// See LICENSE for license details. #include "sim.h" #include "decode.h" #include "disasm.h" #include "mmu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __GNUC__ # pragma GCC diagnostic ignored "-Wunused-parameter" #endif #define MAX_CMD_STR 40 // maximum possible size of a command line #define BITS_PER_CHAR 8 #define STR_(X) #X // these definitions allow to use a macro as a string #define STR(X) STR_(X) DECLARE_TRAP(-1, interactive) static std::vector history_commands; // if input an arrow/home key, there will be a 3/4-key input sequence, // so we use an uint32_t to buffer it typedef uint32_t keybuffer_t; enum KEYCODE { KEYCODE_HEADER0 = 0x1b, KEYCODE_HEADER1 = 0x1b5b, KEYCODE_LEFT = 0x1b5b44, KEYCODE_RIGHT = 0x1b5b43, KEYCODE_UP = 0x1b5b41, KEYCODE_DOWN = 0x1b5b42, KEYCODE_HOME0 = 0x1b5b48, KEYCODE_HOME1_0 = 0x1b5b31, KEYCODE_HOME1_1 = 0x1b5b317e, KEYCODE_END0 = 0x1b5b46, KEYCODE_END1_0 = 0x1b5b34, KEYCODE_END1_1 = 0x1b5b347e, KEYCODE_BACKSPACE0 = 0x8, KEYCODE_BACKSPACE1_0 = 0x1b5b33, KEYCODE_BACKSPACE1_1 = 0x1b5b337e, KEYCODE_BACKSPACE2 = 0x7f, KEYCODE_ENTER = '\n', }; processor_t *sim_t::get_core(const std::string& i) { char *ptr; unsigned long p = strtoul(i.c_str(), &ptr, 10); if (*ptr || p >= procs.size()) throw trap_interactive(); return get_core(p); } static void clear_str(bool noncanonical, int fd, std::string target_str) { if (noncanonical) { std::string clear_motion; clear_motion += '\r'; for (unsigned i = 0; i < target_str.size(); i++) { clear_motion += ' '; } clear_motion += '\r'; if (write(fd, clear_motion.c_str(), clear_motion.size() + 1)) ; // shut up gcc } } static void send_key(bool noncanonical, int fd, keybuffer_t key_code, const int len) { if (noncanonical) { std::string key_motion; for (int i = len - 1; i >= 0; i--) { key_motion += (char) ((key_code >> (i * BITS_PER_CHAR)) & 0xff); } if (write(fd, key_motion.c_str(), len) != len) ; // shut up gcc } } static std::string readline(int fd) { struct termios tios; // try to make sure the terminal is noncanonical and nonecho if (tcgetattr(fd, &tios) == 0) { tios.c_lflag &= (~ICANON); tios.c_lflag &= (~ECHO); tcsetattr(fd, TCSANOW, &tios); } bool noncanonical = tcgetattr(fd, &tios) == 0 && (tios.c_lflag & ICANON) == 0; std::string s_head = std::string("(spike) "); std::string s = s_head; keybuffer_t key_buffer = 0; // index for up/down arrow size_t history_index = 0; // position for left/right arrow size_t cursor_pos = s.size(); const size_t initial_s_len = cursor_pos; std::cerr << s << std::flush; for (char ch; read(fd, &ch, 1) == 1; ) { uint32_t keycode = key_buffer << BITS_PER_CHAR | ch; switch (keycode) { // the partial keycode, add to the key_buffer case KEYCODE_HEADER0: case KEYCODE_HEADER1: case KEYCODE_HOME1_0: case KEYCODE_END1_0: case KEYCODE_BACKSPACE1_0: key_buffer = keycode; break; // for backspace key case KEYCODE_BACKSPACE0: case KEYCODE_BACKSPACE1_1: case KEYCODE_BACKSPACE2: if (cursor_pos <= initial_s_len) continue; clear_str(noncanonical, fd, s); cursor_pos--; s.erase(cursor_pos, 1); if (noncanonical && write(fd, s.c_str(), s.size() + 1) != 1) ; // shut up gcc // move cursor by left arrow key for (unsigned i = 0; i < s.size() - cursor_pos; i++) { send_key(noncanonical, fd, KEYCODE_LEFT, 3); } key_buffer = 0; break; case KEYCODE_HOME0: case KEYCODE_HOME1_1: // move cursor by left arrow key for (unsigned i = 0; i < cursor_pos - initial_s_len; i++) { send_key(noncanonical, fd, KEYCODE_LEFT, 3); } cursor_pos = initial_s_len; key_buffer = 0; break; case KEYCODE_END0: case KEYCODE_END1_1: // move cursor by right arrow key for (unsigned i = 0; i < s.size() - cursor_pos; i++) { send_key(noncanonical, fd, KEYCODE_RIGHT, 3); } cursor_pos = s.size(); key_buffer = 0; break; case KEYCODE_UP: // up arrow if (history_commands.size() > 0) { clear_str(noncanonical, fd, s); history_index = std::min(history_commands.size(), history_index + 1); s = history_commands[history_commands.size() - history_index]; if (noncanonical && write(fd, s.c_str(), s.size() + 1)) ; // shut up gcc cursor_pos = s.size(); } key_buffer = 0; break; case KEYCODE_DOWN: // down arrow if (history_commands.size() > 0) { clear_str(noncanonical, fd, s); history_index = std::max(0, (int)history_index - 1); if (history_index == 0) { s = s_head; } else { s = history_commands[history_commands.size() - history_index]; } if (noncanonical && write(fd, s.c_str(), s.size() + 1)) ; // shut up gcc cursor_pos = s.size(); } key_buffer = 0; break; case KEYCODE_LEFT: if (s.size() > initial_s_len) { cursor_pos = cursor_pos - 1; if ((int)cursor_pos < (int)initial_s_len) { cursor_pos = initial_s_len; } else { send_key(noncanonical, fd, KEYCODE_LEFT, 3); } } key_buffer = 0; break; case KEYCODE_RIGHT: if (s.size() > initial_s_len) { cursor_pos = cursor_pos + 1; if (cursor_pos > s.size()) { cursor_pos = s.size(); } else { send_key(noncanonical, fd, KEYCODE_RIGHT, 3); } } key_buffer = 0; break; case KEYCODE_ENTER: if (noncanonical && write(fd, &ch, 1) != 1) ; // shut up gcc if (s.size() > initial_s_len && (history_commands.size() == 0 || s != history_commands[history_commands.size() - 1])) { history_commands.push_back(s); } return s.substr(initial_s_len); default: DEFAULT_KEY: // unknown buffered key, do nothing if (key_buffer != 0) { key_buffer = 0; break; } clear_str(noncanonical, fd, s); s.insert(cursor_pos, 1, ch); cursor_pos++; if (noncanonical && write(fd, s.c_str(), s.size() + 1) != 1) ; // shut up gcc // send left arrow key to move cursor for (unsigned i = 0; i < s.size() - cursor_pos; i++) { send_key(noncanonical, fd, KEYCODE_LEFT, 3); } break; } } return s.substr(initial_s_len); } #ifdef HAVE_BOOST_ASIO // read input command string std::string sim_t::rin(boost::asio::streambuf *bout_ptr) { std::string s; if (acceptor_ptr) { // if we are listening, get commands from socket try { socket_ptr.reset(new boost::asio::ip::tcp::socket(*io_service_ptr)); acceptor_ptr->accept(*socket_ptr); // wait for someone to open connection boost::asio::streambuf buf; boost::asio::read_until(*socket_ptr, buf, "\n"); // wait for command s = boost::asio::buffer_cast(buf.data()); boost::erase_all(s, "\r"); // get rid off any cr and lf boost::erase_all(s, "\n"); // The socket client is a web server and it appends the IP of the computer // that sent the command from its web browser. // For now, erase the IP if it is there. boost::regex re(" ((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\\.){3}" "(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])$"); s = boost::regex_replace(s, re, (std::string)""); // TODO: check the IP against the IP used to upload RISC-V source files } catch (std::exception& e) { std::cerr << e.what() << std::endl; } // output goes to socket sout_.rdbuf(bout_ptr); } else { // if we are not listening on a socket, get commands from terminal s = readline(2); // 2 is stderr, but when doing reads it reverts to stdin // output goes to stderr sout_.rdbuf(std::cerr.rdbuf()); } return s; } // write sout_ to socket (via bout) void sim_t::wout(boost::asio::streambuf *bout_ptr) { if (!cmd_file && acceptor_ptr) { // only if we are not getting command inputs from a file // and if a socket has been created try { boost::system::error_code ignored_error; boost::asio::write(*socket_ptr, *bout_ptr, boost::asio::transfer_all(), ignored_error); socket_ptr->close(); // close the socket after each command input/ouput // This is need to in order to make the socket interface // acessible by HTTP GET via a socket client in a web server. } catch (std::exception& e) { std::cerr << e.what() << std::endl; } } } #endif void sim_t::interactive() { typedef void (sim_t::*interactive_func)(const std::string&, const std::vector&); std::map funcs; funcs["run"] = &sim_t::interactive_run_noisy; funcs["r"] = funcs["run"]; funcs["rs"] = &sim_t::interactive_run_silent; funcs["vreg"] = &sim_t::interactive_vreg; funcs["reg"] = &sim_t::interactive_reg; funcs["freg"] = &sim_t::interactive_freg; funcs["fregh"] = &sim_t::interactive_fregh; funcs["fregs"] = &sim_t::interactive_fregs; funcs["fregd"] = &sim_t::interactive_fregd; funcs["pc"] = &sim_t::interactive_pc; funcs["mem"] = &sim_t::interactive_mem; funcs["str"] = &sim_t::interactive_str; funcs["mtime"] = &sim_t::interactive_mtime; funcs["mtimecmp"] = &sim_t::interactive_mtimecmp; funcs["until"] = &sim_t::interactive_until_silent; funcs["untiln"] = &sim_t::interactive_until_noisy; funcs["while"] = &sim_t::interactive_until_silent; funcs["dump"] = &sim_t::interactive_dumpmems; funcs["quit"] = &sim_t::interactive_quit; funcs["q"] = funcs["quit"]; funcs["help"] = &sim_t::interactive_help; funcs["h"] = funcs["help"]; while (!done()) { #ifdef HAVE_BOOST_ASIO boost::asio::streambuf bout; // socket output #endif std::string s; char cmd_str[MAX_CMD_STR+1]; // only used for following fscanf // first get commands from file, if cmd_file has been set if (cmd_file && !feof(cmd_file) && fscanf(cmd_file,"%" STR(MAX_CMD_STR) "[^\n]\n", cmd_str)==1) { // up to MAX_CMD_STR characters before \n, skipping \n s = cmd_str; // while we get input from file, output goes to stderr sout_.rdbuf(std::cerr.rdbuf()); } else { // when there are no commands left from file or if there was no file from the beginning cmd_file = NULL; // mark file pointer as being not valid, so any method can test this easily #ifdef HAVE_BOOST_ASIO s = rin(&bout); // get command string from socket or terminal #else s = readline(2); // 2 is stderr, but when doing reads it reverts to stdin #endif } std::stringstream ss(s); std::string cmd, tmp; std::vector args; if (!(ss >> cmd)) { set_procs_debug(true); step(1); #ifdef HAVE_BOOST_ASIO wout(&bout); // socket output, if required #endif continue; } while (ss >> tmp) args.push_back(tmp); std::ostream out(sout_.rdbuf()); try { if (funcs.count(cmd)) (this->*funcs[cmd])(cmd, args); else out << "Unknown command " << cmd << std::endl; } catch(trap_t& t) { out << "Bad or missing arguments for command " << cmd << std::endl; } #ifdef HAVE_BOOST_ASIO wout(&bout); // socket output, if required #endif } ctrlc_pressed = false; } void sim_t::interactive_help(const std::string& cmd, const std::vector& args) { std::ostream out(sout_.rdbuf()); out << "Interactive commands:\n" "reg [reg] # Display [reg] (all if omitted) in \n" "freg # Display float in as hex\n" "fregh # Display half precision in \n" "fregs # Display single precision in \n" "fregd # Display double precision in \n" "vreg [reg] # Display vector [reg] (all if omitted) in \n" "pc # Show current PC in \n" "mem [core] # Show contents of virtual memory in [core] (physical memory if omitted)\n" "str [core] # Show NUL-terminated C string at virtual address in [core] (physical address if omitted)\n" "dump # Dump physical memory to binary files\n" "mtime # Show mtime\n" "mtimecmp # Show mtimecmp for \n" "until reg # Stop when in hits \n" "untiln reg # Run noisy and stop when in hits \n" "until pc # Stop when PC in hits \n" "untiln pc # Run noisy and stop when PC in hits \n" "until mem [core] # Stop when virtual memory in [core] (physical address if omitted) becomes \n" "untiln mem [core] # Run noisy and stop when virtual memory in [core] (physical address if omitted) becomes \n" "while reg # Run while in is \n" "while pc # Run while PC in is \n" "while mem [core] # Run while virtual memory in [core] (physical memory if omitted) is \n" "run [count] # Resume noisy execution (until CTRL+C, or [count] insns)\n" "r [count] Alias for run\n" "rs [count] # Resume silent execution (until CTRL+C, or [count] insns)\n" "quit # End the simulation\n" "q Alias for quit\n" "help # This screen!\n" "h Alias for help\n" "Note: Hitting enter is the same as: run 1" << std::endl; } void sim_t::interactive_run_noisy(const std::string& cmd, const std::vector& args) { interactive_run(cmd,args,true); } void sim_t::interactive_run_silent(const std::string& cmd, const std::vector& args) { interactive_run(cmd,args,false); } void sim_t::interactive_run(const std::string& cmd, const std::vector& args, bool noisy) { size_t steps = args.size() ? atoll(args[0].c_str()) : -1; ctrlc_pressed = false; set_procs_debug(noisy); for (size_t i = 0; i < steps && !ctrlc_pressed && !done(); i++) step(1); std::ostream out(sout_.rdbuf()); if (!noisy) out << ":" << std::endl; } void sim_t::interactive_quit(const std::string& cmd, const std::vector& args) { exit(0); } reg_t sim_t::get_pc(const std::vector& args) { if (args.size() != 1) throw trap_interactive(); processor_t *p = get_core(args[0]); return p->get_state()->pc; } void sim_t::interactive_pc(const std::string& cmd, const std::vector& args) { if (args.size() != 1) throw trap_interactive(); processor_t *p = get_core(args[0]); int max_xlen = p->get_isa().get_max_xlen(); std::ostream out(sout_.rdbuf()); out << std::hex << std::setfill('0') << "0x" << std::setw(max_xlen/4) << zext(get_pc(args), max_xlen) << std::endl; } reg_t sim_t::get_reg(const std::vector& args) { if (args.size() != 2) throw trap_interactive(); processor_t *p = get_core(args[0]); unsigned long r = std::find(xpr_name, xpr_name + NXPR, args[1]) - xpr_name; if (r == NXPR) { char *ptr; r = strtoul(args[1].c_str(), &ptr, 10); if (*ptr) { #define DECLARE_CSR(name, number) if (args[1] == #name) return p->get_csr(number); #include "encoding.h" // generates if's for all csrs r = NXPR; // else case (csr name not found) #undef DECLARE_CSR } } if (r >= NXPR) throw trap_interactive(); return p->get_state()->XPR[r]; } freg_t sim_t::get_freg(const std::vector& args, int size) { if (args.size() != 2) throw trap_interactive(); processor_t *p = get_core(args[0]); if (p->extension_enabled(EXT_ZFINX)) { int r = std::find(xpr_name, xpr_name + NXPR, args[1]) - xpr_name; if (r == NXPR) r = atoi(args[1].c_str()); if (r >= NXPR) throw trap_interactive(); if ((p->get_xlen() == 32) && (size == 64)) { if (r % 2 != 0) throw trap_interactive(); return freg(f64(r== 0 ? reg_t(0) : (READ_REG(r + 1) << 32) + zext32(READ_REG(r)))); } else { //xlen >= size return {p->get_state()->XPR[r] | ~(((uint64_t)-1) >> (64 - size)) ,(uint64_t)-1}; } } else { int r = std::find(fpr_name, fpr_name + NFPR, args[1]) - fpr_name; if (r == NFPR) r = atoi(args[1].c_str()); if (r >= NFPR) throw trap_interactive(); return p->get_state()->FPR[r]; } } void sim_t::interactive_vreg(const std::string& cmd, const std::vector& args) { if (args.size() < 1) throw trap_interactive(); int rstart = 0; int rend = NVPR; if (args.size() >= 2) { rstart = strtol(args[1].c_str(), NULL, 0); if (!(rstart >= 0 && rstart < NVPR)) { rstart = 0; } else { rend = rstart + 1; } } // Show all the regs! processor_t *p = get_core(args[0]); const int vlen = (int)(p->VU.get_vlen()) >> 3; const int elen = (int)(p->VU.get_elen()) >> 3; const int num_elem = vlen/elen; std::ostream out(sout_.rdbuf()); out << std::dec << "VLEN=" << (vlen << 3) << " bits; ELEN=" << (elen << 3) << " bits" << std::endl; for (int r = rstart; r < rend; ++r) { out << std::setfill (' ') << std::left << std::setw(4) << vr_name[r] << std::right << ": "; for (int e = num_elem-1; e >= 0; --e) { uint64_t val; switch (elen) { case 8: val = p->VU.elt(r, e); out << std::dec << "[" << e << "]: 0x" << std::hex << std::setfill ('0') << std::setw(16) << val << " "; break; case 4: val = p->VU.elt(r, e); out << std::dec << "[" << e << "]: 0x" << std::hex << std::setfill ('0') << std::setw(8) << (uint32_t)val << " "; break; case 2: val = p->VU.elt(r, e); out << std::dec << "[" << e << "]: 0x" << std::hex << std::setfill ('0') << std::setw(8) << (uint16_t)val << " "; break; case 1: val = p->VU.elt(r, e); out << std::dec << "[" << e << "]: 0x" << std::hex << std::setfill ('0') << std::setw(8) << (int)(uint8_t)val << " "; break; } } out << std::endl; } } void sim_t::interactive_reg(const std::string& cmd, const std::vector& args) { if (args.size() < 1) throw trap_interactive(); processor_t *p = get_core(args[0]); int max_xlen = p->get_isa().get_max_xlen(); std::ostream out(sout_.rdbuf()); out << std::hex; if (args.size() == 1) { // Show all the regs! for (int r = 0; r < NXPR; ++r) { out << std::setfill(' ') << std::setw(4) << xpr_name[r] << ": 0x" << std::setfill('0') << std::setw(max_xlen/4) << zext(p->get_state()->XPR[r], max_xlen); if ((r + 1) % 4 == 0) out << std::endl; } } else { out << "0x" << std::setfill('0') << std::setw(max_xlen/4) << zext(get_reg(args), max_xlen) << std::endl; } } union fpr { freg_t r; float s; double d; }; void sim_t::interactive_freg(const std::string& cmd, const std::vector& args) { freg_t r = get_freg(args, 64); std::ostream out(sout_.rdbuf()); out << std::hex << "0x" << std::setfill ('0') << std::setw(16) << r.v[1] << std::setw(16) << r.v[0] << std::endl; } void sim_t::interactive_fregh(const std::string& cmd, const std::vector& args) { fpr f; f.r = freg(f16_to_f32(f16(get_freg(args, 16)))); std::ostream out(sout_.rdbuf()); out << (isBoxedF32(f.r) ? (double)f.s : NAN) << std::endl; } void sim_t::interactive_fregs(const std::string& cmd, const std::vector& args) { fpr f; f.r = get_freg(args, 32); std::ostream out(sout_.rdbuf()); out << (isBoxedF32(f.r) ? (double)f.s : NAN) << std::endl; } void sim_t::interactive_fregd(const std::string& cmd, const std::vector& args) { fpr f; f.r = get_freg(args, 64); std::ostream out(sout_.rdbuf()); out << (isBoxedF64(f.r) ? f.d : NAN) << std::endl; } reg_t sim_t::get_mem(const std::vector& args) { if (args.size() != 1 && args.size() != 2) throw trap_interactive(); std::string addr_str = args[0]; mmu_t* mmu = debug_mmu; if (args.size() == 2) { processor_t *p = get_core(args[0]); mmu = p->get_mmu(); addr_str = args[1]; } reg_t addr = strtol(addr_str.c_str(),NULL,16), val; if (addr == LONG_MAX) addr = strtoul(addr_str.c_str(),NULL,16); switch (addr % 8) { case 0: val = mmu->load_uint64(addr); break; case 4: val = mmu->load_uint32(addr); break; case 2: case 6: val = mmu->load_uint16(addr); break; default: val = mmu->load_uint8(addr); break; } return val; } void sim_t::interactive_mem(const std::string& cmd, const std::vector& args) { int max_xlen = procs[0]->get_isa().get_max_xlen(); std::ostream out(sout_.rdbuf()); out << std::hex << "0x" << std::setfill('0') << std::setw(max_xlen/4) << zext(get_mem(args), max_xlen) << std::endl; } void sim_t::interactive_str(const std::string& cmd, const std::vector& args) { if (args.size() != 1 && args.size() != 2) throw trap_interactive(); std::string addr_str = args[0]; mmu_t* mmu = debug_mmu; if (args.size() == 2) { processor_t *p = get_core(args[0]); mmu = p->get_mmu(); addr_str = args[1]; } reg_t addr = strtol(addr_str.c_str(),NULL,16); std::ostream out(sout_.rdbuf()); char ch; while ((ch = mmu->load_uint8(addr++))) out << ch; out << std::endl; } void sim_t::interactive_until_silent(const std::string& cmd, const std::vector& args) { interactive_until(cmd, args, false); } void sim_t::interactive_until_noisy(const std::string& cmd, const std::vector& args) { interactive_until(cmd, args, true); } void sim_t::interactive_until(const std::string& cmd, const std::vector& args, bool noisy) { bool cmd_until = cmd == "until" || cmd == "untiln"; if (args.size() < 3) throw trap_interactive(); if (args.size() == 3) get_core(args[1]); // make sure that argument is a valid core number char *end; reg_t val = strtol(args[args.size()-1].c_str(),&end,16); if (val == LONG_MAX) val = strtoul(args[args.size()-1].c_str(),&end,16); if (args[args.size()-1].c_str() == end) // not a valid number throw trap_interactive(); // mask bits above max_xlen int max_xlen = procs[strtol(args[1].c_str(),NULL,10)]->get_isa().get_max_xlen(); if (max_xlen == 32) val &= 0xFFFFFFFF; std::vector args2; args2 = std::vector(args.begin()+1,args.end()-1); auto func = args[0] == "reg" ? &sim_t::get_reg : args[0] == "pc" ? &sim_t::get_pc : args[0] == "mem" ? &sim_t::get_mem : NULL; if (func == NULL) throw trap_interactive(); ctrlc_pressed = false; while (1) { try { reg_t current = (this->*func)(args2); // mask bits above max_xlen if (max_xlen == 32) current &= 0xFFFFFFFF; if (cmd_until == (current == val)) break; if (ctrlc_pressed) break; } catch (trap_t& t) {} set_procs_debug(noisy); step(1); } } void sim_t::interactive_dumpmems(const std::string& cmd, const std::vector& args) { for (unsigned i = 0; i < mems.size(); i++) { std::stringstream mem_fname; mem_fname << "mem.0x" << std::hex << mems[i].first << ".bin"; std::ofstream mem_file(mem_fname.str()); mems[i].second->dump(mem_file); mem_file.close(); } } void sim_t::interactive_mtime(const std::string& cmd, const std::vector& args) { std::ostream out(sout_.rdbuf()); out << std::hex << std::setfill('0') << "0x" << std::setw(16) << clint->get_mtime() << std::endl; } void sim_t::interactive_mtimecmp(const std::string& cmd, const std::vector& args) { if (args.size() != 1) throw trap_interactive(); processor_t *p = get_core(args[0]); std::ostream out(sout_.rdbuf()); out << std::hex << std::setfill('0') << "0x" << std::setw(16) << clint->get_mtimecmp(p->get_id()) << std::endl; }