// See LICENSE for license details. #ifndef _RISCV_DECODE_H #define _RISCV_DECODE_H #if (-1 != ~0) || ((-1 >> 1) != -1) # error spike requires a two''s-complement c++ implementation #endif #include #include #include #include #include "encoding.h" #include "config.h" #include "common.h" #include "softfloat_types.h" #include "specialize.h" #include "p_ext_macros.h" #include "v_ext_macros.h" #include #include typedef int64_t sreg_t; typedef uint64_t reg_t; #ifdef __SIZEOF_INT128__ typedef __int128 int128_t; typedef unsigned __int128 uint128_t; #endif const int NXPR = 32; const int NFPR = 32; const int NVPR = 32; const int NCSR = 4096; #define X_RA 1 #define X_SP 2 #define VCSR_VXRM_SHIFT 1 #define VCSR_VXRM (0x3 << VCSR_VXRM_SHIFT) #define VCSR_VXSAT_SHIFT 0 #define VCSR_VXSAT (0x1 << VCSR_VXSAT_SHIFT) #define FP_RD_NE 0 #define FP_RD_0 1 #define FP_RD_DN 2 #define FP_RD_UP 3 #define FP_RD_NMM 4 #define FSR_RD_SHIFT 5 #define FSR_RD (0x7 << FSR_RD_SHIFT) #define FPEXC_NX 0x01 #define FPEXC_UF 0x02 #define FPEXC_OF 0x04 #define FPEXC_DZ 0x08 #define FPEXC_NV 0x10 #define FSR_AEXC_SHIFT 0 #define FSR_NVA (FPEXC_NV << FSR_AEXC_SHIFT) #define FSR_OFA (FPEXC_OF << FSR_AEXC_SHIFT) #define FSR_UFA (FPEXC_UF << FSR_AEXC_SHIFT) #define FSR_DZA (FPEXC_DZ << FSR_AEXC_SHIFT) #define FSR_NXA (FPEXC_NX << FSR_AEXC_SHIFT) #define FSR_AEXC (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA) #define insn_length(x) \ (((x) & 0x03) < 0x03 ? 2 : \ ((x) & 0x1f) < 0x1f ? 4 : \ ((x) & 0x3f) < 0x3f ? 6 : \ 8) #define MAX_INSN_LENGTH 8 #define PC_ALIGN 2 typedef uint64_t insn_bits_t; class insn_t { public: insn_t() = default; insn_t(insn_bits_t bits) : b(bits) {} insn_bits_t bits() { return b; } int length() { return insn_length(b); } int64_t i_imm() { return xs(20, 12); } int64_t shamt() { return x(20, 6); } int64_t s_imm() { return x(7, 5) + (xs(25, 7) << 5); } int64_t sb_imm() { return (x(8, 4) << 1) + (x(25, 6) << 5) + (x(7, 1) << 11) + (imm_sign() << 12); } int64_t u_imm() { return xs(12, 20) << 12; } int64_t uj_imm() { return (x(21, 10) << 1) + (x(20, 1) << 11) + (x(12, 8) << 12) + (imm_sign() << 20); } uint64_t rd() { return x(7, 5); } uint64_t rs1() { return x(15, 5); } uint64_t rs2() { return x(20, 5); } uint64_t rs3() { return x(27, 5); } uint64_t rm() { return x(12, 3); } uint64_t csr() { return x(20, 12); } uint64_t iorw() { return x(20, 8); } uint64_t bs() { return x(30, 2); } // Crypto ISE - SM4/AES32 byte select. uint64_t rcon() { return x(20, 4); } // Crypto ISE - AES64 round const. int64_t rvc_imm() { return x(2, 5) + (xs(12, 1) << 5); } int64_t rvc_zimm() { return x(2, 5) + (x(12, 1) << 5); } int64_t rvc_addi4spn_imm() { return (x(6, 1) << 2) + (x(5, 1) << 3) + (x(11, 2) << 4) + (x(7, 4) << 6); } int64_t rvc_addi16sp_imm() { return (x(6, 1) << 4) + (x(2, 1) << 5) + (x(5, 1) << 6) + (x(3, 2) << 7) + (xs(12, 1) << 9); } int64_t rvc_lwsp_imm() { return (x(4, 3) << 2) + (x(12, 1) << 5) + (x(2, 2) << 6); } int64_t rvc_ldsp_imm() { return (x(5, 2) << 3) + (x(12, 1) << 5) + (x(2, 3) << 6); } int64_t rvc_swsp_imm() { return (x(9, 4) << 2) + (x(7, 2) << 6); } int64_t rvc_sdsp_imm() { return (x(10, 3) << 3) + (x(7, 3) << 6); } int64_t rvc_lw_imm() { return (x(6, 1) << 2) + (x(10, 3) << 3) + (x(5, 1) << 6); } int64_t rvc_ld_imm() { return (x(10, 3) << 3) + (x(5, 2) << 6); } int64_t rvc_j_imm() { return (x(3, 3) << 1) + (x(11, 1) << 4) + (x(2, 1) << 5) + (x(7, 1) << 6) + (x(6, 1) << 7) + (x(9, 2) << 8) + (x(8, 1) << 10) + (xs(12, 1) << 11); } int64_t rvc_b_imm() { return (x(3, 2) << 1) + (x(10, 2) << 3) + (x(2, 1) << 5) + (x(5, 2) << 6) + (xs(12, 1) << 8); } int64_t rvc_simm3() { return x(10, 3); } uint64_t rvc_rd() { return rd(); } uint64_t rvc_rs1() { return rd(); } uint64_t rvc_rs2() { return x(2, 5); } uint64_t rvc_rs1s() { return 8 + x(7, 3); } uint64_t rvc_rs2s() { return 8 + x(2, 3); } uint64_t v_vm() { return x(25, 1); } uint64_t v_wd() { return x(26, 1); } uint64_t v_nf() { return x(29, 3); } uint64_t v_simm5() { return xs(15, 5); } uint64_t v_zimm5() { return x(15, 5); } uint64_t v_zimm10() { return x(20, 10); } uint64_t v_zimm11() { return x(20, 11); } uint64_t v_lmul() { return x(20, 2); } uint64_t v_frac_lmul() { return x(22, 1); } uint64_t v_sew() { return 1 << (x(23, 3) + 3); } uint64_t v_width() { return x(12, 3); } uint64_t v_mop() { return x(26, 2); } uint64_t v_lumop() { return x(20, 5); } uint64_t v_sumop() { return x(20, 5); } uint64_t v_vta() { return x(26, 1); } uint64_t v_vma() { return x(27, 1); } uint64_t v_mew() { return x(28, 1); } uint64_t p_imm2() { return x(20, 2); } uint64_t p_imm3() { return x(20, 3); } uint64_t p_imm4() { return x(20, 4); } uint64_t p_imm5() { return x(20, 5); } uint64_t p_imm6() { return x(20, 6); } private: insn_bits_t b; uint64_t x(int lo, int len) { return (b >> lo) & ((insn_bits_t(1) << len) - 1); } uint64_t xs(int lo, int len) { return int64_t(b) << (64 - lo - len) >> (64 - len); } uint64_t imm_sign() { return xs(31, 1); } }; template class regfile_t { public: void write(size_t i, T value) { if (!zero_reg || i != 0) data[i] = value; } const T& operator [] (size_t i) const { return data[i]; } regfile_t() { reset(); } void reset() { memset(data, 0, sizeof(data)); } private: T data[N]; }; // helpful macros, etc #define MMU (*p->get_mmu()) #define STATE (*p->get_state()) #define FLEN (p->get_flen()) #define CHECK_REG(reg) ((void) 0) #define READ_REG(reg) (CHECK_REG(reg), STATE.XPR[reg]) #define READ_FREG(reg) STATE.FPR[reg] #define RD READ_REG(insn.rd()) #define RS1 READ_REG(insn.rs1()) #define RS2 READ_REG(insn.rs2()) #define RS3 READ_REG(insn.rs3()) #define WRITE_RD(value) WRITE_REG(insn.rd(), value) #ifndef RISCV_ENABLE_COMMITLOG # define WRITE_REG(reg, value) ({ CHECK_REG(reg); STATE.XPR.write(reg, value); }) # define WRITE_FREG(reg, value) DO_WRITE_FREG(reg, freg(value)) # define WRITE_VSTATUS {} #else /* 0 : int * 1 : floating * 2 : vector reg * 3 : vector hint * 4 : csr */ # define WRITE_REG(reg, value) ({ \ reg_t wdata = (value); /* value may have side effects */ \ STATE.log_reg_write[(reg) << 4] = {wdata, 0}; \ CHECK_REG(reg); \ STATE.XPR.write(reg, wdata); \ }) # define WRITE_FREG(reg, value) ({ \ freg_t wdata = freg(value); /* value may have side effects */ \ STATE.log_reg_write[((reg) << 4) | 1] = wdata; \ DO_WRITE_FREG(reg, wdata); \ }) # define WRITE_VSTATUS STATE.log_reg_write[3] = {0, 0}; #endif // RVC macros #define WRITE_RVC_RS1S(value) WRITE_REG(insn.rvc_rs1s(), value) #define WRITE_RVC_RS2S(value) WRITE_REG(insn.rvc_rs2s(), value) #define WRITE_RVC_FRS2S(value) WRITE_FREG(insn.rvc_rs2s(), value) #define RVC_RS1 READ_REG(insn.rvc_rs1()) #define RVC_RS2 READ_REG(insn.rvc_rs2()) #define RVC_RS1S READ_REG(insn.rvc_rs1s()) #define RVC_RS2S READ_REG(insn.rvc_rs2s()) #define RVC_FRS2 READ_FREG(insn.rvc_rs2()) #define RVC_FRS2S READ_FREG(insn.rvc_rs2s()) #define RVC_SP READ_REG(X_SP) // FPU macros #define READ_ZDINX_REG(reg) (xlen == 32 ? f64(READ_REG_PAIR(reg)) : f64(STATE.XPR[reg] & (uint64_t)-1)) #define READ_FREG_H(reg) (p->extension_enabled(EXT_ZFINX) ? f16(STATE.XPR[reg] & (uint16_t)-1) : f16(READ_FREG(reg))) #define READ_FREG_F(reg) (p->extension_enabled(EXT_ZFINX) ? f32(STATE.XPR[reg] & (uint32_t)-1) : f32(READ_FREG(reg))) #define READ_FREG_D(reg) (p->extension_enabled(EXT_ZFINX) ? READ_ZDINX_REG(reg) : f64(READ_FREG(reg))) #define FRS1 READ_FREG(insn.rs1()) #define FRS2 READ_FREG(insn.rs2()) #define FRS3 READ_FREG(insn.rs3()) #define FRS1_H READ_FREG_H(insn.rs1()) #define FRS1_F READ_FREG_F(insn.rs1()) #define FRS1_D READ_FREG_D(insn.rs1()) #define FRS2_H READ_FREG_H(insn.rs2()) #define FRS2_F READ_FREG_F(insn.rs2()) #define FRS2_D READ_FREG_D(insn.rs2()) #define FRS3_H READ_FREG_H(insn.rs3()) #define FRS3_F READ_FREG_F(insn.rs3()) #define FRS3_D READ_FREG_D(insn.rs3()) #define dirty_fp_state STATE.sstatus->dirty(SSTATUS_FS) #define dirty_ext_state STATE.sstatus->dirty(SSTATUS_XS) #define dirty_vs_state STATE.sstatus->dirty(SSTATUS_VS) #define DO_WRITE_FREG(reg, value) (STATE.FPR.write(reg, value), dirty_fp_state) #define WRITE_FRD(value) WRITE_FREG(insn.rd(), value) #define WRITE_FRD_H(value) \ do { \ if (p->extension_enabled(EXT_ZFINX)) \ WRITE_REG(insn.rd(), sext_xlen((int16_t)((value).v))); \ else { \ WRITE_FRD(value); \ } \ } while (0) #define WRITE_FRD_F(value) \ do { \ if (p->extension_enabled(EXT_ZFINX)) \ WRITE_REG(insn.rd(), sext_xlen((value).v)); \ else { \ WRITE_FRD(value); \ } \ } while (0) #define WRITE_FRD_D(value) \ do { \ if (p->extension_enabled(EXT_ZFINX)) { \ if (xlen == 32) { \ uint64_t val = (value).v; \ WRITE_RD_PAIR(val); \ } else { \ WRITE_REG(insn.rd(), (value).v); \ } \ } else { \ WRITE_FRD(value); \ } \ } while (0) #define SHAMT (insn.i_imm() & 0x3F) #define BRANCH_TARGET (pc + insn.sb_imm()) #define JUMP_TARGET (pc + insn.uj_imm()) #define RM ({ int rm = insn.rm(); \ if (rm == 7) rm = STATE.frm->read(); \ if (rm > 4) throw trap_illegal_instruction(insn.bits()); \ rm; }) #define get_field(reg, mask) \ (((reg) & (std::remove_cv::type)(mask)) / ((mask) & ~((mask) << 1))) #define set_field(reg, mask, val) \ (((reg) & ~(std::remove_cv::type)(mask)) | (((std::remove_cv::type)(val) * ((mask) & ~((mask) << 1))) & (std::remove_cv::type)(mask))) #define require_privilege(p) require(STATE.prv >= (p)) #define require_novirt() if (unlikely(STATE.v)) throw trap_virtual_instruction(insn.bits()) #define require_rv64 require(xlen == 64) #define require_rv32 require(xlen == 32) #define require_extension(s) require(p->extension_enabled(s)) #define require_either_extension(A,B) require(p->extension_enabled(A) || p->extension_enabled(B)); #define require_impl(s) require(p->supports_impl(s)) #define require_fs require(STATE.sstatus->enabled(SSTATUS_FS)) #define require_fp STATE.fflags->verify_permissions(insn, false) #define require_accelerator require(STATE.sstatus->enabled(SSTATUS_XS)) #define require_vector_vs require(STATE.sstatus->enabled(SSTATUS_VS)) #define require_vector(alu) \ do { \ require_vector_vs; \ require_extension('V'); \ require(!P.VU.vill); \ if (alu && !P.VU.vstart_alu) \ require(P.VU.vstart->read() == 0); \ WRITE_VSTATUS; \ dirty_vs_state; \ } while (0); #define require_vector_novtype(is_log) \ do { \ require_vector_vs; \ require_extension('V'); \ if (is_log) \ WRITE_VSTATUS; \ dirty_vs_state; \ } while (0); #define require_align(val, pos) require(is_aligned(val, pos)) #define require_noover(astart, asize, bstart, bsize) \ require(!is_overlapped(astart, asize, bstart, bsize)) #define require_noover_widen(astart, asize, bstart, bsize) \ require(!is_overlapped_widen(astart, asize, bstart, bsize)) #define require_vm do { if (insn.v_vm() == 0) require(insn.rd() != 0); } while (0); #define require_envcfg(field) \ do { \ if (((STATE.prv != PRV_M) && (m##field == 0)) || \ ((STATE.prv == PRV_U && !STATE.v) && (s##field == 0))) \ throw trap_illegal_instruction(insn.bits()); \ else if (STATE.v && ((h##field == 0) || \ ((STATE.prv == PRV_U) && (s##field == 0)))) \ throw trap_virtual_instruction(insn.bits()); \ } while (0); #define set_fp_exceptions ({ if (softfloat_exceptionFlags) { \ STATE.fflags->write(STATE.fflags->read() | softfloat_exceptionFlags); \ } \ softfloat_exceptionFlags = 0; }) #define sext32(x) ((sreg_t)(int32_t)(x)) #define zext32(x) ((reg_t)(uint32_t)(x)) #define sext_xlen(x) (((sreg_t)(x) << (64 - xlen)) >> (64 - xlen)) #define zext(x, pos) (((reg_t)(x) << (64 - (pos))) >> (64 - (pos))) #define zext_xlen(x) zext(x, xlen) #define set_pc(x) \ do { p->check_pc_alignment(x); \ npc = sext_xlen(x); \ } while (0) #define set_pc_and_serialize(x) \ do { reg_t __npc = (x) & p->pc_alignment_mask(); \ npc = PC_SERIALIZE_AFTER; \ STATE.pc = __npc; \ } while (0) class wait_for_interrupt_t {}; #define wfi() \ do { set_pc_and_serialize(npc); \ throw wait_for_interrupt_t(); \ } while (0) #define serialize() set_pc_and_serialize(npc) /* Sentinel PC values to serialize simulator pipeline */ #define PC_SERIALIZE_BEFORE 3 #define PC_SERIALIZE_AFTER 5 #define invalid_pc(pc) ((pc) & 1) /* Convenience wrappers to simplify softfloat code sequences */ #define isBoxedF16(r) (isBoxedF32(r) && ((uint64_t)((r.v[0] >> 16) + 1) == ((uint64_t)1 << 48))) #define unboxF16(r) (isBoxedF16(r) ? (uint16_t)r.v[0] : defaultNaNF16UI) #define isBoxedF32(r) (isBoxedF64(r) && ((uint32_t)((r.v[0] >> 32) + 1) == 0)) #define unboxF32(r) (isBoxedF32(r) ? (uint32_t)r.v[0] : defaultNaNF32UI) #define isBoxedF64(r) ((r.v[1] + 1) == 0) #define unboxF64(r) (isBoxedF64(r) ? r.v[0] : defaultNaNF64UI) typedef float128_t freg_t; inline float16_t f16(uint16_t v) { return { v }; } inline float32_t f32(uint32_t v) { return { v }; } inline float64_t f64(uint64_t v) { return { v }; } inline float16_t f16(freg_t r) { return f16(unboxF16(r)); } inline float32_t f32(freg_t r) { return f32(unboxF32(r)); } inline float64_t f64(freg_t r) { return f64(unboxF64(r)); } inline float128_t f128(freg_t r) { return r; } inline freg_t freg(float16_t f) { return { ((uint64_t)-1 << 16) | f.v, (uint64_t)-1 }; } inline freg_t freg(float32_t f) { return { ((uint64_t)-1 << 32) | f.v, (uint64_t)-1 }; } inline freg_t freg(float64_t f) { return { f.v, (uint64_t)-1 }; } inline freg_t freg(float128_t f) { return f; } #define F16_SIGN ((uint16_t)1 << 15) #define F32_SIGN ((uint32_t)1 << 31) #define F64_SIGN ((uint64_t)1 << 63) #define fsgnj16(a, b, n, x) \ f16((f16(a).v & ~F16_SIGN) | ((((x) ? f16(a).v : (n) ? F16_SIGN : 0) ^ f16(b).v) & F16_SIGN)) #define fsgnj32(a, b, n, x) \ f32((f32(a).v & ~F32_SIGN) | ((((x) ? f32(a).v : (n) ? F32_SIGN : 0) ^ f32(b).v) & F32_SIGN)) #define fsgnj64(a, b, n, x) \ f64((f64(a).v & ~F64_SIGN) | ((((x) ? f64(a).v : (n) ? F64_SIGN : 0) ^ f64(b).v) & F64_SIGN)) #define isNaNF128(x) isNaNF128UI(x.v[1], x.v[0]) inline float128_t defaultNaNF128() { float128_t nan; nan.v[1] = defaultNaNF128UI64; nan.v[0] = defaultNaNF128UI0; return nan; } inline freg_t fsgnj128(freg_t a, freg_t b, bool n, bool x) { a.v[1] = (a.v[1] & ~F64_SIGN) | (((x ? a.v[1] : n ? F64_SIGN : 0) ^ b.v[1]) & F64_SIGN); return a; } inline freg_t f128_negate(freg_t a) { a.v[1] ^= F64_SIGN; return a; } #define validate_csr(which, write) ({ \ if (!STATE.serialized) return PC_SERIALIZE_BEFORE; \ STATE.serialized = false; \ /* permissions check occurs in get_csr */ \ (which); }) /* For debug only. This will fail if the native machine's float types are not IEEE */ inline float to_f(float32_t f) { float r; memcpy(&r, &f, sizeof(r)); return r; } inline double to_f(float64_t f) { double r; memcpy(&r, &f, sizeof(r)); return r; } inline long double to_f(float128_t f) { long double r; memcpy(&r, &f, sizeof(r)); return r; } // Vector macros #define e8 8 // 8b elements #define e16 16 // 16b elements #define e32 32 // 32b elements #define e64 64 // 64b elements #define e128 128 // 128b elements #define e256 256 // 256b elements #define e512 512 // 512b elements #define e1024 1024 // 1024b elements #define vsext(x, sew) (((sreg_t)(x) << (64 - sew)) >> (64 - sew)) #define vzext(x, sew) (((reg_t)(x) << (64 - sew)) >> (64 - sew)) #define DEBUG_RVV 0 #if DEBUG_RVV #define DEBUG_RVV_FP_VV \ printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2)); #define DEBUG_RVV_FP_VF \ printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2)); #define DEBUG_RVV_FMA_VV \ printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2), to_f(vd_old)); #define DEBUG_RVV_FMA_VF \ printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2), to_f(vd_old)); #else #define DEBUG_RVV_FP_VV 0 #define DEBUG_RVV_FP_VF 0 #define DEBUG_RVV_FMA_VV 0 #define DEBUG_RVV_FMA_VF 0 #endif #define DECLARE_XENVCFG_VARS(field) \ reg_t m##field = get_field(STATE.menvcfg->read(), MENVCFG_##field); \ reg_t s##field = get_field(STATE.senvcfg->read(), SENVCFG_##field); \ reg_t h##field = get_field(STATE.henvcfg->read(), HENVCFG_##field) #define DEBUG_START 0x0 #define DEBUG_END (0x1000 - 1) #endif