aboutsummaryrefslogtreecommitdiff
path: root/softfloat
diff options
context:
space:
mode:
authorAndrew Waterman <waterman@s141.Millennium.Berkeley.EDU>2010-08-18 14:34:42 -0700
committerAndrew Waterman <waterman@s141.Millennium.Berkeley.EDU>2010-08-18 14:34:42 -0700
commit50ec828bafd154b5558c70ff46491193acf7f699 (patch)
tree867c6726544c511ae36ea4fdb5b54ca78a2c881f /softfloat
parentb46f178e5884c6744895a84937014ec73d4a10c8 (diff)
downloadspike-50ec828bafd154b5558c70ff46491193acf7f699.zip
spike-50ec828bafd154b5558c70ff46491193acf7f699.tar.gz
spike-50ec828bafd154b5558c70ff46491193acf7f699.tar.bz2
[sim] integrated SoftFloat-3 with ISA sim; removed SoftFloat-2b
Diffstat (limited to 'softfloat')
-rwxr-xr-xsoftfloat/8086/OLD-specialize.c (renamed from softfloat/SoftFloat-3/source/8086/OLD-specialize.c)0
-rwxr-xr-xsoftfloat/8086/OLD-specialize.h (renamed from softfloat/SoftFloat-3/source/8086/OLD-specialize.h)0
-rwxr-xr-xsoftfloat/8086/platform.h (renamed from softfloat/SoftFloat-3/source/8086/platform.h)0
-rwxr-xr-xsoftfloat/8086/s_commonNaNToF32UI.c (renamed from softfloat/SoftFloat-3/source/8086/s_commonNaNToF32UI.c)0
-rwxr-xr-xsoftfloat/8086/s_commonNaNToF64UI.c (renamed from softfloat/SoftFloat-3/source/8086/s_commonNaNToF64UI.c)0
-rwxr-xr-xsoftfloat/8086/s_f32UIToCommonNaN.c (renamed from softfloat/SoftFloat-3/source/8086/s_f32UIToCommonNaN.c)0
-rwxr-xr-xsoftfloat/8086/s_f64UIToCommonNaN.c (renamed from softfloat/SoftFloat-3/source/8086/s_f64UIToCommonNaN.c)0
-rwxr-xr-xsoftfloat/8086/s_isSigNaNF32UI.c (renamed from softfloat/SoftFloat-3/source/8086/s_isSigNaNF32UI.c)0
-rwxr-xr-xsoftfloat/8086/s_isSigNaNF64UI.c (renamed from softfloat/SoftFloat-3/source/8086/s_isSigNaNF64UI.c)0
-rwxr-xr-xsoftfloat/8086/s_propagateNaNF32UI.c (renamed from softfloat/SoftFloat-3/source/8086/s_propagateNaNF32UI.c)0
-rwxr-xr-xsoftfloat/8086/s_propagateNaNF64UI.c (renamed from softfloat/SoftFloat-3/source/8086/s_propagateNaNF64UI.c)0
-rwxr-xr-xsoftfloat/8086/softfloat_raiseFlags.c (renamed from softfloat/SoftFloat-3/source/8086/softfloat_raiseFlags.c)0
-rwxr-xr-xsoftfloat/8086/softfloat_types.h (renamed from softfloat/SoftFloat-3/source/8086/softfloat_types.h)0
-rwxr-xr-xsoftfloat/8086/specialize.h (renamed from softfloat/SoftFloat-3/source/8086/specialize.h)0
-rwxr-xr-xsoftfloat/SoftFloat-3/source/OLD-softfloat.c2962
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/platform.h38
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_commonNaNToF32UI.c17
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_commonNaNToF64UI.c18
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_f32UIToCommonNaN.c25
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_f64UIToCommonNaN.c25
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_isSigNaNF32UI.c13
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_isSigNaNF64UI.c15
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_propagateNaNF32UI.c55
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/s_propagateNaNF64UI.c55
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/softfloat_raiseFlags.c51
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/softfloat_types.h16
-rwxr-xr-xsoftfloat/SoftFloat-3/source/riscv/specialize.h113
-rwxr-xr-xsoftfloat/SoftFloat-3/source/softfloat.h225
-rwxr-xr-xsoftfloat/f32_add.cc (renamed from softfloat/SoftFloat-3/source/f32_add.c)0
-rwxr-xr-xsoftfloat/f32_div.cc (renamed from softfloat/SoftFloat-3/source/f32_div.c)0
-rwxr-xr-xsoftfloat/f32_eq.cc (renamed from softfloat/SoftFloat-3/source/f32_eq.c)0
-rwxr-xr-xsoftfloat/f32_eq_signaling.cc (renamed from softfloat/SoftFloat-3/source/f32_eq_signaling.c)0
-rwxr-xr-xsoftfloat/f32_isSignalingNaN.cc (renamed from softfloat/SoftFloat-3/source/f32_isSignalingNaN.c)0
-rwxr-xr-xsoftfloat/f32_le.cc (renamed from softfloat/SoftFloat-3/source/f32_le.c)0
-rwxr-xr-xsoftfloat/f32_le_quiet.cc (renamed from softfloat/SoftFloat-3/source/f32_le_quiet.c)0
-rwxr-xr-xsoftfloat/f32_lt.cc (renamed from softfloat/SoftFloat-3/source/f32_lt.c)0
-rwxr-xr-xsoftfloat/f32_lt_quiet.cc (renamed from softfloat/SoftFloat-3/source/f32_lt_quiet.c)0
-rwxr-xr-xsoftfloat/f32_mul.cc (renamed from softfloat/SoftFloat-3/source/f32_mul.c)0
-rwxr-xr-xsoftfloat/f32_mulAdd.cc (renamed from softfloat/SoftFloat-3/source/f32_mulAdd.c)0
-rwxr-xr-xsoftfloat/f32_rem.cc (renamed from softfloat/SoftFloat-3/source/f32_rem.c)0
-rwxr-xr-xsoftfloat/f32_roundToInt.cc (renamed from softfloat/SoftFloat-3/source/f32_roundToInt.c)0
-rwxr-xr-xsoftfloat/f32_sqrt.cc (renamed from softfloat/SoftFloat-3/source/f32_sqrt.c)0
-rwxr-xr-xsoftfloat/f32_sub.cc (renamed from softfloat/SoftFloat-3/source/f32_sub.c)0
-rwxr-xr-xsoftfloat/f32_to_f64.cc (renamed from softfloat/SoftFloat-3/source/f32_to_f64.c)0
-rwxr-xr-xsoftfloat/f32_to_i32.cc (renamed from softfloat/SoftFloat-3/source/f32_to_i32.c)0
-rwxr-xr-xsoftfloat/f32_to_i32_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f32_to_i32_r_minMag.c)0
-rwxr-xr-xsoftfloat/f32_to_i64.cc (renamed from softfloat/SoftFloat-3/source/f32_to_i64.c)0
-rwxr-xr-xsoftfloat/f32_to_i64_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f32_to_i64_r_minMag.c)0
-rwxr-xr-xsoftfloat/f32_to_ui32.cc (renamed from softfloat/SoftFloat-3/source/f32_to_ui32.c)0
-rwxr-xr-xsoftfloat/f32_to_ui32_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f32_to_ui32_r_minMag.c)0
-rwxr-xr-xsoftfloat/f32_to_ui64.cc (renamed from softfloat/SoftFloat-3/source/f32_to_ui64.c)0
-rwxr-xr-xsoftfloat/f32_to_ui64_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f32_to_ui64_r_minMag.c)0
-rwxr-xr-xsoftfloat/f64_add.cc (renamed from softfloat/SoftFloat-3/source/f64_add.c)0
-rwxr-xr-xsoftfloat/f64_div.cc (renamed from softfloat/SoftFloat-3/source/f64_div.c)0
-rwxr-xr-xsoftfloat/f64_eq.cc (renamed from softfloat/SoftFloat-3/source/f64_eq.c)0
-rwxr-xr-xsoftfloat/f64_eq_signaling.cc (renamed from softfloat/SoftFloat-3/source/f64_eq_signaling.c)0
-rwxr-xr-xsoftfloat/f64_isSignalingNaN.cc (renamed from softfloat/SoftFloat-3/source/f64_isSignalingNaN.c)0
-rwxr-xr-xsoftfloat/f64_le.cc (renamed from softfloat/SoftFloat-3/source/f64_le.c)0
-rwxr-xr-xsoftfloat/f64_le_quiet.cc (renamed from softfloat/SoftFloat-3/source/f64_le_quiet.c)0
-rwxr-xr-xsoftfloat/f64_lt.cc (renamed from softfloat/SoftFloat-3/source/f64_lt.c)0
-rwxr-xr-xsoftfloat/f64_lt_quiet.cc (renamed from softfloat/SoftFloat-3/source/f64_lt_quiet.c)0
-rwxr-xr-xsoftfloat/f64_mul.cc (renamed from softfloat/SoftFloat-3/source/f64_mul.c)0
-rwxr-xr-xsoftfloat/f64_mulAdd.cc (renamed from softfloat/SoftFloat-3/source/f64_mulAdd.c)0
-rwxr-xr-xsoftfloat/f64_rem.cc (renamed from softfloat/SoftFloat-3/source/f64_rem.c)0
-rwxr-xr-xsoftfloat/f64_roundToInt.cc (renamed from softfloat/SoftFloat-3/source/f64_roundToInt.c)0
-rwxr-xr-xsoftfloat/f64_sqrt.cc (renamed from softfloat/SoftFloat-3/source/f64_sqrt.c)0
-rwxr-xr-xsoftfloat/f64_sub.cc (renamed from softfloat/SoftFloat-3/source/f64_sub.c)0
-rwxr-xr-xsoftfloat/f64_to_f32.cc (renamed from softfloat/SoftFloat-3/source/f64_to_f32.c)0
-rwxr-xr-xsoftfloat/f64_to_i32.cc (renamed from softfloat/SoftFloat-3/source/f64_to_i32.c)0
-rwxr-xr-xsoftfloat/f64_to_i32_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f64_to_i32_r_minMag.c)0
-rwxr-xr-xsoftfloat/f64_to_i64.cc (renamed from softfloat/SoftFloat-3/source/f64_to_i64.c)0
-rwxr-xr-xsoftfloat/f64_to_i64_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f64_to_i64_r_minMag.c)0
-rwxr-xr-xsoftfloat/f64_to_ui32.cc (renamed from softfloat/SoftFloat-3/source/f64_to_ui32.c)0
-rwxr-xr-xsoftfloat/f64_to_ui32_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f64_to_ui32_r_minMag.c)0
-rwxr-xr-xsoftfloat/f64_to_ui64.cc (renamed from softfloat/SoftFloat-3/source/f64_to_ui64.c)0
-rwxr-xr-xsoftfloat/f64_to_ui64_r_minMag.cc (renamed from softfloat/SoftFloat-3/source/f64_to_ui64_r_minMag.c)0
-rwxr-xr-xsoftfloat/i32_to_f32.cc (renamed from softfloat/SoftFloat-3/source/i32_to_f32.c)0
-rwxr-xr-xsoftfloat/i32_to_f64.cc (renamed from softfloat/SoftFloat-3/source/i32_to_f64.c)0
-rwxr-xr-xsoftfloat/i64_to_f32.cc (renamed from softfloat/SoftFloat-3/source/i64_to_f32.c)0
-rwxr-xr-xsoftfloat/i64_to_f64.cc (renamed from softfloat/SoftFloat-3/source/i64_to_f64.c)0
-rwxr-xr-xsoftfloat/internals.h (renamed from softfloat/SoftFloat-3/source/internals.h)8
-rw-r--r--softfloat/milieu.h68
-rwxr-xr-xsoftfloat/primitives.h (renamed from softfloat/SoftFloat-3/source/primitives.h)0
-rwxr-xr-xsoftfloat/s_add128.cc (renamed from softfloat/SoftFloat-3/source/s_add128.c)0
-rwxr-xr-xsoftfloat/s_add192.cc (renamed from softfloat/SoftFloat-3/source/s_add192.c)0
-rwxr-xr-xsoftfloat/s_addMagsF32.cc (renamed from softfloat/SoftFloat-3/source/s_addMagsF32.c)0
-rwxr-xr-xsoftfloat/s_addMagsF64.cc (renamed from softfloat/SoftFloat-3/source/s_addMagsF64.c)0
-rwxr-xr-xsoftfloat/s_countLeadingZeros32.cc (renamed from softfloat/SoftFloat-3/source/s_countLeadingZeros32.c)0
-rwxr-xr-xsoftfloat/s_countLeadingZeros64.cc (renamed from softfloat/SoftFloat-3/source/s_countLeadingZeros64.c)1
-rwxr-xr-xsoftfloat/s_countLeadingZeros8.cc (renamed from softfloat/SoftFloat-3/source/s_countLeadingZeros8.c)0
-rwxr-xr-xsoftfloat/s_eq128.cc (renamed from softfloat/SoftFloat-3/source/s_eq128.c)0
-rwxr-xr-xsoftfloat/s_estimateDiv128To64.cc (renamed from softfloat/SoftFloat-3/source/s_estimateDiv128To64.c)0
-rwxr-xr-xsoftfloat/s_estimateSqrt32.cc (renamed from softfloat/SoftFloat-3/source/s_estimateSqrt32.c)0
-rwxr-xr-xsoftfloat/s_le128.cc (renamed from softfloat/SoftFloat-3/source/s_le128.c)0
-rwxr-xr-xsoftfloat/s_lt128.cc (renamed from softfloat/SoftFloat-3/source/s_lt128.c)0
-rwxr-xr-xsoftfloat/s_mul128By64To192.cc (renamed from softfloat/SoftFloat-3/source/s_mul128By64To192.c)0
-rwxr-xr-xsoftfloat/s_mul128To256.cc (renamed from softfloat/SoftFloat-3/source/s_mul128To256.c)0
-rwxr-xr-xsoftfloat/s_mul64To128.cc (renamed from softfloat/SoftFloat-3/source/s_mul64To128.c)0
-rwxr-xr-xsoftfloat/s_mulAddF32.cc (renamed from softfloat/SoftFloat-3/source/s_mulAddF32.c)0
-rwxr-xr-xsoftfloat/s_mulAddF64.cc (renamed from softfloat/SoftFloat-3/source/s_mulAddF64.c)0
-rwxr-xr-xsoftfloat/s_normRoundPackToF32.cc (renamed from softfloat/SoftFloat-3/source/s_normRoundPackToF32.c)0
-rwxr-xr-xsoftfloat/s_normRoundPackToF64.cc (renamed from softfloat/SoftFloat-3/source/s_normRoundPackToF64.c)0
-rwxr-xr-xsoftfloat/s_normSubnormalF32Sig.cc (renamed from softfloat/SoftFloat-3/source/s_normSubnormalF32Sig.c)0
-rwxr-xr-xsoftfloat/s_normSubnormalF64Sig.cc (renamed from softfloat/SoftFloat-3/source/s_normSubnormalF64Sig.c)0
-rwxr-xr-xsoftfloat/s_roundPackToF32.cc (renamed from softfloat/SoftFloat-3/source/s_roundPackToF32.c)0
-rwxr-xr-xsoftfloat/s_roundPackToF64.cc (renamed from softfloat/SoftFloat-3/source/s_roundPackToF64.c)0
-rwxr-xr-xsoftfloat/s_roundPackToI32.cc (renamed from softfloat/SoftFloat-3/source/s_roundPackToI32.c)0
-rwxr-xr-xsoftfloat/s_roundPackToI64.cc (renamed from softfloat/SoftFloat-3/source/s_roundPackToI64.c)0
-rwxr-xr-xsoftfloat/s_roundPackToUI32.cc (renamed from softfloat/SoftFloat-3/source/s_roundPackToUI32.c)0
-rwxr-xr-xsoftfloat/s_roundPackToUI64.cc (renamed from softfloat/SoftFloat-3/source/s_roundPackToUI64.c)0
-rwxr-xr-xsoftfloat/s_shift128ExtraRightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shift128ExtraRightJam.c)0
-rwxr-xr-xsoftfloat/s_shift128RightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shift128RightJam.c)0
-rwxr-xr-xsoftfloat/s_shift32RightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shift32RightJam.c)0
-rwxr-xr-xsoftfloat/s_shift64ExtraRightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shift64ExtraRightJam.c)0
-rwxr-xr-xsoftfloat/s_shift64RightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shift64RightJam.c)0
-rwxr-xr-xsoftfloat/s_shortShift128ExtraRightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shortShift128ExtraRightJam.c)0
-rwxr-xr-xsoftfloat/s_shortShift128Left.cc (renamed from softfloat/SoftFloat-3/source/s_shortShift128Left.c)0
-rwxr-xr-xsoftfloat/s_shortShift128Right.cc (renamed from softfloat/SoftFloat-3/source/s_shortShift128Right.c)0
-rwxr-xr-xsoftfloat/s_shortShift192Left.cc (renamed from softfloat/SoftFloat-3/source/s_shortShift192Left.c)0
-rwxr-xr-xsoftfloat/s_shortShift32Right1Jam.cc (renamed from softfloat/SoftFloat-3/source/s_shortShift32Right1Jam.c)0
-rwxr-xr-xsoftfloat/s_shortShift64ExtraRightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shortShift64ExtraRightJam.c)0
-rwxr-xr-xsoftfloat/s_shortShift64RightJam.cc (renamed from softfloat/SoftFloat-3/source/s_shortShift64RightJam.c)0
-rwxr-xr-xsoftfloat/s_sub128.cc (renamed from softfloat/SoftFloat-3/source/s_sub128.c)0
-rwxr-xr-xsoftfloat/s_sub192.cc (renamed from softfloat/SoftFloat-3/source/s_sub192.c)0
-rwxr-xr-xsoftfloat/s_subMagsF32.cc (renamed from softfloat/SoftFloat-3/source/s_subMagsF32.c)0
-rwxr-xr-xsoftfloat/s_subMagsF64.cc (renamed from softfloat/SoftFloat-3/source/s_subMagsF64.c)0
-rw-r--r--softfloat/softfloat-header259
-rw-r--r--softfloat/softfloat-macros720
-rw-r--r--softfloat/softfloat-specialize412
-rw-r--r--softfloat/softfloat.c5188
-rw-r--r--softfloat/softfloat.cc1
-rwxr-xr-x[-rw-r--r--]softfloat/softfloat.h239
-rw-r--r--softfloat/softfloat.mk.in111
-rwxr-xr-xsoftfloat/softfloat_state.cc (renamed from softfloat/SoftFloat-3/source/softfloat_state.c)0
-rwxr-xr-xsoftfloat/ui32_to_f32.cc (renamed from softfloat/SoftFloat-3/source/ui32_to_f32.c)0
-rwxr-xr-xsoftfloat/ui32_to_f64.cc (renamed from softfloat/SoftFloat-3/source/ui32_to_f64.c)0
-rwxr-xr-xsoftfloat/ui64_to_f32.cc (renamed from softfloat/SoftFloat-3/source/ui64_to_f32.c)0
-rwxr-xr-xsoftfloat/ui64_to_f64.cc (renamed from softfloat/SoftFloat-3/source/ui64_to_f64.c)0
138 files changed, 335 insertions, 10300 deletions
diff --git a/softfloat/SoftFloat-3/source/8086/OLD-specialize.c b/softfloat/8086/OLD-specialize.c
index ffb306d..ffb306d 100755
--- a/softfloat/SoftFloat-3/source/8086/OLD-specialize.c
+++ b/softfloat/8086/OLD-specialize.c
diff --git a/softfloat/SoftFloat-3/source/8086/OLD-specialize.h b/softfloat/8086/OLD-specialize.h
index 9e4461c..9e4461c 100755
--- a/softfloat/SoftFloat-3/source/8086/OLD-specialize.h
+++ b/softfloat/8086/OLD-specialize.h
diff --git a/softfloat/SoftFloat-3/source/8086/platform.h b/softfloat/8086/platform.h
index 9355edf..9355edf 100755
--- a/softfloat/SoftFloat-3/source/8086/platform.h
+++ b/softfloat/8086/platform.h
diff --git a/softfloat/SoftFloat-3/source/8086/s_commonNaNToF32UI.c b/softfloat/8086/s_commonNaNToF32UI.c
index 3b96c41..3b96c41 100755
--- a/softfloat/SoftFloat-3/source/8086/s_commonNaNToF32UI.c
+++ b/softfloat/8086/s_commonNaNToF32UI.c
diff --git a/softfloat/SoftFloat-3/source/8086/s_commonNaNToF64UI.c b/softfloat/8086/s_commonNaNToF64UI.c
index 474ceee..474ceee 100755
--- a/softfloat/SoftFloat-3/source/8086/s_commonNaNToF64UI.c
+++ b/softfloat/8086/s_commonNaNToF64UI.c
diff --git a/softfloat/SoftFloat-3/source/8086/s_f32UIToCommonNaN.c b/softfloat/8086/s_f32UIToCommonNaN.c
index 067e8da..067e8da 100755
--- a/softfloat/SoftFloat-3/source/8086/s_f32UIToCommonNaN.c
+++ b/softfloat/8086/s_f32UIToCommonNaN.c
diff --git a/softfloat/SoftFloat-3/source/8086/s_f64UIToCommonNaN.c b/softfloat/8086/s_f64UIToCommonNaN.c
index f933ded..f933ded 100755
--- a/softfloat/SoftFloat-3/source/8086/s_f64UIToCommonNaN.c
+++ b/softfloat/8086/s_f64UIToCommonNaN.c
diff --git a/softfloat/SoftFloat-3/source/8086/s_isSigNaNF32UI.c b/softfloat/8086/s_isSigNaNF32UI.c
index 0a9c33f..0a9c33f 100755
--- a/softfloat/SoftFloat-3/source/8086/s_isSigNaNF32UI.c
+++ b/softfloat/8086/s_isSigNaNF32UI.c
diff --git a/softfloat/SoftFloat-3/source/8086/s_isSigNaNF64UI.c b/softfloat/8086/s_isSigNaNF64UI.c
index d255213..d255213 100755
--- a/softfloat/SoftFloat-3/source/8086/s_isSigNaNF64UI.c
+++ b/softfloat/8086/s_isSigNaNF64UI.c
diff --git a/softfloat/SoftFloat-3/source/8086/s_propagateNaNF32UI.c b/softfloat/8086/s_propagateNaNF32UI.c
index 07774e8..07774e8 100755
--- a/softfloat/SoftFloat-3/source/8086/s_propagateNaNF32UI.c
+++ b/softfloat/8086/s_propagateNaNF32UI.c
diff --git a/softfloat/SoftFloat-3/source/8086/s_propagateNaNF64UI.c b/softfloat/8086/s_propagateNaNF64UI.c
index 0ff6446..0ff6446 100755
--- a/softfloat/SoftFloat-3/source/8086/s_propagateNaNF64UI.c
+++ b/softfloat/8086/s_propagateNaNF64UI.c
diff --git a/softfloat/SoftFloat-3/source/8086/softfloat_raiseFlags.c b/softfloat/8086/softfloat_raiseFlags.c
index c0c0dc8..c0c0dc8 100755
--- a/softfloat/SoftFloat-3/source/8086/softfloat_raiseFlags.c
+++ b/softfloat/8086/softfloat_raiseFlags.c
diff --git a/softfloat/SoftFloat-3/source/8086/softfloat_types.h b/softfloat/8086/softfloat_types.h
index b5c1828..b5c1828 100755
--- a/softfloat/SoftFloat-3/source/8086/softfloat_types.h
+++ b/softfloat/8086/softfloat_types.h
diff --git a/softfloat/SoftFloat-3/source/8086/specialize.h b/softfloat/8086/specialize.h
index ca0bb1d..ca0bb1d 100755
--- a/softfloat/SoftFloat-3/source/8086/specialize.h
+++ b/softfloat/8086/specialize.h
diff --git a/softfloat/SoftFloat-3/source/OLD-softfloat.c b/softfloat/SoftFloat-3/source/OLD-softfloat.c
deleted file mode 100755
index 0096550..0000000
--- a/softfloat/SoftFloat-3/source/OLD-softfloat.c
+++ /dev/null
@@ -1,2962 +0,0 @@
-
-/*============================================================================
-
-This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
-Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-#include "milieu.h"
-#include "softfloat.h"
-
-/*----------------------------------------------------------------------------
-| Primitive arithmetic functions, including multi-word arithmetic, and
-| division and square root approximations. (Can be specialized to target if
-| desired.)
-*----------------------------------------------------------------------------*/
-#include "softfloat-macros"
-
-/*----------------------------------------------------------------------------
-| Functions and definitions to determine: (1) whether tininess for underflow
-| is detected before or after rounding by default, (2) what (if anything)
-| happens when exceptions are raised, (3) how signaling NaNs are distinguished
-| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
-| are propagated from function inputs to output. These details are target-
-| specific.
-*----------------------------------------------------------------------------*/
-#include "softfloat-specialize"
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the extended double-precision floating-point
-| value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits64 extractFloatx80Frac( floatx80 a )
-{
-
- return a.low;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the extended double-precision floating-point
-| value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE int32 extractFloatx80Exp( floatx80 a )
-{
-
- return a.high & 0x7FFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the extended double-precision floating-point value
-| `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE flag extractFloatx80Sign( floatx80 a )
-{
-
- return a.high>>15;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal extended double-precision floating-point value
-| represented by the denormalized significand `aSig'. The normalized exponent
-| and significand are stored at the locations pointed to by `zExpPtr' and
-| `zSigPtr', respectively.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros64( aSig );
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
-| extended double-precision floating-point value, returning the result.
-*----------------------------------------------------------------------------*/
-
-INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
-{
- floatx80 z;
-
- z.low = zSig;
- z.high = ( ( (bits16) zSign )<<15 ) + zExp;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and extended significand formed by the concatenation of `zSig0' and `zSig1',
-| and returns the proper extended double-precision floating-point value
-| corresponding to the abstract input. Ordinarily, the abstract value is
-| rounded and packed into the extended double-precision format, with the
-| inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal extended
-| double-precision floating-point number.
-| If `roundingPrecision' is 32 or 64, the result is rounded to the same
-| number of bits as single or double precision, respectively. Otherwise, the
-| result is rounded to the full precision of the extended double-precision
-| format.
-| The input significand must be normalized or smaller. If the input
-| significand is not normalized, `zExp' must be 0; in that case, the result
-| returned is a subnormal number, and it must not require rounding. The
-| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80
- roundAndPackFloatx80(
- int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
- )
-{
- int8 roundingMode;
- flag roundNearestEven, increment, isTiny;
- int64 roundIncrement, roundMask, roundBits;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- if ( roundingPrecision == 80 ) goto precision80;
- if ( roundingPrecision == 64 ) {
- roundIncrement = LIT64( 0x0000000000000400 );
- roundMask = LIT64( 0x00000000000007FF );
- }
- else if ( roundingPrecision == 32 ) {
- roundIncrement = LIT64( 0x0000008000000000 );
- roundMask = LIT64( 0x000000FFFFFFFFFF );
- }
- else {
- goto precision80;
- }
- zSig0 |= ( zSig1 != 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = roundMask;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig0 & roundMask;
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
- ) {
- goto overflow;
- }
- if ( zExp <= 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < 0 )
- || ( zSig0 <= zSig0 + roundIncrement );
- shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
- zExp = 0;
- roundBits = zSig0 & roundMask;
- if ( isTiny && roundBits ) float_raise( float_flag_underflow );
- if ( roundBits ) float_exception_flags |= float_flag_inexact;
- zSig0 += roundIncrement;
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if ( roundBits ) float_exception_flags |= float_flag_inexact;
- zSig0 += roundIncrement;
- if ( zSig0 < roundIncrement ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- if ( zSig0 == 0 ) zExp = 0;
- return packFloatx80( zSign, zExp, zSig0 );
- precision80:
- increment = ( (sbits64) zSig1 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig1;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig1;
- }
- }
- }
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE )
- && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
- && increment
- )
- ) {
- roundMask = 0;
- overflow:
- float_raise( float_flag_overflow | float_flag_inexact );
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return packFloatx80( zSign, 0x7FFE, ~ roundMask );
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( zExp <= 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < 0 )
- || ! increment
- || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
- shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
- zExp = 0;
- if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
- if ( zSig1 ) float_exception_flags |= float_flag_inexact;
- if ( roundNearestEven ) {
- increment = ( (sbits64) zSig1 < 0 );
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig1;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig1;
- }
- }
- if ( increment ) {
- ++zSig0;
- zSig0 &=
- ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
- }
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if ( zSig1 ) float_exception_flags |= float_flag_inexact;
- if ( increment ) {
- ++zSig0;
- if ( zSig0 == 0 ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- else {
- zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- }
- }
- else {
- if ( zSig0 == 0 ) zExp = 0;
- }
- return packFloatx80( zSign, zExp, zSig0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent
-| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
-| and returns the proper extended double-precision floating-point value
-| corresponding to the abstract input. This routine is just like
-| `roundAndPackFloatx80' except that the input significand does not have to be
-| normalized.
-*----------------------------------------------------------------------------*/
-
-static floatx80
- normalizeRoundAndPackFloatx80(
- int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
- )
-{
- int8 shiftCount;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 );
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- zExp -= shiftCount;
- return
- roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the least-significant 64 fraction bits of the quadruple-precision
-| floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits64 extractFloat128Frac1( float128 a )
-{
-
- return a.low;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the most-significant 48 fraction bits of the quadruple-precision
-| floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits64 extractFloat128Frac0( float128 a )
-{
-
- return a.high & LIT64( 0x0000FFFFFFFFFFFF );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the quadruple-precision floating-point value
-| `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE int32 extractFloat128Exp( float128 a )
-{
-
- return ( a.high>>48 ) & 0x7FFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the quadruple-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE flag extractFloat128Sign( float128 a )
-{
-
- return a.high>>63;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal quadruple-precision floating-point value
-| represented by the denormalized significand formed by the concatenation of
-| `aSig0' and `aSig1'. The normalized exponent is stored at the location
-| pointed to by `zExpPtr'. The most significant 49 bits of the normalized
-| significand are stored at the location pointed to by `zSig0Ptr', and the
-| least significant 64 bits of the normalized significand are stored at the
-| location pointed to by `zSig1Ptr'.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloat128Subnormal(
- bits64 aSig0,
- bits64 aSig1,
- int32 *zExpPtr,
- bits64 *zSig0Ptr,
- bits64 *zSig1Ptr
- )
-{
- int8 shiftCount;
-
- if ( aSig0 == 0 ) {
- shiftCount = countLeadingZeros64( aSig1 ) - 15;
- if ( shiftCount < 0 ) {
- *zSig0Ptr = aSig1>>( - shiftCount );
- *zSig1Ptr = aSig1<<( shiftCount & 63 );
- }
- else {
- *zSig0Ptr = aSig1<<shiftCount;
- *zSig1Ptr = 0;
- }
- *zExpPtr = - shiftCount - 63;
- }
- else {
- shiftCount = countLeadingZeros64( aSig0 ) - 15;
- shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- *zExpPtr = 1 - shiftCount;
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', the exponent `zExp', and the significand formed
-| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
-| floating-point value, returning the result. After being shifted into the
-| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
-| added together to form the most significant 32 bits of the result. This
-| means that any integer portion of `zSig0' will be added into the exponent.
-| Since a properly normalized significand will have an integer portion equal
-| to 1, the `zExp' input should be 1 less than the desired result exponent
-| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-
-INLINE float128
- packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
-{
- float128 z;
-
- z.low = zSig1;
- z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and extended significand formed by the concatenation of `zSig0', `zSig1',
-| and `zSig2', and returns the proper quadruple-precision floating-point value
-| corresponding to the abstract input. Ordinarily, the abstract value is
-| simply rounded and packed into the quadruple-precision format, with the
-| inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal quadruple-
-| precision floating-point number.
-| The input significand must be normalized or smaller. If the input
-| significand is not normalized, `zExp' must be 0; in that case, the result
-| returned is a subnormal number, and it must not require rounding. In the
-| usual case that the input significand is normalized, `zExp' must be 1 less
-| than the ``true'' floating-point exponent. The handling of underflow and
-| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128
- roundAndPackFloat128(
- flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
-{
- int8 roundingMode;
- flag roundNearestEven, increment, isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- increment = ( (sbits64) zSig2 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- if ( 0x7FFD <= (bits32) zExp ) {
- if ( ( 0x7FFD < zExp )
- || ( ( zExp == 0x7FFD )
- && eq128(
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF ),
- zSig0,
- zSig1
- )
- && increment
- )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return
- packFloat128(
- zSign,
- 0x7FFE,
- LIT64( 0x0000FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ! increment
- || lt128(
- zSig0,
- zSig1,
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
- zExp = 0;
- if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
- if ( roundNearestEven ) {
- increment = ( (sbits64) zSig2 < 0 );
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- }
- if ( zSig2 ) float_exception_flags |= float_flag_inexact;
- if ( increment ) {
- add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
- zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
- }
- else {
- if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
- }
- return packFloat128( zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand formed by the concatenation of `zSig0' and `zSig1', and
-| returns the proper quadruple-precision floating-point value corresponding
-| to the abstract input. This routine is just like `roundAndPackFloat128'
-| except that the input significand has fewer bits and does not have to be
-| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
-| point exponent.
-*----------------------------------------------------------------------------*/
-
-static float128
- normalizeRoundAndPackFloat128(
- flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
-{
- int8 shiftCount;
- bits64 zSig2;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 ) - 15;
- if ( 0 <= shiftCount ) {
- zSig2 = 0;
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- }
- else {
- shift128ExtraRightJamming(
- zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
- }
- zExp -= shiftCount;
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-#endif
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 int32_to_floatx80( int32 a )
-{
- flag zSign;
- uint32 absA;
- int8 shiftCount;
- bits64 zSig;
-
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 32;
- zSig = absA;
- return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int32_to_float128( int32 a )
-{
- flag zSign;
- uint32 absA;
- int8 shiftCount;
- bits64 zSig0;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 17;
- zSig0 = absA;
- return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
-
-}
-
-#endif
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 int64_to_floatx80( int64 a )
-{
- flag zSign;
- uint64 absA;
- int8 shiftCount;
-
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA );
- return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int64_to_float128( int64 a )
-{
- flag zSign;
- uint64 absA;
- int8 shiftCount;
- int32 zExp;
- bits64 zSig0, zSig1;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) + 49;
- zExp = 0x406E - shiftCount;
- if ( 64 <= shiftCount ) {
- zSig1 = 0;
- zSig0 = absA;
- shiftCount -= 64;
- }
- else {
- zSig1 = absA;
- zSig0 = 0;
- }
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- return packFloat128( zSign, zExp, zSig0, zSig1 );
-
-}
-
-#endif
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float32_to_floatx80( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- aSig |= 0x00800000;
- return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the double-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float32_to_float128( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) );
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
-
-}
-
-#endif
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float64_to_floatx80( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits64 aSig;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- return
- packFloatx80(
- aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the quadruple-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float64_to_float128( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits64 aSig, zSig0, zSig1;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) );
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
-
-}
-
-#endif
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 32-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic---which means in particular that the conversion
-| is rounded according to the current rounding mode. If `a' is a NaN, the
-| largest positive integer is returned. Otherwise, if the conversion
-| overflows, the largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 floatx80_to_int32( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
- shiftCount = 0x4037 - aExp;
- if ( shiftCount <= 0 ) shiftCount = 1;
- shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32( aSign, aSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 32-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic, except that the conversion is always rounded
-| toward zero. If `a' is a NaN, the largest positive integer is returned.
-| Otherwise, if the conversion overflows, the largest integer with the same
-| sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 floatx80_to_int32_round_to_zero( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig, savedASig;
- int32 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- shiftCount = 0x403E - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 64-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic---which means in particular that the conversion
-| is rounded according to the current rounding mode. If `a' is a NaN,
-| the largest positive integer is returned. Otherwise, if the conversion
-| overflows, the largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 floatx80_to_int64( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig, aSigExtra;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = 0x403E - aExp;
- if ( shiftCount <= 0 ) {
- if ( shiftCount ) {
- float_raise( float_flag_invalid );
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig != LIT64( 0x8000000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64( aSign, aSig, aSigExtra );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 64-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic, except that the conversion is always rounded
-| toward zero. If `a' is a NaN, the largest positive integer is returned.
-| Otherwise, if the conversion overflows, the largest integer with the same
-| sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 floatx80_to_int64_round_to_zero( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig;
- int64 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = aExp - 0x403E;
- if ( 0 <= shiftCount ) {
- aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
- if ( ( a.high != 0xC03E ) || aSig ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- else if ( aExp < 0x3FFF ) {
- if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the single-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 floatx80_to_float32( floatx80 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 33, &aSig );
- if ( aExp || aSig ) aExp -= 0x3F81;
- return roundAndPackFloat32( aSign, aExp, aSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the double-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 floatx80_to_float64( floatx80 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig, zSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shift64RightJamming( aSig, 1, &zSig );
- if ( aExp || aSig ) aExp -= 0x3C01;
- return roundAndPackFloat64( aSign, aExp, zSig );
-
-}
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the quadruple-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 floatx80_to_float128( floatx80 a )
-{
- flag aSign;
- int16 aExp;
- bits64 aSig, zSig0, zSig1;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat128( floatx80ToCommonNaN( a ) );
- }
- shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp, zSig0, zSig1 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Rounds the extended double-precision floating-point value `a' to an integer,
-| and returns the result as an extended quadruple-precision floating-point
-| value. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_round_to_int( floatx80 a )
-{
- flag aSign;
- int32 aExp;
- bits64 lastBitMask, roundBitsMask;
- int8 roundingMode;
- floatx80 z;
-
- aExp = extractFloatx80Exp( a );
- if ( 0x403E <= aExp ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
- return propagateFloatx80NaN( a, a );
- }
- return a;
- }
- if ( aExp < 0x3FFF ) {
- if ( ( aExp == 0 )
- && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
- return a;
- }
- float_exception_flags |= float_flag_inexact;
- aSign = extractFloatx80Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
- ) {
- return
- packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- break;
- case float_round_down:
- return
- aSign ?
- packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
- : packFloatx80( 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloatx80( 1, 0, 0 )
- : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- return packFloatx80( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x403E - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z.low += lastBitMask>>1;
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z.low += roundBitsMask;
- }
- }
- z.low &= ~ roundBitsMask;
- if ( z.low == 0 ) {
- ++z.high;
- z.low = LIT64( 0x8000000000000000 );
- }
- if ( z.low != a.low ) float_exception_flags |= float_flag_inexact;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the extended double-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
-| negated before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- int32 expDiff;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN( a, b );
- }
- return a;
- }
- zSig1 = 0;
- zSig0 = aSig + bSig;
- if ( aExp == 0 ) {
- normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
- goto roundAndPack;
- }
- zExp = aExp;
- goto shiftRight1;
- }
- zSig0 = aSig + bSig;
- if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= LIT64( 0x8000000000000000 );
- ++zExp;
- roundAndPack:
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the extended
-| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- int32 expDiff;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN( a, b );
- }
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- zSig1 = 0;
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- bBigger:
- sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- aBigger:
- sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- return
- normalizeRoundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the extended double-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_add( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return addFloatx80Sigs( a, b, aSign );
- }
- else {
- return subFloatx80Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the extended double-precision floating-
-| point values `a' and `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_sub( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return subFloatx80Sigs( a, b, aSign );
- }
- else {
- return addFloatx80Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the extended double-precision floating-
-| point values `a' and `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_mul( floatx80 a, floatx80 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 )
- || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) goto invalid;
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FFE;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- if ( 0 < (sbits64) zSig0 ) {
- shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
- --zExp;
- }
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the extended double-precision floating-point
-| value `a' by the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_div( floatx80 a, floatx80 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- bits64 rem0, rem1, rem2, term0, term1, term2;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- goto invalid;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- float_raise( float_flag_divbyzero );
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FFE;
- rem1 = 0;
- if ( bSig <= aSig ) {
- shift128Right( aSig, 0, 1, &aSig, &rem1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig, rem1, bSig );
- mul64To128( bSig, zSig0, &term0, &term1 );
- sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, bSig );
- if ( (bits64) ( zSig1<<1 ) <= 8 ) {
- mul64To128( bSig, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
- }
- zSig1 |= ( ( rem1 | rem2 ) != 0 );
- }
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the extended double-precision floating-point value
-| `a' with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_rem( floatx80 a, floatx80 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, expDiff;
- bits64 aSig0, aSig1, bSig;
- bits64 q, term0, term1, alternateASig0, alternateASig1;
- floatx80 z;
-
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig0<<1 )
- || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN( a, b );
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- bSig |= LIT64( 0x8000000000000000 );
- zSign = aSign;
- expDiff = aExp - bExp;
- aSig1 = 0;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
- expDiff = 0;
- }
- q = ( bSig <= aSig0 );
- if ( q ) aSig0 -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- mul64To128( bSig, q, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
- while ( le128( term0, term1, aSig0, aSig1 ) ) {
- ++q;
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- }
- }
- else {
- term1 = 0;
- term0 = bSig;
- }
- sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
- if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
- || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
- && ( q & 1 ) )
- ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- zSign = ! zSign;
- }
- return
- normalizeRoundAndPackFloatx80(
- 80, zSign, bExp + expDiff, aSig0, aSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the extended double-precision floating-point
-| value `a'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_sqrt( floatx80 a )
-{
- flag aSign;
- int32 aExp, zExp;
- bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- floatx80 z;
-
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 ) == 0 ) return a;
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
- zSig0 = estimateSqrt32( aExp, aSig0>>32 );
- shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= doubleZSig0;
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| equal to the corresponding value `b', and 0 otherwise. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_eq( floatx80 a, floatx80 b )
-{
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than or equal to the corresponding value `b', and 0 otherwise. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_le( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_lt( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is equal
-| to the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_eq_signaling( floatx80 a, floatx80 b )
-{
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
-| do not cause an exception. Otherwise, the comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_le_quiet( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
-| an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_lt_quiet( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 32-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 float128_to_int32( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- aSig0 |= ( aSig1 != 0 );
- shiftCount = 0x4028 - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
- return roundAndPackInt32( aSign, aSig0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 32-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
-| conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32 float128_to_int32_round_to_zero( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1, savedASig;
- int32 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- aSig0 |= ( aSig1 != 0 );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- savedASig = aSig0;
- aSig0 >>= shiftCount;
- z = aSig0;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig0<<shiftCount ) != savedASig ) {
- float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 64-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 float128_to_int64( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x403E < aExp ) {
- float_raise( float_flag_invalid );
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
- )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
- }
- else {
- shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
- }
- return roundAndPackInt64( aSign, aSig0, aSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 64-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64 float128_to_int64_round_to_zero( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
- int64 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = aExp - 0x402F;
- if ( 0 < shiftCount ) {
- if ( 0x403E <= aExp ) {
- aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
- if ( ( a.high == LIT64( 0xC03E000000000000 ) )
- && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
- if ( aSig1 ) float_exception_flags |= float_flag_inexact;
- }
- else {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
- if ( (bits64) ( aSig1<<shiftCount ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( aExp | aSig0 | aSig1 ) {
- float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig0>>( - shiftCount );
- if ( aSig1
- || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the single-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float128_to_float32( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig0, aSig1;
- bits32 zSig;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat32( float128ToCommonNaN( a ) );
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- aSig0 |= ( aSig1 != 0 );
- shift64RightJamming( aSig0, 18, &aSig0 );
- zSig = aSig0;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x3F81;
- }
- return roundAndPackFloat32( aSign, aExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float128_to_float64( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat64( float128ToCommonNaN( a ) );
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- aSig0 |= ( aSig1 != 0 );
- if ( aExp || aSig0 ) {
- aSig0 |= LIT64( 0x4000000000000000 );
- aExp -= 0x3C01;
- }
- return roundAndPackFloat64( aSign, aExp, aSig0 );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the extended double-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float128_to_floatx80( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloatx80( float128ToCommonNaN( a ) );
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
- return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Rounds the quadruple-precision floating-point value `a' to an integer, and
-| returns the result as a quadruple-precision floating-point value. The
-| operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_round_to_int( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float128 z;
-
- aExp = extractFloat128Exp( a );
- if ( 0x402F <= aExp ) {
- if ( 0x406F <= aExp ) {
- if ( ( aExp == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
- ) {
- return propagateFloat128NaN( a, a );
- }
- return a;
- }
- lastBitMask = 1;
- lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( lastBitMask ) {
- add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else {
- if ( (sbits64) z.low < 0 ) {
- ++z.high;
- if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
- }
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat128Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
- }
- }
- z.low &= ~ roundBitsMask;
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
- float_exception_flags |= float_flag_inexact;
- aSign = extractFloat128Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE )
- && ( extractFloat128Frac0( a )
- | extractFloat128Frac1( a ) )
- ) {
- return packFloat128( aSign, 0x3FFF, 0, 0 );
- }
- break;
- case float_round_down:
- return
- aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
- : packFloat128( 0, 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloat128( 1, 0, 0, 0 )
- : packFloat128( 0, 0x3FFF, 0, 0 );
- }
- return packFloat128( aSign, 0, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x402F - aExp;
- roundBitsMask = lastBitMask - 1;
- z.low = 0;
- z.high = a.high;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z.high += lastBitMask>>1;
- if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
- z.high &= ~ lastBitMask;
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat128Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- z.high |= ( a.low != 0 );
- z.high += roundBitsMask;
- }
- }
- z.high &= ~ roundBitsMask;
- }
- if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the quadruple-precision
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-| before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- int32 expDiff;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN( a, b );
- }
- return a;
- }
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
- zSig2 = 0;
- zSig0 |= LIT64( 0x0002000000000000 );
- zExp = aExp;
- goto shiftRight1;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- --zExp;
- if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
- ++zExp;
- shiftRight1:
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- roundAndPack:
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the quadruple-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
- int32 expDiff;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN( a, b );
- }
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig0 < aSig0 ) goto aBigger;
- if ( aSig0 < bSig0 ) goto bBigger;
- if ( bSig1 < aSig1 ) goto aBigger;
- if ( aSig1 < bSig1 ) goto bBigger;
- return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- bSig0 |= LIT64( 0x4000000000000000 );
- bBigger:
- sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
- aSig0 |= LIT64( 0x4000000000000000 );
- aBigger:
- sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the quadruple-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_add( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return addFloat128Sigs( a, b, aSign );
- }
- else {
- return subFloat128Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the quadruple-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_sub( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return subFloat128Sigs( a, b, aSign );
- }
- else {
- return addFloat128Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the quadruple-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_mul( float128 a, float128 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN( a, b );
- }
- if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- zExp = aExp + bExp - 0x4000;
- aSig0 |= LIT64( 0x0001000000000000 );
- shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
- mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
- add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zSig2 |= ( zSig3 != 0 );
- if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- ++zExp;
- }
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the quadruple-precision floating-point value
-| `a' by the corresponding value `b'. The operation is performed according to
-| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_div( float128 a, float128 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- goto invalid;
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return packFloat128( zSign, 0, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- float_raise( float_flag_divbyzero );
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = aExp - bExp + 0x3FFD;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
- shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
- mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
- sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
- }
- zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
- if ( ( zSig1 & 0x3FFF ) <= 4 ) {
- mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
- sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the quadruple-precision floating-point value `a'
-| with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_rem( float128 a, float128 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, expDiff;
- bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
- bits64 allZero, alternateASig0, alternateASig1, sigMean1;
- sbits64 sigMean0;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN( a, b );
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return a;
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- expDiff = aExp - bExp;
- if ( expDiff < -1 ) return a;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ),
- aSig1,
- 15 - ( expDiff < 0 ),
- &aSig0,
- &aSig1
- );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- q = le128( bSig0, bSig1, aSig0, aSig1 );
- if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
- shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
- sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
- expDiff -= 61;
- }
- if ( -64 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- q >>= - expDiff;
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- expDiff += 52;
- if ( expDiff < 0 ) {
- shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- }
- else {
- shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
- }
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
- }
- else {
- shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- }
- do {
- alternateASig0 = aSig0;
- alternateASig1 = aSig1;
- ++q;
- sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- } while ( 0 <= (sbits64) aSig0 );
- add128(
- aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
- if ( ( sigMean0 < 0 )
- || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- }
- zSign = ( (sbits64) aSig0 < 0 );
- if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
- return
- normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the quadruple-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_sqrt( float128 a )
-{
- flag aSign;
- int32 aExp, zExp;
- bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
- aSig0 |= LIT64( 0x0001000000000000 );
- zSig0 = estimateSqrt32( aExp, aSig0>>17 );
- shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & 0x1FFF ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_eq( float128 a, float128 b )
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_le( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_lt( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_eq_signaling( float128 a, float128 b )
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_le_quiet( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_lt_quiet( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-#endif
-
diff --git a/softfloat/SoftFloat-3/source/riscv/platform.h b/softfloat/SoftFloat-3/source/riscv/platform.h
deleted file mode 100755
index 9355edf..0000000
--- a/softfloat/SoftFloat-3/source/riscv/platform.h
+++ /dev/null
@@ -1,38 +0,0 @@
-
-/*============================================================================
-
-*** FIX.
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-/*----------------------------------------------------------------------------
-*----------------------------------------------------------------------------*/
-#define LITTLEENDIAN
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_commonNaNToF32UI.c b/softfloat/SoftFloat-3/source/riscv/s_commonNaNToF32UI.c
deleted file mode 100755
index 61f2735..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_commonNaNToF32UI.c
+++ /dev/null
@@ -1,17 +0,0 @@
-
-#include <stdint.h>
-#include "platform.h"
-#include "specialize.h"
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the single-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-uint_fast32_t softfloat_commonNaNToF32UI( struct commonNaN a )
-{
-
- return (uint_fast32_t) a.sign<<31 | 0x7FFFFFFF;
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_commonNaNToF64UI.c b/softfloat/SoftFloat-3/source/riscv/s_commonNaNToF64UI.c
deleted file mode 100755
index da36c04..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_commonNaNToF64UI.c
+++ /dev/null
@@ -1,18 +0,0 @@
-
-#include <stdint.h>
-#include "platform.h"
-#include "specialize.h"
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the double-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-uint_fast64_t softfloat_commonNaNToF64UI( struct commonNaN a )
-{
-
- return
- (uint_fast64_t) a.sign<<63 | UINT64_C( 0x7FFFFFFFFFFFFFFF );
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_f32UIToCommonNaN.c b/softfloat/SoftFloat-3/source/riscv/s_f32UIToCommonNaN.c
deleted file mode 100755
index 9ee0db9..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_f32UIToCommonNaN.c
+++ /dev/null
@@ -1,25 +0,0 @@
-
-#include <stdint.h>
-#include "platform.h"
-#include "specialize.h"
-#include "softfloat.h"
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-struct commonNaN softfloat_f32UIToCommonNaN( uint_fast32_t uiA )
-{
- struct commonNaN z;
-
- if ( softfloat_isSigNaNF32UI( uiA ) ) {
- softfloat_raiseFlags( softfloat_flag_invalid );
- }
- z.sign = uiA>>31;
- z.v64 = (uint_fast64_t) 0x7FFFF <<41;
- z.v0 = 0;
- return z;
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_f64UIToCommonNaN.c b/softfloat/SoftFloat-3/source/riscv/s_f64UIToCommonNaN.c
deleted file mode 100755
index 84d8ca0..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_f64UIToCommonNaN.c
+++ /dev/null
@@ -1,25 +0,0 @@
-
-#include <stdint.h>
-#include "platform.h"
-#include "specialize.h"
-#include "softfloat.h"
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-struct commonNaN softfloat_f64UIToCommonNaN( uint_fast64_t uiA )
-{
- struct commonNaN z;
-
- if ( softfloat_isSigNaNF64UI( uiA ) ) {
- softfloat_raiseFlags( softfloat_flag_invalid );
- }
- z.sign = uiA>>63;
- z.v64 = (uint_fast64_t) 0xFFFFFFFFFFFFF <<12;
- z.v0 = 0;
- return z;
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_isSigNaNF32UI.c b/softfloat/SoftFloat-3/source/riscv/s_isSigNaNF32UI.c
deleted file mode 100755
index 0a9c33f..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_isSigNaNF32UI.c
+++ /dev/null
@@ -1,13 +0,0 @@
-
-#include <stdbool.h>
-#include <stdint.h>
-#include "platform.h"
-#include "specialize.h"
-
-bool softfloat_isSigNaNF32UI( uint_fast32_t ui )
-{
-
- return ( ( ui>>22 & 0x1FF ) == 0x1FE ) && ( ui & 0x003FFFFF );
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_isSigNaNF64UI.c b/softfloat/SoftFloat-3/source/riscv/s_isSigNaNF64UI.c
deleted file mode 100755
index d255213..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_isSigNaNF64UI.c
+++ /dev/null
@@ -1,15 +0,0 @@
-
-#include <stdbool.h>
-#include <stdint.h>
-#include "platform.h"
-#include "specialize.h"
-
-bool softfloat_isSigNaNF64UI( uint_fast64_t ui )
-{
-
- return
- ( ( ui>>51 & 0xFFF ) == 0xFFE )
- && ( ui & UINT64_C( 0x0007FFFFFFFFFFFF ) );
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_propagateNaNF32UI.c b/softfloat/SoftFloat-3/source/riscv/s_propagateNaNF32UI.c
deleted file mode 100755
index 07774e8..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_propagateNaNF32UI.c
+++ /dev/null
@@ -1,55 +0,0 @@
-
-/*** UPDATE COMMENTS. ***/
-
-#include <stdbool.h>
-#include <stdint.h>
-#include "platform.h"
-#include "internals.h"
-#include "specialize.h"
-#include "softfloat.h"
-
-/*----------------------------------------------------------------------------
-| Takes two single-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-uint_fast32_t
- softfloat_propagateNaNF32UI( uint_fast32_t uiA, uint_fast32_t uiB )
-{
- bool isNaNA, isSigNaNA, isNaNB, isSigNaNB;
- uint_fast32_t uiMagA, uiMagB;
-
- /*------------------------------------------------------------------------
- *------------------------------------------------------------------------*/
- isNaNA = isNaNF32UI( uiA );
- isSigNaNA = softfloat_isSigNaNF32UI( uiA );
- isNaNB = isNaNF32UI( uiB );
- isSigNaNB = softfloat_isSigNaNF32UI( uiB );
- /*------------------------------------------------------------------------
- | Make NaNs non-signaling.
- *------------------------------------------------------------------------*/
- uiA |= 0x00400000;
- uiB |= 0x00400000;
- /*------------------------------------------------------------------------
- *------------------------------------------------------------------------*/
- if ( isSigNaNA | isSigNaNB ) {
- softfloat_raiseFlags( softfloat_flag_invalid );
- }
- if ( isSigNaNA ) {
- if ( isSigNaNB ) goto returnLargerSignificand;
- return isNaNB ? uiB : uiA;
- } else if ( isNaNA ) {
- if ( isSigNaNB || ! isNaNB ) return uiA;
- returnLargerSignificand:
- uiMagA = uiA<<1;
- uiMagB = uiB<<1;
- if ( uiMagA < uiMagB ) return uiB;
- if ( uiMagB < uiMagA ) return uiA;
- return ( uiA < uiB ) ? uiA : uiB;
- } else {
- return uiB;
- }
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/s_propagateNaNF64UI.c b/softfloat/SoftFloat-3/source/riscv/s_propagateNaNF64UI.c
deleted file mode 100755
index 0ff6446..0000000
--- a/softfloat/SoftFloat-3/source/riscv/s_propagateNaNF64UI.c
+++ /dev/null
@@ -1,55 +0,0 @@
-
-/*** UPDATE COMMENTS. ***/
-
-#include <stdbool.h>
-#include <stdint.h>
-#include "platform.h"
-#include "internals.h"
-#include "specialize.h"
-#include "softfloat.h"
-
-/*----------------------------------------------------------------------------
-| Takes two double-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-uint_fast64_t
- softfloat_propagateNaNF64UI( uint_fast64_t uiA, uint_fast64_t uiB )
-{
- bool isNaNA, isSigNaNA, isNaNB, isSigNaNB;
- uint_fast64_t uiMagA, uiMagB;
-
- /*------------------------------------------------------------------------
- *------------------------------------------------------------------------*/
- isNaNA = isNaNF64UI( uiA );
- isSigNaNA = softfloat_isSigNaNF64UI( uiA );
- isNaNB = isNaNF64UI( uiB );
- isSigNaNB = softfloat_isSigNaNF64UI( uiB );
- /*------------------------------------------------------------------------
- | Make NaNs non-signaling.
- *------------------------------------------------------------------------*/
- uiA |= UINT64_C( 0x0008000000000000 );
- uiB |= UINT64_C( 0x0008000000000000 );
- /*------------------------------------------------------------------------
- *------------------------------------------------------------------------*/
- if ( isSigNaNA | isSigNaNB ) {
- softfloat_raiseFlags( softfloat_flag_invalid );
- }
- if ( isSigNaNA ) {
- if ( isSigNaNB ) goto returnLargerSignificand;
- return isNaNB ? uiB : uiA;
- } else if ( isNaNA ) {
- if ( isSigNaNB || ! isNaNB ) return uiA;
- returnLargerSignificand:
- uiMagA = uiA & UINT64_C( 0x7FFFFFFFFFFFFFFF );
- uiMagB = uiB & UINT64_C( 0x7FFFFFFFFFFFFFFF );
- if ( uiMagA < uiMagB ) return uiB;
- if ( uiMagB < uiMagA ) return uiA;
- return ( uiA < uiB ) ? uiA : uiB;
- } else {
- return uiB;
- }
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/softfloat_raiseFlags.c b/softfloat/SoftFloat-3/source/riscv/softfloat_raiseFlags.c
deleted file mode 100755
index c0c0dc8..0000000
--- a/softfloat/SoftFloat-3/source/riscv/softfloat_raiseFlags.c
+++ /dev/null
@@ -1,51 +0,0 @@
-
-/*============================================================================
-
-*** FIX.
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-#include "platform.h"
-#include "softfloat.h"
-
-/*----------------------------------------------------------------------------
-| Raises the exceptions specified by `flags'. Floating-point traps can be
-| defined here if desired. It is currently not possible for such a trap
-| to substitute a result value. If traps are not implemented, this routine
-| should be simply `float_exception_flags |= flags;'.
-*----------------------------------------------------------------------------*/
-
-void softfloat_raiseFlags( int_fast8_t flags )
-{
-
- softfloat_exceptionFlags |= flags;
-
-}
-
diff --git a/softfloat/SoftFloat-3/source/riscv/softfloat_types.h b/softfloat/SoftFloat-3/source/riscv/softfloat_types.h
deleted file mode 100755
index b5c1828..0000000
--- a/softfloat/SoftFloat-3/source/riscv/softfloat_types.h
+++ /dev/null
@@ -1,16 +0,0 @@
-
-#ifndef softfloat_types_h
-#define softfloat_types_h
-
-/*** COMMENTS. ***/
-
-#include <stdbool.h>
-#include <stdint.h>
-
-typedef struct { uint32_t v; } float32_t;
-typedef struct { uint64_t v; } float64_t;
-typedef struct { uint64_t v; uint16_t x; } floatx80_t;
-typedef struct { uint64_t v[ 2 ]; } float128_t;
-
-#endif
-
diff --git a/softfloat/SoftFloat-3/source/riscv/specialize.h b/softfloat/SoftFloat-3/source/riscv/specialize.h
deleted file mode 100755
index bf57bc9..0000000
--- a/softfloat/SoftFloat-3/source/riscv/specialize.h
+++ /dev/null
@@ -1,113 +0,0 @@
-
-/*============================================================================
-
-*** FIX.
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-#include <stdbool.h>
-#include <stdint.h>
-
-/*----------------------------------------------------------------------------
-*----------------------------------------------------------------------------*/
-#define init_detectTininess softfloat_tininess_beforeRounding;
-
-/*----------------------------------------------------------------------------
-| Structure used to transfer NaN representations from one format to another.
-*----------------------------------------------------------------------------*/
-struct commonNaN {
- bool sign;
- uint64_t v64, v0;
-};
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated single-precision NaN.
-*----------------------------------------------------------------------------*/
-#define defaultNaNF32UI 0xFFFFFFFF
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is a signaling
-| NaN; otherwise, returns 0.
-*----------------------------------------------------------------------------*/
-#if defined INLINE_LEVEL && ( 1 <= INLINE_LEVEL )
-INLINE bool softfloat_isSigNaNF32UI( uint_fast32_t ui )
- { return ( ( ui>>22 & 0x1FF ) == 0x1FE ) && ( ui & 0x003FFFFF ); }
-#else
-bool softfloat_isSigNaNF32UI( uint_fast32_t );
-#endif
-
-/*----------------------------------------------------------------------------
-*----------------------------------------------------------------------------*/
-struct commonNaN softfloat_f32UIToCommonNaN( uint_fast32_t );
-#if defined INLINE_LEVEL && ( 1 <= INLINE_LEVEL )
-INLINE uint_fast32_t softfloat_commonNaNToF32UI( struct commonNaN a )
- { return (uint_fast32_t) a.sign<<31 | 0x7FFFFFFF; }
-#else
-uint_fast32_t softfloat_commonNaNToF32UI( struct commonNaN );
-#endif
-
-/*----------------------------------------------------------------------------
-| Takes two single-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-uint_fast32_t softfloat_propagateNaNF32UI( uint_fast32_t, uint_fast32_t );
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated double-precision NaN.
-*----------------------------------------------------------------------------*/
-#define defaultNaNF64UI UINT64_C(0xFFF8000000000000)
-
-/*----------------------------------------------------------------------------
-*----------------------------------------------------------------------------*/
-#if defined INLINE_LEVEL && ( 1 <= INLINE_LEVEL )
-INLINE bool softfloat_isSigNaNF64UI( uint_fast64_t ui )
-{
- return
- ( ( ui>>51 & 0xFFF ) == 0xFFE )
- && ( ui & UINT64_C( 0x0007FFFFFFFFFFFF ) );
-}
-#else
-bool softfloat_isSigNaNF64UI( uint_fast64_t );
-#endif
-
-/*----------------------------------------------------------------------------
-*----------------------------------------------------------------------------*/
-/*** MIGHT BE INLINE'D. ***/
-struct commonNaN softfloat_f64UIToCommonNaN( uint_fast64_t );
-uint_fast64_t softfloat_commonNaNToF64UI( struct commonNaN );
-
-/*----------------------------------------------------------------------------
-| Takes two double-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-uint_fast64_t softfloat_propagateNaNF64UI( uint_fast64_t, uint_fast64_t );
-
diff --git a/softfloat/SoftFloat-3/source/softfloat.h b/softfloat/SoftFloat-3/source/softfloat.h
deleted file mode 100755
index a7ea248..0000000
--- a/softfloat/SoftFloat-3/source/softfloat.h
+++ /dev/null
@@ -1,225 +0,0 @@
-
-#ifndef softfloat_h
-#define softfloat_h
-
-/*** UPDATE COMMENTS. ***/
-
-/*============================================================================
-
-This C header file is part of the SoftFloat IEEE Floating-point Arithmetic
-Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-#include "softfloat_types.h"
-
-/*----------------------------------------------------------------------------
-| Software floating-point underflow tininess-detection mode.
-*----------------------------------------------------------------------------*/
-extern int_fast8_t softfloat_detectTininess;
-enum {
- softfloat_tininess_beforeRounding = 0,
- softfloat_tininess_afterRounding = 1
-};
-
-/*----------------------------------------------------------------------------
-| Software floating-point rounding mode.
-*----------------------------------------------------------------------------*/
-extern int_fast8_t softfloat_roundingMode;
-enum {
- softfloat_round_nearest_even = 0,
- softfloat_round_minMag = 1,
- softfloat_round_min = 2,
- softfloat_round_max = 3,
- softfloat_round_nearest_maxMag = 4
-};
-
-/*----------------------------------------------------------------------------
-| Software floating-point exception flags.
-*----------------------------------------------------------------------------*/
-extern int_fast8_t softfloat_exceptionFlags;
-enum {
- softfloat_flag_inexact = 1,
- softfloat_flag_underflow = 2,
- softfloat_flag_overflow = 4,
- softfloat_flag_infinity = 8,
- softfloat_flag_invalid = 16
-};
-
-/*----------------------------------------------------------------------------
-| Routine to raise any or all of the software floating-point exception flags.
-*----------------------------------------------------------------------------*/
-void softfloat_raiseFlags( int_fast8_t );
-
-/*----------------------------------------------------------------------------
-| Integer-to-floating-point conversion routines.
-*----------------------------------------------------------------------------*/
-float32_t ui32_to_f32( uint_fast32_t );
-float64_t ui32_to_f64( uint_fast32_t );
-floatx80_t ui32_to_fx80( uint_fast32_t );
-float128_t ui32_to_f128( uint_fast32_t );
-float32_t ui64_to_f32( uint_fast64_t );
-float64_t ui64_to_f64( uint_fast64_t );
-floatx80_t ui64_to_fx80( uint_fast64_t );
-float128_t ui64_to_f128( uint_fast64_t );
-float32_t i32_to_f32( int_fast32_t );
-float64_t i32_to_f64( int_fast32_t );
-floatx80_t i32_to_fx80( int_fast32_t );
-float128_t i32_to_f128( int_fast32_t );
-float32_t i64_to_f32( int_fast64_t );
-float64_t i64_to_f64( int_fast64_t );
-floatx80_t i64_to_fx80( int_fast64_t );
-float128_t i64_to_f128( int_fast64_t );
-
-/*----------------------------------------------------------------------------
-| 32-bit (single-precision) floating-point operations.
-*----------------------------------------------------------------------------*/
-uint_fast32_t f32_to_ui32( float32_t, int_fast8_t, bool );
-uint_fast64_t f32_to_ui64( float32_t, int_fast8_t, bool );
-int_fast32_t f32_to_i32( float32_t, int_fast8_t, bool );
-int_fast64_t f32_to_i64( float32_t, int_fast8_t, bool );
-uint_fast32_t f32_to_ui32_r_minMag( float32_t, bool );
-uint_fast64_t f32_to_ui64_r_minMag( float32_t, bool );
-int_fast32_t f32_to_i32_r_minMag( float32_t, bool );
-int_fast64_t f32_to_i64_r_minMag( float32_t, bool );
-float64_t f32_to_f64( float32_t );
-floatx80_t f32_to_fx80( float32_t );
-float128_t f32_to_f128( float32_t );
-float32_t f32_roundToInt( float32_t, int_fast8_t, bool );
-float32_t f32_add( float32_t, float32_t );
-float32_t f32_sub( float32_t, float32_t );
-float32_t f32_mul( float32_t, float32_t );
-float32_t f32_mulAdd( float32_t, float32_t, float32_t );
-float32_t f32_div( float32_t, float32_t );
-float32_t f32_rem( float32_t, float32_t );
-float32_t f32_sqrt( float32_t );
-bool f32_eq( float32_t, float32_t );
-bool f32_le( float32_t, float32_t );
-bool f32_lt( float32_t, float32_t );
-bool f32_eq_signaling( float32_t, float32_t );
-bool f32_le_quiet( float32_t, float32_t );
-bool f32_lt_quiet( float32_t, float32_t );
-bool f32_isSignalingNaN( float32_t );
-
-/*----------------------------------------------------------------------------
-| 64-bit (double-precision) floating-point operations.
-*----------------------------------------------------------------------------*/
-uint_fast32_t f64_to_ui32( float64_t, int_fast8_t, bool );
-uint_fast64_t f64_to_ui64( float64_t, int_fast8_t, bool );
-int_fast32_t f64_to_i32( float64_t, int_fast8_t, bool );
-int_fast64_t f64_to_i64( float64_t, int_fast8_t, bool );
-uint_fast32_t f64_to_ui32_r_minMag( float64_t, bool );
-uint_fast64_t f64_to_ui64_r_minMag( float64_t, bool );
-int_fast32_t f64_to_i32_r_minMag( float64_t, bool );
-int_fast64_t f64_to_i64_r_minMag( float64_t, bool );
-float32_t f64_to_f32( float64_t );
-floatx80_t f64_to_fx80( float64_t );
-float128_t f64_to_f128( float64_t );
-float64_t f64_roundToInt( float64_t, int_fast8_t, bool );
-float64_t f64_add( float64_t, float64_t );
-float64_t f64_sub( float64_t, float64_t );
-float64_t f64_mul( float64_t, float64_t );
-float64_t f64_mulAdd( float64_t, float64_t, float64_t );
-float64_t f64_div( float64_t, float64_t );
-float64_t f64_rem( float64_t, float64_t );
-float64_t f64_sqrt( float64_t );
-bool f64_eq( float64_t, float64_t );
-bool f64_le( float64_t, float64_t );
-bool f64_lt( float64_t, float64_t );
-bool f64_eq_signaling( float64_t, float64_t );
-bool f64_le_quiet( float64_t, float64_t );
-bool f64_lt_quiet( float64_t, float64_t );
-bool f64_isSignalingNaN( float64_t );
-
-/*----------------------------------------------------------------------------
-| Extended double-precision rounding precision. Valid values are 32, 64, and
-| 80.
-*----------------------------------------------------------------------------*/
-extern int_fast8_t floatx80_roundingPrecision;
-
-/*----------------------------------------------------------------------------
-| Extended double-precision floating-point operations.
-*----------------------------------------------------------------------------*/
-uint_fast32_t fx80_to_ui32( floatx80_t, int_fast8_t, bool );
-uint_fast64_t fx80_to_ui64( floatx80_t, int_fast8_t, bool );
-int_fast32_t fx80_to_i32( floatx80_t, int_fast8_t, bool );
-int_fast64_t fx80_to_i64( floatx80_t, int_fast8_t, bool );
-uint_fast32_t fx80_to_ui32_r_minMag( floatx80_t, bool );
-uint_fast64_t fx80_to_ui64_r_minMag( floatx80_t, bool );
-int_fast32_t fx80_to_i32_r_minMag( floatx80_t, bool );
-int_fast64_t fx80_to_i64_r_minMag( floatx80_t, bool );
-float32_t fx80_to_f32( floatx80_t );
-float64_t fx80_to_f64( floatx80_t );
-float128_t fx80_to_f128( floatx80_t );
-floatx80_t fx80_roundToInt( floatx80_t, int_fast8_t, bool );
-floatx80_t fx80_add( floatx80_t, floatx80_t );
-floatx80_t fx80_sub( floatx80_t, floatx80_t );
-floatx80_t fx80_mul( floatx80_t, floatx80_t );
-floatx80_t fx80_mulAdd( floatx80_t, floatx80_t, floatx80_t );
-floatx80_t fx80_div( floatx80_t, floatx80_t );
-floatx80_t fx80_rem( floatx80_t, floatx80_t );
-floatx80_t fx80_sqrt( floatx80_t );
-bool fx80_eq( floatx80_t, floatx80_t );
-bool fx80_le( floatx80_t, floatx80_t );
-bool fx80_lt( floatx80_t, floatx80_t );
-bool fx80_eq_signaling( floatx80_t, floatx80_t );
-bool fx80_le_quiet( floatx80_t, floatx80_t );
-bool fx80_lt_quiet( floatx80_t, floatx80_t );
-bool fx80_isSignalingNaN( floatx80_t );
-
-/*----------------------------------------------------------------------------
-| 128-bit (quadruple-precision) floating-point operations.
-*----------------------------------------------------------------------------*/
-uint_fast32_t f128_to_ui32( float128_t, int_fast8_t, bool );
-uint_fast64_t f128_to_ui64( float128_t, int_fast8_t, bool );
-int_fast32_t f128_to_i32( float128_t, int_fast8_t, bool );
-int_fast64_t f128_to_i64( float128_t, int_fast8_t, bool );
-uint_fast32_t f128_to_ui32_r_minMag( float128_t, bool );
-uint_fast64_t f128_to_ui64_r_minMag( float128_t, bool );
-int_fast32_t f128_to_i32_r_minMag( float128_t, bool );
-int_fast64_t f128_to_i64_r_minMag( float128_t, bool );
-float32_t f128_to_f32( float128_t );
-float64_t f128_to_f64( float128_t );
-floatx80_t f128_to_fx80( float128_t );
-float128_t f128_roundToInt( float128_t, int_fast8_t, bool );
-float128_t f128_add( float128_t, float128_t );
-float128_t f128_sub( float128_t, float128_t );
-float128_t f128_mul( float128_t, float128_t );
-float128_t f128_mulAdd( float128_t, float128_t, float128_t );
-float128_t f128_div( float128_t, float128_t );
-float128_t f128_rem( float128_t, float128_t );
-float128_t f128_sqrt( float128_t );
-bool f128_eq( float128_t, float128_t );
-bool f128_le( float128_t, float128_t );
-bool f128_lt( float128_t, float128_t );
-bool f128_eq_signaling( float128_t, float128_t );
-bool f128_le_quiet( float128_t, float128_t );
-bool f128_lt_quiet( float128_t, float128_t );
-bool f128_isSignalingNaN( float128_t );
-
-#endif
-
diff --git a/softfloat/SoftFloat-3/source/f32_add.c b/softfloat/f32_add.cc
index dc53d68..dc53d68 100755
--- a/softfloat/SoftFloat-3/source/f32_add.c
+++ b/softfloat/f32_add.cc
diff --git a/softfloat/SoftFloat-3/source/f32_div.c b/softfloat/f32_div.cc
index 958b140..958b140 100755
--- a/softfloat/SoftFloat-3/source/f32_div.c
+++ b/softfloat/f32_div.cc
diff --git a/softfloat/SoftFloat-3/source/f32_eq.c b/softfloat/f32_eq.cc
index 8f2306b..8f2306b 100755
--- a/softfloat/SoftFloat-3/source/f32_eq.c
+++ b/softfloat/f32_eq.cc
diff --git a/softfloat/SoftFloat-3/source/f32_eq_signaling.c b/softfloat/f32_eq_signaling.cc
index bfba48a..bfba48a 100755
--- a/softfloat/SoftFloat-3/source/f32_eq_signaling.c
+++ b/softfloat/f32_eq_signaling.cc
diff --git a/softfloat/SoftFloat-3/source/f32_isSignalingNaN.c b/softfloat/f32_isSignalingNaN.cc
index 09aaa82..09aaa82 100755
--- a/softfloat/SoftFloat-3/source/f32_isSignalingNaN.c
+++ b/softfloat/f32_isSignalingNaN.cc
diff --git a/softfloat/SoftFloat-3/source/f32_le.c b/softfloat/f32_le.cc
index 5f47be5..5f47be5 100755
--- a/softfloat/SoftFloat-3/source/f32_le.c
+++ b/softfloat/f32_le.cc
diff --git a/softfloat/SoftFloat-3/source/f32_le_quiet.c b/softfloat/f32_le_quiet.cc
index 2b541da..2b541da 100755
--- a/softfloat/SoftFloat-3/source/f32_le_quiet.c
+++ b/softfloat/f32_le_quiet.cc
diff --git a/softfloat/SoftFloat-3/source/f32_lt.c b/softfloat/f32_lt.cc
index 753b28a..753b28a 100755
--- a/softfloat/SoftFloat-3/source/f32_lt.c
+++ b/softfloat/f32_lt.cc
diff --git a/softfloat/SoftFloat-3/source/f32_lt_quiet.c b/softfloat/f32_lt_quiet.cc
index ecd90bf..ecd90bf 100755
--- a/softfloat/SoftFloat-3/source/f32_lt_quiet.c
+++ b/softfloat/f32_lt_quiet.cc
diff --git a/softfloat/SoftFloat-3/source/f32_mul.c b/softfloat/f32_mul.cc
index d49c1dd..d49c1dd 100755
--- a/softfloat/SoftFloat-3/source/f32_mul.c
+++ b/softfloat/f32_mul.cc
diff --git a/softfloat/SoftFloat-3/source/f32_mulAdd.c b/softfloat/f32_mulAdd.cc
index 3d4cee9..3d4cee9 100755
--- a/softfloat/SoftFloat-3/source/f32_mulAdd.c
+++ b/softfloat/f32_mulAdd.cc
diff --git a/softfloat/SoftFloat-3/source/f32_rem.c b/softfloat/f32_rem.cc
index d29b840..d29b840 100755
--- a/softfloat/SoftFloat-3/source/f32_rem.c
+++ b/softfloat/f32_rem.cc
diff --git a/softfloat/SoftFloat-3/source/f32_roundToInt.c b/softfloat/f32_roundToInt.cc
index f8f9114..f8f9114 100755
--- a/softfloat/SoftFloat-3/source/f32_roundToInt.c
+++ b/softfloat/f32_roundToInt.cc
diff --git a/softfloat/SoftFloat-3/source/f32_sqrt.c b/softfloat/f32_sqrt.cc
index c9eb907..c9eb907 100755
--- a/softfloat/SoftFloat-3/source/f32_sqrt.c
+++ b/softfloat/f32_sqrt.cc
diff --git a/softfloat/SoftFloat-3/source/f32_sub.c b/softfloat/f32_sub.cc
index c64df8e..c64df8e 100755
--- a/softfloat/SoftFloat-3/source/f32_sub.c
+++ b/softfloat/f32_sub.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_f64.c b/softfloat/f32_to_f64.cc
index 9f0ae5c..9f0ae5c 100755
--- a/softfloat/SoftFloat-3/source/f32_to_f64.c
+++ b/softfloat/f32_to_f64.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_i32.c b/softfloat/f32_to_i32.cc
index bbbaee0..bbbaee0 100755
--- a/softfloat/SoftFloat-3/source/f32_to_i32.c
+++ b/softfloat/f32_to_i32.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_i32_r_minMag.c b/softfloat/f32_to_i32_r_minMag.cc
index 63ff1e2..63ff1e2 100755
--- a/softfloat/SoftFloat-3/source/f32_to_i32_r_minMag.c
+++ b/softfloat/f32_to_i32_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_i64.c b/softfloat/f32_to_i64.cc
index c0b8981..c0b8981 100755
--- a/softfloat/SoftFloat-3/source/f32_to_i64.c
+++ b/softfloat/f32_to_i64.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_i64_r_minMag.c b/softfloat/f32_to_i64_r_minMag.cc
index 33bff93..33bff93 100755
--- a/softfloat/SoftFloat-3/source/f32_to_i64_r_minMag.c
+++ b/softfloat/f32_to_i64_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_ui32.c b/softfloat/f32_to_ui32.cc
index 3501db8..3501db8 100755
--- a/softfloat/SoftFloat-3/source/f32_to_ui32.c
+++ b/softfloat/f32_to_ui32.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_ui32_r_minMag.c b/softfloat/f32_to_ui32_r_minMag.cc
index edd858d..edd858d 100755
--- a/softfloat/SoftFloat-3/source/f32_to_ui32_r_minMag.c
+++ b/softfloat/f32_to_ui32_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_ui64.c b/softfloat/f32_to_ui64.cc
index 6cdcf74..6cdcf74 100755
--- a/softfloat/SoftFloat-3/source/f32_to_ui64.c
+++ b/softfloat/f32_to_ui64.cc
diff --git a/softfloat/SoftFloat-3/source/f32_to_ui64_r_minMag.c b/softfloat/f32_to_ui64_r_minMag.cc
index 738d6b1..738d6b1 100755
--- a/softfloat/SoftFloat-3/source/f32_to_ui64_r_minMag.c
+++ b/softfloat/f32_to_ui64_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/f64_add.c b/softfloat/f64_add.cc
index 9ec4b5f..9ec4b5f 100755
--- a/softfloat/SoftFloat-3/source/f64_add.c
+++ b/softfloat/f64_add.cc
diff --git a/softfloat/SoftFloat-3/source/f64_div.c b/softfloat/f64_div.cc
index 9bc72b3..9bc72b3 100755
--- a/softfloat/SoftFloat-3/source/f64_div.c
+++ b/softfloat/f64_div.cc
diff --git a/softfloat/SoftFloat-3/source/f64_eq.c b/softfloat/f64_eq.cc
index 925aabc..925aabc 100755
--- a/softfloat/SoftFloat-3/source/f64_eq.c
+++ b/softfloat/f64_eq.cc
diff --git a/softfloat/SoftFloat-3/source/f64_eq_signaling.c b/softfloat/f64_eq_signaling.cc
index 7a54dc1..7a54dc1 100755
--- a/softfloat/SoftFloat-3/source/f64_eq_signaling.c
+++ b/softfloat/f64_eq_signaling.cc
diff --git a/softfloat/SoftFloat-3/source/f64_isSignalingNaN.c b/softfloat/f64_isSignalingNaN.cc
index d720ac1..d720ac1 100755
--- a/softfloat/SoftFloat-3/source/f64_isSignalingNaN.c
+++ b/softfloat/f64_isSignalingNaN.cc
diff --git a/softfloat/SoftFloat-3/source/f64_le.c b/softfloat/f64_le.cc
index e6c5caf..e6c5caf 100755
--- a/softfloat/SoftFloat-3/source/f64_le.c
+++ b/softfloat/f64_le.cc
diff --git a/softfloat/SoftFloat-3/source/f64_le_quiet.c b/softfloat/f64_le_quiet.cc
index e9b7ede..e9b7ede 100755
--- a/softfloat/SoftFloat-3/source/f64_le_quiet.c
+++ b/softfloat/f64_le_quiet.cc
diff --git a/softfloat/SoftFloat-3/source/f64_lt.c b/softfloat/f64_lt.cc
index 1b2f696..1b2f696 100755
--- a/softfloat/SoftFloat-3/source/f64_lt.c
+++ b/softfloat/f64_lt.cc
diff --git a/softfloat/SoftFloat-3/source/f64_lt_quiet.c b/softfloat/f64_lt_quiet.cc
index f27e6da..f27e6da 100755
--- a/softfloat/SoftFloat-3/source/f64_lt_quiet.c
+++ b/softfloat/f64_lt_quiet.cc
diff --git a/softfloat/SoftFloat-3/source/f64_mul.c b/softfloat/f64_mul.cc
index 4b5dc4e..4b5dc4e 100755
--- a/softfloat/SoftFloat-3/source/f64_mul.c
+++ b/softfloat/f64_mul.cc
diff --git a/softfloat/SoftFloat-3/source/f64_mulAdd.c b/softfloat/f64_mulAdd.cc
index fa1669a..fa1669a 100755
--- a/softfloat/SoftFloat-3/source/f64_mulAdd.c
+++ b/softfloat/f64_mulAdd.cc
diff --git a/softfloat/SoftFloat-3/source/f64_rem.c b/softfloat/f64_rem.cc
index 08fcd78..08fcd78 100755
--- a/softfloat/SoftFloat-3/source/f64_rem.c
+++ b/softfloat/f64_rem.cc
diff --git a/softfloat/SoftFloat-3/source/f64_roundToInt.c b/softfloat/f64_roundToInt.cc
index ef16dfa..ef16dfa 100755
--- a/softfloat/SoftFloat-3/source/f64_roundToInt.c
+++ b/softfloat/f64_roundToInt.cc
diff --git a/softfloat/SoftFloat-3/source/f64_sqrt.c b/softfloat/f64_sqrt.cc
index cd91010..cd91010 100755
--- a/softfloat/SoftFloat-3/source/f64_sqrt.c
+++ b/softfloat/f64_sqrt.cc
diff --git a/softfloat/SoftFloat-3/source/f64_sub.c b/softfloat/f64_sub.cc
index 38bd574..38bd574 100755
--- a/softfloat/SoftFloat-3/source/f64_sub.c
+++ b/softfloat/f64_sub.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_f32.c b/softfloat/f64_to_f32.cc
index 395d6c6..395d6c6 100755
--- a/softfloat/SoftFloat-3/source/f64_to_f32.c
+++ b/softfloat/f64_to_f32.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_i32.c b/softfloat/f64_to_i32.cc
index 0778a86..0778a86 100755
--- a/softfloat/SoftFloat-3/source/f64_to_i32.c
+++ b/softfloat/f64_to_i32.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_i32_r_minMag.c b/softfloat/f64_to_i32_r_minMag.cc
index 39246c2..39246c2 100755
--- a/softfloat/SoftFloat-3/source/f64_to_i32_r_minMag.c
+++ b/softfloat/f64_to_i32_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_i64.c b/softfloat/f64_to_i64.cc
index 89663ee..89663ee 100755
--- a/softfloat/SoftFloat-3/source/f64_to_i64.c
+++ b/softfloat/f64_to_i64.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_i64_r_minMag.c b/softfloat/f64_to_i64_r_minMag.cc
index 525705b..525705b 100755
--- a/softfloat/SoftFloat-3/source/f64_to_i64_r_minMag.c
+++ b/softfloat/f64_to_i64_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_ui32.c b/softfloat/f64_to_ui32.cc
index b186605..b186605 100755
--- a/softfloat/SoftFloat-3/source/f64_to_ui32.c
+++ b/softfloat/f64_to_ui32.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_ui32_r_minMag.c b/softfloat/f64_to_ui32_r_minMag.cc
index 9f1dd4d..9f1dd4d 100755
--- a/softfloat/SoftFloat-3/source/f64_to_ui32_r_minMag.c
+++ b/softfloat/f64_to_ui32_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_ui64.c b/softfloat/f64_to_ui64.cc
index 9afebd7..9afebd7 100755
--- a/softfloat/SoftFloat-3/source/f64_to_ui64.c
+++ b/softfloat/f64_to_ui64.cc
diff --git a/softfloat/SoftFloat-3/source/f64_to_ui64_r_minMag.c b/softfloat/f64_to_ui64_r_minMag.cc
index a66d3ff..a66d3ff 100755
--- a/softfloat/SoftFloat-3/source/f64_to_ui64_r_minMag.c
+++ b/softfloat/f64_to_ui64_r_minMag.cc
diff --git a/softfloat/SoftFloat-3/source/i32_to_f32.c b/softfloat/i32_to_f32.cc
index f51facd..f51facd 100755
--- a/softfloat/SoftFloat-3/source/i32_to_f32.c
+++ b/softfloat/i32_to_f32.cc
diff --git a/softfloat/SoftFloat-3/source/i32_to_f64.c b/softfloat/i32_to_f64.cc
index d42cbe8..d42cbe8 100755
--- a/softfloat/SoftFloat-3/source/i32_to_f64.c
+++ b/softfloat/i32_to_f64.cc
diff --git a/softfloat/SoftFloat-3/source/i64_to_f32.c b/softfloat/i64_to_f32.cc
index 4fecbb9..4fecbb9 100755
--- a/softfloat/SoftFloat-3/source/i64_to_f32.c
+++ b/softfloat/i64_to_f32.cc
diff --git a/softfloat/SoftFloat-3/source/i64_to_f64.c b/softfloat/i64_to_f64.cc
index 1add960..1add960 100755
--- a/softfloat/SoftFloat-3/source/i64_to_f64.c
+++ b/softfloat/i64_to_f64.cc
diff --git a/softfloat/SoftFloat-3/source/internals.h b/softfloat/internals.h
index cac0561..5e6fd76 100755
--- a/softfloat/SoftFloat-3/source/internals.h
+++ b/softfloat/internals.h
@@ -83,8 +83,8 @@ int_fast64_t
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/
-struct exp16_sig32 { int_fast16_t exp; uint_fast32_t sig; }
- softfloat_normSubnormalF32Sig( uint_fast32_t );
+struct exp16_sig32 { int_fast16_t exp; uint_fast32_t sig; };
+struct exp16_sig32 softfloat_normSubnormalF32Sig( uint_fast32_t );
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
@@ -174,8 +174,8 @@ float32_t
| significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/
-struct exp16_sig64 { int_fast16_t exp; uint_fast64_t sig; }
- softfloat_normSubnormalF64Sig( uint_fast64_t );
+struct exp16_sig64 { int_fast16_t exp; uint_fast64_t sig; };
+struct exp16_sig64 softfloat_normSubnormalF64Sig( uint_fast64_t );
/*----------------------------------------------------------------------------
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
diff --git a/softfloat/milieu.h b/softfloat/milieu.h
deleted file mode 100644
index ab3d371..0000000
--- a/softfloat/milieu.h
+++ /dev/null
@@ -1,68 +0,0 @@
-
-/*----------------------------------------------------------------------------
-| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
-*----------------------------------------------------------------------------*/
-#define BIGENDIAN
-
-/*----------------------------------------------------------------------------
-| The macro `BITS64' can be defined to indicate that 64-bit integer types are
-| supported by the compiler.
-*----------------------------------------------------------------------------*/
-#define BITS64
-
-/*----------------------------------------------------------------------------
-| Each of the following `typedef's defines the most convenient type that holds
-| integers of at least as many bits as specified. For example, `uint8' should
-| be the most convenient type that can hold unsigned integers of as many as
-| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
-| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
-| to the same as `int'.
-*----------------------------------------------------------------------------*/
-typedef int flag;
-typedef int uint8;
-typedef int int8;
-typedef int uint16;
-typedef int int16;
-typedef unsigned int uint32;
-typedef signed int int32;
-#ifdef BITS64
-typedef unsigned long long int uint64;
-typedef signed long long int int64;
-#endif
-
-/*----------------------------------------------------------------------------
-| Each of the following `typedef's defines a type that holds integers
-| of _exactly_ the number of bits specified. For instance, for most
-| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
-| `unsigned short int' and `signed short int' (or `short int'), respectively.
-*----------------------------------------------------------------------------*/
-typedef unsigned char bits8;
-typedef signed char sbits8;
-typedef unsigned short int bits16;
-typedef signed short int sbits16;
-typedef unsigned int bits32;
-typedef signed int sbits32;
-#ifdef BITS64
-typedef unsigned long long int bits64;
-typedef signed long long int sbits64;
-#endif
-
-#ifdef BITS64
-/*----------------------------------------------------------------------------
-| The `LIT64' macro takes as its argument a textual integer literal and
-| if necessary ``marks'' the literal as having a 64-bit integer type.
-| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
-| appended with the letters `LL' standing for `long long', which is `gcc's
-| name for the 64-bit integer type. Some compilers may allow `LIT64' to be
-| defined as the identity macro: `#define LIT64( a ) a'.
-*----------------------------------------------------------------------------*/
-#define LIT64( a ) a##LL
-#endif
-
-/*----------------------------------------------------------------------------
-| The macro `INLINE' can be used before functions that should be inlined. If
-| a compiler does not support explicit inlining, this macro should be defined
-| to be `static'.
-*----------------------------------------------------------------------------*/
-#define INLINE extern inline
-
diff --git a/softfloat/SoftFloat-3/source/primitives.h b/softfloat/primitives.h
index 71038ea..71038ea 100755
--- a/softfloat/SoftFloat-3/source/primitives.h
+++ b/softfloat/primitives.h
diff --git a/softfloat/SoftFloat-3/source/s_add128.c b/softfloat/s_add128.cc
index 59c0348..59c0348 100755
--- a/softfloat/SoftFloat-3/source/s_add128.c
+++ b/softfloat/s_add128.cc
diff --git a/softfloat/SoftFloat-3/source/s_add192.c b/softfloat/s_add192.cc
index 543eb5d..543eb5d 100755
--- a/softfloat/SoftFloat-3/source/s_add192.c
+++ b/softfloat/s_add192.cc
diff --git a/softfloat/SoftFloat-3/source/s_addMagsF32.c b/softfloat/s_addMagsF32.cc
index f361e2b..f361e2b 100755
--- a/softfloat/SoftFloat-3/source/s_addMagsF32.c
+++ b/softfloat/s_addMagsF32.cc
diff --git a/softfloat/SoftFloat-3/source/s_addMagsF64.c b/softfloat/s_addMagsF64.cc
index a81c3e4..a81c3e4 100755
--- a/softfloat/SoftFloat-3/source/s_addMagsF64.c
+++ b/softfloat/s_addMagsF64.cc
diff --git a/softfloat/SoftFloat-3/source/s_countLeadingZeros32.c b/softfloat/s_countLeadingZeros32.cc
index 0bd17e1..0bd17e1 100755
--- a/softfloat/SoftFloat-3/source/s_countLeadingZeros32.c
+++ b/softfloat/s_countLeadingZeros32.cc
diff --git a/softfloat/SoftFloat-3/source/s_countLeadingZeros64.c b/softfloat/s_countLeadingZeros64.cc
index 4a96cf6..79f4280 100755
--- a/softfloat/SoftFloat-3/source/s_countLeadingZeros64.c
+++ b/softfloat/s_countLeadingZeros64.cc
@@ -1,6 +1,7 @@
#include <stdint.h>
#include "primitives.h"
+#include "platform.h"
int softfloat_countLeadingZeros64( uint64_t a )
{
diff --git a/softfloat/SoftFloat-3/source/s_countLeadingZeros8.c b/softfloat/s_countLeadingZeros8.cc
index 4eca7e9..4eca7e9 100755
--- a/softfloat/SoftFloat-3/source/s_countLeadingZeros8.c
+++ b/softfloat/s_countLeadingZeros8.cc
diff --git a/softfloat/SoftFloat-3/source/s_eq128.c b/softfloat/s_eq128.cc
index 7261dc4..7261dc4 100755
--- a/softfloat/SoftFloat-3/source/s_eq128.c
+++ b/softfloat/s_eq128.cc
diff --git a/softfloat/SoftFloat-3/source/s_estimateDiv128To64.c b/softfloat/s_estimateDiv128To64.cc
index f8610a2..f8610a2 100755
--- a/softfloat/SoftFloat-3/source/s_estimateDiv128To64.c
+++ b/softfloat/s_estimateDiv128To64.cc
diff --git a/softfloat/SoftFloat-3/source/s_estimateSqrt32.c b/softfloat/s_estimateSqrt32.cc
index e22a9dc..e22a9dc 100755
--- a/softfloat/SoftFloat-3/source/s_estimateSqrt32.c
+++ b/softfloat/s_estimateSqrt32.cc
diff --git a/softfloat/SoftFloat-3/source/s_le128.c b/softfloat/s_le128.cc
index 83b1d7f..83b1d7f 100755
--- a/softfloat/SoftFloat-3/source/s_le128.c
+++ b/softfloat/s_le128.cc
diff --git a/softfloat/SoftFloat-3/source/s_lt128.c b/softfloat/s_lt128.cc
index 33a3df4..33a3df4 100755
--- a/softfloat/SoftFloat-3/source/s_lt128.c
+++ b/softfloat/s_lt128.cc
diff --git a/softfloat/SoftFloat-3/source/s_mul128By64To192.c b/softfloat/s_mul128By64To192.cc
index dfa8825..dfa8825 100755
--- a/softfloat/SoftFloat-3/source/s_mul128By64To192.c
+++ b/softfloat/s_mul128By64To192.cc
diff --git a/softfloat/SoftFloat-3/source/s_mul128To256.c b/softfloat/s_mul128To256.cc
index a96cd94..a96cd94 100755
--- a/softfloat/SoftFloat-3/source/s_mul128To256.c
+++ b/softfloat/s_mul128To256.cc
diff --git a/softfloat/SoftFloat-3/source/s_mul64To128.c b/softfloat/s_mul64To128.cc
index c17780b..c17780b 100755
--- a/softfloat/SoftFloat-3/source/s_mul64To128.c
+++ b/softfloat/s_mul64To128.cc
diff --git a/softfloat/SoftFloat-3/source/s_mulAddF32.c b/softfloat/s_mulAddF32.cc
index e55a0ba..e55a0ba 100755
--- a/softfloat/SoftFloat-3/source/s_mulAddF32.c
+++ b/softfloat/s_mulAddF32.cc
diff --git a/softfloat/SoftFloat-3/source/s_mulAddF64.c b/softfloat/s_mulAddF64.cc
index 01ba3b4..01ba3b4 100755
--- a/softfloat/SoftFloat-3/source/s_mulAddF64.c
+++ b/softfloat/s_mulAddF64.cc
diff --git a/softfloat/SoftFloat-3/source/s_normRoundPackToF32.c b/softfloat/s_normRoundPackToF32.cc
index 2e6f4b0..2e6f4b0 100755
--- a/softfloat/SoftFloat-3/source/s_normRoundPackToF32.c
+++ b/softfloat/s_normRoundPackToF32.cc
diff --git a/softfloat/SoftFloat-3/source/s_normRoundPackToF64.c b/softfloat/s_normRoundPackToF64.cc
index 64dced4..64dced4 100755
--- a/softfloat/SoftFloat-3/source/s_normRoundPackToF64.c
+++ b/softfloat/s_normRoundPackToF64.cc
diff --git a/softfloat/SoftFloat-3/source/s_normSubnormalF32Sig.c b/softfloat/s_normSubnormalF32Sig.cc
index b98eb86..b98eb86 100755
--- a/softfloat/SoftFloat-3/source/s_normSubnormalF32Sig.c
+++ b/softfloat/s_normSubnormalF32Sig.cc
diff --git a/softfloat/SoftFloat-3/source/s_normSubnormalF64Sig.c b/softfloat/s_normSubnormalF64Sig.cc
index 45a7c9e..45a7c9e 100755
--- a/softfloat/SoftFloat-3/source/s_normSubnormalF64Sig.c
+++ b/softfloat/s_normSubnormalF64Sig.cc
diff --git a/softfloat/SoftFloat-3/source/s_roundPackToF32.c b/softfloat/s_roundPackToF32.cc
index 11764f1..11764f1 100755
--- a/softfloat/SoftFloat-3/source/s_roundPackToF32.c
+++ b/softfloat/s_roundPackToF32.cc
diff --git a/softfloat/SoftFloat-3/source/s_roundPackToF64.c b/softfloat/s_roundPackToF64.cc
index fb0ef1d..fb0ef1d 100755
--- a/softfloat/SoftFloat-3/source/s_roundPackToF64.c
+++ b/softfloat/s_roundPackToF64.cc
diff --git a/softfloat/SoftFloat-3/source/s_roundPackToI32.c b/softfloat/s_roundPackToI32.cc
index 1c91497..1c91497 100755
--- a/softfloat/SoftFloat-3/source/s_roundPackToI32.c
+++ b/softfloat/s_roundPackToI32.cc
diff --git a/softfloat/SoftFloat-3/source/s_roundPackToI64.c b/softfloat/s_roundPackToI64.cc
index b2f5d63..b2f5d63 100755
--- a/softfloat/SoftFloat-3/source/s_roundPackToI64.c
+++ b/softfloat/s_roundPackToI64.cc
diff --git a/softfloat/SoftFloat-3/source/s_roundPackToUI32.c b/softfloat/s_roundPackToUI32.cc
index ab44ec7..ab44ec7 100755
--- a/softfloat/SoftFloat-3/source/s_roundPackToUI32.c
+++ b/softfloat/s_roundPackToUI32.cc
diff --git a/softfloat/SoftFloat-3/source/s_roundPackToUI64.c b/softfloat/s_roundPackToUI64.cc
index d42266f..d42266f 100755
--- a/softfloat/SoftFloat-3/source/s_roundPackToUI64.c
+++ b/softfloat/s_roundPackToUI64.cc
diff --git a/softfloat/SoftFloat-3/source/s_shift128ExtraRightJam.c b/softfloat/s_shift128ExtraRightJam.cc
index 6c57974..6c57974 100755
--- a/softfloat/SoftFloat-3/source/s_shift128ExtraRightJam.c
+++ b/softfloat/s_shift128ExtraRightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shift128RightJam.c b/softfloat/s_shift128RightJam.cc
index 5a4e188..5a4e188 100755
--- a/softfloat/SoftFloat-3/source/s_shift128RightJam.c
+++ b/softfloat/s_shift128RightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shift32RightJam.c b/softfloat/s_shift32RightJam.cc
index b697a34..b697a34 100755
--- a/softfloat/SoftFloat-3/source/s_shift32RightJam.c
+++ b/softfloat/s_shift32RightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shift64ExtraRightJam.c b/softfloat/s_shift64ExtraRightJam.cc
index 167ea54..167ea54 100755
--- a/softfloat/SoftFloat-3/source/s_shift64ExtraRightJam.c
+++ b/softfloat/s_shift64ExtraRightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shift64RightJam.c b/softfloat/s_shift64RightJam.cc
index ebebb61..ebebb61 100755
--- a/softfloat/SoftFloat-3/source/s_shift64RightJam.c
+++ b/softfloat/s_shift64RightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shortShift128ExtraRightJam.c b/softfloat/s_shortShift128ExtraRightJam.cc
index c772740..c772740 100755
--- a/softfloat/SoftFloat-3/source/s_shortShift128ExtraRightJam.c
+++ b/softfloat/s_shortShift128ExtraRightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shortShift128Left.c b/softfloat/s_shortShift128Left.cc
index 9c29988..9c29988 100755
--- a/softfloat/SoftFloat-3/source/s_shortShift128Left.c
+++ b/softfloat/s_shortShift128Left.cc
diff --git a/softfloat/SoftFloat-3/source/s_shortShift128Right.c b/softfloat/s_shortShift128Right.cc
index f7f4ce8..f7f4ce8 100755
--- a/softfloat/SoftFloat-3/source/s_shortShift128Right.c
+++ b/softfloat/s_shortShift128Right.cc
diff --git a/softfloat/SoftFloat-3/source/s_shortShift192Left.c b/softfloat/s_shortShift192Left.cc
index cf1e55d..cf1e55d 100755
--- a/softfloat/SoftFloat-3/source/s_shortShift192Left.c
+++ b/softfloat/s_shortShift192Left.cc
diff --git a/softfloat/SoftFloat-3/source/s_shortShift32Right1Jam.c b/softfloat/s_shortShift32Right1Jam.cc
index db4c304..db4c304 100755
--- a/softfloat/SoftFloat-3/source/s_shortShift32Right1Jam.c
+++ b/softfloat/s_shortShift32Right1Jam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shortShift64ExtraRightJam.c b/softfloat/s_shortShift64ExtraRightJam.cc
index b861c67..b861c67 100755
--- a/softfloat/SoftFloat-3/source/s_shortShift64ExtraRightJam.c
+++ b/softfloat/s_shortShift64ExtraRightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_shortShift64RightJam.c b/softfloat/s_shortShift64RightJam.cc
index 0da6c93..0da6c93 100755
--- a/softfloat/SoftFloat-3/source/s_shortShift64RightJam.c
+++ b/softfloat/s_shortShift64RightJam.cc
diff --git a/softfloat/SoftFloat-3/source/s_sub128.c b/softfloat/s_sub128.cc
index 0c4f181..0c4f181 100755
--- a/softfloat/SoftFloat-3/source/s_sub128.c
+++ b/softfloat/s_sub128.cc
diff --git a/softfloat/SoftFloat-3/source/s_sub192.c b/softfloat/s_sub192.cc
index 96f21c9..96f21c9 100755
--- a/softfloat/SoftFloat-3/source/s_sub192.c
+++ b/softfloat/s_sub192.cc
diff --git a/softfloat/SoftFloat-3/source/s_subMagsF32.c b/softfloat/s_subMagsF32.cc
index 0c83b02..0c83b02 100755
--- a/softfloat/SoftFloat-3/source/s_subMagsF32.c
+++ b/softfloat/s_subMagsF32.cc
diff --git a/softfloat/SoftFloat-3/source/s_subMagsF64.c b/softfloat/s_subMagsF64.cc
index 45b81ba..45b81ba 100755
--- a/softfloat/SoftFloat-3/source/s_subMagsF64.c
+++ b/softfloat/s_subMagsF64.cc
diff --git a/softfloat/softfloat-header b/softfloat/softfloat-header
deleted file mode 100644
index eb5303a..0000000
--- a/softfloat/softfloat-header
+++ /dev/null
@@ -1,259 +0,0 @@
-
-/*============================================================================
-
-This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
-Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-/*----------------------------------------------------------------------------
-| The macro `FLOATX80' must be defined to enable the extended double-precision
-| floating-point format `floatx80'. If this macro is not defined, the
-| `floatx80' type will not be defined, and none of the functions that either
-| input or output the `floatx80' type will be defined. The same applies to
-| the `FLOAT128' macro and the quadruple-precision format `float128'.
-*----------------------------------------------------------------------------*/
-#define FLOATX80
-#define FLOAT128
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point types.
-*----------------------------------------------------------------------------*/
-typedef unsigned int float32;
-typedef unsigned long long float64;
-#ifdef FLOATX80
-typedef struct {
- unsigned short high;
- unsigned long long low;
-} floatx80;
-#endif
-#ifdef FLOAT128
-typedef struct {
- unsigned long long high, low;
-} float128;
-#endif
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point underflow tininess-detection mode.
-*----------------------------------------------------------------------------*/
-extern int float_detect_tininess;
-enum {
- float_tininess_after_rounding = 0,
- float_tininess_before_rounding = 1
-};
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point rounding mode.
-*----------------------------------------------------------------------------*/
-extern int float_rounding_mode;
-enum {
- float_round_nearest_even = 0,
- float_round_to_zero = 1,
- float_round_up = 2,
- float_round_down = 3
-};
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE floating-point exception flags.
-*----------------------------------------------------------------------------*/
-extern int float_exception_flags;
-enum {
- float_flag_inexact = 1,
- float_flag_divbyzero = 2,
- float_flag_underflow = 4,
- float_flag_overflow = 8,
- float_flag_invalid = 16
-};
-
-/*----------------------------------------------------------------------------
-| Routine to raise any or all of the software IEC/IEEE floating-point
-| exception flags.
-*----------------------------------------------------------------------------*/
-void float_raise( int );
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE integer-to-floating-point conversion routines.
-*----------------------------------------------------------------------------*/
-float32 int32_to_float32( int );
-float64 int32_to_float64( int );
-#ifdef FLOATX80
-floatx80 int32_to_floatx80( int );
-#endif
-#ifdef FLOAT128
-float128 int32_to_float128( int );
-#endif
-float32 int64_to_float32( long long );
-float64 int64_to_float64( long long );
-#ifdef FLOATX80
-floatx80 int64_to_floatx80( long long );
-#endif
-#ifdef FLOAT128
-float128 int64_to_float128( long long );
-#endif
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE single-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int float32_to_int32( float32 );
-int float32_to_int32_round_to_zero( float32 );
-long long float32_to_int64( float32 );
-long long float32_to_int64_round_to_zero( float32 );
-float64 float32_to_float64( float32 );
-#ifdef FLOATX80
-floatx80 float32_to_floatx80( float32 );
-#endif
-#ifdef FLOAT128
-float128 float32_to_float128( float32 );
-#endif
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE single-precision operations.
-*----------------------------------------------------------------------------*/
-float32 float32_round_to_int( float32 );
-float32 float32_add( float32, float32 );
-float32 float32_sub( float32, float32 );
-float32 float32_mul( float32, float32 );
-float32 float32_div( float32, float32 );
-float32 float32_rem( float32, float32 );
-float32 float32_sqrt( float32 );
-int float32_eq( float32, float32 );
-int float32_le( float32, float32 );
-int float32_lt( float32, float32 );
-int float32_eq_signaling( float32, float32 );
-int float32_le_quiet( float32, float32 );
-int float32_lt_quiet( float32, float32 );
-int float32_is_signaling_nan( float32 );
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE double-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int float64_to_int32( float64 );
-int float64_to_int32_round_to_zero( float64 );
-long long float64_to_int64( float64 );
-long long float64_to_int64_round_to_zero( float64 );
-float32 float64_to_float32( float64 );
-#ifdef FLOATX80
-floatx80 float64_to_floatx80( float64 );
-#endif
-#ifdef FLOAT128
-float128 float64_to_float128( float64 );
-#endif
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE double-precision operations.
-*----------------------------------------------------------------------------*/
-float64 float64_round_to_int( float64 );
-float64 float64_add( float64, float64 );
-float64 float64_sub( float64, float64 );
-float64 float64_mul( float64, float64 );
-float64 float64_div( float64, float64 );
-float64 float64_rem( float64, float64 );
-float64 float64_sqrt( float64 );
-int float64_eq( float64, float64 );
-int float64_le( float64, float64 );
-int float64_lt( float64, float64 );
-int float64_eq_signaling( float64, float64 );
-int float64_le_quiet( float64, float64 );
-int float64_lt_quiet( float64, float64 );
-int float64_is_signaling_nan( float64 );
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE extended double-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int floatx80_to_int32( floatx80 );
-int floatx80_to_int32_round_to_zero( floatx80 );
-long long floatx80_to_int64( floatx80 );
-long long floatx80_to_int64_round_to_zero( floatx80 );
-float32 floatx80_to_float32( floatx80 );
-float64 floatx80_to_float64( floatx80 );
-#ifdef FLOAT128
-float128 floatx80_to_float128( floatx80 );
-#endif
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE extended double-precision rounding precision. Valid
-| values are 32, 64, and 80.
-*----------------------------------------------------------------------------*/
-extern int floatx80_rounding_precision;
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE extended double-precision operations.
-*----------------------------------------------------------------------------*/
-floatx80 floatx80_round_to_int( floatx80 );
-floatx80 floatx80_add( floatx80, floatx80 );
-floatx80 floatx80_sub( floatx80, floatx80 );
-floatx80 floatx80_mul( floatx80, floatx80 );
-floatx80 floatx80_div( floatx80, floatx80 );
-floatx80 floatx80_rem( floatx80, floatx80 );
-floatx80 floatx80_sqrt( floatx80 );
-int floatx80_eq( floatx80, floatx80 );
-int floatx80_le( floatx80, floatx80 );
-int floatx80_lt( floatx80, floatx80 );
-int floatx80_eq_signaling( floatx80, floatx80 );
-int floatx80_le_quiet( floatx80, floatx80 );
-int floatx80_lt_quiet( floatx80, floatx80 );
-int floatx80_is_signaling_nan( floatx80 );
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE quadruple-precision conversion routines.
-*----------------------------------------------------------------------------*/
-int float128_to_int32( float128 );
-int float128_to_int32_round_to_zero( float128 );
-long long float128_to_int64( float128 );
-long long float128_to_int64_round_to_zero( float128 );
-float32 float128_to_float32( float128 );
-float64 float128_to_float64( float128 );
-#ifdef FLOATX80
-floatx80 float128_to_floatx80( float128 );
-#endif
-
-/*----------------------------------------------------------------------------
-| Software IEC/IEEE quadruple-precision operations.
-*----------------------------------------------------------------------------*/
-float128 float128_round_to_int( float128 );
-float128 float128_add( float128, float128 );
-float128 float128_sub( float128, float128 );
-float128 float128_mul( float128, float128 );
-float128 float128_div( float128, float128 );
-float128 float128_rem( float128, float128 );
-float128 float128_sqrt( float128 );
-int float128_eq( float128, float128 );
-int float128_le( float128, float128 );
-int float128_lt( float128, float128 );
-int float128_eq_signaling( float128, float128 );
-int float128_le_quiet( float128, float128 );
-int float128_lt_quiet( float128, float128 );
-int float128_is_signaling_nan( float128 );
-
-#endif
-
diff --git a/softfloat/softfloat-macros b/softfloat/softfloat-macros
deleted file mode 100644
index d289328..0000000
--- a/softfloat/softfloat-macros
+++ /dev/null
@@ -1,720 +0,0 @@
-
-/*============================================================================
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-/*----------------------------------------------------------------------------
-| Shifts `a' right by the number of bits given in `count'. If any nonzero
-| bits are shifted off, they are ``jammed'' into the least significant bit of
-| the result by setting the least significant bit to 1. The value of `count'
-| can be arbitrarily large; in particular, if `count' is greater than 32, the
-| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
-| The result is stored in the location pointed to by `zPtr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
-{
- bits32 z;
-
- if ( count == 0 ) {
- z = a;
- }
- else if ( count < 32 ) {
- z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
- }
- else {
- z = ( a != 0 );
- }
- *zPtr = z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Shifts `a' right by the number of bits given in `count'. If any nonzero
-| bits are shifted off, they are ``jammed'' into the least significant bit of
-| the result by setting the least significant bit to 1. The value of `count'
-| can be arbitrarily large; in particular, if `count' is greater than 64, the
-| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
-| The result is stored in the location pointed to by `zPtr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
-{
- bits64 z;
-
- if ( count == 0 ) {
- z = a;
- }
- else if ( count < 64 ) {
- z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
- }
- else {
- z = ( a != 0 );
- }
- *zPtr = z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
-| _plus_ the number of bits given in `count'. The shifted result is at most
-| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
-| bits shifted off form a second 64-bit result as follows: The _last_ bit
-| shifted off is the most-significant bit of the extra result, and the other
-| 63 bits of the extra result are all zero if and only if _all_but_the_last_
-| bits shifted off were all zero. This extra result is stored in the location
-| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
-| (This routine makes more sense if `a0' and `a1' are considered to form
-| a fixed-point value with binary point between `a0' and `a1'. This fixed-
-| point value is shifted right by the number of bits given in `count', and
-| the integer part of the result is returned at the location pointed to by
-| `z0Ptr'. The fractional part of the result may be slightly corrupted as
-| described above, and is returned at the location pointed to by `z1Ptr'.)
-*----------------------------------------------------------------------------*/
-
-INLINE void
- shift64ExtraRightJamming(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
-{
- bits64 z0, z1;
- int8 negCount = ( - count ) & 63;
-
- if ( count == 0 ) {
- z1 = a1;
- z0 = a0;
- }
- else if ( count < 64 ) {
- z1 = ( a0<<negCount ) | ( a1 != 0 );
- z0 = a0>>count;
- }
- else {
- if ( count == 64 ) {
- z1 = a0 | ( a1 != 0 );
- }
- else {
- z1 = ( ( a0 | a1 ) != 0 );
- }
- z0 = 0;
- }
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
-| number of bits given in `count'. Any bits shifted off are lost. The value
-| of `count' can be arbitrarily large; in particular, if `count' is greater
-| than 128, the result will be 0. The result is broken into two 64-bit pieces
-| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- shift128Right(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
-{
- bits64 z0, z1;
- int8 negCount = ( - count ) & 63;
-
- if ( count == 0 ) {
- z1 = a1;
- z0 = a0;
- }
- else if ( count < 64 ) {
- z1 = ( a0<<negCount ) | ( a1>>count );
- z0 = a0>>count;
- }
- else {
- z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
- z0 = 0;
- }
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
-| number of bits given in `count'. If any nonzero bits are shifted off, they
-| are ``jammed'' into the least significant bit of the result by setting the
-| least significant bit to 1. The value of `count' can be arbitrarily large;
-| in particular, if `count' is greater than 128, the result will be either
-| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
-| nonzero. The result is broken into two 64-bit pieces which are stored at
-| the locations pointed to by `z0Ptr' and `z1Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- shift128RightJamming(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
-{
- bits64 z0, z1;
- int8 negCount = ( - count ) & 63;
-
- if ( count == 0 ) {
- z1 = a1;
- z0 = a0;
- }
- else if ( count < 64 ) {
- z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
- z0 = a0>>count;
- }
- else {
- if ( count == 64 ) {
- z1 = a0 | ( a1 != 0 );
- }
- else if ( count < 128 ) {
- z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
- }
- else {
- z1 = ( ( a0 | a1 ) != 0 );
- }
- z0 = 0;
- }
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
-| by 64 _plus_ the number of bits given in `count'. The shifted result is
-| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
-| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
-| off form a third 64-bit result as follows: The _last_ bit shifted off is
-| the most-significant bit of the extra result, and the other 63 bits of the
-| extra result are all zero if and only if _all_but_the_last_ bits shifted off
-| were all zero. This extra result is stored in the location pointed to by
-| `z2Ptr'. The value of `count' can be arbitrarily large.
-| (This routine makes more sense if `a0', `a1', and `a2' are considered
-| to form a fixed-point value with binary point between `a1' and `a2'. This
-| fixed-point value is shifted right by the number of bits given in `count',
-| and the integer part of the result is returned at the locations pointed to
-| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
-| corrupted as described above, and is returned at the location pointed to by
-| `z2Ptr'.)
-*----------------------------------------------------------------------------*/
-
-INLINE void
- shift128ExtraRightJamming(
- bits64 a0,
- bits64 a1,
- bits64 a2,
- int16 count,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
- )
-{
- bits64 z0, z1, z2;
- int8 negCount = ( - count ) & 63;
-
- if ( count == 0 ) {
- z2 = a2;
- z1 = a1;
- z0 = a0;
- }
- else {
- if ( count < 64 ) {
- z2 = a1<<negCount;
- z1 = ( a0<<negCount ) | ( a1>>count );
- z0 = a0>>count;
- }
- else {
- if ( count == 64 ) {
- z2 = a1;
- z1 = a0;
- }
- else {
- a2 |= a1;
- if ( count < 128 ) {
- z2 = a0<<negCount;
- z1 = a0>>( count & 63 );
- }
- else {
- z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
- z1 = 0;
- }
- }
- z0 = 0;
- }
- z2 |= ( a2 != 0 );
- }
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
-| number of bits given in `count'. Any bits shifted off are lost. The value
-| of `count' must be less than 64. The result is broken into two 64-bit
-| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- shortShift128Left(
- bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
-{
-
- *z1Ptr = a1<<count;
- *z0Ptr =
- ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
-| by the number of bits given in `count'. Any bits shifted off are lost.
-| The value of `count' must be less than 64. The result is broken into three
-| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
-| `z1Ptr', and `z2Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- shortShift192Left(
- bits64 a0,
- bits64 a1,
- bits64 a2,
- int16 count,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
- )
-{
- bits64 z0, z1, z2;
- int8 negCount;
-
- z2 = a2<<count;
- z1 = a1<<count;
- z0 = a0<<count;
- if ( 0 < count ) {
- negCount = ( ( - count ) & 63 );
- z1 |= a2>>negCount;
- z0 |= a1>>negCount;
- }
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
-| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
-| any carry out is lost. The result is broken into two 64-bit pieces which
-| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- add128(
- bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
-{
- bits64 z1;
-
- z1 = a1 + b1;
- *z1Ptr = z1;
- *z0Ptr = a0 + b0 + ( z1 < a1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
-| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
-| modulo 2^192, so any carry out is lost. The result is broken into three
-| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
-| `z1Ptr', and `z2Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- add192(
- bits64 a0,
- bits64 a1,
- bits64 a2,
- bits64 b0,
- bits64 b1,
- bits64 b2,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
- )
-{
- bits64 z0, z1, z2;
- int8 carry0, carry1;
-
- z2 = a2 + b2;
- carry1 = ( z2 < a2 );
- z1 = a1 + b1;
- carry0 = ( z1 < a1 );
- z0 = a0 + b0;
- z1 += carry1;
- z0 += ( z1 < carry1 );
- z0 += carry0;
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
-| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
-| 2^128, so any borrow out (carry out) is lost. The result is broken into two
-| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
-| `z1Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- sub128(
- bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
-{
-
- *z1Ptr = a1 - b1;
- *z0Ptr = a0 - b0 - ( a1 < b1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
-| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
-| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
-| result is broken into three 64-bit pieces which are stored at the locations
-| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- sub192(
- bits64 a0,
- bits64 a1,
- bits64 a2,
- bits64 b0,
- bits64 b1,
- bits64 b2,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
- )
-{
- bits64 z0, z1, z2;
- int8 borrow0, borrow1;
-
- z2 = a2 - b2;
- borrow1 = ( a2 < b2 );
- z1 = a1 - b1;
- borrow0 = ( a1 < b1 );
- z0 = a0 - b0;
- z0 -= ( z1 < borrow1 );
- z1 -= borrow1;
- z0 -= borrow0;
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
-| into two 64-bit pieces which are stored at the locations pointed to by
-| `z0Ptr' and `z1Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
-{
- bits32 aHigh, aLow, bHigh, bLow;
- bits64 z0, zMiddleA, zMiddleB, z1;
-
- aLow = a;
- aHigh = a>>32;
- bLow = b;
- bHigh = b>>32;
- z1 = ( (bits64) aLow ) * bLow;
- zMiddleA = ( (bits64) aLow ) * bHigh;
- zMiddleB = ( (bits64) aHigh ) * bLow;
- z0 = ( (bits64) aHigh ) * bHigh;
- zMiddleA += zMiddleB;
- z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
- zMiddleA <<= 32;
- z1 += zMiddleA;
- z0 += ( z1 < zMiddleA );
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
-| `b' to obtain a 192-bit product. The product is broken into three 64-bit
-| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
-| `z2Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- mul128By64To192(
- bits64 a0,
- bits64 a1,
- bits64 b,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr
- )
-{
- bits64 z0, z1, z2, more1;
-
- mul64To128( a1, b, &z1, &z2 );
- mul64To128( a0, b, &z0, &more1 );
- add128( z0, more1, 0, z1, &z0, &z1 );
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
-| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
-| product. The product is broken into four 64-bit pieces which are stored at
-| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
-*----------------------------------------------------------------------------*/
-
-INLINE void
- mul128To256(
- bits64 a0,
- bits64 a1,
- bits64 b0,
- bits64 b1,
- bits64 *z0Ptr,
- bits64 *z1Ptr,
- bits64 *z2Ptr,
- bits64 *z3Ptr
- )
-{
- bits64 z0, z1, z2, z3;
- bits64 more1, more2;
-
- mul64To128( a1, b1, &z2, &z3 );
- mul64To128( a1, b0, &z1, &more2 );
- add128( z1, more2, 0, z2, &z1, &z2 );
- mul64To128( a0, b0, &z0, &more1 );
- add128( z0, more1, 0, z1, &z0, &z1 );
- mul64To128( a0, b1, &more1, &more2 );
- add128( more1, more2, 0, z2, &more1, &z2 );
- add128( z0, z1, 0, more1, &z0, &z1 );
- *z3Ptr = z3;
- *z2Ptr = z2;
- *z1Ptr = z1;
- *z0Ptr = z0;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns an approximation to the 64-bit integer quotient obtained by dividing
-| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The
-| divisor `b' must be at least 2^63. If q is the exact quotient truncated
-| toward zero, the approximation returned lies between q and q + 2 inclusive.
-| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
-| unsigned integer is returned.
-*----------------------------------------------------------------------------*/
-
-static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
-{
- bits64 b0, b1;
- bits64 rem0, rem1, term0, term1;
- bits64 z;
-
- if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
- b0 = b>>32;
- z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
- mul64To128( b, z, &term0, &term1 );
- sub128( a0, a1, term0, term1, &rem0, &rem1 );
- while ( ( (sbits64) rem0 ) < 0 ) {
- z -= LIT64( 0x100000000 );
- b1 = b<<32;
- add128( rem0, rem1, b0, b1, &rem0, &rem1 );
- }
- rem0 = ( rem0<<32 ) | ( rem1>>32 );
- z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns an approximation to the square root of the 32-bit significand given
-| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
-| `aExp' (the least significant bit) is 1, the integer returned approximates
-| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
-| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
-| case, the approximation returned lies strictly within +/-2 of the exact
-| value.
-*----------------------------------------------------------------------------*/
-
-static bits32 estimateSqrt32( int16 aExp, bits32 a )
-{
- static const bits16 sqrtOddAdjustments[] = {
- 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
- 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
- };
- static const bits16 sqrtEvenAdjustments[] = {
- 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
- 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
- };
- int8 index;
- bits32 z;
-
- index = ( a>>27 ) & 15;
- if ( aExp & 1 ) {
- z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
- z = ( ( a / z )<<14 ) + ( z<<15 );
- a >>= 1;
- }
- else {
- z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
- z = a / z + z;
- z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
- if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
- }
- return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the number of leading 0 bits before the most-significant 1 bit of
-| `a'. If `a' is zero, 32 is returned.
-*----------------------------------------------------------------------------*/
-
-static int8 countLeadingZeros32( bits32 a )
-{
- static const int8 countLeadingZerosHigh[] = {
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- };
- int8 shiftCount;
-
- shiftCount = 0;
- if ( a < 0x10000 ) {
- shiftCount += 16;
- a <<= 16;
- }
- if ( a < 0x1000000 ) {
- shiftCount += 8;
- a <<= 8;
- }
- shiftCount += countLeadingZerosHigh[ a>>24 ];
- return shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the number of leading 0 bits before the most-significant 1 bit of
-| `a'. If `a' is zero, 64 is returned.
-*----------------------------------------------------------------------------*/
-
-static int8 countLeadingZeros64( bits64 a )
-{
- int8 shiftCount;
-
- shiftCount = 0;
- if ( a < ( (bits64) 1 )<<32 ) {
- shiftCount += 32;
- }
- else {
- a >>= 32;
- }
- shiftCount += countLeadingZeros32( a );
- return shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
-| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
-| Otherwise, returns 0.
-*----------------------------------------------------------------------------*/
-
-INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
-{
-
- return ( a0 == b0 ) && ( a1 == b1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
-| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
-| Otherwise, returns 0.
-*----------------------------------------------------------------------------*/
-
-INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
-{
-
- return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
-| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
-| returns 0.
-*----------------------------------------------------------------------------*/
-
-INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
-{
-
- return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
-| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
-| Otherwise, returns 0.
-*----------------------------------------------------------------------------*/
-
-INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
-{
-
- return ( a0 != b0 ) || ( a1 != b1 );
-
-}
-
diff --git a/softfloat/softfloat-specialize b/softfloat/softfloat-specialize
deleted file mode 100644
index 28bd4fe..0000000
--- a/softfloat/softfloat-specialize
+++ /dev/null
@@ -1,412 +0,0 @@
-
-/*============================================================================
-
-This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
-Arithmetic Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-/*----------------------------------------------------------------------------
-| Underflow tininess-detection mode, statically initialized to default value.
-| (The declaration in `softfloat.h' must match the `int8' type here.)
-*----------------------------------------------------------------------------*/
-int8 float_detect_tininess = float_tininess_before_rounding;
-
-/*----------------------------------------------------------------------------
-| Raises the exceptions specified by `flags'. Floating-point traps can be
-| defined here if desired. It is currently not possible for such a trap
-| to substitute a result value. If traps are not implemented, this routine
-| should be simply `float_exception_flags |= flags;'.
-*----------------------------------------------------------------------------*/
-
-void float_raise( int8 flags )
-{
-
- float_exception_flags |= flags;
-
-}
-
-/*----------------------------------------------------------------------------
-| Internal canonical NaN format.
-*----------------------------------------------------------------------------*/
-typedef struct {
- flag sign;
- bits64 high, low;
-} commonNaNT;
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated single-precision NaN.
-*----------------------------------------------------------------------------*/
-#define float32_default_nan 0x7FFFFFFF
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is a NaN;
-| otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag float32_is_nan( float32 a )
-{
-
- return ( 0xFF000000 < (bits32) ( a<<1 ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag float32_is_signaling_nan( float32 a )
-{
-
- return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float32ToCommonNaN( float32 a )
-{
- commonNaNT z;
-
- if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a>>31;
- z.low = 0;
- z.high = ( (bits64) a )<<41;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the single-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float32 commonNaNToFloat32( commonNaNT a )
-{
-
- return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes two single-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float32 propagateFloat32NaN( float32 a, float32 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float32_is_nan( a );
- aIsSignalingNaN = float32_is_signaling_nan( a );
- bIsNaN = float32_is_nan( b );
- bIsSignalingNaN = float32_is_signaling_nan( b );
- a |= 0x00400000;
- b |= 0x00400000;
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
-
-}
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated double-precision NaN.
-*----------------------------------------------------------------------------*/
-#define float64_default_nan LIT64( 0x7FFFFFFFFFFFFFFF )
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is a NaN;
-| otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag float64_is_nan( float64 a )
-{
-
- return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is a signaling
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag float64_is_signaling_nan( float64 a )
-{
-
- return
- ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
- && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float64ToCommonNaN( float64 a )
-{
- commonNaNT z;
-
- if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a>>63;
- z.low = 0;
- z.high = a<<12;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the double-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float64 commonNaNToFloat64( commonNaNT a )
-{
-
- return
- ( ( (bits64) a.sign )<<63 )
- | LIT64( 0x7FF8000000000000 )
- | ( a.high>>12 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes two double-precision floating-point values `a' and `b', one of which
-| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
-| signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float64 propagateFloat64NaN( float64 a, float64 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float64_is_nan( a );
- aIsSignalingNaN = float64_is_signaling_nan( a );
- bIsNaN = float64_is_nan( b );
- bIsSignalingNaN = float64_is_signaling_nan( b );
- a |= LIT64( 0x0008000000000000 );
- b |= LIT64( 0x0008000000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated extended double-precision NaN. The
-| `high' and `low' values hold the most- and least-significant bits,
-| respectively.
-*----------------------------------------------------------------------------*/
-#define floatx80_default_nan_high 0x7FFF
-#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is a
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_is_nan( floatx80 a )
-{
-
- return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is a
-| signaling NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_is_signaling_nan( floatx80 a )
-{
- bits64 aLow;
-
- aLow = a.low & ~ LIT64( 0x4000000000000000 );
- return
- ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (bits64) ( aLow<<1 )
- && ( a.low == aLow );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
-| invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT floatx80ToCommonNaN( floatx80 a )
-{
- commonNaNT z;
-
- if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a.high>>15;
- z.low = 0;
- z.high = a.low<<1;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the extended
-| double-precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static floatx80 commonNaNToFloatx80( commonNaNT a )
-{
- floatx80 z;
-
- z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
- z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes two extended double-precision floating-point values `a' and `b', one
-| of which is a NaN, and returns the appropriate NaN result. If either `a' or
-| `b' is a signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = floatx80_is_nan( a );
- aIsSignalingNaN = floatx80_is_signaling_nan( a );
- bIsNaN = floatx80_is_nan( b );
- bIsSignalingNaN = floatx80_is_signaling_nan( b );
- a.low |= LIT64( 0xC000000000000000 );
- b.low |= LIT64( 0xC000000000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| The pattern for a default generated quadruple-precision NaN. The `high' and
-| `low' values hold the most- and least-significant bits, respectively.
-*----------------------------------------------------------------------------*/
-#define float128_default_nan_high LIT64( 0x7FFFFFFFFFFFFFFF )
-#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
-| otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag float128_is_nan( float128 a )
-{
-
- return
- ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
- && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is a
-| signaling NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-flag float128_is_signaling_nan( float128 a )
-{
-
- return
- ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
- && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float128ToCommonNaN( float128 a )
-{
- commonNaNT z;
-
- if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
- z.sign = a.high>>63;
- shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the quadruple-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float128 commonNaNToFloat128( commonNaNT a )
-{
- float128 z;
-
- shift128Right( a.high, a.low, 16, &z.high, &z.low );
- z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes two quadruple-precision floating-point values `a' and `b', one of
-| which is a NaN, and returns the appropriate NaN result. If either `a' or
-| `b' is a signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-static float128 propagateFloat128NaN( float128 a, float128 b )
-{
- flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
-
- aIsNaN = float128_is_nan( a );
- aIsSignalingNaN = float128_is_signaling_nan( a );
- bIsNaN = float128_is_nan( b );
- bIsSignalingNaN = float128_is_signaling_nan( b );
- a.high |= LIT64( 0x0000800000000000 );
- b.high |= LIT64( 0x0000800000000000 );
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
- return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
-
-}
-
-#endif
-
diff --git a/softfloat/softfloat.c b/softfloat/softfloat.c
deleted file mode 100644
index 0d09b40..0000000
--- a/softfloat/softfloat.c
+++ /dev/null
@@ -1,5188 +0,0 @@
-
-/*============================================================================
-
-This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
-Package, Release 2b.
-
-Written by John R. Hauser. This work was made possible in part by the
-International Computer Science Institute, located at Suite 600, 1947 Center
-Street, Berkeley, California 94704. Funding was partially provided by the
-National Science Foundation under grant MIP-9311980. The original version
-of this code was written as part of a project to build a fixed-point vector
-processor in collaboration with the University of California at Berkeley,
-overseen by Profs. Nelson Morgan and John Wawrzynek. More information
-is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
-arithmetic/SoftFloat.html'.
-
-THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
-been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
-RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
-AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
-COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
-EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
-INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
-OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
-
-Derivative works are acceptable, even for commercial purposes, so long as
-(1) the source code for the derivative work includes prominent notice that
-the work is derivative, and (2) the source code includes prominent notice with
-these four paragraphs for those parts of this code that are retained.
-
-=============================================================================*/
-
-#include "milieu.h"
-#include "softfloat.h"
-
-/*----------------------------------------------------------------------------
-| Floating-point rounding mode, extended double-precision rounding precision,
-| and exception flags.
-*----------------------------------------------------------------------------*/
-int8 float_rounding_mode = float_round_nearest_even;
-int8 float_exception_flags = 0;
-#ifdef FLOATX80
-int8 floatx80_rounding_precision = 80;
-#endif
-
-/*----------------------------------------------------------------------------
-| Primitive arithmetic functions, including multi-word arithmetic, and
-| division and square root approximations. (Can be specialized to target if
-| desired.)
-*----------------------------------------------------------------------------*/
-#include "softfloat-macros"
-
-/*----------------------------------------------------------------------------
-| Functions and definitions to determine: (1) whether tininess for underflow
-| is detected before or after rounding by default, (2) what (if anything)
-| happens when exceptions are raised, (3) how signaling NaNs are distinguished
-| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
-| are propagated from function inputs to output. These details are target-
-| specific.
-*----------------------------------------------------------------------------*/
-#include "softfloat-specialize"
-
-/*----------------------------------------------------------------------------
-| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
-| and 7, and returns the properly rounded 32-bit integer corresponding to the
-| input. If `zSign' is 1, the input is negated before being converted to an
-| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
-| is simply rounded to an integer, with the inexact exception raised if the
-| input cannot be represented exactly as an integer. However, if the fixed-
-| point input is too large, the invalid exception is raised and the largest
-| positive or negative integer is returned.
-*----------------------------------------------------------------------------*/
-
-static int32 roundAndPackInt32( flag zSign, bits64 absZ )
-{
- int8 roundingMode;
- flag roundNearestEven;
- int8 roundIncrement, roundBits;
- int32 z;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- roundIncrement = 0x40;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x7F;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = absZ & 0x7F;
- absZ = ( absZ + roundIncrement )>>7;
- absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- z = absZ;
- if ( zSign ) z = - z;
- if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
- float_raise( float_flag_invalid );
- return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( roundBits ) float_exception_flags |= float_flag_inexact;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
-| `absZ1', with binary point between bits 63 and 64 (between the input words),
-| and returns the properly rounded 64-bit integer corresponding to the input.
-| If `zSign' is 1, the input is negated before being converted to an integer.
-| Ordinarily, the fixed-point input is simply rounded to an integer, with
-| the inexact exception raised if the input cannot be represented exactly as
-| an integer. However, if the fixed-point input is too large, the invalid
-| exception is raised and the largest positive or negative integer is
-| returned.
-*----------------------------------------------------------------------------*/
-
-static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 )
-{
- int8 roundingMode;
- flag roundNearestEven, increment;
- int64 z;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- increment = ( (sbits64) absZ1 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && absZ1;
- }
- else {
- increment = ( roundingMode == float_round_up ) && absZ1;
- }
- }
- }
- if ( increment ) {
- ++absZ0;
- if ( absZ0 == 0 ) goto overflow;
- absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
- }
- z = absZ0;
- if ( zSign ) z = - z;
- if ( z && ( ( z < 0 ) ^ zSign ) ) {
- overflow:
- float_raise( float_flag_invalid );
- return
- zSign ? (sbits64) LIT64( 0x8000000000000000 )
- : LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- if ( absZ1 ) float_exception_flags |= float_flag_inexact;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the single-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits32 extractFloat32Frac( float32 a )
-{
-
- return a & 0x007FFFFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the single-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE int16 extractFloat32Exp( float32 a )
-{
-
- return ( a>>23 ) & 0xFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the single-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE flag extractFloat32Sign( float32 a )
-{
-
- return a>>31;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal single-precision floating-point value represented
-| by the denormalized significand `aSig'. The normalized exponent and
-| significand are stored at the locations pointed to by `zExpPtr' and
-| `zSigPtr', respectively.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros32( aSig ) - 8;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
-| single-precision floating-point value, returning the result. After being
-| shifted into the proper positions, the three fields are simply added
-| together to form the result. This means that any integer portion of `zSig'
-| will be added into the exponent. Since a properly normalized significand
-| will have an integer portion equal to 1, the `zExp' input should be 1 less
-| than the desired result exponent whenever `zSig' is a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-
-INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
-
- return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper single-precision floating-
-| point value corresponding to the abstract input. Ordinarily, the abstract
-| value is simply rounded and packed into the single-precision format, with
-| the inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal single-
-| precision floating-point number.
-| The input significand `zSig' has its binary point between bits 30
-| and 29, which is 7 bits to the left of the usual location. This shifted
-| significand must be normalized or smaller. If `zSig' is not normalized,
-| `zExp' must be 0; in that case, the result returned is a subnormal number,
-| and it must not require rounding. In the usual case that `zSig' is
-| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
-| The handling of underflow and overflow follows the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
- int8 roundingMode;
- flag roundNearestEven;
- int8 roundIncrement, roundBits;
- flag isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- roundIncrement = 0x40;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x7F;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig & 0x7F;
- if ( 0xFD <= (bits16) zExp ) {
- if ( ( 0xFD < zExp )
- || ( ( zExp == 0xFD )
- && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ( zSig + roundIncrement < 0x80000000 );
- shift32RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x7F;
- if ( isTiny && roundBits ) float_raise( float_flag_underflow );
- }
- }
- if ( roundBits ) float_exception_flags |= float_flag_inexact;
- zSig = ( zSig + roundIncrement )>>7;
- zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat32( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper single-precision floating-
-| point value corresponding to the abstract input. This routine is just like
-| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
-| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
-| floating-point exponent.
-*----------------------------------------------------------------------------*/
-
-static float32
- normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros32( zSig ) - 1;
- return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the double-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits64 extractFloat64Frac( float64 a )
-{
-
- return a & LIT64( 0x000FFFFFFFFFFFFF );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the double-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE int16 extractFloat64Exp( float64 a )
-{
-
- return ( a>>52 ) & 0x7FF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the double-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE flag extractFloat64Sign( float64 a )
-{
-
- return a>>63;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal double-precision floating-point value represented
-| by the denormalized significand `aSig'. The normalized exponent and
-| significand are stored at the locations pointed to by `zExpPtr' and
-| `zSigPtr', respectively.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros64( aSig ) - 11;
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
-| double-precision floating-point value, returning the result. After being
-| shifted into the proper positions, the three fields are simply added
-| together to form the result. This means that any integer portion of `zSig'
-| will be added into the exponent. Since a properly normalized significand
-| will have an integer portion equal to 1, the `zExp' input should be 1 less
-| than the desired result exponent whenever `zSig' is a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-
-INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
-{
-
- return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper double-precision floating-
-| point value corresponding to the abstract input. Ordinarily, the abstract
-| value is simply rounded and packed into the double-precision format, with
-| the inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded
-| to a subnormal number, and the underflow and inexact exceptions are raised
-| if the abstract input cannot be represented exactly as a subnormal double-
-| precision floating-point number.
-| The input significand `zSig' has its binary point between bits 62
-| and 61, which is 10 bits to the left of the usual location. This shifted
-| significand must be normalized or smaller. If `zSig' is not normalized,
-| `zExp' must be 0; in that case, the result returned is a subnormal number,
-| and it must not require rounding. In the usual case that `zSig' is
-| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
-| The handling of underflow and overflow follows the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
-{
- int8 roundingMode;
- flag roundNearestEven;
- int16 roundIncrement, roundBits;
- flag isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- roundIncrement = 0x200;
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = 0x3FF;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig & 0x3FF;
- if ( 0x7FD <= (bits16) zExp ) {
- if ( ( 0x7FD < zExp )
- || ( ( zExp == 0x7FD )
- && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
- shift64RightJamming( zSig, - zExp, &zSig );
- zExp = 0;
- roundBits = zSig & 0x3FF;
- if ( isTiny && roundBits ) float_raise( float_flag_underflow );
- }
- }
- if ( roundBits ) float_exception_flags |= float_flag_inexact;
- zSig = ( zSig + roundIncrement )>>10;
- zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
- if ( zSig == 0 ) zExp = 0;
- return packFloat64( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand `zSig', and returns the proper double-precision floating-
-| point value corresponding to the abstract input. This routine is just like
-| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
-| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
-| floating-point exponent.
-*----------------------------------------------------------------------------*/
-
-static float64
- normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros64( zSig ) - 1;
- return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the fraction bits of the extended double-precision floating-point
-| value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits64 extractFloatx80Frac( floatx80 a )
-{
-
- return a.low;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the extended double-precision floating-point
-| value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE int32 extractFloatx80Exp( floatx80 a )
-{
-
- return a.high & 0x7FFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the extended double-precision floating-point value
-| `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE flag extractFloatx80Sign( floatx80 a )
-{
-
- return a.high>>15;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal extended double-precision floating-point value
-| represented by the denormalized significand `aSig'. The normalized exponent
-| and significand are stored at the locations pointed to by `zExpPtr' and
-| `zSigPtr', respectively.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
-{
- int8 shiftCount;
-
- shiftCount = countLeadingZeros64( aSig );
- *zSigPtr = aSig<<shiftCount;
- *zExpPtr = 1 - shiftCount;
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
-| extended double-precision floating-point value, returning the result.
-*----------------------------------------------------------------------------*/
-
-INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
-{
- floatx80 z;
-
- z.low = zSig;
- z.high = ( ( (bits16) zSign )<<15 ) + zExp;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and extended significand formed by the concatenation of `zSig0' and `zSig1',
-| and returns the proper extended double-precision floating-point value
-| corresponding to the abstract input. Ordinarily, the abstract value is
-| rounded and packed into the extended double-precision format, with the
-| inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal extended
-| double-precision floating-point number.
-| If `roundingPrecision' is 32 or 64, the result is rounded to the same
-| number of bits as single or double precision, respectively. Otherwise, the
-| result is rounded to the full precision of the extended double-precision
-| format.
-| The input significand must be normalized or smaller. If the input
-| significand is not normalized, `zExp' must be 0; in that case, the result
-| returned is a subnormal number, and it must not require rounding. The
-| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80
- roundAndPackFloatx80(
- int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
- )
-{
- int8 roundingMode;
- flag roundNearestEven, increment, isTiny;
- int64 roundIncrement, roundMask, roundBits;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- if ( roundingPrecision == 80 ) goto precision80;
- if ( roundingPrecision == 64 ) {
- roundIncrement = LIT64( 0x0000000000000400 );
- roundMask = LIT64( 0x00000000000007FF );
- }
- else if ( roundingPrecision == 32 ) {
- roundIncrement = LIT64( 0x0000008000000000 );
- roundMask = LIT64( 0x000000FFFFFFFFFF );
- }
- else {
- goto precision80;
- }
- zSig0 |= ( zSig1 != 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- roundIncrement = 0;
- }
- else {
- roundIncrement = roundMask;
- if ( zSign ) {
- if ( roundingMode == float_round_up ) roundIncrement = 0;
- }
- else {
- if ( roundingMode == float_round_down ) roundIncrement = 0;
- }
- }
- }
- roundBits = zSig0 & roundMask;
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
- ) {
- goto overflow;
- }
- if ( zExp <= 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < 0 )
- || ( zSig0 <= zSig0 + roundIncrement );
- shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
- zExp = 0;
- roundBits = zSig0 & roundMask;
- if ( isTiny && roundBits ) float_raise( float_flag_underflow );
- if ( roundBits ) float_exception_flags |= float_flag_inexact;
- zSig0 += roundIncrement;
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if ( roundBits ) float_exception_flags |= float_flag_inexact;
- zSig0 += roundIncrement;
- if ( zSig0 < roundIncrement ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- roundIncrement = roundMask + 1;
- if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
- roundMask |= roundIncrement;
- }
- zSig0 &= ~ roundMask;
- if ( zSig0 == 0 ) zExp = 0;
- return packFloatx80( zSign, zExp, zSig0 );
- precision80:
- increment = ( (sbits64) zSig1 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig1;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig1;
- }
- }
- }
- if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
- if ( ( 0x7FFE < zExp )
- || ( ( zExp == 0x7FFE )
- && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
- && increment
- )
- ) {
- roundMask = 0;
- overflow:
- float_raise( float_flag_overflow | float_flag_inexact );
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return packFloatx80( zSign, 0x7FFE, ~ roundMask );
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( zExp <= 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < 0 )
- || ! increment
- || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
- shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
- zExp = 0;
- if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
- if ( zSig1 ) float_exception_flags |= float_flag_inexact;
- if ( roundNearestEven ) {
- increment = ( (sbits64) zSig1 < 0 );
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig1;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig1;
- }
- }
- if ( increment ) {
- ++zSig0;
- zSig0 &=
- ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- if ( (sbits64) zSig0 < 0 ) zExp = 1;
- }
- return packFloatx80( zSign, zExp, zSig0 );
- }
- }
- if ( zSig1 ) float_exception_flags |= float_flag_inexact;
- if ( increment ) {
- ++zSig0;
- if ( zSig0 == 0 ) {
- ++zExp;
- zSig0 = LIT64( 0x8000000000000000 );
- }
- else {
- zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
- }
- }
- else {
- if ( zSig0 == 0 ) zExp = 0;
- }
- return packFloatx80( zSign, zExp, zSig0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent
-| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
-| and returns the proper extended double-precision floating-point value
-| corresponding to the abstract input. This routine is just like
-| `roundAndPackFloatx80' except that the input significand does not have to be
-| normalized.
-*----------------------------------------------------------------------------*/
-
-static floatx80
- normalizeRoundAndPackFloatx80(
- int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
- )
-{
- int8 shiftCount;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 );
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- zExp -= shiftCount;
- return
- roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the least-significant 64 fraction bits of the quadruple-precision
-| floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits64 extractFloat128Frac1( float128 a )
-{
-
- return a.low;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the most-significant 48 fraction bits of the quadruple-precision
-| floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE bits64 extractFloat128Frac0( float128 a )
-{
-
- return a.high & LIT64( 0x0000FFFFFFFFFFFF );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the exponent bits of the quadruple-precision floating-point value
-| `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE int32 extractFloat128Exp( float128 a )
-{
-
- return ( a.high>>48 ) & 0x7FFF;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the sign bit of the quadruple-precision floating-point value `a'.
-*----------------------------------------------------------------------------*/
-
-INLINE flag extractFloat128Sign( float128 a )
-{
-
- return a.high>>63;
-
-}
-
-/*----------------------------------------------------------------------------
-| Normalizes the subnormal quadruple-precision floating-point value
-| represented by the denormalized significand formed by the concatenation of
-| `aSig0' and `aSig1'. The normalized exponent is stored at the location
-| pointed to by `zExpPtr'. The most significant 49 bits of the normalized
-| significand are stored at the location pointed to by `zSig0Ptr', and the
-| least significant 64 bits of the normalized significand are stored at the
-| location pointed to by `zSig1Ptr'.
-*----------------------------------------------------------------------------*/
-
-static void
- normalizeFloat128Subnormal(
- bits64 aSig0,
- bits64 aSig1,
- int32 *zExpPtr,
- bits64 *zSig0Ptr,
- bits64 *zSig1Ptr
- )
-{
- int8 shiftCount;
-
- if ( aSig0 == 0 ) {
- shiftCount = countLeadingZeros64( aSig1 ) - 15;
- if ( shiftCount < 0 ) {
- *zSig0Ptr = aSig1>>( - shiftCount );
- *zSig1Ptr = aSig1<<( shiftCount & 63 );
- }
- else {
- *zSig0Ptr = aSig1<<shiftCount;
- *zSig1Ptr = 0;
- }
- *zExpPtr = - shiftCount - 63;
- }
- else {
- shiftCount = countLeadingZeros64( aSig0 ) - 15;
- shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- *zExpPtr = 1 - shiftCount;
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Packs the sign `zSign', the exponent `zExp', and the significand formed
-| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
-| floating-point value, returning the result. After being shifted into the
-| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
-| added together to form the most significant 32 bits of the result. This
-| means that any integer portion of `zSig0' will be added into the exponent.
-| Since a properly normalized significand will have an integer portion equal
-| to 1, the `zExp' input should be 1 less than the desired result exponent
-| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
-| significand.
-*----------------------------------------------------------------------------*/
-
-INLINE float128
- packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
-{
- float128 z;
-
- z.low = zSig1;
- z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and extended significand formed by the concatenation of `zSig0', `zSig1',
-| and `zSig2', and returns the proper quadruple-precision floating-point value
-| corresponding to the abstract input. Ordinarily, the abstract value is
-| simply rounded and packed into the quadruple-precision format, with the
-| inexact exception raised if the abstract input cannot be represented
-| exactly. However, if the abstract value is too large, the overflow and
-| inexact exceptions are raised and an infinity or maximal finite value is
-| returned. If the abstract value is too small, the input value is rounded to
-| a subnormal number, and the underflow and inexact exceptions are raised if
-| the abstract input cannot be represented exactly as a subnormal quadruple-
-| precision floating-point number.
-| The input significand must be normalized or smaller. If the input
-| significand is not normalized, `zExp' must be 0; in that case, the result
-| returned is a subnormal number, and it must not require rounding. In the
-| usual case that the input significand is normalized, `zExp' must be 1 less
-| than the ``true'' floating-point exponent. The handling of underflow and
-| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128
- roundAndPackFloat128(
- flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
-{
- int8 roundingMode;
- flag roundNearestEven, increment, isTiny;
-
- roundingMode = float_rounding_mode;
- roundNearestEven = ( roundingMode == float_round_nearest_even );
- increment = ( (sbits64) zSig2 < 0 );
- if ( ! roundNearestEven ) {
- if ( roundingMode == float_round_to_zero ) {
- increment = 0;
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- if ( 0x7FFD <= (bits32) zExp ) {
- if ( ( 0x7FFD < zExp )
- || ( ( zExp == 0x7FFD )
- && eq128(
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF ),
- zSig0,
- zSig1
- )
- && increment
- )
- ) {
- float_raise( float_flag_overflow | float_flag_inexact );
- if ( ( roundingMode == float_round_to_zero )
- || ( zSign && ( roundingMode == float_round_up ) )
- || ( ! zSign && ( roundingMode == float_round_down ) )
- ) {
- return
- packFloat128(
- zSign,
- 0x7FFE,
- LIT64( 0x0000FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( zExp < 0 ) {
- isTiny =
- ( float_detect_tininess == float_tininess_before_rounding )
- || ( zExp < -1 )
- || ! increment
- || lt128(
- zSig0,
- zSig1,
- LIT64( 0x0001FFFFFFFFFFFF ),
- LIT64( 0xFFFFFFFFFFFFFFFF )
- );
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
- zExp = 0;
- if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
- if ( roundNearestEven ) {
- increment = ( (sbits64) zSig2 < 0 );
- }
- else {
- if ( zSign ) {
- increment = ( roundingMode == float_round_down ) && zSig2;
- }
- else {
- increment = ( roundingMode == float_round_up ) && zSig2;
- }
- }
- }
- }
- if ( zSig2 ) float_exception_flags |= float_flag_inexact;
- if ( increment ) {
- add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
- zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
- }
- else {
- if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
- }
- return packFloat128( zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
-| and significand formed by the concatenation of `zSig0' and `zSig1', and
-| returns the proper quadruple-precision floating-point value corresponding
-| to the abstract input. This routine is just like `roundAndPackFloat128'
-| except that the input significand has fewer bits and does not have to be
-| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
-| point exponent.
-*----------------------------------------------------------------------------*/
-
-static float128
- normalizeRoundAndPackFloat128(
- flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
-{
- int8 shiftCount;
- bits64 zSig2;
-
- if ( zSig0 == 0 ) {
- zSig0 = zSig1;
- zSig1 = 0;
- zExp -= 64;
- }
- shiftCount = countLeadingZeros64( zSig0 ) - 15;
- if ( 0 <= shiftCount ) {
- zSig2 = 0;
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- }
- else {
- shift128ExtraRightJamming(
- zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
- }
- zExp -= shiftCount;
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 int32_to_float32( int32 a )
-{
- flag zSign;
-
- if ( a == 0 ) return 0;
- if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 int32_to_float64( int32 a )
-{
- flag zSign;
- uint32 absA;
- int8 shiftCount;
- bits64 zSig;
-
- if ( a == 0 ) return 0;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 21;
- zSig = absA;
- return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a'
-| to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 int32_to_floatx80( int32 a )
-{
- flag zSign;
- uint32 absA;
- int8 shiftCount;
- bits64 zSig;
-
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 32;
- zSig = absA;
- return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int32_to_float128( int32 a )
-{
- flag zSign;
- uint32 absA;
- int8 shiftCount;
- bits64 zSig0;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros32( absA ) + 17;
- zSig0 = absA;
- return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the single-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 int64_to_float32( int64 a )
-{
- flag zSign;
- uint64 absA;
- int8 shiftCount;
- bits32 zSig;
-
- if ( a == 0 ) return 0;
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) - 40;
- if ( 0 <= shiftCount ) {
- return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
- }
- else {
- shiftCount += 7;
- if ( shiftCount < 0 ) {
- shift64RightJamming( absA, - shiftCount, &absA );
- }
- else {
- absA <<= shiftCount;
- }
- return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the double-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 int64_to_float64( int64 a )
-{
- flag zSign;
-
- if ( a == 0 ) return 0;
- if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
- return packFloat64( 1, 0x43E, 0 );
- }
- zSign = ( a < 0 );
- return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a'
-| to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 int64_to_floatx80( int64 a )
-{
- flag zSign;
- uint64 absA;
- int8 shiftCount;
-
- if ( a == 0 ) return packFloatx80( 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA );
- return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int64_to_float128( int64 a )
-{
- flag zSign;
- uint64 absA;
- int8 shiftCount;
- int32 zExp;
- bits64 zSig0, zSig1;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = countLeadingZeros64( absA ) + 49;
- zExp = 0x406E - shiftCount;
- if ( 64 <= shiftCount ) {
- zSig1 = 0;
- zSig0 = absA;
- shiftCount -= 64;
- }
- else {
- zSig1 = absA;
- zSig0 = 0;
- }
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- return packFloat128( zSign, zExp, zSig0, zSig1 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 float32_to_int32( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- bits64 aSig64;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= 0x00800000;
- shiftCount = 0xAF - aExp;
- aSig64 = aSig;
- aSig64 <<= 32;
- if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
- return roundAndPackInt32( aSign, aSig64 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32 float32_to_int32_round_to_zero( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- int32 z;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( a != 0xCF000000 ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- }
- return (sbits32) 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 float32_to_int64( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- bits64 aSig64, aSigExtra;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = 0xBE - aExp;
- if ( shiftCount < 0 ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- if ( aExp ) aSig |= 0x00800000;
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
- return roundAndPackInt64( aSign, aSig64, aSigExtra );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
-| conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64 float32_to_int64_round_to_zero( float32 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits32 aSig;
- bits64 aSig64;
- int64 z;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0xBE;
- if ( 0 <= shiftCount ) {
- if ( a != 0xDF000000 ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- aSig64 = aSig | 0x00800000;
- aSig64 <<= 40;
- z = aSig64>>( - shiftCount );
- if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the double-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float32_to_float64( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
- return packFloat64( aSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float32_to_floatx80( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- aSig |= 0x00800000;
- return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the double-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float32_to_float128( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 aSig;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) );
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Rounds the single-precision floating-point value `a' to an integer, and
-| returns the result as a single-precision floating-point value. The
-| operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_round_to_int( float32 a )
-{
- flag aSign;
- int16 aExp;
- bits32 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float32 z;
-
- aExp = extractFloat32Exp( a );
- if ( 0x96 <= aExp ) {
- if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
- return propagateFloat32NaN( a, a );
- }
- return a;
- }
- if ( aExp <= 0x7E ) {
- if ( (bits32) ( a<<1 ) == 0 ) return a;
- float_exception_flags |= float_flag_inexact;
- aSign = extractFloat32Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
- return packFloat32( aSign, 0x7F, 0 );
- }
- break;
- case float_round_down:
- return aSign ? 0xBF800000 : 0;
- case float_round_up:
- return aSign ? 0x80000000 : 0x3F800000;
- }
- return packFloat32( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x96 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z += lastBitMask>>1;
- if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z += roundBitsMask;
- }
- }
- z &= ~ roundBitsMask;
- if ( z != a ) float_exception_flags |= float_flag_inexact;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the single-precision
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-| before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 6;
- bSig <<= 6;
- if ( 0 < expDiff ) {
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x20000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x20000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
- zSig = 0x40000000 + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= 0x20000000;
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (sbits32) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the single-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 7;
- bSig <<= 7;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0xFF ) {
- if ( aSig | bSig ) return propagateFloat32NaN( a, b );
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign ^ 1, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= 0x40000000;
- }
- shift32RightJamming( aSig, - expDiff, &aSig );
- bSig |= 0x40000000;
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= 0x40000000;
- }
- shift32RightJamming( bSig, expDiff, &bSig );
- aSig |= 0x40000000;
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the single-precision floating-point values `a'
-| and `b'. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_add( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return addFloat32Sigs( a, b, aSign );
- }
- else {
- return subFloat32Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the single-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_sub( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign == bSign ) {
- return subFloat32Sigs( a, b, aSign );
- }
- else {
- return addFloat32Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the single-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_mul( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig;
- bits64 zSig64;
- bits32 zSig;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x7F;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
- zSig = zSig64;
- if ( 0 <= (sbits32) ( zSig<<1 ) ) {
- zSig <<= 1;
- --zExp;
- }
- return roundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the single-precision floating-point value `a'
-| by the corresponding value `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_div( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits32 aSig, bSig, zSig;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, b );
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- return packFloat32( zSign, 0xFF, 0 );
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return packFloat32( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- float_raise( float_flag_divbyzero );
- return packFloat32( zSign, 0xFF, 0 );
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x7D;
- aSig = ( aSig | 0x00800000 )<<7;
- bSig = ( bSig | 0x00800000 )<<8;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = ( ( (bits64) aSig )<<32 ) / bSig;
- if ( ( zSig & 0x3F ) == 0 ) {
- zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
- }
- return roundAndPackFloat32( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the single-precision floating-point value `a'
-| with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_rem( float32 a, float32 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits32 aSig, bSig;
- bits32 q;
- bits64 aSig64, bSig64, q64;
- bits32 alternateASig;
- sbits32 sigMean;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- bSig = extractFloat32Frac( b );
- bExp = extractFloat32Exp( b );
- bSign = extractFloat32Sign( b );
- if ( aExp == 0xFF ) {
- if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
- return propagateFloat32NaN( a, b );
- }
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( bExp == 0xFF ) {
- if ( bSig ) return propagateFloat32NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- normalizeFloat32Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig |= 0x00800000;
- bSig |= 0x00800000;
- if ( expDiff < 32 ) {
- aSig <<= 8;
- bSig <<= 8;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- if ( 0 < expDiff ) {
- q = ( ( (bits64) aSig )<<32 ) / bSig;
- q >>= 32 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- }
- else {
- if ( bSig <= aSig ) aSig -= bSig;
- aSig64 = ( (bits64) aSig )<<40;
- bSig64 = ( (bits64) bSig )<<40;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- aSig64 = - ( ( bSig * q64 )<<38 );
- expDiff -= 62;
- }
- expDiff += 64;
- q64 = estimateDiv128To64( aSig64, 0, bSig64 );
- q64 = ( 2 < q64 ) ? q64 - 2 : 0;
- q = q64>>( 64 - expDiff );
- bSig <<= 6;
- aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (sbits32) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (sbits32) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the single-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float32_sqrt( float32 a )
-{
- flag aSign;
- int16 aExp, zExp;
- bits32 aSig, zSig;
- bits64 rem, term;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( aExp == 0xFF ) {
- if ( aSig ) return propagateFloat32NaN( a, 0 );
- if ( ! aSign ) return a;
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise( float_flag_invalid );
- return float32_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return 0;
- normalizeFloat32Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
- aSig = ( aSig | 0x00800000 )<<8;
- zSig = estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig & 0x7F ) <= 5 ) {
- if ( zSig < 2 ) {
- zSig = 0x7FFFFFFF;
- goto roundAndPack;
- }
- aSig >>= aExp & 1;
- term = ( (bits64) zSig ) * zSig;
- rem = ( ( (bits64) aSig )<<32 ) - term;
- while ( (sbits64) rem < 0 ) {
- --zSig;
- rem += ( ( (bits64) zSig )<<1 ) | 1;
- }
- zSig |= ( rem != 0 );
- }
- shift32RightJamming( zSig, 1, &zSig );
- roundAndPack:
- return roundAndPackFloat32( 0, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float32_eq( float32 a, float32 b )
-{
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float32_le( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float32_lt( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float32_eq_signaling( float32 a, float32 b )
-{
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float32_le_quiet( float32 a, float32 b )
-{
- flag aSign, bSign;
- int16 aExp, bExp;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the single-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float32_lt_quiet( float32 a, float32 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
- || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
- ) {
- if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat32Sign( a );
- bSign = extractFloat32Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 float64_to_int32( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x42C - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32( aSign, aSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32 float64_to_int32_round_to_zero( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig, savedASig;
- int32 z;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 float64_to_int64( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig, aSigExtra;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x43E < aExp ) {
- float_raise( float_flag_invalid );
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- aSig <<= - shiftCount;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64( aSign, aSig, aSigExtra );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64 float64_to_int64_round_to_zero( float64 a )
-{
- flag aSign;
- int16 aExp, shiftCount;
- bits64 aSig;
- int64 z;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = aExp - 0x433;
- if ( 0 <= shiftCount ) {
- if ( 0x43E <= aExp ) {
- if ( a != LIT64( 0xC3E0000000000000 ) ) {
- float_raise( float_flag_invalid );
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- z = aSig<<shiftCount;
- }
- else {
- if ( aExp < 0x3FE ) {
- if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the single-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float64_to_float32( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits64 aSig;
- bits32 zSig;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 22, &aSig );
- zSig = aSig;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x381;
- }
- return roundAndPackFloat32( aSign, aExp, zSig );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the extended double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float64_to_floatx80( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits64 aSig;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- return
- packFloatx80(
- aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the quadruple-precision floating-point format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float64_to_float128( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits64 aSig, zSig0, zSig1;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) );
- return packFloat128( aSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- --aExp;
- }
- shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Rounds the double-precision floating-point value `a' to an integer, and
-| returns the result as a double-precision floating-point value. The
-| operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_round_to_int( float64 a )
-{
- flag aSign;
- int16 aExp;
- bits64 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float64 z;
-
- aExp = extractFloat64Exp( a );
- if ( 0x433 <= aExp ) {
- if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
- return propagateFloat64NaN( a, a );
- }
- return a;
- }
- if ( aExp < 0x3FF ) {
- if ( (bits64) ( a<<1 ) == 0 ) return a;
- float_exception_flags |= float_flag_inexact;
- aSign = extractFloat64Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
- return packFloat64( aSign, 0x3FF, 0 );
- }
- break;
- case float_round_down:
- return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
- case float_round_up:
- return
- aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
- }
- return packFloat64( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x433 - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z += lastBitMask>>1;
- if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z += roundBitsMask;
- }
- }
- z &= ~ roundBitsMask;
- if ( z != a ) float_exception_flags |= float_flag_inexact;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the double-precision
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-| before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 9;
- bSig <<= 9;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x2000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FF ) {
- if ( aSig | bSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
- zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
- zExp = aExp;
- goto roundAndPack;
- }
- aSig |= LIT64( 0x2000000000000000 );
- zSig = ( aSig + bSig )<<1;
- --zExp;
- if ( (sbits64) zSig < 0 ) {
- zSig = aSig + bSig;
- ++zExp;
- }
- roundAndPack:
- return roundAndPackFloat64( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the double-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
-{
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
- int16 expDiff;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- expDiff = aExp - bExp;
- aSig <<= 10;
- bSig <<= 10;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FF ) {
- if ( aSig | bSig ) return propagateFloat64NaN( a, b );
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloat64( float_rounding_mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign ^ 1, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( aSig, - expDiff, &aSig );
- bSig |= LIT64( 0x4000000000000000 );
- bBigger:
- zSig = bSig - aSig;
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig |= LIT64( 0x4000000000000000 );
- }
- shift64RightJamming( bSig, expDiff, &bSig );
- aSig |= LIT64( 0x4000000000000000 );
- aBigger:
- zSig = aSig - bSig;
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat64( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the double-precision floating-point values `a'
-| and `b'. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_add( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return addFloat64Sigs( a, b, aSign );
- }
- else {
- return subFloat64Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the double-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_sub( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign == bSign ) {
- return subFloat64Sigs( a, b, aSign );
- }
- else {
- return addFloat64Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the double-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_mul( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FF;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- zSig0 |= ( zSig1 != 0 );
- if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
- zSig0 <<= 1;
- --zExp;
- }
- return roundAndPackFloat64( zSign, zExp, zSig0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the double-precision floating-point value `a'
-| by the corresponding value `b'. The operation is performed according to
-| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_div( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig;
- bits64 rem0, rem1;
- bits64 term0, term1;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, b );
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- return packFloat64( zSign, 0x7FF, 0 );
- }
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return packFloat64( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- float_raise( float_flag_divbyzero );
- return packFloat64( zSign, 0x7FF, 0 );
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FD;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( bSig <= ( aSig + aSig ) ) {
- aSig >>= 1;
- ++zExp;
- }
- zSig = estimateDiv128To64( aSig, 0, bSig );
- if ( ( zSig & 0x1FF ) <= 2 ) {
- mul64To128( bSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig |= ( rem1 != 0 );
- }
- return roundAndPackFloat64( zSign, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the double-precision floating-point value `a'
-| with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_rem( float64 a, float64 b )
-{
- flag aSign, bSign, zSign;
- int16 aExp, bExp, expDiff;
- bits64 aSig, bSig;
- bits64 q, alternateASig;
- sbits64 sigMean;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- bSig = extractFloat64Frac( b );
- bExp = extractFloat64Exp( b );
- bSign = extractFloat64Sign( b );
- if ( aExp == 0x7FF ) {
- if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
- return propagateFloat64NaN( a, b );
- }
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( bExp == 0x7FF ) {
- if ( bSig ) return propagateFloat64NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- normalizeFloat64Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return a;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- expDiff = aExp - bExp;
- aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
- bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- aSig >>= 1;
- }
- q = ( bSig <= aSig );
- if ( q ) aSig -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- aSig = - ( ( bSig>>2 ) * q );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig, 0, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- bSig >>= 2;
- aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
- }
- else {
- aSig >>= 2;
- bSig >>= 2;
- }
- do {
- alternateASig = aSig;
- ++q;
- aSig -= bSig;
- } while ( 0 <= (sbits64) aSig );
- sigMean = aSig + alternateASig;
- if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
- aSig = alternateASig;
- }
- zSign = ( (sbits64) aSig < 0 );
- if ( zSign ) aSig = - aSig;
- return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the double-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float64_sqrt( float64 a )
-{
- flag aSign;
- int16 aExp, zExp;
- bits64 aSig, zSig, doubleZSig;
- bits64 rem0, rem1, term0, term1;
- float64 z;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp == 0x7FF ) {
- if ( aSig ) return propagateFloat64NaN( a, a );
- if ( ! aSign ) return a;
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( aSign ) {
- if ( ( aExp | aSig ) == 0 ) return a;
- float_raise( float_flag_invalid );
- return float64_default_nan;
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return 0;
- normalizeFloat64Subnormal( aSig, &aExp, &aSig );
- }
- zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
- aSig |= LIT64( 0x0010000000000000 );
- zSig = estimateSqrt32( aExp, aSig>>21 );
- aSig <<= 9 - ( aExp & 1 );
- zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
- if ( ( zSig & 0x1FF ) <= 5 ) {
- doubleZSig = zSig<<1;
- mul64To128( zSig, zSig, &term0, &term1 );
- sub128( aSig, 0, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig;
- doubleZSig -= 2;
- add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
- }
- zSig |= ( ( rem0 | rem1 ) != 0 );
- }
- return roundAndPackFloat64( 0, zExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float64_eq( float64 a, float64 b )
-{
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float64_le( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float64_lt( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is equal to the
-| corresponding value `b', and 0 otherwise. The invalid exception is raised
-| if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float64_eq_signaling( float64 a, float64 b )
-{
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than or
-| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float64_le_quiet( float64 a, float64 b )
-{
- flag aSign, bSign;
- int16 aExp, bExp;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
- return ( a == b ) || ( aSign ^ ( a < b ) );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float64_lt_quiet( float64 a, float64 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
- || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
- ) {
- if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat64Sign( a );
- bSign = extractFloat64Sign( b );
- if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
- return ( a != b ) && ( aSign ^ ( a < b ) );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 32-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic---which means in particular that the conversion
-| is rounded according to the current rounding mode. If `a' is a NaN, the
-| largest positive integer is returned. Otherwise, if the conversion
-| overflows, the largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 floatx80_to_int32( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
- shiftCount = 0x4037 - aExp;
- if ( shiftCount <= 0 ) shiftCount = 1;
- shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32( aSign, aSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 32-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic, except that the conversion is always rounded
-| toward zero. If `a' is a NaN, the largest positive integer is returned.
-| Otherwise, if the conversion overflows, the largest integer with the same
-| sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 floatx80_to_int32_round_to_zero( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig, savedASig;
- int32 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- shiftCount = 0x403E - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 64-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic---which means in particular that the conversion
-| is rounded according to the current rounding mode. If `a' is a NaN,
-| the largest positive integer is returned. Otherwise, if the conversion
-| overflows, the largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 floatx80_to_int64( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig, aSigExtra;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = 0x403E - aExp;
- if ( shiftCount <= 0 ) {
- if ( shiftCount ) {
- float_raise( float_flag_invalid );
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig != LIT64( 0x8000000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64( aSign, aSig, aSigExtra );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the 64-bit two's complement integer format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic, except that the conversion is always rounded
-| toward zero. If `a' is a NaN, the largest positive integer is returned.
-| Otherwise, if the conversion overflows, the largest integer with the same
-| sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 floatx80_to_int64_round_to_zero( floatx80 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig;
- int64 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- shiftCount = aExp - 0x403E;
- if ( 0 <= shiftCount ) {
- aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
- if ( ( a.high != 0xC03E ) || aSig ) {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- else if ( aExp < 0x3FFF ) {
- if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the single-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 floatx80_to_float32( floatx80 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- shift64RightJamming( aSig, 33, &aSig );
- if ( aExp || aSig ) aExp -= 0x3F81;
- return roundAndPackFloat32( aSign, aExp, aSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the double-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 floatx80_to_float64( floatx80 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig, zSig;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shift64RightJamming( aSig, 1, &zSig );
- if ( aExp || aSig ) aExp -= 0x3C01;
- return roundAndPackFloat64( aSign, aExp, zSig );
-
-}
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the extended double-precision floating-
-| point value `a' to the quadruple-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 floatx80_to_float128( floatx80 a )
-{
- flag aSign;
- int16 aExp;
- bits64 aSig, zSig0, zSig1;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
- return commonNaNToFloat128( floatx80ToCommonNaN( a ) );
- }
- shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
- return packFloat128( aSign, aExp, zSig0, zSig1 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Rounds the extended double-precision floating-point value `a' to an integer,
-| and returns the result as an extended quadruple-precision floating-point
-| value. The operation is performed according to the IEC/IEEE Standard for
-| Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_round_to_int( floatx80 a )
-{
- flag aSign;
- int32 aExp;
- bits64 lastBitMask, roundBitsMask;
- int8 roundingMode;
- floatx80 z;
-
- aExp = extractFloatx80Exp( a );
- if ( 0x403E <= aExp ) {
- if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
- return propagateFloatx80NaN( a, a );
- }
- return a;
- }
- if ( aExp < 0x3FFF ) {
- if ( ( aExp == 0 )
- && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
- return a;
- }
- float_exception_flags |= float_flag_inexact;
- aSign = extractFloatx80Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
- ) {
- return
- packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- break;
- case float_round_down:
- return
- aSign ?
- packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
- : packFloatx80( 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloatx80( 1, 0, 0 )
- : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
- }
- return packFloatx80( aSign, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x403E - aExp;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z.low += lastBitMask>>1;
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
- z.low += roundBitsMask;
- }
- }
- z.low &= ~ roundBitsMask;
- if ( z.low == 0 ) {
- ++z.high;
- z.low = LIT64( 0x8000000000000000 );
- }
- if ( z.low != a.low ) float_exception_flags |= float_flag_inexact;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the extended double-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
-| negated before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- int32 expDiff;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN( a, b );
- }
- return a;
- }
- zSig1 = 0;
- zSig0 = aSig + bSig;
- if ( aExp == 0 ) {
- normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
- goto roundAndPack;
- }
- zExp = aExp;
- goto shiftRight1;
- }
- zSig0 = aSig + bSig;
- if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= LIT64( 0x8000000000000000 );
- ++zExp;
- roundAndPack:
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the extended
-| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- int32 expDiff;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
- return propagateFloatx80NaN( a, b );
- }
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- zSig1 = 0;
- if ( bSig < aSig ) goto aBigger;
- if ( aSig < bSig ) goto bBigger;
- return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) ++expDiff;
- shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
- bBigger:
- sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) --expDiff;
- shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
- aBigger:
- sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- return
- normalizeRoundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the extended double-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_add( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return addFloatx80Sigs( a, b, aSign );
- }
- else {
- return subFloatx80Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the extended double-precision floating-
-| point values `a' and `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_sub( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign == bSign ) {
- return subFloatx80Sigs( a, b, aSign );
- }
- else {
- return addFloatx80Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the extended double-precision floating-
-| point values `a' and `b'. The operation is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_mul( floatx80 a, floatx80 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 )
- || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN( a, b );
- }
- if ( ( bExp | bSig ) == 0 ) goto invalid;
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- zExp = aExp + bExp - 0x3FFE;
- mul64To128( aSig, bSig, &zSig0, &zSig1 );
- if ( 0 < (sbits64) zSig0 ) {
- shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
- --zExp;
- }
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the extended double-precision floating-point
-| value `a' by the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_div( floatx80 a, floatx80 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig, bSig, zSig0, zSig1;
- bits64 rem0, rem1, rem2, term0, term1, term2;
- floatx80 z;
-
- aSig = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- goto invalid;
- }
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return packFloatx80( zSign, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- if ( ( aExp | aSig ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- float_raise( float_flag_divbyzero );
- return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
- normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
- }
- zExp = aExp - bExp + 0x3FFE;
- rem1 = 0;
- if ( bSig <= aSig ) {
- shift128Right( aSig, 0, 1, &aSig, &rem1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig, rem1, bSig );
- mul64To128( bSig, zSig0, &term0, &term1 );
- sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, bSig );
- if ( (bits64) ( zSig1<<1 ) <= 8 ) {
- mul64To128( bSig, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
- }
- zSig1 |= ( ( rem1 | rem2 ) != 0 );
- }
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the extended double-precision floating-point value
-| `a' with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_rem( floatx80 a, floatx80 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, expDiff;
- bits64 aSig0, aSig1, bSig;
- bits64 q, term0, term1, alternateASig0, alternateASig1;
- floatx80 z;
-
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- bSig = extractFloatx80Frac( b );
- bExp = extractFloatx80Exp( b );
- bSign = extractFloatx80Sign( b );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig0<<1 )
- || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
- return propagateFloatx80NaN( a, b );
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( bSig == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
- }
- if ( aExp == 0 ) {
- if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- bSig |= LIT64( 0x8000000000000000 );
- zSign = aSign;
- expDiff = aExp - bExp;
- aSig1 = 0;
- if ( expDiff < 0 ) {
- if ( expDiff < -1 ) return a;
- shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
- expDiff = 0;
- }
- q = ( bSig <= aSig0 );
- if ( q ) aSig0 -= bSig;
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- mul64To128( bSig, q, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
- expDiff -= 62;
- }
- expDiff += 64;
- if ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig );
- q = ( 2 < q ) ? q - 2 : 0;
- q >>= 64 - expDiff;
- mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
- while ( le128( term0, term1, aSig0, aSig1 ) ) {
- ++q;
- sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
- }
- }
- else {
- term1 = 0;
- term0 = bSig;
- }
- sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
- if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
- || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
- && ( q & 1 ) )
- ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- zSign = ! zSign;
- }
- return
- normalizeRoundAndPackFloatx80(
- 80, zSign, bExp + expDiff, aSig0, aSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the extended double-precision floating-point
-| value `a'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 floatx80_sqrt( floatx80 a )
-{
- flag aSign;
- int32 aExp, zExp;
- bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- floatx80 z;
-
- aSig0 = extractFloatx80Frac( a );
- aExp = extractFloatx80Exp( a );
- aSign = extractFloatx80Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 ) == 0 ) return a;
- invalid:
- float_raise( float_flag_invalid );
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
- normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
- zSig0 = estimateSqrt32( aExp, aSig0>>32 );
- shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
- zSig0 |= doubleZSig0;
- return
- roundAndPackFloatx80(
- floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| equal to the corresponding value `b', and 0 otherwise. The comparison is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_eq( floatx80 a, floatx80 b )
-{
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than or equal to the corresponding value `b', and 0 otherwise. The
-| comparison is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_le( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is
-| less than the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_lt( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is equal
-| to the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_eq_signaling( floatx80 a, floatx80 b )
-{
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
-| do not cause an exception. Otherwise, the comparison is performed according
-| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_le_quiet( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the extended double-precision floating-point value `a' is less
-| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
-| an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag floatx80_lt_quiet( floatx80 a, floatx80 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( a )<<1 ) )
- || ( ( extractFloatx80Exp( b ) == 0x7FFF )
- && (bits64) ( extractFloatx80Frac( b )<<1 ) )
- ) {
- if ( floatx80_is_signaling_nan( a )
- || floatx80_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloatx80Sign( a );
- bSign = extractFloatx80Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-#endif
-
-#ifdef FLOAT128
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 32-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32 float128_to_int32( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- aSig0 |= ( aSig1 != 0 );
- shiftCount = 0x4028 - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
- return roundAndPackInt32( aSign, aSig0 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 32-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
-| conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32 float128_to_int32_round_to_zero( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1, savedASig;
- int32 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- aSig0 |= ( aSig1 != 0 );
- if ( 0x401E < aExp ) {
- if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FFF ) {
- if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact;
- return 0;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- savedASig = aSig0;
- aSig0 >>= shiftCount;
- z = aSig0;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise( float_flag_invalid );
- return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig0<<shiftCount ) != savedASig ) {
- float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 64-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64 float128_to_int64( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = 0x402F - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x403E < aExp ) {
- float_raise( float_flag_invalid );
- if ( ! aSign
- || ( ( aExp == 0x7FFF )
- && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
- )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
- }
- else {
- shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
- }
- return roundAndPackInt64( aSign, aSig0, aSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the 64-bit two's complement integer format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64 float128_to_int64_round_to_zero( float128 a )
-{
- flag aSign;
- int32 aExp, shiftCount;
- bits64 aSig0, aSig1;
- int64 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
- shiftCount = aExp - 0x402F;
- if ( 0 < shiftCount ) {
- if ( 0x403E <= aExp ) {
- aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
- if ( ( a.high == LIT64( 0xC03E000000000000 ) )
- && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
- if ( aSig1 ) float_exception_flags |= float_flag_inexact;
- }
- else {
- float_raise( float_flag_invalid );
- if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (sbits64) LIT64( 0x8000000000000000 );
- }
- z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
- if ( (bits64) ( aSig1<<shiftCount ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( aExp | aSig0 | aSig1 ) {
- float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig0>>( - shiftCount );
- if ( aSig1
- || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the single-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float32 float128_to_float32( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig0, aSig1;
- bits32 zSig;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat32( float128ToCommonNaN( a ) );
- }
- return packFloat32( aSign, 0xFF, 0 );
- }
- aSig0 |= ( aSig1 != 0 );
- shift64RightJamming( aSig0, 18, &aSig0 );
- zSig = aSig0;
- if ( aExp || zSig ) {
- zSig |= 0x40000000;
- aExp -= 0x3F81;
- }
- return roundAndPackFloat32( aSign, aExp, zSig );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the double-precision floating-point format. The conversion
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float64 float128_to_float64( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloat64( float128ToCommonNaN( a ) );
- }
- return packFloat64( aSign, 0x7FF, 0 );
- }
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- aSig0 |= ( aSig1 != 0 );
- if ( aExp || aSig0 ) {
- aSig0 |= LIT64( 0x4000000000000000 );
- aExp -= 0x3C01;
- }
- return roundAndPackFloat64( aSign, aExp, aSig0 );
-
-}
-
-#ifdef FLOATX80
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the quadruple-precision floating-point
-| value `a' to the extended double-precision floating-point format. The
-| conversion is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-floatx80 float128_to_floatx80( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 aSig0, aSig1;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) {
- return commonNaNToFloatx80( float128ToCommonNaN( a ) );
- }
- return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
- return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
-
-}
-
-#endif
-
-/*----------------------------------------------------------------------------
-| Rounds the quadruple-precision floating-point value `a' to an integer, and
-| returns the result as a quadruple-precision floating-point value. The
-| operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_round_to_int( float128 a )
-{
- flag aSign;
- int32 aExp;
- bits64 lastBitMask, roundBitsMask;
- int8 roundingMode;
- float128 z;
-
- aExp = extractFloat128Exp( a );
- if ( 0x402F <= aExp ) {
- if ( 0x406F <= aExp ) {
- if ( ( aExp == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
- ) {
- return propagateFloat128NaN( a, a );
- }
- return a;
- }
- lastBitMask = 1;
- lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
- roundBitsMask = lastBitMask - 1;
- z = a;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- if ( lastBitMask ) {
- add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
- if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
- }
- else {
- if ( (sbits64) z.low < 0 ) {
- ++z.high;
- if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
- }
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat128Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
- }
- }
- z.low &= ~ roundBitsMask;
- }
- else {
- if ( aExp < 0x3FFF ) {
- if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
- float_exception_flags |= float_flag_inexact;
- aSign = extractFloat128Sign( a );
- switch ( float_rounding_mode ) {
- case float_round_nearest_even:
- if ( ( aExp == 0x3FFE )
- && ( extractFloat128Frac0( a )
- | extractFloat128Frac1( a ) )
- ) {
- return packFloat128( aSign, 0x3FFF, 0, 0 );
- }
- break;
- case float_round_down:
- return
- aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
- : packFloat128( 0, 0, 0, 0 );
- case float_round_up:
- return
- aSign ? packFloat128( 1, 0, 0, 0 )
- : packFloat128( 0, 0x3FFF, 0, 0 );
- }
- return packFloat128( aSign, 0, 0, 0 );
- }
- lastBitMask = 1;
- lastBitMask <<= 0x402F - aExp;
- roundBitsMask = lastBitMask - 1;
- z.low = 0;
- z.high = a.high;
- roundingMode = float_rounding_mode;
- if ( roundingMode == float_round_nearest_even ) {
- z.high += lastBitMask>>1;
- if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
- z.high &= ~ lastBitMask;
- }
- }
- else if ( roundingMode != float_round_to_zero ) {
- if ( extractFloat128Sign( z )
- ^ ( roundingMode == float_round_up ) ) {
- z.high |= ( a.low != 0 );
- z.high += roundBitsMask;
- }
- }
- z.high &= ~ roundBitsMask;
- }
- if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
- float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the absolute values of the quadruple-precision
-| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
-| before being returned. `zSign' is ignored if the result is a NaN.
-| The addition is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- int32 expDiff;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- if ( 0 < expDiff ) {
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
- zExp = aExp;
- }
- else if ( expDiff < 0 ) {
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x0001000000000000 );
- }
- shift128ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
- zExp = bExp;
- }
- else {
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN( a, b );
- }
- return a;
- }
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
- zSig2 = 0;
- zSig0 |= LIT64( 0x0002000000000000 );
- zExp = aExp;
- goto shiftRight1;
- }
- aSig0 |= LIT64( 0x0001000000000000 );
- add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- --zExp;
- if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
- ++zExp;
- shiftRight1:
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- roundAndPack:
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the absolute values of the quadruple-
-| precision floating-point values `a' and `b'. If `zSign' is 1, the
-| difference is negated before being returned. `zSign' is ignored if the
-| result is a NaN. The subtraction is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
-{
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
- int32 expDiff;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- expDiff = aExp - bExp;
- shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
- shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
- if ( 0 < expDiff ) goto aExpBigger;
- if ( expDiff < 0 ) goto bExpBigger;
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
- return propagateFloat128NaN( a, b );
- }
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- aExp = 1;
- bExp = 1;
- }
- if ( bSig0 < aSig0 ) goto aBigger;
- if ( aSig0 < bSig0 ) goto bBigger;
- if ( bSig1 < aSig1 ) goto aBigger;
- if ( aSig1 < bSig1 ) goto bBigger;
- return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 );
- bExpBigger:
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- ++expDiff;
- }
- else {
- aSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- bSig0 |= LIT64( 0x4000000000000000 );
- bBigger:
- sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zExp = bExp;
- zSign ^= 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- --expDiff;
- }
- else {
- bSig0 |= LIT64( 0x4000000000000000 );
- }
- shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
- aSig0 |= LIT64( 0x4000000000000000 );
- aBigger:
- sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
- zExp = aExp;
- normalizeRoundAndPack:
- --zExp;
- return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of adding the quadruple-precision floating-point values
-| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
-| for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_add( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return addFloat128Sigs( a, b, aSign );
- }
- else {
- return subFloat128Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of subtracting the quadruple-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_sub( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign == bSign ) {
- return subFloat128Sigs( a, b, aSign );
- }
- else {
- return addFloat128Sigs( a, b, aSign );
- }
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the quadruple-precision floating-point
-| values `a' and `b'. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_mul( float128 a, float128 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN( a, b );
- }
- if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- zExp = aExp + bExp - 0x4000;
- aSig0 |= LIT64( 0x0001000000000000 );
- shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
- mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
- add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
- zSig2 |= ( zSig3 != 0 );
- if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
- shift128ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
- ++zExp;
- }
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of dividing the quadruple-precision floating-point value
-| `a' by the corresponding value `b'. The operation is performed according to
-| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_div( float128 a, float128 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, zExp;
- bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- zSign = aSign ^ bSign;
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- goto invalid;
- }
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return packFloat128( zSign, 0, 0, 0 );
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- float_raise( float_flag_divbyzero );
- return packFloat128( zSign, 0x7FFF, 0, 0 );
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = aExp - bExp + 0x3FFD;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
- shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
- ++zExp;
- }
- zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
- mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
- sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
- }
- zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
- if ( ( zSig1 & 0x3FFF ) <= 4 ) {
- mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
- sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the remainder of the quadruple-precision floating-point value `a'
-| with respect to the corresponding value `b'. The operation is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_rem( float128 a, float128 b )
-{
- flag aSign, bSign, zSign;
- int32 aExp, bExp, expDiff;
- bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
- bits64 allZero, alternateASig0, alternateASig1, sigMean1;
- sbits64 sigMean0;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- bSig1 = extractFloat128Frac1( b );
- bSig0 = extractFloat128Frac0( b );
- bExp = extractFloat128Exp( b );
- bSign = extractFloat128Sign( b );
- if ( aExp == 0x7FFF ) {
- if ( ( aSig0 | aSig1 )
- || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
- return propagateFloat128NaN( a, b );
- }
- goto invalid;
- }
- if ( bExp == 0x7FFF ) {
- if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
- return a;
- }
- if ( bExp == 0 ) {
- if ( ( bSig0 | bSig1 ) == 0 ) {
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return a;
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- expDiff = aExp - bExp;
- if ( expDiff < -1 ) return a;
- shortShift128Left(
- aSig0 | LIT64( 0x0001000000000000 ),
- aSig1,
- 15 - ( expDiff < 0 ),
- &aSig0,
- &aSig1
- );
- shortShift128Left(
- bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
- q = le128( bSig0, bSig1, aSig0, aSig1 );
- if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- expDiff -= 64;
- while ( 0 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
- shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
- sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
- expDiff -= 61;
- }
- if ( -64 < expDiff ) {
- q = estimateDiv128To64( aSig0, aSig1, bSig0 );
- q = ( 4 < q ) ? q - 4 : 0;
- q >>= - expDiff;
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- expDiff += 52;
- if ( expDiff < 0 ) {
- shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
- }
- else {
- shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
- }
- mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
- sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
- }
- else {
- shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
- shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
- }
- do {
- alternateASig0 = aSig0;
- alternateASig1 = aSig1;
- ++q;
- sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
- } while ( 0 <= (sbits64) aSig0 );
- add128(
- aSig0, aSig1, alternateASig0, alternateASig1, (bits64*)&sigMean0, &sigMean1 );
- if ( ( sigMean0 < 0 )
- || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
- aSig0 = alternateASig0;
- aSig1 = alternateASig1;
- }
- zSign = ( (sbits64) aSig0 < 0 );
- if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
- return
- normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the square root of the quadruple-precision floating-point value `a'.
-| The operation is performed according to the IEC/IEEE Standard for Binary
-| Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 float128_sqrt( float128 a )
-{
- flag aSign;
- int32 aExp, zExp;
- bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
- bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
- float128 z;
-
- aSig1 = extractFloat128Frac1( a );
- aSig0 = extractFloat128Frac0( a );
- aExp = extractFloat128Exp( a );
- aSign = extractFloat128Sign( a );
- if ( aExp == 0x7FFF ) {
- if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
- if ( ! aSign ) return a;
- goto invalid;
- }
- if ( aSign ) {
- if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
- invalid:
- float_raise( float_flag_invalid );
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
- }
- if ( aExp == 0 ) {
- if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
- normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
- }
- zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
- aSig0 |= LIT64( 0x0001000000000000 );
- zSig0 = estimateSqrt32( aExp, aSig0>>17 );
- shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
- zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
- doubleZSig0 = zSig0<<1;
- mul64To128( zSig0, zSig0, &term0, &term1 );
- sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
- while ( (sbits64) rem0 < 0 ) {
- --zSig0;
- doubleZSig0 -= 2;
- add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
- }
- zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
- if ( ( zSig1 & 0x1FFF ) <= 5 ) {
- if ( zSig1 == 0 ) zSig1 = 1;
- mul64To128( doubleZSig0, zSig1, &term1, &term2 );
- sub128( rem1, 0, term1, term2, &rem1, &rem2 );
- mul64To128( zSig1, zSig1, &term2, &term3 );
- sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
- while ( (sbits64) rem1 < 0 ) {
- --zSig1;
- shortShift128Left( 0, zSig1, 1, &term2, &term3 );
- term3 |= 1;
- term2 |= doubleZSig0;
- add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
- }
- zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
- }
- shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
- return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_eq( float128 a, float128 b )
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. The comparison
-| is performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_le( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. The comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_lt( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is equal to
-| the corresponding value `b', and 0 otherwise. The invalid exception is
-| raised if either operand is a NaN. Otherwise, the comparison is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_eq_signaling( float128 a, float128 b )
-{
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- float_raise( float_flag_invalid );
- return 0;
- }
- return
- ( a.low == b.low )
- && ( ( a.high == b.high )
- || ( ( a.low == 0 )
- && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
- );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
-| cause an exception. Otherwise, the comparison is performed according to the
-| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_le_quiet( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- == 0 );
- }
- return
- aSign ? le128( b.high, b.low, a.high, a.low )
- : le128( a.high, a.low, b.high, b.low );
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns 1 if the quadruple-precision floating-point value `a' is less than
-| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
-| exception. Otherwise, the comparison is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-flag float128_lt_quiet( float128 a, float128 b )
-{
- flag aSign, bSign;
-
- if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
- && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
- || ( ( extractFloat128Exp( b ) == 0x7FFF )
- && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
- ) {
- if ( float128_is_signaling_nan( a )
- || float128_is_signaling_nan( b ) ) {
- float_raise( float_flag_invalid );
- }
- return 0;
- }
- aSign = extractFloat128Sign( a );
- bSign = extractFloat128Sign( b );
- if ( aSign != bSign ) {
- return
- aSign
- && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
- != 0 );
- }
- return
- aSign ? lt128( b.high, b.low, a.high, a.low )
- : lt128( a.high, a.low, b.high, b.low );
-
-}
-
-#endif
-
diff --git a/softfloat/softfloat.cc b/softfloat/softfloat.cc
deleted file mode 100644
index c44e828..0000000
--- a/softfloat/softfloat.cc
+++ /dev/null
@@ -1 +0,0 @@
-#include "softfloat.c"
diff --git a/softfloat/softfloat.h b/softfloat/softfloat.h
index fc3f9dc..a7ea248 100644..100755
--- a/softfloat/softfloat.h
+++ b/softfloat/softfloat.h
@@ -1,14 +1,225 @@
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#ifndef _SOFTFLOAT_H
-#define _SOFTFLOAT_H
-
-#include "softfloat-header"
-
-#endif
-
-#ifdef __cplusplus
-}
-#endif
+
+#ifndef softfloat_h
+#define softfloat_h
+
+/*** UPDATE COMMENTS. ***/
+
+/*============================================================================
+
+This C header file is part of the SoftFloat IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+#include "softfloat_types.h"
+
+/*----------------------------------------------------------------------------
+| Software floating-point underflow tininess-detection mode.
+*----------------------------------------------------------------------------*/
+extern int_fast8_t softfloat_detectTininess;
+enum {
+ softfloat_tininess_beforeRounding = 0,
+ softfloat_tininess_afterRounding = 1
+};
+
+/*----------------------------------------------------------------------------
+| Software floating-point rounding mode.
+*----------------------------------------------------------------------------*/
+extern int_fast8_t softfloat_roundingMode;
+enum {
+ softfloat_round_nearest_even = 0,
+ softfloat_round_minMag = 1,
+ softfloat_round_min = 2,
+ softfloat_round_max = 3,
+ softfloat_round_nearest_maxMag = 4
+};
+
+/*----------------------------------------------------------------------------
+| Software floating-point exception flags.
+*----------------------------------------------------------------------------*/
+extern int_fast8_t softfloat_exceptionFlags;
+enum {
+ softfloat_flag_inexact = 1,
+ softfloat_flag_underflow = 2,
+ softfloat_flag_overflow = 4,
+ softfloat_flag_infinity = 8,
+ softfloat_flag_invalid = 16
+};
+
+/*----------------------------------------------------------------------------
+| Routine to raise any or all of the software floating-point exception flags.
+*----------------------------------------------------------------------------*/
+void softfloat_raiseFlags( int_fast8_t );
+
+/*----------------------------------------------------------------------------
+| Integer-to-floating-point conversion routines.
+*----------------------------------------------------------------------------*/
+float32_t ui32_to_f32( uint_fast32_t );
+float64_t ui32_to_f64( uint_fast32_t );
+floatx80_t ui32_to_fx80( uint_fast32_t );
+float128_t ui32_to_f128( uint_fast32_t );
+float32_t ui64_to_f32( uint_fast64_t );
+float64_t ui64_to_f64( uint_fast64_t );
+floatx80_t ui64_to_fx80( uint_fast64_t );
+float128_t ui64_to_f128( uint_fast64_t );
+float32_t i32_to_f32( int_fast32_t );
+float64_t i32_to_f64( int_fast32_t );
+floatx80_t i32_to_fx80( int_fast32_t );
+float128_t i32_to_f128( int_fast32_t );
+float32_t i64_to_f32( int_fast64_t );
+float64_t i64_to_f64( int_fast64_t );
+floatx80_t i64_to_fx80( int_fast64_t );
+float128_t i64_to_f128( int_fast64_t );
+
+/*----------------------------------------------------------------------------
+| 32-bit (single-precision) floating-point operations.
+*----------------------------------------------------------------------------*/
+uint_fast32_t f32_to_ui32( float32_t, int_fast8_t, bool );
+uint_fast64_t f32_to_ui64( float32_t, int_fast8_t, bool );
+int_fast32_t f32_to_i32( float32_t, int_fast8_t, bool );
+int_fast64_t f32_to_i64( float32_t, int_fast8_t, bool );
+uint_fast32_t f32_to_ui32_r_minMag( float32_t, bool );
+uint_fast64_t f32_to_ui64_r_minMag( float32_t, bool );
+int_fast32_t f32_to_i32_r_minMag( float32_t, bool );
+int_fast64_t f32_to_i64_r_minMag( float32_t, bool );
+float64_t f32_to_f64( float32_t );
+floatx80_t f32_to_fx80( float32_t );
+float128_t f32_to_f128( float32_t );
+float32_t f32_roundToInt( float32_t, int_fast8_t, bool );
+float32_t f32_add( float32_t, float32_t );
+float32_t f32_sub( float32_t, float32_t );
+float32_t f32_mul( float32_t, float32_t );
+float32_t f32_mulAdd( float32_t, float32_t, float32_t );
+float32_t f32_div( float32_t, float32_t );
+float32_t f32_rem( float32_t, float32_t );
+float32_t f32_sqrt( float32_t );
+bool f32_eq( float32_t, float32_t );
+bool f32_le( float32_t, float32_t );
+bool f32_lt( float32_t, float32_t );
+bool f32_eq_signaling( float32_t, float32_t );
+bool f32_le_quiet( float32_t, float32_t );
+bool f32_lt_quiet( float32_t, float32_t );
+bool f32_isSignalingNaN( float32_t );
+
+/*----------------------------------------------------------------------------
+| 64-bit (double-precision) floating-point operations.
+*----------------------------------------------------------------------------*/
+uint_fast32_t f64_to_ui32( float64_t, int_fast8_t, bool );
+uint_fast64_t f64_to_ui64( float64_t, int_fast8_t, bool );
+int_fast32_t f64_to_i32( float64_t, int_fast8_t, bool );
+int_fast64_t f64_to_i64( float64_t, int_fast8_t, bool );
+uint_fast32_t f64_to_ui32_r_minMag( float64_t, bool );
+uint_fast64_t f64_to_ui64_r_minMag( float64_t, bool );
+int_fast32_t f64_to_i32_r_minMag( float64_t, bool );
+int_fast64_t f64_to_i64_r_minMag( float64_t, bool );
+float32_t f64_to_f32( float64_t );
+floatx80_t f64_to_fx80( float64_t );
+float128_t f64_to_f128( float64_t );
+float64_t f64_roundToInt( float64_t, int_fast8_t, bool );
+float64_t f64_add( float64_t, float64_t );
+float64_t f64_sub( float64_t, float64_t );
+float64_t f64_mul( float64_t, float64_t );
+float64_t f64_mulAdd( float64_t, float64_t, float64_t );
+float64_t f64_div( float64_t, float64_t );
+float64_t f64_rem( float64_t, float64_t );
+float64_t f64_sqrt( float64_t );
+bool f64_eq( float64_t, float64_t );
+bool f64_le( float64_t, float64_t );
+bool f64_lt( float64_t, float64_t );
+bool f64_eq_signaling( float64_t, float64_t );
+bool f64_le_quiet( float64_t, float64_t );
+bool f64_lt_quiet( float64_t, float64_t );
+bool f64_isSignalingNaN( float64_t );
+
+/*----------------------------------------------------------------------------
+| Extended double-precision rounding precision. Valid values are 32, 64, and
+| 80.
+*----------------------------------------------------------------------------*/
+extern int_fast8_t floatx80_roundingPrecision;
+
+/*----------------------------------------------------------------------------
+| Extended double-precision floating-point operations.
+*----------------------------------------------------------------------------*/
+uint_fast32_t fx80_to_ui32( floatx80_t, int_fast8_t, bool );
+uint_fast64_t fx80_to_ui64( floatx80_t, int_fast8_t, bool );
+int_fast32_t fx80_to_i32( floatx80_t, int_fast8_t, bool );
+int_fast64_t fx80_to_i64( floatx80_t, int_fast8_t, bool );
+uint_fast32_t fx80_to_ui32_r_minMag( floatx80_t, bool );
+uint_fast64_t fx80_to_ui64_r_minMag( floatx80_t, bool );
+int_fast32_t fx80_to_i32_r_minMag( floatx80_t, bool );
+int_fast64_t fx80_to_i64_r_minMag( floatx80_t, bool );
+float32_t fx80_to_f32( floatx80_t );
+float64_t fx80_to_f64( floatx80_t );
+float128_t fx80_to_f128( floatx80_t );
+floatx80_t fx80_roundToInt( floatx80_t, int_fast8_t, bool );
+floatx80_t fx80_add( floatx80_t, floatx80_t );
+floatx80_t fx80_sub( floatx80_t, floatx80_t );
+floatx80_t fx80_mul( floatx80_t, floatx80_t );
+floatx80_t fx80_mulAdd( floatx80_t, floatx80_t, floatx80_t );
+floatx80_t fx80_div( floatx80_t, floatx80_t );
+floatx80_t fx80_rem( floatx80_t, floatx80_t );
+floatx80_t fx80_sqrt( floatx80_t );
+bool fx80_eq( floatx80_t, floatx80_t );
+bool fx80_le( floatx80_t, floatx80_t );
+bool fx80_lt( floatx80_t, floatx80_t );
+bool fx80_eq_signaling( floatx80_t, floatx80_t );
+bool fx80_le_quiet( floatx80_t, floatx80_t );
+bool fx80_lt_quiet( floatx80_t, floatx80_t );
+bool fx80_isSignalingNaN( floatx80_t );
+
+/*----------------------------------------------------------------------------
+| 128-bit (quadruple-precision) floating-point operations.
+*----------------------------------------------------------------------------*/
+uint_fast32_t f128_to_ui32( float128_t, int_fast8_t, bool );
+uint_fast64_t f128_to_ui64( float128_t, int_fast8_t, bool );
+int_fast32_t f128_to_i32( float128_t, int_fast8_t, bool );
+int_fast64_t f128_to_i64( float128_t, int_fast8_t, bool );
+uint_fast32_t f128_to_ui32_r_minMag( float128_t, bool );
+uint_fast64_t f128_to_ui64_r_minMag( float128_t, bool );
+int_fast32_t f128_to_i32_r_minMag( float128_t, bool );
+int_fast64_t f128_to_i64_r_minMag( float128_t, bool );
+float32_t f128_to_f32( float128_t );
+float64_t f128_to_f64( float128_t );
+floatx80_t f128_to_fx80( float128_t );
+float128_t f128_roundToInt( float128_t, int_fast8_t, bool );
+float128_t f128_add( float128_t, float128_t );
+float128_t f128_sub( float128_t, float128_t );
+float128_t f128_mul( float128_t, float128_t );
+float128_t f128_mulAdd( float128_t, float128_t, float128_t );
+float128_t f128_div( float128_t, float128_t );
+float128_t f128_rem( float128_t, float128_t );
+float128_t f128_sqrt( float128_t );
+bool f128_eq( float128_t, float128_t );
+bool f128_le( float128_t, float128_t );
+bool f128_lt( float128_t, float128_t );
+bool f128_eq_signaling( float128_t, float128_t );
+bool f128_le_quiet( float128_t, float128_t );
+bool f128_lt_quiet( float128_t, float128_t );
+bool f128_isSignalingNaN( float128_t );
+
+#endif
+
diff --git a/softfloat/softfloat.mk.in b/softfloat/softfloat.mk.in
index 4f86e12..964bc47 100644
--- a/softfloat/softfloat.mk.in
+++ b/softfloat/softfloat.mk.in
@@ -1,13 +1,112 @@
-softfloat_subproject_deps =
+softfloat_subproject_deps = \
+ sotfloat_riscv \
softfloat_hdrs = \
- softfloat.h \
- softfloat-macros \
- milieu.h \
- softfloat-specialize \
+ internals.h \
+ primitives.h \
+ softfloat.h \
softfloat_srcs = \
- softfloat.cc \
+ f32_add.cc \
+ f32_div.cc \
+ f32_eq.cc \
+ f32_eq_signaling.cc \
+ f32_isSignalingNaN.cc \
+ f32_le.cc \
+ f32_le_quiet.cc \
+ f32_lt.cc \
+ f32_lt_quiet.cc \
+ f32_mulAdd.cc \
+ f32_mul.cc \
+ f32_rem.cc \
+ f32_roundToInt.cc \
+ f32_sqrt.cc \
+ f32_sub.cc \
+ f32_to_f64.cc \
+ f32_to_i32.cc \
+ f32_to_i32_r_minMag.cc \
+ f32_to_i64.cc \
+ f32_to_i64_r_minMag.cc \
+ f32_to_ui32.cc \
+ f32_to_ui32_r_minMag.cc \
+ f32_to_ui64.cc \
+ f32_to_ui64_r_minMag.cc \
+ f64_add.cc \
+ f64_div.cc \
+ f64_eq.cc \
+ f64_eq_signaling.cc \
+ f64_isSignalingNaN.cc \
+ f64_le.cc \
+ f64_le_quiet.cc \
+ f64_lt.cc \
+ f64_lt_quiet.cc \
+ f64_mulAdd.cc \
+ f64_mul.cc \
+ f64_rem.cc \
+ f64_roundToInt.cc \
+ f64_sqrt.cc \
+ f64_sub.cc \
+ f64_to_f32.cc \
+ f64_to_i32.cc \
+ f64_to_i32_r_minMag.cc \
+ f64_to_i64.cc \
+ f64_to_i64_r_minMag.cc \
+ f64_to_ui32.cc \
+ f64_to_ui32_r_minMag.cc \
+ f64_to_ui64.cc \
+ f64_to_ui64_r_minMag.cc \
+ i32_to_f32.cc \
+ i32_to_f64.cc \
+ i64_to_f32.cc \
+ i64_to_f64.cc \
+ s_add128.cc \
+ s_add192.cc \
+ s_addMagsF32.cc \
+ s_addMagsF64.cc \
+ s_countLeadingZeros32.cc \
+ s_countLeadingZeros64.cc \
+ s_countLeadingZeros8.cc \
+ s_eq128.cc \
+ s_estimateDiv128To64.cc \
+ s_estimateSqrt32.cc \
+ s_le128.cc \
+ s_lt128.cc \
+ s_mul128By64To192.cc \
+ s_mul128To256.cc \
+ s_mul64To128.cc \
+ s_mulAddF32.cc \
+ s_mulAddF64.cc \
+ s_normRoundPackToF32.cc \
+ s_normRoundPackToF64.cc \
+ s_normSubnormalF32Sig.cc \
+ s_normSubnormalF64Sig.cc \
+ softfloat_state.cc \
+ s_roundPackToF32.cc \
+ s_roundPackToF64.cc \
+ s_roundPackToI32.cc \
+ s_roundPackToI64.cc \
+ s_roundPackToUI32.cc \
+ s_roundPackToUI64.cc \
+ s_shift128ExtraRightJam.cc \
+ s_shift128RightJam.cc \
+ s_shift32RightJam.cc \
+ s_shift64ExtraRightJam.cc \
+ s_shift64RightJam.cc \
+ s_shortShift128ExtraRightJam.cc \
+ s_shortShift128Left.cc \
+ s_shortShift128Right.cc \
+ s_shortShift192Left.cc \
+ s_shortShift32Right1Jam.cc \
+ s_shortShift64ExtraRightJam.cc \
+ s_shortShift64RightJam.cc \
+ s_sub128.cc \
+ s_sub192.cc \
+ s_subMagsF32.cc \
+ s_subMagsF64.cc \
+ ui32_to_f32.cc \
+ ui32_to_f64.cc \
+ ui64_to_f32.cc \
+ ui64_to_f64.cc \
softfloat_test_srcs =
diff --git a/softfloat/SoftFloat-3/source/softfloat_state.c b/softfloat/softfloat_state.cc
index 8859089..8859089 100755
--- a/softfloat/SoftFloat-3/source/softfloat_state.c
+++ b/softfloat/softfloat_state.cc
diff --git a/softfloat/SoftFloat-3/source/ui32_to_f32.c b/softfloat/ui32_to_f32.cc
index ba0fc1a..ba0fc1a 100755
--- a/softfloat/SoftFloat-3/source/ui32_to_f32.c
+++ b/softfloat/ui32_to_f32.cc
diff --git a/softfloat/SoftFloat-3/source/ui32_to_f64.c b/softfloat/ui32_to_f64.cc
index d0bd177..d0bd177 100755
--- a/softfloat/SoftFloat-3/source/ui32_to_f64.c
+++ b/softfloat/ui32_to_f64.cc
diff --git a/softfloat/SoftFloat-3/source/ui64_to_f32.c b/softfloat/ui64_to_f32.cc
index 82afbdc..82afbdc 100755
--- a/softfloat/SoftFloat-3/source/ui64_to_f32.c
+++ b/softfloat/ui64_to_f32.cc
diff --git a/softfloat/SoftFloat-3/source/ui64_to_f64.c b/softfloat/ui64_to_f64.cc
index 52c158b..52c158b 100755
--- a/softfloat/SoftFloat-3/source/ui64_to_f64.c
+++ b/softfloat/ui64_to_f64.cc