#include #include "devices.h" #include "processor.h" #define PLIC_MAX_CONTEXTS 15872 /* * The PLIC consists of memory-mapped control registers, with a memory map * as follows: * * base + 0x000000: Reserved (interrupt source 0 does not exist) * base + 0x000004: Interrupt source 1 priority * base + 0x000008: Interrupt source 2 priority * ... * base + 0x000FFC: Interrupt source 1023 priority * base + 0x001000: Pending 0 * base + 0x001FFF: Pending * base + 0x002000: Enable bits for sources 0-31 on context 0 * base + 0x002004: Enable bits for sources 32-63 on context 0 * ... * base + 0x0020FC: Enable bits for sources 992-1023 on context 0 * base + 0x002080: Enable bits for sources 0-31 on context 1 * ... * base + 0x002100: Enable bits for sources 0-31 on context 2 * ... * base + 0x1F1F80: Enable bits for sources 992-1023 on context 15871 * base + 0x1F1F84: Reserved * ... (higher context IDs would fit here, but wouldn't fit * inside the per-context priority vector) * base + 0x1FFFFC: Reserved * base + 0x200000: Priority threshold for context 0 * base + 0x200004: Claim/complete for context 0 * base + 0x200008: Reserved * ... * base + 0x200FFC: Reserved * base + 0x201000: Priority threshold for context 1 * base + 0x201004: Claim/complete for context 1 * ... * base + 0xFFE000: Priority threshold for context 15871 * base + 0xFFE004: Claim/complete for context 15871 * base + 0xFFE008: Reserved * ... * base + 0xFFFFFC: Reserved */ /* Each interrupt source has a priority register associated with it. */ #define PRIORITY_BASE 0 #define PRIORITY_PER_ID 4 /* * Each hart context has a vector of interupt enable bits associated with it. * There's one bit for each interrupt source. */ #define ENABLE_BASE 0x2000 #define ENABLE_PER_HART 0x80 /* * Each hart context has a set of control registers associated with it. Right * now there's only two: a source priority threshold over which the hart will * take an interrupt, and a register to claim interrupts. */ #define CONTEXT_BASE 0x200000 #define CONTEXT_PER_HART 0x1000 #define CONTEXT_THRESHOLD 0 #define CONTEXT_CLAIM 4 #define REG_SIZE 0x1000000 plic_t::plic_t(std::vector& procs, bool smode, uint32_t ndev) : procs(procs), contexts(procs.size() * (smode ? 2 : 1)) { size_t i; size_t contexts_per_hart = smode ? 2 : 1; plic_context_t *c; num_ids = ndev + 1; num_ids_word = num_ids / 32; if ((num_ids_word * 32) < num_ids) num_ids_word++; max_prio = (1UL << PLIC_PRIO_BITS) - 1; memset(priority, 0, sizeof(priority)); memset(level, 0, sizeof(level)); for (i = 0; i < contexts.size(); i++) { c = &contexts[i]; c->num = i; c->proc = procs[i / contexts_per_hart]; if (smode) { c->mmode = (i % contexts_per_hart == 0); } else { c->mmode = true; } memset(&c->enable, 0, sizeof(c->enable)); memset(&c->pending, 0, sizeof(c->pending)); memset(&c->pending_priority, 0, sizeof(c->pending_priority)); memset(&c->claimed, 0, sizeof(c->claimed)); } } uint32_t plic_t::context_best_pending(plic_context_t *c) { uint8_t best_id_prio = 0; uint32_t i, j, id, best_id = 0; for (i = 0; i < num_ids_word; i++) { if (!c->pending[i]) { continue; } for (j = 0; j < 32; j++) { id = i * 32 + j; if ((num_ids <= id) || !(c->pending[i] & (1 << j)) || (c->claimed[i] & (1 << j))) { continue; } if (!best_id || (best_id_prio < c->pending_priority[id])) { best_id = id; best_id_prio = c->pending_priority[id]; } } } return best_id; } void plic_t::context_update(plic_context_t *c) { uint32_t best_id = context_best_pending(c); reg_t mask = c->mmode ? MIP_MEIP : MIP_SEIP; c->proc->state.mip->backdoor_write_with_mask(mask, best_id ? mask : 0); } uint32_t plic_t::context_claim(plic_context_t *c) { uint32_t best_id = context_best_pending(c); uint32_t best_id_word = best_id / 32; uint32_t best_id_mask = (1 << (best_id % 32)); if (best_id) { c->claimed[best_id_word] |= best_id_mask; } context_update(c); return best_id; } bool plic_t::priority_read(reg_t offset, uint32_t *val) { uint32_t id = (offset >> 2); if (id == 0 || id >= num_ids) { return false; } *val = priority[id]; return true; } bool plic_t::priority_write(reg_t offset, uint32_t val) { uint32_t id = (offset >> 2); if (id == 0 || id >= num_ids) { return false; } val &= ((1 << PLIC_PRIO_BITS) - 1); priority[id] = val; return true; } bool plic_t::context_enable_read(plic_context_t *c, reg_t offset, uint32_t *val) { uint32_t id_word = offset >> 2; if (num_ids_word < id_word) { return false; } *val = c->enable[id_word]; return true; } bool plic_t::context_enable_write(plic_context_t *c, reg_t offset, uint32_t val) { uint8_t id_prio; uint32_t i, id, id_mask; uint32_t id_word = offset >> 2; uint32_t old_val, new_val, xor_val; if (num_ids_word < id_word) { return false; } old_val = c->enable[id_word]; new_val = val; if (id_word == 0) { new_val &= ~0x1; } c->enable[id_word] = new_val; xor_val = old_val ^ new_val; for (i = 0; i < 32; i++) { id = id_word * 32 + i; id_mask = 1 << i; id_prio = priority[id]; if (!(xor_val & id_mask)) { continue; } if ((new_val & id_mask) && (level[id_word] & id_mask)) { c->pending[id_word] |= id_mask; c->pending_priority[id] = id_prio; } else if (!(new_val & id_mask)) { c->pending[id_word] &= ~id_mask; c->pending_priority[id] = 0; c->claimed[id_word] &= ~id_mask; } } context_update(c); return true; } bool plic_t::context_read(plic_context_t *c, reg_t offset, uint32_t *val) { bool ret = true; switch (offset) { case CONTEXT_THRESHOLD: *val = c->priority_threshold; break; case CONTEXT_CLAIM: *val = context_claim(c); break; default: ret = false; break; }; return ret; } bool plic_t::context_write(plic_context_t *c, reg_t offset, uint32_t val) { uint32_t id_word, id_mask; bool ret = true, update = false; switch (offset) { case CONTEXT_THRESHOLD: val &= ((1 << PLIC_PRIO_BITS) - 1); if (val <= max_prio) c->priority_threshold = val; else update = true; break; case CONTEXT_CLAIM: id_word = val / 32; id_mask = 1 << (val % 32); if ((val < num_ids) && (c->enable[id_word] & id_mask)) { c->claimed[id_word] &= ~id_mask; update = true; } break; default: ret = false; update = true; break; }; if (update) { context_update(c); } return ret; } void plic_t::set_interrupt_level(uint32_t id, int lvl) { uint8_t i, id_prio, id_word; uint32_t id_mask; plic_context_t *c = NULL; if (id <= 0 || num_ids <= id) { return; } id_prio = priority[id]; id_word = id / 32; id_mask = 1 << (id % 32); if (lvl) { level[id_word] |= id_mask; } else { level[id_word] &= ~id_mask; } /* * Note: PLIC interrupts are level-triggered. As of now, * there is no notion of edge-triggered interrupts. To * handle this we auto-clear edge-triggered interrupts * when PLIC context CLAIM register is read. */ for (i = 0; i < contexts.size(); i++) { c = &contexts[i]; if (c->enable[id_word] & id_mask) { if (lvl) { c->pending[id_word] |= id_mask; c->pending_priority[id] = id_prio; } else { c->pending[id_word] &= ~id_mask; c->pending_priority[id] = 0; c->claimed[id_word] &= ~id_mask; } context_update(c); break; } } } bool plic_t::load(reg_t addr, size_t len, uint8_t* bytes) { bool ret = false; uint32_t cntx, val = 0; /* Only 32bit loads supported */ if (len != 4) { return false; } if (PRIORITY_BASE <= addr && addr < ENABLE_BASE) { ret = priority_read(addr, &val); } else if (ENABLE_BASE <= addr && addr < CONTEXT_BASE) { cntx = (addr - ENABLE_BASE) / ENABLE_PER_HART; addr -= cntx * ENABLE_PER_HART + ENABLE_BASE; if (cntx < contexts.size()) { ret = context_enable_read(&contexts[cntx], addr, &val); } } else if (CONTEXT_BASE <= addr && addr < REG_SIZE) { cntx = (addr - CONTEXT_BASE) / CONTEXT_PER_HART; addr -= cntx * CONTEXT_PER_HART + CONTEXT_BASE; if (cntx < contexts.size()) { ret = context_read(&contexts[cntx], addr, &val); } } if (ret) { memcpy(bytes, (uint8_t *)&val, len); } return ret; } bool plic_t::store(reg_t addr, size_t len, const uint8_t* bytes) { bool ret = false; uint32_t cntx, val; /* Only 32bit stores supported */ if (len != 4) { return false; } memcpy((uint8_t *)&val, bytes, len); if (PRIORITY_BASE <= addr && addr < ENABLE_BASE) { ret = priority_write(addr, val); } else if (ENABLE_BASE <= addr && addr < CONTEXT_BASE) { cntx = (addr - ENABLE_BASE) / ENABLE_PER_HART; addr -= cntx * ENABLE_PER_HART + ENABLE_BASE; if (cntx < contexts.size()) ret = context_enable_write(&contexts[cntx], addr, val); } else if (CONTEXT_BASE <= addr && addr < REG_SIZE) { cntx = (addr - CONTEXT_BASE) / CONTEXT_PER_HART; addr -= cntx * CONTEXT_PER_HART + CONTEXT_BASE; if (cntx < contexts.size()) ret = context_write(&contexts[cntx], addr, val); } return ret; }