// See LICENSE for license details. #include "mmu.h" #include "arith.h" #include "simif.h" #include "processor.h" mmu_t::mmu_t(simif_t* sim, processor_t* proc) : sim(sim), proc(proc), #ifdef RISCV_ENABLE_DUAL_ENDIAN target_big_endian(false), #endif check_triggers_fetch(false), check_triggers_load(false), check_triggers_store(false), matched_trigger(NULL) { flush_tlb(); yield_load_reservation(); } mmu_t::~mmu_t() { } void mmu_t::flush_icache() { for (size_t i = 0; i < ICACHE_ENTRIES; i++) icache[i].tag = -1; } void mmu_t::flush_tlb() { memset(tlb_insn_tag, -1, sizeof(tlb_insn_tag)); memset(tlb_load_tag, -1, sizeof(tlb_load_tag)); memset(tlb_store_tag, -1, sizeof(tlb_store_tag)); flush_icache(); } static void throw_access_exception(bool virt, reg_t addr, access_type type) { switch (type) { case FETCH: throw trap_instruction_access_fault(virt, addr, 0, 0); case LOAD: throw trap_load_access_fault(virt, addr, 0, 0); case STORE: throw trap_store_access_fault(virt, addr, 0, 0); default: abort(); } } reg_t mmu_t::translate(reg_t addr, reg_t len, access_type type, uint32_t xlate_flags) { if (!proc) return addr; bool virt = proc->state.v; bool hlvx = xlate_flags & RISCV_XLATE_VIRT_HLVX; reg_t mode = proc->state.prv; if (type != FETCH) { if (!proc->state.debug_mode && get_field(proc->state.mstatus->read(), MSTATUS_MPRV)) { mode = get_field(proc->state.mstatus->read(), MSTATUS_MPP); if (get_field(proc->state.mstatus->read(), MSTATUS_MPV) && mode != PRV_M) virt = true; } if (xlate_flags & RISCV_XLATE_VIRT) { virt = true; mode = get_field(proc->state.hstatus->read(), HSTATUS_SPVP); } } reg_t paddr = walk(addr, type, mode, virt, hlvx) | (addr & (PGSIZE-1)); if (!pmp_ok(paddr, len, type, mode)) throw_access_exception(virt, addr, type); return paddr; } tlb_entry_t mmu_t::fetch_slow_path(reg_t vaddr) { reg_t paddr = translate(vaddr, sizeof(fetch_temp), FETCH, 0); if (auto host_addr = sim->addr_to_mem(paddr)) { return refill_tlb(vaddr, paddr, host_addr, FETCH); } else { if (!mmio_load(paddr, sizeof fetch_temp, (uint8_t*)&fetch_temp)) throw trap_instruction_access_fault(proc->state.v, vaddr, 0, 0); tlb_entry_t entry = {(char*)&fetch_temp - vaddr, paddr - vaddr}; return entry; } } reg_t reg_from_bytes(size_t len, const uint8_t* bytes) { switch (len) { case 1: return bytes[0]; case 2: return bytes[0] | (((reg_t) bytes[1]) << 8); case 4: return bytes[0] | (((reg_t) bytes[1]) << 8) | (((reg_t) bytes[2]) << 16) | (((reg_t) bytes[3]) << 24); case 8: return bytes[0] | (((reg_t) bytes[1]) << 8) | (((reg_t) bytes[2]) << 16) | (((reg_t) bytes[3]) << 24) | (((reg_t) bytes[4]) << 32) | (((reg_t) bytes[5]) << 40) | (((reg_t) bytes[6]) << 48) | (((reg_t) bytes[7]) << 56); } abort(); } bool mmu_t::mmio_ok(reg_t addr, access_type type) { // Disallow access to debug region when not in debug mode if (addr >= DEBUG_START && addr <= DEBUG_END && proc && !proc->state.debug_mode) return false; return true; } bool mmu_t::mmio_load(reg_t addr, size_t len, uint8_t* bytes) { if (!mmio_ok(addr, LOAD)) return false; return sim->mmio_load(addr, len, bytes); } bool mmu_t::mmio_store(reg_t addr, size_t len, const uint8_t* bytes) { if (!mmio_ok(addr, STORE)) return false; return sim->mmio_store(addr, len, bytes); } void mmu_t::load_slow_path(reg_t addr, reg_t len, uint8_t* bytes, uint32_t xlate_flags) { reg_t paddr = translate(addr, len, LOAD, xlate_flags); if (auto host_addr = sim->addr_to_mem(paddr)) { memcpy(bytes, host_addr, len); if (tracer.interested_in_range(paddr, paddr + PGSIZE, LOAD)) tracer.trace(paddr, len, LOAD); else if (xlate_flags == 0) refill_tlb(addr, paddr, host_addr, LOAD); } else if (!mmio_load(paddr, len, bytes)) { throw trap_load_access_fault((proc) ? proc->state.v : false, addr, 0, 0); } if (!matched_trigger) { reg_t data = reg_from_bytes(len, bytes); matched_trigger = trigger_exception(triggers::OPERATION_LOAD, addr, data); if (matched_trigger) throw *matched_trigger; } } void mmu_t::store_slow_path(reg_t addr, reg_t len, const uint8_t* bytes, uint32_t xlate_flags, bool actually_store) { reg_t paddr = translate(addr, len, STORE, xlate_flags); if (!matched_trigger) { reg_t data = reg_from_bytes(len, bytes); matched_trigger = trigger_exception(triggers::OPERATION_STORE, addr, data); if (matched_trigger) throw *matched_trigger; } if (actually_store) { if (auto host_addr = sim->addr_to_mem(paddr)) { memcpy(host_addr, bytes, len); if (tracer.interested_in_range(paddr, paddr + PGSIZE, STORE)) tracer.trace(paddr, len, STORE); else if (xlate_flags == 0) refill_tlb(addr, paddr, host_addr, STORE); } else if (!mmio_store(paddr, len, bytes)) { throw trap_store_access_fault((proc) ? proc->state.v : false, addr, 0, 0); } } } tlb_entry_t mmu_t::refill_tlb(reg_t vaddr, reg_t paddr, char* host_addr, access_type type) { reg_t idx = (vaddr >> PGSHIFT) % TLB_ENTRIES; reg_t expected_tag = vaddr >> PGSHIFT; tlb_entry_t entry = {host_addr - vaddr, paddr - vaddr}; if (proc && get_field(proc->state.mstatus->read(), MSTATUS_MPRV)) return entry; if ((tlb_load_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag) tlb_load_tag[idx] = -1; if ((tlb_store_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag) tlb_store_tag[idx] = -1; if ((tlb_insn_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag) tlb_insn_tag[idx] = -1; if ((check_triggers_fetch && type == FETCH) || (check_triggers_load && type == LOAD) || (check_triggers_store && type == STORE)) expected_tag |= TLB_CHECK_TRIGGERS; if (pmp_homogeneous(paddr & ~reg_t(PGSIZE - 1), PGSIZE)) { if (type == FETCH) tlb_insn_tag[idx] = expected_tag; else if (type == STORE) tlb_store_tag[idx] = expected_tag; else tlb_load_tag[idx] = expected_tag; } tlb_data[idx] = entry; return entry; } bool mmu_t::pmp_ok(reg_t addr, reg_t len, access_type type, reg_t mode) { if (!proc || proc->n_pmp == 0) return true; for (size_t i = 0; i < proc->n_pmp; i++) { // Check each 4-byte sector of the access bool any_match = false; bool all_match = true; for (reg_t offset = 0; offset < len; offset += 1 << PMP_SHIFT) { reg_t cur_addr = addr + offset; bool match = proc->state.pmpaddr[i]->match4(cur_addr); any_match |= match; all_match &= match; } if (any_match) { // If the PMP matches only a strict subset of the access, fail it if (!all_match) return false; return proc->state.pmpaddr[i]->access_ok(type, mode); } } return mode == PRV_M; } reg_t mmu_t::pmp_homogeneous(reg_t addr, reg_t len) { if ((addr | len) & (len - 1)) abort(); if (!proc) return true; for (size_t i = 0; i < proc->n_pmp; i++) if (proc->state.pmpaddr[i]->subset_match(addr, len)) return false; return true; } reg_t mmu_t::s2xlate(reg_t gva, reg_t gpa, access_type type, access_type trap_type, bool virt, bool hlvx) { if (!virt) return gpa; vm_info vm = decode_vm_info(proc->get_const_xlen(), true, 0, proc->get_state()->hgatp->read()); if (vm.levels == 0) return gpa; int maxgpabits = vm.levels * vm.idxbits + vm.widenbits + PGSHIFT; reg_t maxgpa = (1ULL << maxgpabits) - 1; bool mxr = proc->state.sstatus->readvirt(false) & MSTATUS_MXR; reg_t base = vm.ptbase; if ((gpa & ~maxgpa) == 0) { for (int i = vm.levels - 1; i >= 0; i--) { int ptshift = i * vm.idxbits; int idxbits = (i == (vm.levels - 1)) ? vm.idxbits + vm.widenbits : vm.idxbits; reg_t idx = (gpa >> (PGSHIFT + ptshift)) & ((reg_t(1) << idxbits) - 1); // check that physical address of PTE is legal auto pte_paddr = base + idx * vm.ptesize; auto ppte = sim->addr_to_mem(pte_paddr); if (!ppte || !pmp_ok(pte_paddr, vm.ptesize, LOAD, PRV_S)) { throw_access_exception(virt, gva, trap_type); } reg_t pte = vm.ptesize == 4 ? from_target(*(target_endian*)ppte) : from_target(*(target_endian*)ppte); reg_t ppn = (pte & ~reg_t(PTE_ATTR)) >> PTE_PPN_SHIFT; if (pte & PTE_RSVD) { break; } else if (!proc->extension_enabled(EXT_SVNAPOT) && (pte & PTE_N)) { break; } else if (!proc->extension_enabled(EXT_SVPBMT) && (pte & PTE_PBMT)) { break; } else if (PTE_TABLE(pte)) { // next level of page table if (pte & (PTE_D | PTE_A | PTE_U | PTE_N | PTE_PBMT)) break; base = ppn << PGSHIFT; } else if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) { break; } else if (!(pte & PTE_U)) { break; } else if (type == FETCH || hlvx ? !(pte & PTE_X) : type == LOAD ? !(pte & PTE_R) && !(mxr && (pte & PTE_X)) : !((pte & PTE_R) && (pte & PTE_W))) { break; } else if ((ppn & ((reg_t(1) << ptshift) - 1)) != 0) { break; } else { reg_t ad = PTE_A | ((type == STORE) * PTE_D); #ifdef RISCV_ENABLE_DIRTY // set accessed and possibly dirty bits. if ((pte & ad) != ad) { if (!pmp_ok(pte_paddr, vm.ptesize, STORE, PRV_S)) throw_access_exception(virt, gva, trap_type); *(target_endian*)ppte |= to_target((uint32_t)ad); } #else // take exception if access or possibly dirty bit is not set. if ((pte & ad) != ad) break; #endif reg_t vpn = gpa >> PGSHIFT; reg_t page_mask = (reg_t(1) << PGSHIFT) - 1; int napot_bits = ((pte & PTE_N) ? (ctz(ppn) + 1) : 0); if (((pte & PTE_N) && (ppn == 0 || i != 0)) || (napot_bits != 0 && napot_bits != 4)) break; reg_t page_base = ((ppn & ~((reg_t(1) << napot_bits) - 1)) | (vpn & ((reg_t(1) << napot_bits) - 1)) | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT; return page_base | (gpa & page_mask); } } } switch (trap_type) { case FETCH: throw trap_instruction_guest_page_fault(gva, gpa >> 2, 0); case LOAD: throw trap_load_guest_page_fault(gva, gpa >> 2, 0); case STORE: throw trap_store_guest_page_fault(gva, gpa >> 2, 0); default: abort(); } } reg_t mmu_t::walk(reg_t addr, access_type type, reg_t mode, bool virt, bool hlvx) { reg_t page_mask = (reg_t(1) << PGSHIFT) - 1; reg_t satp = proc->get_state()->satp->readvirt(virt); vm_info vm = decode_vm_info(proc->get_const_xlen(), false, mode, satp); if (vm.levels == 0) return s2xlate(addr, addr & ((reg_t(2) << (proc->xlen-1))-1), type, type, virt, hlvx) & ~page_mask; // zero-extend from xlen bool s_mode = mode == PRV_S; bool sum = proc->state.sstatus->readvirt(virt) & MSTATUS_SUM; bool mxr = (proc->state.sstatus->readvirt(false) | proc->state.sstatus->readvirt(virt)) & MSTATUS_MXR; // verify bits xlen-1:va_bits-1 are all equal int va_bits = PGSHIFT + vm.levels * vm.idxbits; reg_t mask = (reg_t(1) << (proc->xlen - (va_bits-1))) - 1; reg_t masked_msbs = (addr >> (va_bits-1)) & mask; if (masked_msbs != 0 && masked_msbs != mask) vm.levels = 0; reg_t base = vm.ptbase; for (int i = vm.levels - 1; i >= 0; i--) { int ptshift = i * vm.idxbits; reg_t idx = (addr >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1); // check that physical address of PTE is legal auto pte_paddr = s2xlate(addr, base + idx * vm.ptesize, LOAD, type, virt, false); auto ppte = sim->addr_to_mem(pte_paddr); if (!ppte || !pmp_ok(pte_paddr, vm.ptesize, LOAD, PRV_S)) throw_access_exception(virt, addr, type); reg_t pte = vm.ptesize == 4 ? from_target(*(target_endian*)ppte) : from_target(*(target_endian*)ppte); reg_t ppn = (pte & ~reg_t(PTE_ATTR)) >> PTE_PPN_SHIFT; if (pte & PTE_RSVD) { break; } else if (!proc->extension_enabled(EXT_SVNAPOT) && (pte & PTE_N)) { break; } else if (!proc->extension_enabled(EXT_SVPBMT) && (pte & PTE_PBMT)) { break; } else if (PTE_TABLE(pte)) { // next level of page table if (pte & (PTE_D | PTE_A | PTE_U | PTE_N | PTE_PBMT)) break; base = ppn << PGSHIFT; } else if ((pte & PTE_U) ? s_mode && (type == FETCH || !sum) : !s_mode) { break; } else if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) { break; } else if (type == FETCH || hlvx ? !(pte & PTE_X) : type == LOAD ? !(pte & PTE_R) && !(mxr && (pte & PTE_X)) : !((pte & PTE_R) && (pte & PTE_W))) { break; } else if ((ppn & ((reg_t(1) << ptshift) - 1)) != 0) { break; } else { reg_t ad = PTE_A | ((type == STORE) * PTE_D); #ifdef RISCV_ENABLE_DIRTY // set accessed and possibly dirty bits. if ((pte & ad) != ad) { if (!pmp_ok(pte_paddr, vm.ptesize, STORE, PRV_S)) throw_access_exception(virt, addr, type); *(target_endian*)ppte |= to_target((uint32_t)ad); } #else // take exception if access or possibly dirty bit is not set. if ((pte & ad) != ad) break; #endif // for superpage or Svnapot NAPOT mappings, make a fake leaf PTE for the TLB's benefit. reg_t vpn = addr >> PGSHIFT; int napot_bits = ((pte & PTE_N) ? (ctz(ppn) + 1) : 0); if (((pte & PTE_N) && (ppn == 0 || i != 0)) || (napot_bits != 0 && napot_bits != 4)) break; reg_t page_base = ((ppn & ~((reg_t(1) << napot_bits) - 1)) | (vpn & ((reg_t(1) << napot_bits) - 1)) | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT; reg_t phys = page_base | (addr & page_mask); return s2xlate(addr, phys, type, type, virt, hlvx) & ~page_mask; } } switch (type) { case FETCH: throw trap_instruction_page_fault(virt, addr, 0, 0); case LOAD: throw trap_load_page_fault(virt, addr, 0, 0); case STORE: throw trap_store_page_fault(virt, addr, 0, 0); default: abort(); } } void mmu_t::register_memtracer(memtracer_t* t) { flush_tlb(); tracer.hook(t); }