMO] = true; } else { sprintf(error_msg, "unsupported extension '%s'", ext_str.c_str()); bad_isa_string(str, error_msg); } p = end; } else { sprintf(error_msg, "can't parse '%c(%d)'", *p, *p); bad_isa_string(str, error_msg); } } state.misa |= max_isa; if (!supports_extension('I')) bad_isa_string(str, "'I' extension is required"); if (supports_extension(EXT_ZFH) && !supports_extension('F')) bad_isa_string(str, "'Zfh' extension requires 'F'"); if (supports_extension('D') && !supports_extension('F')) bad_isa_string(str, "'D' extension requires 'F'"); if (supports_extension('Q') && !supports_extension('D')) bad_isa_string(str, "'Q' extension requires 'D'"); if (supports_extension(EXT_ZVAMO) && !supports_extension('V')) bad_isa_string(str, "'Zvamo' extension requires 'V'"); } void state_t::reset(reg_t max_isa) { pc = DEFAULT_RSTVEC; XPR.reset(); FPR.reset(); prv = PRV_M; misa = max_isa; mstatus = 0; mepc = 0; mtval = 0; mscratch = 0; mtvec = 0; mcause = 0; minstret = 0; mie = 0; mip = 0; medeleg = 0; mideleg = 0; mcounteren = 0; scounteren = 0; sepc = 0; stval = 0; sscratch = 0; stvec = 0; satp = 0; scause = 0; dpc = 0; dscratch0 = 0; dscratch1 = 0; memset(&this->dcsr, 0, sizeof(this->dcsr)); tselect = 0; memset(this->mcontrol, 0, sizeof(this->mcontrol)); for (auto &item : mcontrol) item.type = 2; memset(this->tdata2, 0, sizeof(this->tdata2)); debug_mode = false; single_step = STEP_NONE; memset(this->pmpcfg, 0, sizeof(this->pmpcfg)); memset(this->pmpaddr, 0, sizeof(this->pmpaddr)); fflags = 0; frm = 0; serialized = false; #ifdef RISCV_ENABLE_COMMITLOG log_reg_write.clear(); log_mem_read.clear(); log_mem_write.clear(); last_inst_priv = 0; last_inst_xlen = 0; last_inst_flen = 0; #endif } void processor_t::vectorUnit_t::reset(){ free(reg_file); VLEN = get_vlen(); ELEN = get_elen(); SLEN = get_slen(); // registers are simply concatenated reg_file = malloc(NVPR * (VLEN/8)); vtype = 0; set_vl(0, 0, 0, -1); // default to illegal configuration } reg_t processor_t::vectorUnit_t::set_vl(int rd, int rs1, reg_t reqVL, reg_t newType){ reg_t vlmul = 0; if (vtype != newType){ vtype = newType; vsew = 1 << (BITS(newType, 4, 2) + 3); vlmul = BITS(newType, 1, 0); vemul = vlmul; veew = vsew; fractional_lmul = BITS(newType, 5, 5); vta = BITS(newType, 6, 6); vma = BITS(newType, 7, 7); vediv = 1 << BITS(newType, 9, 8); if (fractional_lmul) { switch(vlmul){ case 3: vlmul = 2; break; case 2: vlmul = 4; break; case 1: vlmul = 8; break; } vlmax = (VLEN/vsew)/vlmul; vflmul = 1.0/vlmul; vlmul = 1; } else { vlmul = 1 << vlmul; vlmax = VLEN/vsew * vlmul; vflmul = vlmul; } vill = !(vflmul >= 0.125 && vflmul <= 8) || vsew > ELEN || vediv != 1 || (newType >> 8) != 0; if (vill) { vlmax = 0; vtype = UINT64_MAX << (p->get_xlen() - 1); } } // set vl if (vlmax == 0) { vl = 0; } else if (rd == 0 && rs1 == 0) { vl = vl > vlmax ? vlmax : vl; } else if (rd != 0 && rs1 == 0) { vl = vlmax; } else if (rs1 != 0) { vl = reqVL > vlmax ? vlmax : reqVL; } vstart = 0; setvl_count++; return vl; } void processor_t::set_debug(bool value) { debug = value; if (ext) ext->set_debug(value); } void processor_t::set_histogram(bool value) { histogram_enabled = value; #ifndef RISCV_ENABLE_HISTOGRAM if (value) { fprintf(stderr, "PC Histogram support has not been properly enabled;"); fprintf(stderr, " please re-build the riscv-isa-sim project using \"configure --enable-histogram\".\n"); abort(); } #endif } #ifdef RISCV_ENABLE_COMMITLOG void processor_t::enable_log_commits() { log_commits_enabled = true; } #endif void processor_t::reset() { state.reset(max_isa); state.dcsr.halt = halt_on_reset; halt_on_reset = false; set_csr(CSR_MSTATUS, state.mstatus); VU.reset(); if (n_pmp > 0) { // For backwards compatibility with software that is unaware of PMP, // initialize PMP to permit unprivileged access to all of memory. set_csr(CSR_PMPADDR0, ~reg_t(0)); set_csr(CSR_PMPCFG0, PMP_R | PMP_W | PMP_X | PMP_NAPOT); } if (ext) ext->reset(); // reset the extension if (sim) sim->proc_reset(id); } // Count number of contiguous 0 bits starting from the LSB. static int ctz(reg_t val) { int res = 0; if (val) while ((val & 1) == 0) val >>= 1, res++; return res; } void processor_t::set_pmp_num(reg_t n) { // check the number of pmp is in a reasonable range if (n > state.max_pmp) { fprintf(stderr, "error: bad number of pmp regions: '%ld' from the dtb\n", (unsigned long)n); abort(); } n_pmp = n; } void processor_t::set_pmp_granularity(reg_t gran) { // check the pmp granularity is set from dtb(!=0) and is power of 2 if (gran < (1 << PMP_SHIFT) || (gran & (gran - 1)) != 0) { fprintf(stderr, "error: bad pmp granularity '%ld' from the dtb\n", (unsigned long)gran); abort(); } lg_pmp_granularity = ctz(gran); } void processor_t::take_interrupt(reg_t pending_interrupts) { reg_t mie = get_field(state.mstatus, MSTATUS_MIE); reg_t m_enabled = state.prv < PRV_M || (state.prv == PRV_M && mie); reg_t enabled_interrupts = pending_interrupts & ~state.mideleg & -m_enabled; reg_t sie = get_field(state.mstatus, MSTATUS_SIE); reg_t s_enabled = state.prv < PRV_S || (state.prv == PRV_S && sie); // M-ints have highest priority; consider S-ints only if no M-ints pending if (enabled_interrupts == 0) enabled_interrupts = pending_interrupts & state.mideleg & -s_enabled; if (!state.debug_mode && enabled_interrupts) { // nonstandard interrupts have highest priority if (enabled_interrupts >> IRQ_M_EXT) enabled_interrupts = enabled_interrupts >> IRQ_M_EXT << IRQ_M_EXT; // standard interrupt priority is MEI, MSI, MTI, SEI, SSI, STI else if (enabled_interrupts & MIP_MEIP) enabled_interrupts = MIP_MEIP; else if (enabled_interrupts & MIP_MSIP) enabled_interrupts = MIP_MSIP; else if (enabled_interrupts & MIP_MTIP) enabled_interrupts = MIP_MTIP; else if (enabled_interrupts & MIP_SEIP) enabled_interrupts = MIP_SEIP; else if (enabled_interrupts & MIP_SSIP) enabled_interrupts = MIP_SSIP; else if (enabled_interrupts & MIP_STIP) enabled_interrupts = MIP_STIP; else abort(); throw trap_t(((reg_t)1 << (max_xlen-1)) | ctz(enabled_interrupts)); } } static int xlen_to_uxl(int xlen) { if (xlen == 32) return 1; if (xlen == 64) return 2; abort(); } reg_t processor_t::legalize_privilege(reg_t prv) { assert(prv <= PRV_M); if (!supports_extension('U')) return PRV_M; if (prv == PRV_H || (prv == PRV_S && !supports_extension('S'))) return PRV_U; return prv; } void processor_t::set_privilege(reg_t prv) { mmu->flush_tlb(); state.prv = legalize_privilege(prv); } void processor_t::enter_debug_mode(uint8_t cause) { state.debug_mode = true; state.dcsr.cause = cause; state.dcsr.prv = state.prv; set_privilege(PRV_M); state.dpc = state.pc; state.pc = DEBUG_ROM_ENTRY; } void processor_t::take_trap(trap_t& t, reg_t epc) { if (debug) { fprintf(log_file, "core %3d: exception %s, epc 0x%016" PRIx64 "\n", id, t.name(), epc); if (t.has_tval()) fprintf(log_file, "core %3d: tval 0x%016" PRIx64 "\n", id, t.get_tval()); } if (state.debug_mode) { if (t.cause() == CAUSE_BREAKPOINT) { state.pc = DEBUG_ROM_ENTRY; } else { state.pc = DEBUG_ROM_TVEC; } return; } if (t.cause() == CAUSE_BREAKPOINT && ( (state.prv == PRV_M && state.dcsr.ebreakm) || (state.prv == PRV_S && state.dcsr.ebreaks) || (state.prv == PRV_U && state.dcsr.ebreaku))) { enter_debug_mode(DCSR_CAUSE_SWBP); return; } // by default, trap to M-mode, unless delegated to S-mode reg_t bit = t.cause(); reg_t deleg = state.medeleg; bool interrupt = (bit & ((reg_t)1 << (max_xlen-1))) != 0; if (interrupt) deleg = state.mideleg, bit &= ~((reg_t)1 << (max_xlen-1)); if (state.prv <= PRV_S && bit < max_xlen && ((deleg >> bit) & 1)) { // handle the trap in S-mode reg_t vector = (state.stvec & 1) && interrupt ? 4*bit : 0; state.pc = (state.stvec & ~(reg_t)1) + vector; state.scause = t.cause(); state.sepc = epc; state.stval = t.get_tval(); reg_t s = state.mstatus; s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); s = set_field(s, MSTATUS_SPP, state.prv); s = set_field(s, MSTATUS_SIE, 0); set_csr(CSR_MSTATUS, s); set_privilege(PRV_S); } else { reg_t vector = (state.mtvec & 1) && interrupt ? 4*bit : 0; state.pc = (state.mtvec & ~(reg_t)1) + vector; state.mepc = epc; state.mcause = t.cause(); state.mtval = t.get_tval(); reg_t s = state.mstatus; s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); s = set_field(s, MSTATUS_MPP, state.prv); s = set_field(s, MSTATUS_MIE, 0); set_csr(CSR_MSTATUS, s); set_privilege(PRV_M); } } void processor_t::disasm(insn_t insn) { uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1); if (last_pc != state.pc || last_bits != bits) { if (executions != 1) { fprintf(log_file, "core %3d: Executed %" PRIx64 " times\n", id, executions); } fprintf(log_file, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n", id, state.pc, bits, disassembler->disassemble(insn).c_str()); last_pc = state.pc; last_bits = bits; executions = 1; } else { executions++; } } int processor_t::paddr_bits() { assert(xlen == max_xlen); return max_xlen == 64 ? 50 : 34; } void processor_t::set_csr(int which, reg_t val) { val = zext_xlen(val); reg_t supervisor_ints = supports_extension('S') ? MIP_SSIP | MIP_STIP | MIP_SEIP : 0; reg_t coprocessor_ints = (ext != NULL) << IRQ_COP; reg_t delegable_ints = supervisor_ints | coprocessor_ints; reg_t all_ints = delegable_ints | MIP_MSIP | MIP_MTIP; if (which >= CSR_PMPADDR0 && which < CSR_PMPADDR0 + state.max_pmp) { // If no PMPs are configured, disallow access to all. Otherwise, allow // access to all, but unimplemented ones are hardwired to zero. if (n_pmp == 0) return; size_t i = which - CSR_PMPADDR0; bool locked = state.pmpcfg[i] & PMP_L; bool next_locked = i+1 < state.max_pmp && (state.pmpcfg[i+1] & PMP_L); bool next_tor = i+1 < state.max_pmp && (state.pmpcfg[i+1] & PMP_A) == PMP_TOR; if (i < n_pmp && !locked && !(next_locked && next_tor)) state.pmpaddr[i] = val & ((reg_t(1) << (MAX_PADDR_BITS - PMP_SHIFT)) - 1); mmu->flush_tlb(); } if (which >= CSR_PMPCFG0 && which < CSR_PMPCFG0 + state.max_pmp / 4) { if (n_pmp == 0) return; for (size_t i0 = (which - CSR_PMPCFG0) * 4, i = i0; i < i0 + xlen / 8; i++) { if (i < n_pmp && !(state.pmpcfg[i] & PMP_L)) { uint8_t cfg = (val >> (8 * (i - i0))) & (PMP_R | PMP_W | PMP_X | PMP_A | PMP_L); cfg &= ~PMP_W | ((cfg & PMP_R) ? PMP_W : 0); // Disallow R=0 W=1 if (lg_pmp_granularity != PMP_SHIFT && (cfg & PMP_A) == PMP_NA4) cfg |= PMP_NAPOT; // Disallow A=NA4 when granularity > 4 state.pmpcfg[i] = cfg; } } mmu->flush_tlb(); } switch (which) { case CSR_FFLAGS: dirty_fp_state; state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT); break; case CSR_FRM: dirty_fp_state; state.frm = val & (FSR_RD >> FSR_RD_SHIFT); break; case CSR_FCSR: dirty_fp_state; state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT; state.frm = (val & FSR_RD) >> FSR_RD_SHIFT; break; case CSR_VCSR: dirty_vs_state; VU.vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; VU.vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; break; case CSR_MSTATUS: { if ((val ^ state.mstatus) & (MSTATUS_MPP | MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR)) mmu->flush_tlb(); bool has_fs = supports_extension('S') || supports_extension('F') || supports_extension('V'); bool has_vs = supports_extension('V'); reg_t mask = MSTATUS_MIE | MSTATUS_MPIE | MSTATUS_MPRV | (supports_extension('S') ? (MSTATUS_SUM | MSTATUS_SIE | MSTATUS_SPIE) : 0) | MSTATUS_MXR | MSTATUS_TW | MSTATUS_TVM | MSTATUS_TSR | (has_fs ? MSTATUS_FS : 0) | (has_vs ? MSTATUS_VS : 0) | (ext ? MSTATUS_XS : 0); reg_t requested_mpp = legalize_privilege(get_field(val, MSTATUS_MPP)); state.mstatus = set_field(state.mstatus, MSTATUS_MPP, requested_mpp); if (supports_extension('S')) mask |= MSTATUS_SPP; state.mstatus = (state.mstatus & ~mask) | (val & mask); bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS; dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS; dirty |= (state.mstatus & MSTATUS_VS) == MSTATUS_VS; if (max_xlen == 32) state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty); else state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty); if (supports_extension('U')) state.mstatus = set_field(state.mstatus, MSTATUS_UXL, xlen_to_uxl(max_xlen)); if (supports_extension('S')) state.mstatus = set_field(state.mstatus, MSTATUS_SXL, xlen_to_uxl(max_xlen)); // U-XLEN == S-XLEN == M-XLEN xlen = max_xlen; break; } case CSR_MIP: { reg_t mask = supervisor_ints & (MIP_SSIP | MIP_STIP); state.mip = (state.mip & ~mask) | (val & mask); break; } case CSR_MIE: state.mie = (state.mie & ~all_ints) | (val & all_ints); break; case CSR_MIDELEG: state.mideleg = (state.mideleg & ~delegable_ints) | (val & delegable_ints); break; case CSR_MEDELEG: { reg_t mask = (1 << CAUSE_MISALIGNED_FETCH) | (1 << CAUSE_BREAKPOINT) | (1 << CAUSE_USER_ECALL) | (1 << CAUSE_FETCH_PAGE_FAULT) | (1 << CAUSE_LOAD_PAGE_FAULT) | (1 << CAUSE_STORE_PAGE_FAULT); state.medeleg = (state.medeleg & ~mask) | (val & mask); break; } case CSR_MINSTRET: case CSR_MCYCLE: if (xlen == 32) state.minstret = (state.minstret >> 32 << 32) | (val & 0xffffffffU); else state.minstret = val; // The ISA mandates that if an instruction writes instret, the write // takes precedence over the increment to instret. However, Spike // unconditionally increments instret after executing an instruction. // Correct for this artifact by decrementing instret here. state.minstret--; break; case CSR_MINSTRETH: case CSR_MCYCLEH: state.minstret = (val << 32) | (state.minstret << 32 >> 32); state.minstret--; // See comment above. break; case CSR_SCOUNTEREN: state.scounteren = val; break; case CSR_MCOUNTEREN: state.mcounteren = val; break; case CSR_SSTATUS: { reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | (supports_extension('V') ? SSTATUS_VS : 0); return set_csr(CSR_MSTATUS, (state.mstatus & ~mask) | (val & mask)); } case CSR_SIP: { reg_t mask = MIP_SSIP & state.mideleg; return set_csr(CSR_MIP, (state.mip & ~mask) | (val & mask)); } case CSR_SIE: return set_csr(CSR_MIE, (state.mie & ~state.mideleg) | (val & state.mideleg)); case CSR_SATP: { reg_t rv64_ppn_mask = (reg_t(1) << (MAX_PADDR_BITS - PGSHIFT)) - 1; mmu->flush_tlb(); if (max_xlen == 32) state.satp = val & (SATP32_PPN | SATP32_MODE); if (max_xlen == 64 && (get_field(val, SATP64_MODE) == SATP_MODE_OFF || get_field(val, SATP64_MODE) == SATP_MODE_SV39 || get_field(val, SATP64_MODE) == SATP_MODE_SV48)) state.satp = val & (SATP64_PPN | SATP64_MODE | rv64_ppn_mask); break; } case CSR_SEPC: state.sepc = val & ~(reg_t)1; break; case CSR_STVEC: state.stvec = val & ~(reg_t)2; break; case CSR_SSCRATCH: state.sscratch = val; break; case CSR_SCAUSE: state.scause = val; break; case CSR_STVAL: state.stval = val; break; case CSR_MEPC: state.mepc = val & ~(reg_t)1; break; case CSR_MTVEC: state.mtvec = val & ~(reg_t)2; break; case CSR_MSCRATCH: state.mscratch = val; break; case CSR_MCAUSE: state.mcause = val; break; case CSR_MTVAL: state.mtval = val; break; case CSR_MISA: { // the write is ignored if increasing IALIGN would misalign the PC if (!(val & (1L << ('C' - 'A'))) && (state.pc & 2)) break; if (!(val & (1L << ('F' - 'A')))) val &= ~(1L << ('D' - 'A')); // allow MAFDC bits in MISA to be modified reg_t mask = 0; mask |= 1L << ('M' - 'A'); mask |= 1L << ('A' - 'A'); mask |= 1L << ('F' - 'A'); mask |= 1L << ('D' - 'A'); mask |= 1L << ('C' - 'A'); mask &= max_isa; state.misa = (val & mask) | (state.misa & ~mask); break; } case CSR_TSELECT: if (val < state.num_triggers) { state.tselect = val; } break; case CSR_TDATA1: { mcontrol_t *mc = &state.mcontrol[state.tselect]; if (mc->dmode && !state.debug_mode) { break; } mc->dmode = get_field(val, MCONTROL_DMODE(xlen)); mc->select = get_field(val, MCONTROL_SELECT); mc->timing = get_field(val, MCONTROL_TIMING); mc->action = (mcontrol_action_t) get_field(val, MCONTROL_ACTION); mc->chain = get_field(val, MCONTROL_CHAIN); mc->match = (mcontrol_match_t) get_field(val, MCONTROL_MATCH); mc->m = get_field(val, MCONTROL_M); mc->h = get_field(val, MCONTROL_H); mc->s = get_field(val, MCONTROL_S); mc->u = get_field(val, MCONTROL_U); mc->execute = get_field(val, MCONTROL_EXECUTE); mc->store = get_field(val, MCONTROL_STORE); mc->load = get_field(val, MCONTROL_LOAD); // Assume we're here because of csrw. if (mc->execute) mc->timing = 0; trigger_updated(); } break; case CSR_TDATA2: if (state.mcontrol[state.tselect].dmode && !state.debug_mode) { break; } if (state.tselect < state.num_triggers) { state.tdata2[state.tselect] = val; } break; case CSR_DCSR: state.dcsr.prv = get_field(val, DCSR_PRV); state.dcsr.step = get_field(val, DCSR_STEP); // TODO: ndreset and fullreset state.dcsr.ebreakm = get_field(val, DCSR_EBREAKM); state.dcsr.ebreakh = get_field(val, DCSR_EBREAKH); state.dcsr.ebreaks = get_field(val, DCSR_EBREAKS); state.dcsr.ebreaku = get_field(val, DCSR_EBREAKU); state.dcsr.halt = get_field(val, DCSR_HALT); break; case CSR_DPC: state.dpc = val & ~(reg_t)1; break; case CSR_DSCRATCH0: state.dscratch0 = val; break; case CSR_DSCRATCH1: state.dscratch1 = val; break; case CSR_VSTART: dirty_vs_state; VU.vstart = val; break; case CSR_VXSAT: dirty_vs_state; VU.vxsat = val & 0x1ul; break; case CSR_VXRM: dirty_vs_state; VU.vxrm = val & 0x3ul; break; } } // Note that get_csr is sometimes called when read side-effects should not // be actioned. In other words, Spike cannot currently support CSRs with // side effects on reads. reg_t processor_t::get_csr(int which) { uint32_t ctr_en = -1; if (state.prv < PRV_M) ctr_en &= state.mcounteren; if (state.prv < PRV_S) ctr_en &= state.scounteren; bool ctr_ok = (ctr_en >> (which & 31)) & 1; if (ctr_ok) { if (which >= CSR_HPMCOUNTER3 && which <= CSR_HPMCOUNTER31) return 0; if (xlen == 32 && which >= CSR_HPMCOUNTER3H && which <= CSR_HPMCOUNTER31H) return 0; } if (which >= CSR_MHPMCOUNTER3 && which <= CSR_MHPMCOUNTER31) return 0; if (xlen == 32 && which >= CSR_MHPMCOUNTER3H && which <= CSR_MHPMCOUNTER31H) return 0; if (which >= CSR_MHPMEVENT3 && which <= CSR_MHPMEVENT31) return 0; if (which >= CSR_PMPADDR0 && which < CSR_PMPADDR0 + state.max_pmp) { reg_t i = which - CSR_PMPADDR0; if ((state.pmpcfg[i] & PMP_A) >= PMP_NAPOT) return state.pmpaddr[i] | (~pmp_tor_mask() >> 1); else return state.pmpaddr[i] & pmp_tor_mask(); } if (which >= CSR_PMPCFG0 && which < CSR_PMPCFG0 + state.max_pmp / 4) { require((which & ((xlen / 32) - 1)) == 0); reg_t res = 0; for (size_t i0 = (which - CSR_PMPCFG0) * 4, i = i0; i < i0 + xlen / 8 && i < state.max_pmp; i++) res |= reg_t(state.pmpcfg[i]) << (8 * (i - i0)); return res; } switch (which) { case CSR_FFLAGS: require_fp; if (!supports_extension('F')) break; return state.fflags; case CSR_FRM: require_fp; if (!supports_extension('F')) break; return state.frm; case CSR_FCSR: require_fp; if (!supports_extension('F')) break; return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT); case CSR_VCSR: if (!supports_extension('V')) break; return (VU.vxsat << VCSR_VXSAT_SHIFT) | (VU.vxrm << VCSR_VXRM_SHIFT); case CSR_INSTRET: case CSR_CYCLE: if (ctr_ok) return state.minstret; break; case CSR_MINSTRET: case CSR_MCYCLE: return state.minstret; case CSR_INSTRETH: case CSR_CYCLEH: if (ctr_ok && xlen == 32) return state.minstret >> 32; break; case CSR_MINSTRETH: case CSR_MCYCLEH: if (xlen == 32) return state.minstret >> 32; break; case CSR_SCOUNTEREN: return state.scounteren; case CSR_MCOUNTEREN: return state.mcounteren; case CSR_MCOUNTINHIBIT: return 0; case CSR_SSTATUS: { reg_t mask = SSTATUS_SIE | SSTATUS_SPIE | SSTATUS_SPP | SSTATUS_FS | (supports_extension('V') ? SSTATUS_VS : 0) | SSTATUS_XS | SSTATUS_SUM | SSTATUS_MXR | SSTATUS_UXL; reg_t sstatus = state.mstatus & mask; if ((sstatus & SSTATUS_FS) == SSTATUS_FS || (sstatus & SSTATUS_XS) == SSTATUS_XS) sstatus |= (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD); return sstatus; } case CSR_SIP: return state.mip & state.mideleg; case CSR_SIE: return state.mie & state.mideleg; case CSR_SEPC: return state.sepc & pc_alignment_mask(); case CSR_STVAL: return state.stval; case CSR_STVEC: return state.stvec; case CSR_SCAUSE: if (max_xlen > xlen) return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1)); return state.scause; case CSR_SATP: if (get_field(state.mstatus, MSTATUS_TVM)) require_privilege(PRV_M); return state.satp; case CSR_SSCRATCH: return state.sscratch; case CSR_MSTATUS: return state.mstatus; case CSR_MIP: return state.mip; case CSR_MIE: return state.mie; case CSR_MEPC: return state.mepc & pc_alignment_mask(); case CSR_MSCRATCH: return state.mscratch; case CSR_MCAUSE: return state.mcause; case CSR_MTVAL: return state.mtval; case CSR_MISA: return state.misa; case CSR_MARCHID: return 5; case CSR_MIMPID: return 0; case CSR_MVENDORID: return 0; case CSR_MHARTID: return id; case CSR_MTVEC: return state.mtvec; case CSR_MEDELEG: if (!supports_extension('S')) break; return state.medeleg; case CSR_MIDELEG: if (!supports_extension('S')) break; return state.mideleg; case CSR_TSELECT: return state.tselect; case CSR_TDATA1: if (state.tselect < state.num_triggers) { reg_t v = 0; mcontrol_t *mc = &state.mcontrol[state.tselect]; v = set_field(v, MCONTROL_TYPE(xlen), mc->type); v = set_field(v, MCONTROL_DMODE(xlen), mc->dmode); v = set_field(v, MCONTROL_MASKMAX(xlen), mc->maskmax); v = set_field(v, MCONTROL_SELECT, mc->select); v = set_field(v, MCONTROL_TIMING, mc->timing); v = set_field(v, MCONTROL_ACTION, mc->action); v = set_field(v, MCONTROL_CHAIN, mc->chain); v = set_field(v, MCONTROL_MATCH, mc->match); v = set_field(v, MCONTROL_M, mc->m); v = set_field(v, MCONTROL_H, mc->h); v = set_field(v, MCONTROL_S, mc->s); v = set_field(v, MCONTROL_U, mc->u); v = set_field(v, MCONTROL_EXECUTE, mc->execute); v = set_field(v, MCONTROL_STORE, mc->store); v = set_field(v, MCONTROL_LOAD, mc->load); return v; } else { return 0; } break; case CSR_TDATA2: if (state.tselect < state.num_triggers) { return state.tdata2[state.tselect]; } else { return 0; } break; case CSR_TDATA3: return 0; case CSR_DCSR: { if (!state.debug_mode) break; uint32_t v = 0; v = set_field(v, DCSR_XDEBUGVER, 1); v = set_field(v, DCSR_EBREAKM, state.dcsr.ebreakm); v = set_field(v, DCSR_EBREAKH, state.dcsr.ebreakh); v = set_field(v, DCSR_EBREAKS, state.dcsr.ebreaks); v = set_field(v, DCSR_EBREAKU, state.dcsr.ebreaku); v = set_field(v, DCSR_STOPCYCLE, 0); v = set_field(v, DCSR_STOPTIME, 0); v = set_field(v, DCSR_CAUSE, state.dcsr.cause); v = set_field(v, DCSR_STEP, state.dcsr.step); v = set_field(v, DCSR_PRV, state.dcsr.prv); return v; } case CSR_DPC: if (!state.debug_mode) break; return state.dpc & pc_alignment_mask(); case CSR_DSCRATCH0: if (!state.debug_mode) break; return state.dscratch0; case CSR_DSCRATCH1: if (!state.debug_mode) break; return state.dscratch1; case CSR_VSTART: require_vector_vs; if (!supports_extension('V')) break; return VU.vstart; case CSR_VXSAT: require_vector_vs; if (!supports_extension('V')) break; return VU.vxsat; case CSR_VXRM: require_vector_vs; if (!supports_extension('V')) break; return VU.vxrm; case CSR_VL: require_vector_vs; if (!supports_extension('V')) break; return VU.vl; case CSR_VTYPE: require_vector_vs; if (!supports_extension('V')) break; return VU.vtype; case CSR_VLENB: require_vector_vs; if (!supports_extension('V')) break; return VU.vlenb; } throw trap_illegal_instruction(0); } reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc) { throw trap_illegal_instruction(0); } insn_func_t processor_t::decode_insn(insn_t insn) { // look up opcode in hash table size_t idx = insn.bits() % OPCODE_CACHE_SIZE; insn_desc_t desc = opcode_cache[idx]; if (unlikely(insn.bits() != desc.match)) { // fall back to linear search insn_desc_t* p = &instructions[0]; while ((insn.bits() & p->mask) != p->match) p++; desc = *p; if (p->mask != 0 && p > &instructions[0]) { if (p->match != (p-1)->match && p->match != (p+1)->match) { // move to front of opcode list to reduce miss penalty while (--p >= &instructions[0]) *(p+1) = *p; instructions[0] = desc; } } opcode_cache[idx] = desc; opcode_cache[idx].match = insn.bits(); } return xlen == 64 ? desc.rv64 : desc.rv32; } void processor_t::register_insn(insn_desc_t desc) { instructions.push_back(desc); } void processor_t::build_opcode_map() { struct cmp { bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) { if (lhs.match == rhs.match) return lhs.mask > rhs.mask; return lhs.match > rhs.match; } }; std::sort(instructions.begin(), instructions.end(), cmp()); for (size_t i = 0; i < OPCODE_CACHE_SIZE; i++) opcode_cache[i] = {0, 0, &illegal_instruction, &illegal_instruction}; } void processor_t::register_extension(extension_t* x) { for (auto insn : x->get_instructions()) register_insn(insn); build_opcode_map(); for (auto disasm_insn : x->get_disasms()) disassembler->add_insn(disasm_insn); if (ext != NULL) throw std::logic_error("only one extension may be registered"); ext = x; x->set_processor(this); } void processor_t::register_base_instructions() { #define DECLARE_INSN(name, match, mask) \ insn_bits_t name##_match = (match), name##_mask = (mask); #include "encoding.h" #undef DECLARE_INSN #define DEFINE_INSN(name) \ REGISTER_INSN(this, name, name##_match, name##_mask) #include "insn_list.h" #undef DEFINE_INSN register_insn({0, 0, &illegal_instruction, &illegal_instruction}); build_opcode_map(); } bool processor_t::load(reg_t addr, size_t len, uint8_t* bytes) { switch (addr) { case 0: if (len <= 4) { memset(bytes, 0, len); bytes[0] = get_field(state.mip, MIP_MSIP); return true; } break; } return false; } bool processor_t::store(reg_t addr, size_t len, const uint8_t* bytes) { switch (addr) { case 0: if (len <= 4) { state.mip = set_field(state.mip, MIP_MSIP, bytes[0]); return true; } break; } return false; } void processor_t::trigger_updated() { mmu->flush_tlb(); mmu->check_triggers_fetch = false; mmu->check_triggers_load = false; mmu->check_triggers_store = false; for (unsigned i = 0; i < state.num_triggers; i++) { if (state.mcontrol[i].execute) { mmu->check_triggers_fetch = true; } if (state.mcontrol[i].load) { mmu->check_triggers_load = true; } if (state.mcontrol[i].store) { mmu->check_triggers_store = true; } } }