// See LICENSE for license details. #include "processor.h" #include "extension.h" #include "common.h" #include "config.h" #include "sim.h" #include "htif.h" #include "disasm.h" #include #include #include #include #include #include #include #include #undef STATE #define STATE state processor_t::processor_t(const char* isa, sim_t* sim, uint32_t id) : sim(sim), ext(NULL), disassembler(new disassembler_t), id(id), run(false), debug(false) { parse_isa_string(isa); mmu = new mmu_t(sim->mem, sim->memsz); mmu->set_processor(this); reset(true); #define DECLARE_INSN(name, match, mask) REGISTER_INSN(this, name, match, mask) #include "encoding.h" #undef DECLARE_INSN build_opcode_map(); } processor_t::~processor_t() { #ifdef RISCV_ENABLE_HISTOGRAM if (histogram_enabled) { fprintf(stderr, "PC Histogram size:%lu\n", pc_histogram.size()); for(auto iterator = pc_histogram.begin(); iterator != pc_histogram.end(); ++iterator) { fprintf(stderr, "%0lx %lu\n", (iterator->first << 2), iterator->second); } } #endif delete mmu; delete disassembler; } static void bad_isa_string(const char* isa) { fprintf(stderr, "error: bad --isa option %s\n", isa); abort(); } void processor_t::parse_isa_string(const char* isa) { const char* p = isa; const char* all_subsets = "IMAFDC"; max_xlen = 64; cpuid = reg_t(2) << 62; if (strncmp(p, "RV32", 4) == 0) max_xlen = 32, cpuid = 0, p += 4; else if (strncmp(p, "RV64", 4) == 0) p += 4; else if (strncmp(p, "RV", 2) == 0) p += 2; cpuid |= 1L << ('S' - 'A'); // advertise support for supervisor mode if (!*p) p = all_subsets; else if (*p != 'I') bad_isa_string(isa); while (*p) { cpuid |= 1L << (*p - 'A'); if (auto next = strchr(all_subsets, *p)) { all_subsets = next + 1; p++; } else if (*p == 'X') { const char* ext = p+1, *end = ext; while (islower(*end)) end++; register_extension(find_extension(std::string(ext, end - ext).c_str())()); p = end; } else { bad_isa_string(isa); } } if (supports_extension('D') && !supports_extension('F')) bad_isa_string(isa); } void state_t::reset() { memset(this, 0, sizeof(*this)); mstatus = set_field(mstatus, MSTATUS_PRV, PRV_M); mstatus = set_field(mstatus, MSTATUS_PRV1, PRV_S); mstatus = set_field(mstatus, MSTATUS_PRV2, PRV_S); pc = DEFAULT_MTVEC + 0x100; load_reservation = -1; } void processor_t::set_debug(bool value) { debug = value; if (ext) ext->set_debug(value); } void processor_t::set_histogram(bool value) { histogram_enabled = value; #ifndef RISCV_ENABLE_HISTOGRAM if (value) { fprintf(stderr, "PC Histogram support has not been properly enabled;"); fprintf(stderr, " please re-build the riscv-isa-run project using \"configure --enable-histogram\".\n"); } #endif } void processor_t::reset(bool value) { if (run == !value) return; run = !value; state.reset(); set_csr(CSR_MSTATUS, state.mstatus); if (ext) ext->reset(); // reset the extension } void processor_t::raise_interrupt(reg_t which) { throw trap_t(((reg_t)1 << (max_xlen-1)) | which); } void processor_t::take_interrupt() { int priv = get_field(state.mstatus, MSTATUS_PRV); int ie = get_field(state.mstatus, MSTATUS_IE); reg_t interrupts = state.mie & state.mip; if (priv < PRV_M || (priv == PRV_M && ie)) { if (interrupts & MIP_MSIP) raise_interrupt(IRQ_SOFT); if (interrupts & MIP_MTIP) raise_interrupt(IRQ_TIMER); if (state.fromhost != 0) raise_interrupt(IRQ_HOST); } if (priv < PRV_S || (priv == PRV_S && ie)) { if (interrupts & MIP_SSIP) raise_interrupt(IRQ_SOFT); if (interrupts & MIP_STIP) raise_interrupt(IRQ_TIMER); } } static void commit_log(state_t* state, reg_t pc, insn_t insn) { #ifdef RISCV_ENABLE_COMMITLOG if (get_field(state->mstatus, MSTATUS_IE)) { uint64_t mask = (insn.length() == 8 ? uint64_t(0) : (uint64_t(1) << (insn.length() * 8))) - 1; if (state->log_reg_write.addr) { fprintf(stderr, "0x%016" PRIx64 " (0x%08" PRIx64 ") %c%2" PRIu64 " 0x%016" PRIx64 "\n", pc, insn.bits() & mask, state->log_reg_write.addr & 1 ? 'f' : 'x', state->log_reg_write.addr >> 1, state->log_reg_write.data); } else { fprintf(stderr, "0x%016" PRIx64 " (0x%08" PRIx64 ")\n", pc, insn.bits() & mask); } } state->log_reg_write.addr = 0; #endif } inline void processor_t::update_histogram(size_t pc) { #ifdef RISCV_ENABLE_HISTOGRAM size_t idx = pc >> 2; pc_histogram[idx]++; #endif } static reg_t execute_insn(processor_t* p, reg_t pc, insn_fetch_t fetch) { reg_t npc = fetch.func(p, fetch.insn, pc); if (npc != PC_SERIALIZE) { commit_log(p->get_state(), pc, fetch.insn); p->update_histogram(pc); } return npc; } void processor_t::check_timer() { if (sim->rtc >= state.mtimecmp) state.mip |= MIP_MTIP; } void processor_t::step(size_t n) { size_t instret = 0; reg_t pc = state.pc; mmu_t* _mmu = mmu; if (unlikely(!run || !n)) return; #define maybe_serialize() \ if (unlikely(pc == PC_SERIALIZE)) { \ pc = state.pc; \ state.serialized = true; \ break; \ } try { check_timer(); take_interrupt(); if (unlikely(debug)) { while (instret < n) { insn_fetch_t fetch = mmu->load_insn(pc); if (!state.serialized) disasm(fetch.insn); pc = execute_insn(this, pc, fetch); maybe_serialize(); instret++; state.pc = pc; } } else while (instret < n) { size_t idx = _mmu->icache_index(pc); auto ic_entry = _mmu->access_icache(pc); #define ICACHE_ACCESS(idx) { \ insn_fetch_t fetch = ic_entry->data; \ ic_entry++; \ pc = execute_insn(this, pc, fetch); \ if (idx == mmu_t::ICACHE_ENTRIES-1) break; \ if (unlikely(ic_entry->tag != pc)) break; \ if (unlikely(instret+1 == n)) break; \ instret++; \ state.pc = pc; \ } switch (idx) { #include "icache.h" } maybe_serialize(); instret++; state.pc = pc; } } catch(trap_t& t) { take_trap(t, pc); } state.minstret += instret; // tail-recurse if we didn't execute as many instructions as we'd hoped if (instret < n) step(n - instret); } void processor_t::push_privilege_stack() { reg_t s = state.mstatus; s = set_field(s, MSTATUS_PRV2, get_field(state.mstatus, MSTATUS_PRV1)); s = set_field(s, MSTATUS_IE2, get_field(state.mstatus, MSTATUS_IE1)); s = set_field(s, MSTATUS_PRV1, get_field(state.mstatus, MSTATUS_PRV)); s = set_field(s, MSTATUS_IE1, get_field(state.mstatus, MSTATUS_IE)); s = set_field(s, MSTATUS_PRV, PRV_M); s = set_field(s, MSTATUS_MPRV, 0); s = set_field(s, MSTATUS_IE, 0); set_csr(CSR_MSTATUS, s); } void processor_t::pop_privilege_stack() { reg_t s = state.mstatus; s = set_field(s, MSTATUS_PRV, get_field(state.mstatus, MSTATUS_PRV1)); s = set_field(s, MSTATUS_IE, get_field(state.mstatus, MSTATUS_IE1)); s = set_field(s, MSTATUS_PRV1, get_field(state.mstatus, MSTATUS_PRV2)); s = set_field(s, MSTATUS_IE1, get_field(state.mstatus, MSTATUS_IE2)); s = set_field(s, MSTATUS_PRV2, PRV_U); s = set_field(s, MSTATUS_IE2, 1); set_csr(CSR_MSTATUS, s); } void processor_t::take_trap(trap_t& t, reg_t epc) { if (debug) fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n", id, t.name(), epc); state.pc = DEFAULT_MTVEC + 0x40 * get_field(state.mstatus, MSTATUS_PRV); push_privilege_stack(); yield_load_reservation(); state.mcause = t.cause(); state.mepc = epc; t.side_effects(&state); // might set badvaddr etc. } void processor_t::deliver_ipi() { state.mip |= MIP_MSIP; } void processor_t::disasm(insn_t insn) { uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1); fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n", id, state.pc, bits, disassembler->disassemble(insn).c_str()); } static bool validate_priv(reg_t priv) { return priv == PRV_U || priv == PRV_S || priv == PRV_M; } static bool validate_vm(int max_xlen, reg_t vm) { if (max_xlen == 64 && (vm == VM_SV39 || vm == VM_SV48)) return true; if (max_xlen == 32 && vm == VM_SV32) return true; return vm == VM_MBARE; } void processor_t::set_csr(int which, reg_t val) { switch (which) { case CSR_FFLAGS: dirty_fp_state; state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT); break; case CSR_FRM: dirty_fp_state; state.frm = val & (FSR_RD >> FSR_RD_SHIFT); break; case CSR_FCSR: dirty_fp_state; state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT; state.frm = (val & FSR_RD) >> FSR_RD_SHIFT; break; case CSR_MTIME: case CSR_STIMEW: // this implementation ignores writes to MTIME break; case CSR_MTIMEH: case CSR_STIMEHW: // this implementation ignores writes to MTIME break; case CSR_TIMEW: val -= sim->rtc; if (xlen == 32) state.sutime_delta = (uint32_t)val | (state.sutime_delta >> 32 << 32); else state.sutime_delta = val; break; case CSR_TIMEHW: val = ((val << 32) - sim->rtc) >> 32; state.sutime_delta = (val << 32) | (uint32_t)state.sutime_delta; break; case CSR_CYCLEW: case CSR_INSTRETW: val -= state.minstret; if (xlen == 32) state.suinstret_delta = (uint32_t)val | (state.suinstret_delta >> 32 << 32); else state.suinstret_delta = val; break; case CSR_CYCLEHW: case CSR_INSTRETHW: val = ((val << 32) - state.minstret) >> 32; state.suinstret_delta = (val << 32) | (uint32_t)state.suinstret_delta; break; case CSR_MSTATUS: { if ((val ^ state.mstatus) & (MSTATUS_VM | MSTATUS_PRV | MSTATUS_PRV1 | MSTATUS_MPRV)) mmu->flush_tlb(); reg_t mask = MSTATUS_IE | MSTATUS_IE1 | MSTATUS_IE2 | MSTATUS_MPRV | MSTATUS_FS | (ext ? MSTATUS_XS : 0); if (validate_vm(max_xlen, get_field(val, MSTATUS_VM))) mask |= MSTATUS_VM; if (validate_priv(get_field(val, MSTATUS_PRV))) mask |= MSTATUS_PRV; if (validate_priv(get_field(val, MSTATUS_PRV1))) mask |= MSTATUS_PRV1; if (validate_priv(get_field(val, MSTATUS_PRV2))) mask |= MSTATUS_PRV2; state.mstatus = (state.mstatus & ~mask) | (val & mask); bool dirty = (state.mstatus & MSTATUS_FS) == MSTATUS_FS; dirty |= (state.mstatus & MSTATUS_XS) == MSTATUS_XS; if (max_xlen == 32) state.mstatus = set_field(state.mstatus, MSTATUS32_SD, dirty); else state.mstatus = set_field(state.mstatus, MSTATUS64_SD, dirty); // spike supports the notion of xlen < max_xlen, but current priv spec // doesn't provide a mechanism to run RV32 software on an RV64 machine xlen = max_xlen; break; } case CSR_MIP: { reg_t mask = MIP_SSIP | MIP_MSIP | MIP_STIP; state.mip = (state.mip & ~mask) | (val & mask); break; } case CSR_MIE: { reg_t mask = MIP_SSIP | MIP_MSIP | MIP_STIP | MIP_MTIP; state.mie = (state.mie & ~mask) | (val & mask); break; } case CSR_SSTATUS: { reg_t ms = state.mstatus; ms = set_field(ms, MSTATUS_IE, get_field(val, SSTATUS_IE)); ms = set_field(ms, MSTATUS_IE1, get_field(val, SSTATUS_PIE)); ms = set_field(ms, MSTATUS_PRV1, get_field(val, SSTATUS_PS)); ms = set_field(ms, MSTATUS_FS, get_field(val, SSTATUS_FS)); ms = set_field(ms, MSTATUS_XS, get_field(val, SSTATUS_XS)); ms = set_field(ms, MSTATUS_MPRV, get_field(val, SSTATUS_MPRV)); return set_csr(CSR_MSTATUS, ms); } case CSR_SIP: { reg_t mask = MIP_SSIP; state.mip = (state.mip & ~mask) | (val & mask); break; } case CSR_SIE: { reg_t mask = MIP_SSIP | MIP_STIP; state.mie = (state.mie & ~mask) | (val & mask); break; } case CSR_SEPC: state.sepc = val; break; case CSR_STVEC: state.stvec = val & ~3; break; case CSR_SPTBR: state.sptbr = zext_xlen(val & -PGSIZE); break; case CSR_SSCRATCH: state.sscratch = val; break; case CSR_MEPC: state.mepc = val; break; case CSR_MSCRATCH: state.mscratch = val; break; case CSR_MCAUSE: state.mcause = val; break; case CSR_MBADADDR: state.mbadaddr = val; break; case CSR_MTIMECMP: state.mip &= ~MIP_MTIP; state.mtimecmp = val; break; case CSR_SEND_IPI: sim->send_ipi(val); break; case CSR_MTOHOST: if (state.tohost == 0) state.tohost = val; break; case CSR_MFROMHOST: state.fromhost = val; break; } } reg_t processor_t::get_csr(int which) { switch (which) { case CSR_FFLAGS: require_fp; if (!supports_extension('F')) break; return state.fflags; case CSR_FRM: require_fp; if (!supports_extension('F')) break; return state.frm; case CSR_FCSR: require_fp; if (!supports_extension('F')) break; return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT); case CSR_MTIME: case CSR_STIME: case CSR_STIMEW: return sim->rtc; case CSR_MTIMEH: case CSR_STIMEH: case CSR_STIMEHW: return sim->rtc >> 32; case CSR_TIME: case CSR_TIMEW: return sim->rtc + state.sutime_delta; case CSR_CYCLE: case CSR_CYCLEW: case CSR_INSTRET: case CSR_INSTRETW: return state.minstret + state.suinstret_delta; case CSR_TIMEH: case CSR_TIMEHW: if (xlen == 64) break; return (sim->rtc + state.sutime_delta) >> 32; case CSR_CYCLEH: case CSR_INSTRETH: case CSR_CYCLEHW: case CSR_INSTRETHW: if (xlen == 64) break; return (state.minstret + state.suinstret_delta) >> 32; case CSR_SSTATUS: { reg_t ss = 0; ss = set_field(ss, SSTATUS_IE, get_field(state.mstatus, MSTATUS_IE)); ss = set_field(ss, SSTATUS_PIE, get_field(state.mstatus, MSTATUS_IE1)); ss = set_field(ss, SSTATUS_PS, get_field(state.mstatus, MSTATUS_PRV1)); ss = set_field(ss, SSTATUS_FS, get_field(state.mstatus, MSTATUS_FS)); ss = set_field(ss, SSTATUS_XS, get_field(state.mstatus, MSTATUS_XS)); ss = set_field(ss, SSTATUS_MPRV, get_field(state.mstatus, MSTATUS_MPRV)); if (get_field(state.mstatus, MSTATUS64_SD)) ss = set_field(ss, (xlen == 32 ? SSTATUS32_SD : SSTATUS64_SD), 1); return ss; } case CSR_SIP: return state.mip & (MIP_SSIP | MIP_STIP); case CSR_SIE: return state.mie & (MIP_SSIP | MIP_STIP); case CSR_SEPC: return state.sepc; case CSR_SBADADDR: return state.sbadaddr; case CSR_STVEC: return state.stvec; case CSR_SCAUSE: if (max_xlen > xlen) return state.scause | ((state.scause >> (max_xlen-1)) << (xlen-1)); return state.scause; case CSR_SPTBR: return state.sptbr; case CSR_SASID: return 0; case CSR_SSCRATCH: return state.sscratch; case CSR_MSTATUS: return state.mstatus; case CSR_MIP: return state.mip; case CSR_MIE: return state.mie; case CSR_MEPC: return state.mepc; case CSR_MSCRATCH: return state.mscratch; case CSR_MCAUSE: return state.mcause; case CSR_MBADADDR: return state.mbadaddr; case CSR_MTIMECMP: return state.mtimecmp; case CSR_MCPUID: return cpuid; case CSR_MIMPID: return IMPL_ROCKET; case CSR_MHARTID: return id; case CSR_MTVEC: return DEFAULT_MTVEC; case CSR_MTDELEG: return 0; case CSR_MTOHOST: sim->get_htif()->tick(); // not necessary, but faster return state.tohost; case CSR_MFROMHOST: sim->get_htif()->tick(); // not necessary, but faster return state.fromhost; case CSR_SEND_IPI: return 0; case CSR_UARCH0: case CSR_UARCH1: case CSR_UARCH2: case CSR_UARCH3: case CSR_UARCH4: case CSR_UARCH5: case CSR_UARCH6: case CSR_UARCH7: case CSR_UARCH8: case CSR_UARCH9: case CSR_UARCH10: case CSR_UARCH11: case CSR_UARCH12: case CSR_UARCH13: case CSR_UARCH14: case CSR_UARCH15: return 0; } throw trap_illegal_instruction(); } reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc) { throw trap_illegal_instruction(); } insn_func_t processor_t::decode_insn(insn_t insn) { size_t mask = opcode_map.size()-1; insn_desc_t* desc = opcode_map[insn.bits() & mask]; while ((insn.bits() & desc->mask) != desc->match) desc++; return xlen == 64 ? desc->rv64 : desc->rv32; } void processor_t::register_insn(insn_desc_t desc) { assert(desc.mask & 1); instructions.push_back(desc); } void processor_t::build_opcode_map() { size_t buckets = -1; for (auto& inst : instructions) while ((inst.mask & buckets) != buckets) buckets /= 2; buckets++; struct cmp { decltype(insn_desc_t::match) mask; cmp(decltype(mask) mask) : mask(mask) {} bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) { if ((lhs.match & mask) != (rhs.match & mask)) return (lhs.match & mask) < (rhs.match & mask); return lhs.match < rhs.match; } }; std::sort(instructions.begin(), instructions.end(), cmp(buckets-1)); opcode_map.resize(buckets); opcode_store.resize(instructions.size() + 1); size_t j = 0; for (size_t b = 0, i = 0; b < buckets; b++) { opcode_map[b] = &opcode_store[j]; while (i < instructions.size() && b == (instructions[i].match & (buckets-1))) opcode_store[j++] = instructions[i++]; } assert(j == opcode_store.size()-1); opcode_store[j].match = opcode_store[j].mask = 0; opcode_store[j].rv32 = &illegal_instruction; opcode_store[j].rv64 = &illegal_instruction; } void processor_t::register_extension(extension_t* x) { for (auto insn : x->get_instructions()) register_insn(insn); build_opcode_map(); for (auto disasm_insn : x->get_disasms()) disassembler->add_insn(disasm_insn); if (ext != NULL) throw std::logic_error("only one extension may be registered"); ext = x; x->set_processor(this); }