aboutsummaryrefslogtreecommitdiff
path: root/test/dm/eth.c
blob: bb3dcc6b9540c5b1de7c3542e562e16c1dd9653c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2015 National Instruments
 *
 * (C) Copyright 2015
 * Joe Hershberger <joe.hershberger@ni.com>
 */

#include <common.h>
#include <dm.h>
#include <env.h>
#include <fdtdec.h>
#include <log.h>
#include <malloc.h>
#include <net.h>
#include <net6.h>
#include <asm/eth.h>
#include <dm/test.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>
#include <test/test.h>
#include <test/ut.h>
#include <ndisc.h>

#define DM_TEST_ETH_NUM		4

#if IS_ENABLED(CONFIG_IPV6)
static int dm_test_string_to_ip6(struct unit_test_state *uts)
{
	char *str;
	struct test_ip6_pair {
		char 		*string_addr;
		struct in6_addr ip6_addr;
	};

	struct in6_addr ip6 = {0};

	/* Correct statements */
	struct test_ip6_pair test_suite[] = {
		{"2001:db8::0:1234:1", {.s6_addr32[0] = 0xb80d0120,
					.s6_addr32[1] = 0x00000000,
					.s6_addr32[2] = 0x00000000,
					.s6_addr32[3] = 0x01003412}},
		{"2001:0db8:0000:0000:0000:0000:1234:0001",
				       {.s6_addr32[0] = 0xb80d0120,
					.s6_addr32[1] = 0x00000000,
					.s6_addr32[2] = 0x00000000,
					.s6_addr32[3] = 0x01003412}},
		{"::1", 	       {.s6_addr32[0] = 0x00000000,
					.s6_addr32[1] = 0x00000000,
					.s6_addr32[2] = 0x00000000,
					.s6_addr32[3] = 0x01000000}},
		{"::ffff:192.168.1.1", {.s6_addr32[0] = 0x00000000,
					.s6_addr32[1] = 0x00000000,
					.s6_addr32[2] = 0xffff0000,
					.s6_addr32[3] = 0x0101a8c0}},
	};

	for (int i = 0; i < ARRAY_SIZE(test_suite); ++i) {
		ut_assertok(string_to_ip6(test_suite[i].string_addr,
			    strlen(test_suite[i].string_addr), &ip6));
		ut_asserteq_mem(&ip6, &test_suite[i].ip6_addr,
				sizeof(struct in6_addr));
	}

	/* Incorrect statements */
	str = "hello:world";
	ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
	str = "2001:db8::0::0";
	ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
	str = "2001:db8:192.168.1.1::1";
	ut_assertok(!string_to_ip6(str, strlen(str), &ip6));
	str = "192.168.1.1";
	ut_assertok(!string_to_ip6(str, strlen(str), &ip6));

	return 0;
}
DM_TEST(dm_test_string_to_ip6, 0);

static int dm_test_csum_ipv6_magic(struct unit_test_state *uts)
{
	unsigned short csum = 0xbeef;
	/* Predefined correct parameters */
	unsigned short correct_csum = 0xd8ac;
	struct in6_addr saddr = {.s6_addr32[0] = 0x000080fe,
				 .s6_addr32[1] = 0x00000000,
				 .s6_addr32[2] = 0xffe9f242,
				 .s6_addr32[3] = 0xe8f66dfe};
	struct in6_addr daddr = {.s6_addr32[0] = 0x000080fe,
				 .s6_addr32[1] = 0x00000000,
				 .s6_addr32[2] = 0xffd5b372,
				 .s6_addr32[3] = 0x3ef692fe};
	u16 len = 1460;
	unsigned short proto = 17;
	unsigned int head_csum = 0x91f0;

	csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
	ut_asserteq(csum, correct_csum);

	/* Broke a parameter */
	proto--;
	csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum);
	ut_assert(csum != correct_csum);

	return 0;
}
DM_TEST(dm_test_csum_ipv6_magic, 0);

static int dm_test_ip6_addr_in_subnet(struct unit_test_state *uts)
{
	struct in6_addr our = {.s6_addr32[0] = 0x000080fe,
				 .s6_addr32[1] = 0x00000000,
				 .s6_addr32[2] = 0xffe9f242,
				 .s6_addr32[3] = 0xe8f66dfe};
	struct in6_addr neigh1 = {.s6_addr32[0] = 0x000080fe,
				 .s6_addr32[1] = 0x00000000,
				 .s6_addr32[2] = 0xffd5b372,
				 .s6_addr32[3] = 0x3ef692fe};
	struct in6_addr neigh2 = {.s6_addr32[0] = 0x60480120,
				 .s6_addr32[1] = 0x00006048,
				 .s6_addr32[2] = 0x00000000,
				 .s6_addr32[3] = 0x00008888};

	/* in */
	ut_assert(ip6_addr_in_subnet(&our, &neigh1, 64));
	/* outside */
	ut_assert(!ip6_addr_in_subnet(&our, &neigh2, 64));
	ut_assert(!ip6_addr_in_subnet(&our, &neigh1, 128));

	return 0;
}
DM_TEST(dm_test_ip6_addr_in_subnet, 0);

static int dm_test_ip6_make_snma(struct unit_test_state *uts)
{
	struct in6_addr mult = {0};
	struct in6_addr correct_addr = {
				 .s6_addr32[0] = 0x000002ff,
				 .s6_addr32[1] = 0x00000000,
				 .s6_addr32[2] = 0x01000000,
				 .s6_addr32[3] = 0xe8f66dff};
	struct in6_addr addr = { .s6_addr32[0] = 0x000080fe,
				 .s6_addr32[1] = 0x00000000,
				 .s6_addr32[2] = 0xffe9f242,
				 .s6_addr32[3] = 0xe8f66dfe};

	ip6_make_snma(&mult, &addr);
	ut_asserteq_mem(&mult, &correct_addr, sizeof(struct in6_addr));

	return 0;
}
DM_TEST(dm_test_ip6_make_snma, 0);

static int dm_test_ip6_make_lladdr(struct unit_test_state *uts)
{
	struct in6_addr generated_lladdr = {0};
	struct in6_addr correct_lladdr = {
				 .s6_addr32[0] = 0x000080fe,
				 .s6_addr32[1] = 0x00000000,
				 .s6_addr32[2] = 0xffabf33a,
				 .s6_addr32[3] = 0xfbb352fe};
	const unsigned char mac[6] = {0x38, 0xf3, 0xab, 0x52, 0xb3, 0xfb};

	ip6_make_lladdr(&generated_lladdr, mac);
	ut_asserteq_mem(&generated_lladdr, &correct_lladdr,
			sizeof(struct in6_addr));

	return 0;
}
DM_TEST(dm_test_ip6_make_lladdr, UT_TESTF_SCAN_FDT);
#endif

static int dm_test_eth(struct unit_test_state *uts)
{
	net_ping_ip = string_to_ip("1.1.2.2");

	env_set("ethact", "eth@10002000");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	env_set("ethact", "eth@10003000");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10003000", env_get("ethact"));

	env_set("ethact", "eth@10004000");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10004000", env_get("ethact"));

	return 0;
}
DM_TEST(dm_test_eth, UT_TESTF_SCAN_FDT);

static int dm_test_eth_alias(struct unit_test_state *uts)
{
	net_ping_ip = string_to_ip("1.1.2.2");
	env_set("ethact", "eth0");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	env_set("ethact", "eth6");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10004000", env_get("ethact"));

	/* Expected to fail since eth1 is not defined in the device tree */
	env_set("ethact", "eth1");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	env_set("ethact", "eth5");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10003000", env_get("ethact"));

	return 0;
}
DM_TEST(dm_test_eth_alias, UT_TESTF_SCAN_FDT);

static int dm_test_eth_prime(struct unit_test_state *uts)
{
	net_ping_ip = string_to_ip("1.1.2.2");

	/* Expected to be "eth@10003000" because of ethprime variable */
	env_set("ethact", NULL);
	env_set("ethprime", "eth5");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10003000", env_get("ethact"));

	/* Expected to be "eth@10002000" because it is first */
	env_set("ethact", NULL);
	env_set("ethprime", NULL);
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	return 0;
}
DM_TEST(dm_test_eth_prime, UT_TESTF_SCAN_FDT);

/**
 * This test case is trying to test the following scenario:
 *	- All ethernet devices are not probed
 *	- "ethaddr" for all ethernet devices are not set
 *	- "ethact" is set to a valid ethernet device name
 *
 * With Sandbox default test configuration, all ethernet devices are
 * probed after power-up, so we have to manually create such scenario:
 *	- Remove all ethernet devices
 *	- Remove all "ethaddr" environment variables
 *	- Set "ethact" to the first ethernet device
 *
 * Do a ping test to see if anything goes wrong.
 */
static int dm_test_eth_act(struct unit_test_state *uts)
{
	struct udevice *dev[DM_TEST_ETH_NUM];
	const char *ethname[DM_TEST_ETH_NUM] = {"eth@10002000", "eth@10003000",
						"sbe5", "eth@10004000"};
	const char *addrname[DM_TEST_ETH_NUM] = {"ethaddr", "eth5addr",
						 "eth3addr", "eth6addr"};
	char ethaddr[DM_TEST_ETH_NUM][18];
	int i;

	memset(ethaddr, '\0', sizeof(ethaddr));
	net_ping_ip = string_to_ip("1.1.2.2");

	/* Prepare the test scenario */
	for (i = 0; i < DM_TEST_ETH_NUM; i++) {
		char *addr;

		ut_assertok(uclass_find_device_by_name(UCLASS_ETH,
						       ethname[i], &dev[i]));
		ut_assertok(device_remove(dev[i], DM_REMOVE_NORMAL));

		/* Invalidate MAC address */
		addr = env_get(addrname[i]);
		ut_assertnonnull(addr);
		strncpy(ethaddr[i], addr, 17);
		/* Must disable access protection for ethaddr before clearing */
		env_set(".flags", addrname[i]);
		env_set(addrname[i], NULL);
	}

	/* Set ethact to "eth@10002000" */
	env_set("ethact", ethname[0]);

	/* Segment fault might happen if something is wrong */
	ut_asserteq(-ENODEV, net_loop(PING));

	for (i = 0; i < DM_TEST_ETH_NUM; i++) {
		/* Restore the env */
		env_set(".flags", addrname[i]);
		env_set(addrname[i], ethaddr[i]);

		/* Probe the device again */
		ut_assertok(device_probe(dev[i]));
	}
	env_set(".flags", NULL);
	env_set("ethact", NULL);

	return 0;
}
DM_TEST(dm_test_eth_act, UT_TESTF_SCAN_FDT);

/* Ensure that all addresses are loaded properly */
static int dm_test_ethaddr(struct unit_test_state *uts)
{
	static const char *const addr[] = {
		"02:00:11:22:33:44",
		"02:00:11:22:33:48", /* dsa slave */
		"02:00:11:22:33:45",
		"02:00:11:22:33:48", /* dsa master */
		"02:00:11:22:33:46",
		"02:00:11:22:33:47",
		"02:00:11:22:33:48", /* dsa slave */
		"02:00:11:22:33:49",
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(addr); i++) {
		char addrname[10];
		char *env_addr;

		if (i)
			snprintf(addrname, sizeof(addrname), "eth%daddr", i + 1);
		else
			strcpy(addrname, "ethaddr");

		env_addr = env_get(addrname);
		ut_assertnonnull(env_addr);
		ut_asserteq_str(addr[i], env_addr);
	}

	return 0;
}
DM_TEST(dm_test_ethaddr, UT_TESTF_SCAN_FDT);

/* The asserts include a return on fail; cleanup in the caller */
static int _dm_test_eth_rotate1(struct unit_test_state *uts)
{
	/* Make sure that the default is to rotate to the next interface */
	env_set("ethact", "eth@10004000");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	/* If ethrotate is no, then we should fail on a bad MAC */
	env_set("ethact", "eth@10004000");
	env_set("ethrotate", "no");
	ut_asserteq(-EINVAL, net_loop(PING));
	ut_asserteq_str("eth@10004000", env_get("ethact"));

	return 0;
}

static int _dm_test_eth_rotate2(struct unit_test_state *uts)
{
	/* Make sure we can skip invalid devices */
	env_set("ethact", "eth@10004000");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10004000", env_get("ethact"));

	/* Make sure we can handle device name which is not eth# */
	env_set("ethact", "sbe5");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("sbe5", env_get("ethact"));

	return 0;
}

static int dm_test_eth_rotate(struct unit_test_state *uts)
{
	char ethaddr[18];
	int retval;

	/* Set target IP to mock ping */
	net_ping_ip = string_to_ip("1.1.2.2");

	/* Invalidate eth1's MAC address */
	memset(ethaddr, '\0', sizeof(ethaddr));
	strncpy(ethaddr, env_get("eth6addr"), 17);
	/* Must disable access protection for eth6addr before clearing */
	env_set(".flags", "eth6addr");
	env_set("eth6addr", NULL);

	retval = _dm_test_eth_rotate1(uts);

	/* Restore the env */
	env_set("eth6addr", ethaddr);
	env_set("ethrotate", NULL);

	if (!retval) {
		/* Invalidate eth0's MAC address */
		strncpy(ethaddr, env_get("ethaddr"), 17);
		/* Must disable access protection for ethaddr before clearing */
		env_set(".flags", "ethaddr");
		env_set("ethaddr", NULL);

		retval = _dm_test_eth_rotate2(uts);

		/* Restore the env */
		env_set("ethaddr", ethaddr);
	}
	/* Restore the env */
	env_set(".flags", NULL);

	return retval;
}
DM_TEST(dm_test_eth_rotate, UT_TESTF_SCAN_FDT);

/* The asserts include a return on fail; cleanup in the caller */
static int _dm_test_net_retry(struct unit_test_state *uts)
{
	/*
	 * eth1 is disabled and netretry is yes, so the ping should succeed and
	 * the active device should be eth0
	 */
	sandbox_eth_disable_response(1, true);
	env_set("ethact", "lan1");
	env_set("netretry", "yes");
	sandbox_eth_skip_timeout();
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	/*
	 * eth1 is disabled and netretry is no, so the ping should fail and the
	 * active device should be eth1
	 */
	env_set("ethact", "lan1");
	env_set("netretry", "no");
	sandbox_eth_skip_timeout();
	ut_asserteq(-ENONET, net_loop(PING));
	ut_asserteq_str("lan1", env_get("ethact"));

	return 0;
}

static int dm_test_net_retry(struct unit_test_state *uts)
{
	int retval;

	net_ping_ip = string_to_ip("1.1.2.2");

	retval = _dm_test_net_retry(uts);

	/* Restore the env */
	env_set("netretry", NULL);
	sandbox_eth_disable_response(1, false);

	return retval;
}
DM_TEST(dm_test_net_retry, UT_TESTF_SCAN_FDT);

static int sb_check_arp_reply(struct udevice *dev, void *packet,
			      unsigned int len)
{
	struct eth_sandbox_priv *priv = dev_get_priv(dev);
	struct ethernet_hdr *eth = packet;
	struct arp_hdr *arp;
	/* Used by all of the ut_assert macros */
	struct unit_test_state *uts = priv->priv;

	if (ntohs(eth->et_protlen) != PROT_ARP)
		return 0;

	arp = packet + ETHER_HDR_SIZE;

	if (ntohs(arp->ar_op) != ARPOP_REPLY)
		return 0;

	/* This test would be worthless if we are not waiting */
	ut_assert(arp_is_waiting());

	/* Validate response */
	ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
	ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
	ut_assert(eth->et_protlen == htons(PROT_ARP));

	ut_assert(arp->ar_hrd == htons(ARP_ETHER));
	ut_assert(arp->ar_pro == htons(PROT_IP));
	ut_assert(arp->ar_hln == ARP_HLEN);
	ut_assert(arp->ar_pln == ARP_PLEN);
	ut_asserteq_mem(&arp->ar_sha, net_ethaddr, ARP_HLEN);
	ut_assert(net_read_ip(&arp->ar_spa).s_addr == net_ip.s_addr);
	ut_asserteq_mem(&arp->ar_tha, priv->fake_host_hwaddr, ARP_HLEN);
	ut_assert(net_read_ip(&arp->ar_tpa).s_addr ==
		  string_to_ip("1.1.2.4").s_addr);

	return 0;
}

static int sb_with_async_arp_handler(struct udevice *dev, void *packet,
				     unsigned int len)
{
	struct eth_sandbox_priv *priv = dev_get_priv(dev);
	struct ethernet_hdr *eth = packet;
	struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
	int ret;

	/*
	 * If we are about to generate a reply to ARP, first inject a request
	 * from another host
	 */
	if (ntohs(eth->et_protlen) == PROT_ARP &&
	    ntohs(arp->ar_op) == ARPOP_REQUEST) {
		/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
		priv->fake_host_ipaddr = string_to_ip("1.1.2.4");

		ret = sandbox_eth_recv_arp_req(dev);
		if (ret)
			return ret;
	}

	sandbox_eth_arp_req_to_reply(dev, packet, len);
	sandbox_eth_ping_req_to_reply(dev, packet, len);

	return sb_check_arp_reply(dev, packet, len);
}

static int dm_test_eth_async_arp_reply(struct unit_test_state *uts)
{
	net_ping_ip = string_to_ip("1.1.2.2");

	sandbox_eth_set_tx_handler(0, sb_with_async_arp_handler);
	/* Used by all of the ut_assert macros in the tx_handler */
	sandbox_eth_set_priv(0, uts);

	env_set("ethact", "eth@10002000");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	sandbox_eth_set_tx_handler(0, NULL);

	return 0;
}

DM_TEST(dm_test_eth_async_arp_reply, UT_TESTF_SCAN_FDT);

static int sb_check_ping_reply(struct udevice *dev, void *packet,
			       unsigned int len)
{
	struct eth_sandbox_priv *priv = dev_get_priv(dev);
	struct ethernet_hdr *eth = packet;
	struct ip_udp_hdr *ip;
	struct icmp_hdr *icmp;
	/* Used by all of the ut_assert macros */
	struct unit_test_state *uts = priv->priv;

	if (ntohs(eth->et_protlen) != PROT_IP)
		return 0;

	ip = packet + ETHER_HDR_SIZE;

	if (ip->ip_p != IPPROTO_ICMP)
		return 0;

	icmp = (struct icmp_hdr *)&ip->udp_src;

	if (icmp->type != ICMP_ECHO_REPLY)
		return 0;

	/* This test would be worthless if we are not waiting */
	ut_assert(arp_is_waiting());

	/* Validate response */
	ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN);
	ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN);
	ut_assert(eth->et_protlen == htons(PROT_IP));

	ut_assert(net_read_ip(&ip->ip_src).s_addr == net_ip.s_addr);
	ut_assert(net_read_ip(&ip->ip_dst).s_addr ==
		  string_to_ip("1.1.2.4").s_addr);

	return 0;
}

static int sb_with_async_ping_handler(struct udevice *dev, void *packet,
				      unsigned int len)
{
	struct eth_sandbox_priv *priv = dev_get_priv(dev);
	struct ethernet_hdr *eth = packet;
	struct arp_hdr *arp = packet + ETHER_HDR_SIZE;
	int ret;

	/*
	 * If we are about to generate a reply to ARP, first inject a request
	 * from another host
	 */
	if (ntohs(eth->et_protlen) == PROT_ARP &&
	    ntohs(arp->ar_op) == ARPOP_REQUEST) {
		/* Make sure sandbox_eth_recv_arp_req() knows who is asking */
		priv->fake_host_ipaddr = string_to_ip("1.1.2.4");

		ret = sandbox_eth_recv_ping_req(dev);
		if (ret)
			return ret;
	}

	sandbox_eth_arp_req_to_reply(dev, packet, len);
	sandbox_eth_ping_req_to_reply(dev, packet, len);

	return sb_check_ping_reply(dev, packet, len);
}

static int dm_test_eth_async_ping_reply(struct unit_test_state *uts)
{
	net_ping_ip = string_to_ip("1.1.2.2");

	sandbox_eth_set_tx_handler(0, sb_with_async_ping_handler);
	/* Used by all of the ut_assert macros in the tx_handler */
	sandbox_eth_set_priv(0, uts);

	env_set("ethact", "eth@10002000");
	ut_assertok(net_loop(PING));
	ut_asserteq_str("eth@10002000", env_get("ethact"));

	sandbox_eth_set_tx_handler(0, NULL);

	return 0;
}

DM_TEST(dm_test_eth_async_ping_reply, UT_TESTF_SCAN_FDT);

#if IS_ENABLED(CONFIG_IPV6_ROUTER_DISCOVERY)

static u8 ip6_ra_buf[] = {0x60, 0xf, 0xc5, 0x4a, 0x0, 0x38, 0x3a, 0xff, 0xfe,
			  0x80, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x6, 0x85, 0xe6,
			  0x29, 0x77, 0xcb, 0xc8, 0x53, 0xff, 0x2, 0x0, 0x0,
			  0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
			  0x1, 0x86, 0x0, 0xdc, 0x90, 0x40, 0x80, 0x15, 0x18,
			  0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x4,
			  0x40, 0xc0, 0x0, 0x0, 0x37, 0xdc, 0x0, 0x0, 0x37,
			  0x78, 0x0, 0x0, 0x0, 0x0, 0x20, 0x1, 0xca, 0xfe, 0xca,
			  0xfe, 0xca, 0xfe, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
			  0x0, 0x1, 0x1, 0x0, 0x15, 0x5d, 0xe2, 0x8a, 0x2};

static int dm_test_validate_ra(struct unit_test_state *uts)
{
	struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
	struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
	__be16 temp = 0;

	ut_assert(validate_ra(ip6) == true);

	temp = ip6->payload_len;
	ip6->payload_len = 15;
	ut_assert(validate_ra(ip6) == false);
	ip6->payload_len = temp;

	temp = ip6->saddr.s6_addr16[0];
	ip6->saddr.s6_addr16[0] = 0x2001;
	ut_assert(validate_ra(ip6) == false);
	ip6->saddr.s6_addr16[0] = temp;

	temp = ip6->hop_limit;
	ip6->hop_limit = 15;
	ut_assert(validate_ra(ip6) == false);
	ip6->hop_limit = temp;

	temp = icmp->icmp6_code;
	icmp->icmp6_code = 15;
	ut_assert(validate_ra(ip6) == false);
	icmp->icmp6_code = temp;

	return 0;
}

DM_TEST(dm_test_validate_ra, 0);

static int dm_test_process_ra(struct unit_test_state *uts)
{
	int len = sizeof(ip6_ra_buf);
	struct ip6_hdr *ip6 = (struct ip6_hdr *)ip6_ra_buf;
	struct icmp6hdr *icmp = (struct icmp6hdr *)(ip6 + 1);
	struct ra_msg *msg = (struct ra_msg *)icmp;
	unsigned char *option = msg->opt;
	struct icmp6_ra_prefix_info *prefix =
					(struct icmp6_ra_prefix_info *)option;
	__be16 temp = 0;
	unsigned char option_len = option[1];

	ut_assert(process_ra(ip6, len) == 0);

	temp = icmp->icmp6_rt_lifetime;
	icmp->icmp6_rt_lifetime = 0;
	ut_assert(process_ra(ip6, len) != 0);
	icmp->icmp6_rt_lifetime = temp;

	ut_assert(process_ra(ip6, 0) != 0);

	option[1] = 0;
	ut_assert(process_ra(ip6, len) != 0);
	option[1] = option_len;

	prefix->on_link = false;
	ut_assert(process_ra(ip6, len) != 0);
	prefix->on_link = true;

	temp = prefix->prefix.s6_addr16[0];
	prefix->prefix.s6_addr16[0] = 0x80fe;
	ut_assert(process_ra(ip6, len) != 0);
	prefix->prefix.s6_addr16[0] = temp;

	return 0;
}

DM_TEST(dm_test_process_ra, 0);

#endif