aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/ctree.c
blob: 8e932adc425d316966d8ece8a53502c9c84946ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
// SPDX-License-Identifier: GPL-2.0+
/*
 * BTRFS filesystem implementation for U-Boot
 *
 * 2017 Marek Behún, CZ.NIC, kabel@kernel.org
 */

#include <linux/kernel.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include "btrfs.h"
#include "disk-io.h"

static const struct btrfs_csum {
	u16 size;
	const char name[14];
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32]		= {  4, "crc32c" },
	[BTRFS_CSUM_TYPE_XXHASH]	= {  8, "xxhash64" },
	[BTRFS_CSUM_TYPE_SHA256]	= { 32, "sha256" },
	[BTRFS_CSUM_TYPE_BLAKE2]	= { 32, "blake2" },
};

u16 btrfs_super_csum_size(const struct btrfs_super_block *sb)
{
	const u16 csum_type = btrfs_super_csum_type(sb);

	return btrfs_csums[csum_type].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	return btrfs_csums[csum_type].name;
}

size_t btrfs_super_num_csums(void)
{
	return ARRAY_SIZE(btrfs_csums);
}

u16 btrfs_csum_type_size(u16 csum_type)
{
	return btrfs_csums[csum_type].size;
}

struct btrfs_path *btrfs_alloc_path(void)
{
	struct btrfs_path *path;
	path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
	return path;
}

void btrfs_free_path(struct btrfs_path *p)
{
	if (!p)
		return;
	btrfs_release_path(p);
	kfree(p);
}

void btrfs_release_path(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
		if (!p->nodes[i])
			continue;
		free_extent_buffer(p->nodes[i]);
	}
	memset(p, 0, sizeof(*p));
}

int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}

static int btrfs_comp_keys(struct btrfs_disk_key *disk,
			     const struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);
	return btrfs_comp_cpu_keys(&k1, k2);
}

enum btrfs_tree_block_status
btrfs_check_node(struct btrfs_fs_info *fs_info,
		 struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
{
	int i;
	struct btrfs_key cpukey;
	struct btrfs_disk_key key;
	u32 nritems = btrfs_header_nritems(buf);
	enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;

	if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(fs_info))
		goto fail;

	ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
	if (parent_key && parent_key->type) {
		btrfs_node_key(buf, &key, 0);
		if (memcmp(parent_key, &key, sizeof(key)))
			goto fail;
	}
	ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
	for (i = 0; nritems > 1 && i < nritems - 2; i++) {
		btrfs_node_key(buf, &key, i);
		btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
		if (btrfs_comp_keys(&key, &cpukey) >= 0)
			goto fail;
	}
	return BTRFS_TREE_BLOCK_CLEAN;
fail:
	return ret;
}

enum btrfs_tree_block_status
btrfs_check_leaf(struct btrfs_fs_info *fs_info,
		 struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
{
	int i;
	struct btrfs_key cpukey;
	struct btrfs_disk_key key;
	u32 nritems = btrfs_header_nritems(buf);
	enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;

	if (nritems * sizeof(struct btrfs_item) > buf->len)  {
		fprintf(stderr, "invalid number of items %llu\n",
			(unsigned long long)buf->start);
		goto fail;
	}

	if (btrfs_header_level(buf) != 0) {
		ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
		fprintf(stderr, "leaf is not a leaf %llu\n",
		       (unsigned long long)btrfs_header_bytenr(buf));
		goto fail;
	}
	if (btrfs_leaf_free_space(buf) < 0) {
		ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
		fprintf(stderr, "leaf free space incorrect %llu %d\n",
			(unsigned long long)btrfs_header_bytenr(buf),
			btrfs_leaf_free_space(buf));
		goto fail;
	}

	if (nritems == 0)
		return BTRFS_TREE_BLOCK_CLEAN;

	btrfs_item_key(buf, &key, 0);
	if (parent_key && parent_key->type &&
	    memcmp(parent_key, &key, sizeof(key))) {
		ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
		fprintf(stderr, "leaf parent key incorrect %llu\n",
		       (unsigned long long)btrfs_header_bytenr(buf));
		goto fail;
	}
	for (i = 0; nritems > 1 && i < nritems - 1; i++) {
		btrfs_item_key(buf, &key, i);
		btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
		if (btrfs_comp_keys(&key, &cpukey) >= 0) {
			ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
			fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
			goto fail;
		}
		if (btrfs_item_offset_nr(buf, i) !=
			btrfs_item_end_nr(buf, i + 1)) {
			ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
			fprintf(stderr, "incorrect offsets %u %u\n",
				btrfs_item_offset_nr(buf, i),
				btrfs_item_end_nr(buf, i + 1));
			goto fail;
		}
		if (i == 0 && btrfs_item_end_nr(buf, i) !=
		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
			ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
			fprintf(stderr, "bad item end %u wanted %u\n",
				btrfs_item_end_nr(buf, i),
				(unsigned)BTRFS_LEAF_DATA_SIZE(fs_info));
			goto fail;
		}
	}

	for (i = 0; i < nritems; i++) {
		if (btrfs_item_end_nr(buf, i) >
				BTRFS_LEAF_DATA_SIZE(fs_info)) {
			btrfs_item_key(buf, &key, 0);
			ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
			fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
				(unsigned long long)btrfs_item_end_nr(buf, i),
				(unsigned long long)BTRFS_LEAF_DATA_SIZE(
					fs_info));
			goto fail;
		}
	}

	return BTRFS_TREE_BLOCK_CLEAN;
fail:
	return ret;
}

static int noinline check_block(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, int level)
{
	struct btrfs_disk_key key;
	struct btrfs_disk_key *key_ptr = NULL;
	struct extent_buffer *parent;
	enum btrfs_tree_block_status ret;

	if (path->nodes[level + 1]) {
		parent = path->nodes[level + 1];
		btrfs_node_key(parent, &key, path->slots[level + 1]);
		key_ptr = &key;
	}
	if (level == 0)
		ret = btrfs_check_leaf(fs_info, key_ptr, path->nodes[0]);
	else
		ret = btrfs_check_node(fs_info, key_ptr, path->nodes[level]);
	if (ret == BTRFS_TREE_BLOCK_CLEAN)
		return 0;
	return -EIO;
}

/*
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
			      int item_size, const struct btrfs_key *key,
			      int max, int *slot)
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
	unsigned long offset;
	struct btrfs_disk_key *tmp;

	while(low < high) {
		mid = (low + high) / 2;
		offset = p + mid * item_size;

		tmp = (struct btrfs_disk_key *)(eb->data + offset);
		ret = btrfs_comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int *slot)
{
	if (btrfs_header_level(eb) == 0)
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
					  sizeof(struct btrfs_item),
					  key, btrfs_header_nritems(eb),
					  slot);
	else
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
					  sizeof(struct btrfs_key_ptr),
					  key, btrfs_header_nritems(eb),
					  slot);
}

struct extent_buffer *read_node_slot(struct btrfs_fs_info *fs_info,
				   struct extent_buffer *parent, int slot)
{
	struct extent_buffer *ret;
	int level = btrfs_header_level(parent);

	if (slot < 0)
		return NULL;
	if (slot >= btrfs_header_nritems(parent))
		return NULL;

	if (level == 0)
		return NULL;

	ret = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
		       btrfs_node_ptr_generation(parent, slot));
	if (!extent_buffer_uptodate(ret))
		return ERR_PTR(-EIO);

	if (btrfs_header_level(ret) != level - 1) {
		error("child eb corrupted: parent bytenr=%llu item=%d parent level=%d child level=%d",
		      btrfs_header_bytenr(parent), slot,
		      btrfs_header_level(parent), btrfs_header_level(ret));
		free_extent_buffer(ret);
		return ERR_PTR(-EIO);
	}
	return ret;
}

int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
	struct btrfs_path *path;

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	if (found_path == NULL) {
		path = btrfs_alloc_path();
		if (!path)
			return -ENOMEM;
	} else
		path = found_path;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
	if ((ret < 0) || (found_key == NULL))
		goto out;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			goto out;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid) {
		ret = 1;
		goto out;
	}

out:
	if (path != found_path)
		btrfs_free_path(path);
	return ret;
}

/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
 *
 * NOTE: This version has no COW ability, thus we expect trans == NULL,
 * ins_len == 0 and cow == 0.
 */
int btrfs_search_slot(struct btrfs_trans_handle *trans,
		struct btrfs_root *root, const struct btrfs_key *key,
		struct btrfs_path *p, int ins_len, int cow)
{
	struct extent_buffer *b;
	int slot;
	int ret;
	int level;
	struct btrfs_fs_info *fs_info = root->fs_info;
	u8 lowest_level = 0;

	assert(trans == NULL && ins_len == 0 && cow == 0);
	lowest_level = p->lowest_level;
	WARN_ON(lowest_level && ins_len > 0);
	WARN_ON(p->nodes[0] != NULL);

	b = root->node;
	extent_buffer_get(b);
	while (b) {
		level = btrfs_header_level(b);
		/*
		if (cow) {
			int wret;
			wret = btrfs_cow_block(trans, root, b,
					       p->nodes[level + 1],
					       p->slots[level + 1],
					       &b);
			if (wret) {
				free_extent_buffer(b);
				return wret;
			}
		}
		*/
		BUG_ON(!cow && ins_len);
		if (level != btrfs_header_level(b))
			WARN_ON(1);
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		ret = check_block(fs_info, p, level);
		if (ret)
			return -1;
		ret = btrfs_bin_search(b, key, &slot);
		if (level != 0) {
			if (ret && slot > 0)
				slot -= 1;
			p->slots[level] = slot;
			/*
			if ((p->search_for_split || ins_len > 0) &&
			    btrfs_header_nritems(b) >=
			    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
				int sret = split_node(trans, root, p, level);
				BUG_ON(sret > 0);
				if (sret)
					return sret;
				b = p->nodes[level];
				slot = p->slots[level];
			} else if (ins_len < 0) {
				int sret = balance_level(trans, root, p,
							 level);
				if (sret)
					return sret;
				b = p->nodes[level];
				if (!b) {
					btrfs_release_path(p);
					goto again;
				}
				slot = p->slots[level];
				BUG_ON(btrfs_header_nritems(b) == 1);
			}
			*/
			/* this is only true while dropping a snapshot */
			if (level == lowest_level)
				break;

			b = read_node_slot(fs_info, b, slot);
			if (!extent_buffer_uptodate(b))
				return -EIO;
		} else {
			p->slots[level] = slot;
			/*
			if (ins_len > 0 &&
			    ins_len > btrfs_leaf_free_space(b)) {
				int sret = split_leaf(trans, root, key,
						      p, ins_len, ret == 0);
				BUG_ON(sret > 0);
				if (sret)
					return sret;
			}
			*/
			return ret;
		}
	}
	return 1;
}

/*
 * Helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		 return ret;
	/*
	 * A return value of 1 means the path is at the position where the item
	 * should be inserted. Normally this is the next bigger item, but in
	 * case the previous item is the last in a leaf, path points to the
	 * first free slot in the previous leaf, i.e. at an invalid item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * No higher item found, return the next lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
				return 0;
			}
			if (!return_any)
				return 1;
			/*
			 * No lower item found, return the next higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
			--p->slots[0];
		}
	}
	return 0;
}

/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
{
	int data_len;
	int nritems = btrfs_header_nritems(l);
	int end = min(nritems, start + nr) - 1;

	if (!nr)
		return 0;
	data_len = btrfs_item_end_nr(l, start);
	data_len = data_len - btrfs_item_offset_nr(l, end);
	data_len += sizeof(struct btrfs_item) * nr;
	WARN_ON(data_len < 0);
	return data_len;
}

/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
int btrfs_leaf_free_space(struct extent_buffer *leaf)
{
	int nritems = btrfs_header_nritems(leaf);
	u32 leaf_data_size;
	int ret;

	BUG_ON(leaf->fs_info && leaf->fs_info->nodesize != leaf->len);
	leaf_data_size = __BTRFS_LEAF_DATA_SIZE(leaf->len);
	ret = leaf_data_size - leaf_space_used(leaf, 0 ,nritems);
	if (ret < 0) {
		printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
		       ret, leaf_data_size, leaf_space_used(leaf, 0, nritems),
		       nritems);
	}
	return ret;
}

/*
 * walk up the tree as far as required to find the previous leaf.
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
 */
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
	int slot;
	int level = 1;
	struct extent_buffer *c;
	struct extent_buffer *next = NULL;
	struct btrfs_fs_info *fs_info = root->fs_info;

	while(level < BTRFS_MAX_LEVEL) {
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level];
		c = path->nodes[level];
		if (slot == 0) {
			level++;
			if (level == BTRFS_MAX_LEVEL)
				return 1;
			continue;
		}
		slot--;

		next = read_node_slot(fs_info, c, slot);
		if (!extent_buffer_uptodate(next)) {
			if (IS_ERR(next))
				return PTR_ERR(next);
			return -EIO;
		}
		break;
	}
	path->slots[level] = slot;
	while(1) {
		level--;
		c = path->nodes[level];
		free_extent_buffer(c);
		slot = btrfs_header_nritems(next);
		if (slot != 0)
			slot--;
		path->nodes[level] = next;
		path->slots[level] = slot;
		if (!level)
			break;
		next = read_node_slot(fs_info, next, slot);
		if (!extent_buffer_uptodate(next)) {
			if (IS_ERR(next))
				return PTR_ERR(next);
			return -EIO;
		}
	}
	return 0;
}

/*
 * Walk up the tree as far as necessary to find the next sibling tree block.
 * More generic version of btrfs_next_leaf(), as it could find sibling nodes
 * if @path->lowest_level is not 0.
 *
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
 */
int btrfs_next_sibling_tree_block(struct btrfs_fs_info *fs_info,
				  struct btrfs_path *path)
{
	int slot;
	int level = path->lowest_level + 1;
	struct extent_buffer *c;
	struct extent_buffer *next = NULL;

	BUG_ON(path->lowest_level + 1 >= BTRFS_MAX_LEVEL);
	do {
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
		if (slot >= btrfs_header_nritems(c)) {
			level++;
			if (level == BTRFS_MAX_LEVEL)
				return 1;
			continue;
		}

		next = read_node_slot(fs_info, c, slot);
		if (!extent_buffer_uptodate(next))
			return -EIO;
		break;
	} while (level < BTRFS_MAX_LEVEL);
	path->slots[level] = slot;
	while(1) {
		level--;
		c = path->nodes[level];
		free_extent_buffer(c);
		path->nodes[level] = next;
		path->slots[level] = 0;
		if (level == path->lowest_level)
			break;
		next = read_node_slot(fs_info, next, 0);
		if (!extent_buffer_uptodate(next))
			return -EIO;
	}
	return 0;
}

int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while(1) {
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == type)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
	}
	return 1;
}