// See LICENSE for license details. #ifndef _RISCV_DECODE_H #define _RISCV_DECODE_H #if (-1 != ~0) || ((-1 >> 1) != -1) # error spike requires a two''s-complement c++ implementation #endif #include #include #include #include "encoding.h" #include "config.h" #include "common.h" #include typedef int64_t sreg_t; typedef uint64_t reg_t; typedef uint64_t freg_t; const int NXPR = 32; const int NFPR = 32; const int NCSR = 4096; #define X_RA 1 #define X_SP 2 #define FP_RD_NE 0 #define FP_RD_0 1 #define FP_RD_DN 2 #define FP_RD_UP 3 #define FP_RD_NMM 4 #define FSR_RD_SHIFT 5 #define FSR_RD (0x7 << FSR_RD_SHIFT) #define FPEXC_NX 0x01 #define FPEXC_UF 0x02 #define FPEXC_OF 0x04 #define FPEXC_DZ 0x08 #define FPEXC_NV 0x10 #define FSR_AEXC_SHIFT 0 #define FSR_NVA (FPEXC_NV << FSR_AEXC_SHIFT) #define FSR_OFA (FPEXC_OF << FSR_AEXC_SHIFT) #define FSR_UFA (FPEXC_UF << FSR_AEXC_SHIFT) #define FSR_DZA (FPEXC_DZ << FSR_AEXC_SHIFT) #define FSR_NXA (FPEXC_NX << FSR_AEXC_SHIFT) #define FSR_AEXC (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA) #define insn_length(x) \ (((x) & 0x03) < 0x03 ? 2 : \ ((x) & 0x1f) < 0x1f ? 4 : \ ((x) & 0x3f) < 0x3f ? 6 : \ 8) #define MAX_INSN_LENGTH 8 #define PC_ALIGN 2 typedef uint64_t insn_bits_t; class insn_t { public: insn_t() = default; insn_t(insn_bits_t bits) : b(bits) {} insn_bits_t bits() { return b; } int length() { return insn_length(b); } int64_t i_imm() { return int64_t(b) >> 20; } int64_t s_imm() { return x(7, 5) + (xs(25, 7) << 5); } int64_t sb_imm() { return (x(8, 4) << 1) + (x(25,6) << 5) + (x(7,1) << 11) + (imm_sign() << 12); } int64_t u_imm() { return int64_t(b) >> 12 << 12; } int64_t uj_imm() { return (x(21, 10) << 1) + (x(20, 1) << 11) + (x(12, 8) << 12) + (imm_sign() << 20); } uint64_t rd() { return x(7, 5); } uint64_t rs1() { return x(15, 5); } uint64_t rs2() { return x(20, 5); } uint64_t rs3() { return x(27, 5); } uint64_t rm() { return x(12, 3); } uint64_t csr() { return x(20, 12); } int64_t rvc_imm() { return x(2, 5) + (xs(12, 1) << 5); } int64_t rvc_zimm() { return x(2, 5) + (x(12, 1) << 5); } int64_t rvc_addi4spn_imm() { return (x(6, 1) << 2) + (x(5, 1) << 3) + (x(11, 2) << 4) + (x(7, 4) << 6); } int64_t rvc_addi16sp_imm() { return (x(6, 1) << 4) + (x(2, 1) << 5) + (x(5, 1) << 6) + (x(3, 2) << 7) + (xs(12, 1) << 9); } int64_t rvc_lwsp_imm() { return (x(4, 3) << 2) + (x(12, 1) << 5) + (x(2, 2) << 6); } int64_t rvc_ldsp_imm() { return (x(5, 2) << 3) + (x(12, 1) << 5) + (x(2, 3) << 6); } int64_t rvc_swsp_imm() { return (x(9, 4) << 2) + (x(7, 2) << 6); } int64_t rvc_sdsp_imm() { return (x(10, 3) << 3) + (x(7, 3) << 6); } int64_t rvc_lw_imm() { return (x(6, 1) << 2) + (x(10, 3) << 3) + (x(5, 1) << 6); } int64_t rvc_ld_imm() { return (x(10, 3) << 3) + (x(5, 2) << 6); } int64_t rvc_j_imm() { return (x(3, 3) << 1) + (x(11, 1) << 4) + (x(2, 1) << 5) + (x(7, 1) << 6) + (x(6, 1) << 7) + (x(9, 2) << 8) + (x(8, 1) << 10) + (xs(12, 1) << 11); } int64_t rvc_b_imm() { return (x(3, 2) << 1) + (x(10, 2) << 3) + (x(2, 1) << 5) + (x(5, 2) << 6) + (xs(12, 1) << 8); } int64_t rvc_simm3() { return x(10, 3); } uint64_t rvc_rd() { return rd(); } uint64_t rvc_rs1() { return rd(); } uint64_t rvc_rs2() { return x(2, 5); } uint64_t rvc_rs1s() { return 8 + x(7, 3); } uint64_t rvc_rs2s() { return 8 + x(2, 3); } private: insn_bits_t b; uint64_t x(int lo, int len) { return (b >> lo) & ((insn_bits_t(1) << len)-1); } uint64_t xs(int lo, int len) { return int64_t(b) << (64-lo-len) >> (64-len); } uint64_t imm_sign() { return xs(63, 1); } }; template class regfile_t { public: void write(size_t i, T value) { if (!zero_reg || i != 0) data[i] = value; } const T& operator [] (size_t i) const { return data[i]; } private: T data[N]; }; // helpful macros, etc #define MMU (*p->get_mmu()) #define STATE (*p->get_state()) #define READ_REG(reg) STATE.XPR[reg] #define READ_FREG(reg) STATE.FPR[reg] #define RS1 READ_REG(insn.rs1()) #define RS2 READ_REG(insn.rs2()) #define WRITE_RD(value) WRITE_REG(insn.rd(), value) #ifndef RISCV_ENABLE_COMMITLOG # define WRITE_REG(reg, value) STATE.XPR.write(reg, value) # define WRITE_FREG(reg, value) DO_WRITE_FREG(reg, value) #else # define WRITE_REG(reg, value) ({ \ reg_t wdata = (value); /* value may have side effects */ \ STATE.log_reg_write = (commit_log_reg_t){(reg) << 1, wdata}; \ STATE.XPR.write(reg, wdata); \ }) # define WRITE_FREG(reg, value) ({ \ freg_t wdata = (value); /* value may have side effects */ \ STATE.log_reg_write = (commit_log_reg_t){((reg) << 1) | 1, wdata}; \ DO_WRITE_FREG(reg, wdata); \ }) #endif // RVC macros #define WRITE_RVC_RS1S(value) WRITE_REG(insn.rvc_rs1s(), value) #define WRITE_RVC_RS2S(value) WRITE_REG(insn.rvc_rs2s(), value) #define WRITE_RVC_FRS2S(value) WRITE_FREG(insn.rvc_rs2s(), value) #define RVC_RS1 READ_REG(insn.rvc_rs1()) #define RVC_RS2 READ_REG(insn.rvc_rs2()) #define RVC_RS1S READ_REG(insn.rvc_rs1s()) #define RVC_RS2S READ_REG(insn.rvc_rs2s()) #define RVC_FRS2 READ_FREG(insn.rvc_rs2()) #define RVC_FRS2S READ_FREG(insn.rvc_rs2s()) #define RVC_SP READ_REG(X_SP) // FPU macros #define FRS1 READ_FREG(insn.rs1()) #define FRS2 READ_FREG(insn.rs2()) #define FRS3 READ_FREG(insn.rs3()) #define dirty_fp_state (STATE.mstatus |= MSTATUS_FS | (xlen == 64 ? MSTATUS64_SD : MSTATUS32_SD)) #define dirty_ext_state (STATE.mstatus |= MSTATUS_XS | (xlen == 64 ? MSTATUS64_SD : MSTATUS32_SD)) #define DO_WRITE_FREG(reg, value) (STATE.FPR.write(reg, value), dirty_fp_state) #define WRITE_FRD(value) WRITE_FREG(insn.rd(), value) #define SHAMT (insn.i_imm() & 0x3F) #define BRANCH_TARGET (pc + insn.sb_imm()) #define JUMP_TARGET (pc + insn.uj_imm()) #define RM ({ int rm = insn.rm(); \ if(rm == 7) rm = STATE.frm; \ if(rm > 4) throw trap_illegal_instruction(); \ rm; }) #define get_field(reg, mask) (((reg) & (decltype(reg))(mask)) / ((mask) & ~((mask) << 1))) #define set_field(reg, mask, val) (((reg) & ~(decltype(reg))(mask)) | (((decltype(reg))(val) * ((mask) & ~((mask) << 1))) & (decltype(reg))(mask))) #define require(x) if (unlikely(!(x))) throw trap_illegal_instruction() #define require_privilege(p) require(STATE.prv >= (p)) #define require_rv64 require(xlen == 64) #define require_rv32 require(xlen == 32) #define require_extension(s) require(p->supports_extension(s)) #define require_fp require((STATE.mstatus & MSTATUS_FS) != 0) #define require_accelerator require((STATE.mstatus & MSTATUS_XS) != 0) #define set_fp_exceptions ({ if (softfloat_exceptionFlags) { \ dirty_fp_state; \ STATE.fflags |= softfloat_exceptionFlags; \ } \ softfloat_exceptionFlags = 0; }) #define sext32(x) ((sreg_t)(int32_t)(x)) #define zext32(x) ((reg_t)(uint32_t)(x)) #define sext_xlen(x) (((sreg_t)(x) << (64-xlen)) >> (64-xlen)) #define zext_xlen(x) (((reg_t)(x) << (64-xlen)) >> (64-xlen)) #define set_pc(x) \ do { if (unlikely(((x) & 2)) && !p->supports_extension('C')) \ throw trap_instruction_address_misaligned(x); \ npc = sext_xlen(x); \ } while(0) #define set_pc_and_serialize(x) \ do { reg_t __npc = (x); \ set_pc(__npc); /* check alignment */ \ npc = PC_SERIALIZE_AFTER; \ STATE.pc = __npc; \ } while(0) /* Sentinel PC values to serialize simulator pipeline */ #define PC_SERIALIZE_BEFORE 3 #define PC_SERIALIZE_AFTER 5 #define invalid_pc(pc) ((pc) & 1) /* Convenience wrappers to simplify softfloat code sequences */ #define f32(x) ((float32_t){(uint32_t)x}) #define f64(x) ((float64_t){(uint64_t)x}) #define validate_csr(which, write) ({ \ if (!STATE.serialized) return PC_SERIALIZE_BEFORE; \ STATE.serialized = false; \ unsigned csr_priv = get_field((which), 0x300); \ unsigned csr_read_only = get_field((which), 0xC00) == 3; \ if (((write) && csr_read_only) || STATE.prv < csr_priv) \ throw trap_illegal_instruction(); \ (which); }) #define DEBUG_START 0x100 #define DEBUG_ROM_START 0x800 #define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4) #define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8) #define DEBUG_ROM_END (DEBUG_ROM_START + debug_rom_raw_len) #define DEBUG_RAM_START 0x400 #define DEBUG_RAM_SIZE 64 #define DEBUG_RAM_END (DEBUG_RAM_START + DEBUG_RAM_SIZE) #define DEBUG_END 0xfff #define DEBUG_CLEARDEBINT 0x100 #define DEBUG_SETHALTNOT 0x10c #define DEBUG_SIZE (DEBUG_END - DEBUG_START + 1) #endif