aboutsummaryrefslogtreecommitdiff
path: root/board/tcm-bf518
ModeNameSize
-rw-r--r--Makefile1452logplain
-rw-r--r--config.mk970logplain
-rw-r--r--tcm-bf518.c1473logplain
2207'>2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
/* Support routines for manipulating internal types for GDB.

   Copyright (C) 1992-2019 Free Software Foundation, Inc.

   Contributed by Cygnus Support, using pieces from other GDB modules.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "bfd.h"
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "expression.h"
#include "language.h"
#include "target.h"
#include "value.h"
#include "demangle.h"
#include "complaints.h"
#include "gdbcmd.h"
#include "cp-abi.h"
#include "hashtab.h"
#include "cp-support.h"
#include "bcache.h"
#include "dwarf2loc.h"
#include "gdbcore.h"
#include "floatformat.h"

/* Initialize BADNESS constants.  */

const struct rank LENGTH_MISMATCH_BADNESS = {100,0};

const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};

const struct rank EXACT_MATCH_BADNESS = {0,0};

const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
const struct rank CV_CONVERSION_BADNESS = {1, 0};
const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
const struct rank BOOL_CONVERSION_BADNESS = {3,0};
const struct rank BASE_CONVERSION_BADNESS = {2,0};
const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};

/* Floatformat pairs.  */
const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_half_big,
  &floatformat_ieee_half_little
};
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_single_big,
  &floatformat_ieee_single_little
};
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_little
};
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ieee_double_big,
  &floatformat_ieee_double_littlebyte_bigword
};
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_i387_ext,
  &floatformat_i387_ext
};
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_m68881_ext,
  &floatformat_m68881_ext
};
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_arm_ext_big,
  &floatformat_arm_ext_littlebyte_bigword
};
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ia64_spill_big,
  &floatformat_ia64_spill_little
};
const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ia64_quad_big,
  &floatformat_ia64_quad_little
};
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_vax_f,
  &floatformat_vax_f
};
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_vax_d,
  &floatformat_vax_d
};
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
  &floatformat_ibm_long_double_big,
  &floatformat_ibm_long_double_little
};

/* Should opaque types be resolved?  */

static bool opaque_type_resolution = true;

/* See gdbtypes.h.  */

unsigned int overload_debug = 0;

/* A flag to enable strict type checking.  */

static bool strict_type_checking = true;

/* A function to show whether opaque types are resolved.  */

static void
show_opaque_type_resolution (struct ui_file *file, int from_tty,
			     struct cmd_list_element *c, 
			     const char *value)
{
  fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
			    "(if set before loading symbols) is %s.\n"),
		    value);
}

/* A function to show whether C++ overload debugging is enabled.  */

static void
show_overload_debug (struct ui_file *file, int from_tty,
		     struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"), 
		    value);
}

/* A function to show the status of strict type checking.  */

static void
show_strict_type_checking (struct ui_file *file, int from_tty,
			   struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
}


/* Allocate a new OBJFILE-associated type structure and fill it
   with some defaults.  Space for the type structure is allocated
   on the objfile's objfile_obstack.  */

struct type *
alloc_type (struct objfile *objfile)
{
  struct type *type;

  gdb_assert (objfile != NULL);

  /* Alloc the structure and start off with all fields zeroed.  */
  type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
  TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
					  struct main_type);
  OBJSTAT (objfile, n_types++);

  TYPE_OBJFILE_OWNED (type) = 1;
  TYPE_OWNER (type).objfile = objfile;

  /* Initialize the fields that might not be zero.  */

  TYPE_CODE (type) = TYPE_CODE_UNDEF;
  TYPE_CHAIN (type) = type;	/* Chain back to itself.  */

  return type;
}

/* Allocate a new GDBARCH-associated type structure and fill it
   with some defaults.  Space for the type structure is allocated
   on the obstack associated with GDBARCH.  */

struct type *
alloc_type_arch (struct gdbarch *gdbarch)
{
  struct type *type;

  gdb_assert (gdbarch != NULL);

  /* Alloc the structure and start off with all fields zeroed.  */

  type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
  TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);

  TYPE_OBJFILE_OWNED (type) = 0;
  TYPE_OWNER (type).gdbarch = gdbarch;

  /* Initialize the fields that might not be zero.  */

  TYPE_CODE (type) = TYPE_CODE_UNDEF;
  TYPE_CHAIN (type) = type;	/* Chain back to itself.  */

  return type;
}

/* If TYPE is objfile-associated, allocate a new type structure
   associated with the same objfile.  If TYPE is gdbarch-associated,
   allocate a new type structure associated with the same gdbarch.  */

struct type *
alloc_type_copy (const struct type *type)
{
  if (TYPE_OBJFILE_OWNED (type))
    return alloc_type (TYPE_OWNER (type).objfile);
  else
    return alloc_type_arch (TYPE_OWNER (type).gdbarch);
}

/* If TYPE is gdbarch-associated, return that architecture.
   If TYPE is objfile-associated, return that objfile's architecture.  */

struct gdbarch *
get_type_arch (const struct type *type)
{
  struct gdbarch *arch;

  if (TYPE_OBJFILE_OWNED (type))
    arch = get_objfile_arch (TYPE_OWNER (type).objfile);
  else
    arch = TYPE_OWNER (type).gdbarch;

  /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
     a gdbarch, however, this is very rare, and even then, in most cases
     that get_type_arch is called, we assume that a non-NULL value is
     returned.  */
  gdb_assert (arch != NULL);
  return arch;
}

/* See gdbtypes.h.  */

struct type *
get_target_type (struct type *type)
{
  if (type != NULL)
    {
      type = TYPE_TARGET_TYPE (type);
      if (type != NULL)
	type = check_typedef (type);
    }

  return type;
}

/* See gdbtypes.h.  */

unsigned int
type_length_units (struct type *type)
{
  struct gdbarch *arch = get_type_arch (type);
  int unit_size = gdbarch_addressable_memory_unit_size (arch);

  return TYPE_LENGTH (type) / unit_size;
}

/* Alloc a new type instance structure, fill it with some defaults,
   and point it at OLDTYPE.  Allocate the new type instance from the
   same place as OLDTYPE.  */

static struct type *
alloc_type_instance (struct type *oldtype)
{
  struct type *type;

  /* Allocate the structure.  */

  if (! TYPE_OBJFILE_OWNED (oldtype))
    type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
  else
    type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
			   struct type);

  TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);

  TYPE_CHAIN (type) = type;	/* Chain back to itself for now.  */

  return type;
}

/* Clear all remnants of the previous type at TYPE, in preparation for
   replacing it with something else.  Preserve owner information.  */

static void
smash_type (struct type *type)
{
  int objfile_owned = TYPE_OBJFILE_OWNED (type);
  union type_owner owner = TYPE_OWNER (type);

  memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));

  /* Restore owner information.  */
  TYPE_OBJFILE_OWNED (type) = objfile_owned;
  TYPE_OWNER (type) = owner;

  /* For now, delete the rings.  */
  TYPE_CHAIN (type) = type;

  /* For now, leave the pointer/reference types alone.  */
}

/* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
   to a pointer to memory where the pointer type should be stored.
   If *TYPEPTR is zero, update it to point to the pointer type we return.
   We allocate new memory if needed.  */

struct type *
make_pointer_type (struct type *type, struct type **typeptr)
{
  struct type *ntype;	/* New type */
  struct type *chain;

  ntype = TYPE_POINTER_TYPE (type);

  if (ntype)
    {
      if (typeptr == 0)
	return ntype;		/* Don't care about alloc, 
				   and have new type.  */
      else if (*typeptr == 0)
	{
	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
	  return ntype;
	}
    }

  if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
    {
      ntype = alloc_type_copy (type);
      if (typeptr)
	*typeptr = ntype;
    }
  else			/* We have storage, but need to reset it.  */
    {
      ntype = *typeptr;
      chain = TYPE_CHAIN (ntype);
      smash_type (ntype);
      TYPE_CHAIN (ntype) = chain;
    }

  TYPE_TARGET_TYPE (ntype) = type;
  TYPE_POINTER_TYPE (type) = ntype;

  /* FIXME!  Assumes the machine has only one representation for pointers!  */

  TYPE_LENGTH (ntype)
    = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
  TYPE_CODE (ntype) = TYPE_CODE_PTR;

  /* Mark pointers as unsigned.  The target converts between pointers
     and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
     gdbarch_address_to_pointer.  */
  TYPE_UNSIGNED (ntype) = 1;

  /* Update the length of all the other variants of this type.  */
  chain = TYPE_CHAIN (ntype);
  while (chain != ntype)
    {
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      chain = TYPE_CHAIN (chain);
    }

  return ntype;
}

/* Given a type TYPE, return a type of pointers to that type.
   May need to construct such a type if this is the first use.  */

struct type *
lookup_pointer_type (struct type *type)
{
  return make_pointer_type (type, (struct type **) 0);
}

/* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero,
   points to a pointer to memory where the reference type should be
   stored.  If *TYPEPTR is zero, update it to point to the reference
   type we return.  We allocate new memory if needed. REFCODE denotes
   the kind of reference type to lookup (lvalue or rvalue reference).  */

struct type *
make_reference_type (struct type *type, struct type **typeptr,
                      enum type_code refcode)
{
  struct type *ntype;	/* New type */
  struct type **reftype;
  struct type *chain;

  gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);

  ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
           : TYPE_RVALUE_REFERENCE_TYPE (type));

  if (ntype)
    {
      if (typeptr == 0)
	return ntype;		/* Don't care about alloc, 
				   and have new type.  */
      else if (*typeptr == 0)
	{
	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
	  return ntype;
	}
    }

  if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
    {
      ntype = alloc_type_copy (type);
      if (typeptr)
	*typeptr = ntype;
    }
  else			/* We have storage, but need to reset it.  */
    {
      ntype = *typeptr;
      chain = TYPE_CHAIN (ntype);
      smash_type (ntype);
      TYPE_CHAIN (ntype) = chain;
    }

  TYPE_TARGET_TYPE (ntype) = type;
  reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
             : &TYPE_RVALUE_REFERENCE_TYPE (type));

  *reftype = ntype;

  /* FIXME!  Assume the machine has only one representation for
     references, and that it matches the (only) representation for
     pointers!  */

  TYPE_LENGTH (ntype) =
    gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
  TYPE_CODE (ntype) = refcode;

  *reftype = ntype;

  /* Update the length of all the other variants of this type.  */
  chain = TYPE_CHAIN (ntype);
  while (chain != ntype)
    {
      TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
      chain = TYPE_CHAIN (chain);
    }

  return ntype;
}

/* Same as above, but caller doesn't care about memory allocation
   details.  */

struct type *
lookup_reference_type (struct type *type, enum type_code refcode)
{
  return make_reference_type (type, (struct type **) 0, refcode);
}

/* Lookup the lvalue reference type for the type TYPE.  */

struct type *
lookup_lvalue_reference_type (struct type *type)
{
  return lookup_reference_type (type, TYPE_CODE_REF);
}

/* Lookup the rvalue reference type for the type TYPE.  */

struct type *
lookup_rvalue_reference_type (struct type *type)
{
  return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
}

/* Lookup a function type that returns type TYPE.  TYPEPTR, if
   nonzero, points to a pointer to memory where the function type
   should be stored.  If *TYPEPTR is zero, update it to point to the
   function type we return.  We allocate new memory if needed.  */

struct type *
make_function_type (struct type *type, struct type **typeptr)
{
  struct type *ntype;	/* New type */

  if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
    {
      ntype = alloc_type_copy (type);
      if (typeptr)
	*typeptr = ntype;
    }
  else			/* We have storage, but need to reset it.  */
    {
      ntype = *typeptr;
      smash_type (ntype);
    }

  TYPE_TARGET_TYPE (ntype) = type;

  TYPE_LENGTH (ntype) = 1;
  TYPE_CODE (ntype) = TYPE_CODE_FUNC;

  INIT_FUNC_SPECIFIC (ntype);

  return ntype;
}

/* Given a type TYPE, return a type of functions that return that type.
   May need to construct such a type if this is the first use.  */

struct type *
lookup_function_type (struct type *type)
{
  return make_function_type (type, (struct type **) 0);
}

/* Given a type TYPE and argument types, return the appropriate
   function type.  If the final type in PARAM_TYPES is NULL, make a
   varargs function.  */

struct type *
lookup_function_type_with_arguments (struct type *type,
				     int nparams,
				     struct type **param_types)
{
  struct type *fn = make_function_type (type, (struct type **) 0);
  int i;

  if (nparams > 0)
    {
      if (param_types[nparams - 1] == NULL)
	{
	  --nparams;
	  TYPE_VARARGS (fn) = 1;
	}
      else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
	       == TYPE_CODE_VOID)
	{
	  --nparams;
	  /* Caller should have ensured this.  */
	  gdb_assert (nparams == 0);
	  TYPE_PROTOTYPED (fn) = 1;
	}
      else
	TYPE_PROTOTYPED (fn) = 1;
    }

  TYPE_NFIELDS (fn) = nparams;
  TYPE_FIELDS (fn)
    = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
  for (i = 0; i < nparams; ++i)
    TYPE_FIELD_TYPE (fn, i) = param_types[i];

  return fn;
}

/* Identify address space identifier by name --
   return the integer flag defined in gdbtypes.h.  */

int
address_space_name_to_int (struct gdbarch *gdbarch,
			   const char *space_identifier)
{
  int type_flags;

  /* Check for known address space delimiters.  */
  if (!strcmp (space_identifier, "code"))
    return TYPE_INSTANCE_FLAG_CODE_SPACE;
  else if (!strcmp (space_identifier, "data"))
    return TYPE_INSTANCE_FLAG_DATA_SPACE;
  else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
           && gdbarch_address_class_name_to_type_flags (gdbarch,
							space_identifier,
							&type_flags))
    return type_flags;
  else
    error (_("Unknown address space specifier: \"%s\""), space_identifier);
}

/* Identify address space identifier by integer flag as defined in 
   gdbtypes.h -- return the string version of the adress space name.  */

const char *
address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
{
  if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
    return "code";
  else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
    return "data";
  else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
           && gdbarch_address_class_type_flags_to_name_p (gdbarch))
    return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
  else
    return NULL;
}

/* Create a new type with instance flags NEW_FLAGS, based on TYPE.

   If STORAGE is non-NULL, create the new type instance there.
   STORAGE must be in the same obstack as TYPE.  */

static struct type *
make_qualified_type (struct type *type, int new_flags,
		     struct type *storage)
{
  struct type *ntype;

  ntype = type;
  do
    {
      if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
	return ntype;
      ntype = TYPE_CHAIN (ntype);
    }
  while (ntype != type);

  /* Create a new type instance.  */
  if (storage == NULL)
    ntype = alloc_type_instance (type);
  else
    {
      /* If STORAGE was provided, it had better be in the same objfile
	 as TYPE.  Otherwise, we can't link it into TYPE's cv chain:
	 if one objfile is freed and the other kept, we'd have
	 dangling pointers.  */
      gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));

      ntype = storage;
      TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
      TYPE_CHAIN (ntype) = ntype;
    }

  /* Pointers or references to the original type are not relevant to
     the new type.  */
  TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
  TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;

  /* Chain the new qualified type to the old type.  */
  TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
  TYPE_CHAIN (type) = ntype;

  /* Now set the instance flags and return the new type.  */
  TYPE_INSTANCE_FLAGS (ntype) = new_flags;

  /* Set length of new type to that of the original type.  */
  TYPE_LENGTH (ntype) = TYPE_LENGTH (type);

  return ntype;
}

/* Make an address-space-delimited variant of a type -- a type that
   is identical to the one supplied except that it has an address
   space attribute attached to it (such as "code" or "data").

   The space attributes "code" and "data" are for Harvard
   architectures.  The address space attributes are for architectures
   which have alternately sized pointers or pointers with alternate
   representations.  */

struct type *
make_type_with_address_space (struct type *type, int space_flag)
{
  int new_flags = ((TYPE_INSTANCE_FLAGS (type)
		    & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
			| TYPE_INSTANCE_FLAG_DATA_SPACE
		        | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
		   | space_flag);

  return make_qualified_type (type, new_flags, NULL);
}

/* Make a "c-v" variant of a type -- a type that is identical to the
   one supplied except that it may have const or volatile attributes
   CNST is a flag for setting the const attribute
   VOLTL is a flag for setting the volatile attribute
   TYPE is the base type whose variant we are creating.

   If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
   storage to hold the new qualified type; *TYPEPTR and TYPE must be
   in the same objfile.  Otherwise, allocate fresh memory for the new
   type whereever TYPE lives.  If TYPEPTR is non-zero, set it to the
   new type we construct.  */

struct type *
make_cv_type (int cnst, int voltl, 
	      struct type *type, 
	      struct type **typeptr)
{
  struct type *ntype;	/* New type */

  int new_flags = (TYPE_INSTANCE_FLAGS (type)
		   & ~(TYPE_INSTANCE_FLAG_CONST 
		       | TYPE_INSTANCE_FLAG_VOLATILE));

  if (cnst)
    new_flags |= TYPE_INSTANCE_FLAG_CONST;

  if (voltl)
    new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;

  if (typeptr && *typeptr != NULL)
    {
      /* TYPE and *TYPEPTR must be in the same objfile.  We can't have
	 a C-V variant chain that threads across objfiles: if one
	 objfile gets freed, then the other has a broken C-V chain.

	 This code used to try to copy over the main type from TYPE to
	 *TYPEPTR if they were in different objfiles, but that's
	 wrong, too: TYPE may have a field list or member function
	 lists, which refer to types of their own, etc. etc.  The
	 whole shebang would need to be copied over recursively; you
	 can't have inter-objfile pointers.  The only thing to do is
	 to leave stub types as stub types, and look them up afresh by
	 name each time you encounter them.  */
      gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
    }
  
  ntype = make_qualified_type (type, new_flags, 
			       typeptr ? *typeptr : NULL);

  if (typeptr != NULL)
    *typeptr = ntype;

  return ntype;
}

/* Make a 'restrict'-qualified version of TYPE.  */

struct type *
make_restrict_type (struct type *type)
{
  return make_qualified_type (type,
			      (TYPE_INSTANCE_FLAGS (type)
			       | TYPE_INSTANCE_FLAG_RESTRICT),
			      NULL);
}

/* Make a type without const, volatile, or restrict.  */

struct type *
make_unqualified_type (struct type *type)
{
  return make_qualified_type (type,
			      (TYPE_INSTANCE_FLAGS (type)
			       & ~(TYPE_INSTANCE_FLAG_CONST
				   | TYPE_INSTANCE_FLAG_VOLATILE
				   | TYPE_INSTANCE_FLAG_RESTRICT)),
			      NULL);
}

/* Make a '_Atomic'-qualified version of TYPE.  */

struct type *
make_atomic_type (struct type *type)
{
  return make_qualified_type (type,
			      (TYPE_INSTANCE_FLAGS (type)
			       | TYPE_INSTANCE_FLAG_ATOMIC),
			      NULL);
}

/* Replace the contents of ntype with the type *type.  This changes the
   contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
   the changes are propogated to all types in the TYPE_CHAIN.

   In order to build recursive types, it's inevitable that we'll need
   to update types in place --- but this sort of indiscriminate
   smashing is ugly, and needs to be replaced with something more
   controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
   clear if more steps are needed.  */

void
replace_type (struct type *ntype, struct type *type)
{
  struct type *chain;

  /* These two types had better be in the same objfile.  Otherwise,
     the assignment of one type's main type structure to the other
     will produce a type with references to objects (names; field
     lists; etc.) allocated on an objfile other than its own.  */
  gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));

  *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);

  /* The type length is not a part of the main type.  Update it for
     each type on the variant chain.  */
  chain = ntype;
  do
    {
      /* Assert that this element of the chain has no address-class bits
	 set in its flags.  Such type variants might have type lengths
	 which are supposed to be different from the non-address-class
	 variants.  This assertion shouldn't ever be triggered because
	 symbol readers which do construct address-class variants don't
	 call replace_type().  */
      gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);

      TYPE_LENGTH (chain) = TYPE_LENGTH (type);
      chain = TYPE_CHAIN (chain);
    }
  while (ntype != chain);

  /* Assert that the two types have equivalent instance qualifiers.
     This should be true for at least all of our debug readers.  */
  gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
}

/* Implement direct support for MEMBER_TYPE in GNU C++.
   May need to construct such a type if this is the first use.
   The TYPE is the type of the member.  The DOMAIN is the type
   of the aggregate that the member belongs to.  */

struct type *
lookup_memberptr_type (struct type *type, struct type *domain)
{
  struct type *mtype;

  mtype = alloc_type_copy (type);
  smash_to_memberptr_type (mtype, domain, type);
  return mtype;
}

/* Return a pointer-to-method type, for a method of type TO_TYPE.  */

struct type *
lookup_methodptr_type (struct type *to_type)
{
  struct type *mtype;

  mtype = alloc_type_copy (to_type);
  smash_to_methodptr_type (mtype, to_type);
  return mtype;
}

/* Allocate a stub method whose return type is TYPE.  This apparently
   happens for speed of symbol reading, since parsing out the
   arguments to the method is cpu-intensive, the way we are doing it.
   So, we will fill in arguments later.  This always returns a fresh
   type.  */

struct type *
allocate_stub_method (struct type *type)
{
  struct type *mtype;

  mtype = alloc_type_copy (type);
  TYPE_CODE (mtype) = TYPE_CODE_METHOD;
  TYPE_LENGTH (mtype) = 1;
  TYPE_STUB (mtype) = 1;
  TYPE_TARGET_TYPE (mtype) = type;
  /* TYPE_SELF_TYPE (mtype) = unknown yet */
  return mtype;
}

/* See gdbtypes.h.  */

bool
operator== (const dynamic_prop &l, const dynamic_prop &r)
{
  if (l.kind != r.kind)
    return false;

  switch (l.kind)
    {
    case PROP_UNDEFINED:
      return true;
    case PROP_CONST:
      return l.data.const_val == r.data.const_val;
    case PROP_ADDR_OFFSET:
    case PROP_LOCEXPR:
    case PROP_LOCLIST:
      return l.data.baton == r.data.baton;
    }

  gdb_assert_not_reached ("unhandled dynamic_prop kind");
}

/* See gdbtypes.h.  */

bool
operator== (const range_bounds &l, const range_bounds &r)
{
#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)

  return (FIELD_EQ (low)
	  && FIELD_EQ (high)
	  && FIELD_EQ (flag_upper_bound_is_count)
	  && FIELD_EQ (flag_bound_evaluated)
	  && FIELD_EQ (bias));

#undef FIELD_EQ
}

/* Create a range type with a dynamic range from LOW_BOUND to
   HIGH_BOUND, inclusive.  See create_range_type for further details. */

struct type *
create_range_type (struct type *result_type, struct type *index_type,
		   const struct dynamic_prop *low_bound,
		   const struct dynamic_prop *high_bound,
		   LONGEST bias)
{
  /* The INDEX_TYPE should be a type capable of holding the upper and lower
     bounds, as such a zero sized, or void type makes no sense.  */
  gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
  gdb_assert (TYPE_LENGTH (index_type) > 0);

  if (result_type == NULL)
    result_type = alloc_type_copy (index_type);
  TYPE_CODE (result_type) = TYPE_CODE_RANGE;
  TYPE_TARGET_TYPE (result_type) = index_type;
  if (TYPE_STUB (index_type))
    TYPE_TARGET_STUB (result_type) = 1;
  else
    TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));

  TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
    TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
  TYPE_RANGE_DATA (result_type)->low = *low_bound;
  TYPE_RANGE_DATA (result_type)->high = *high_bound;
  TYPE_RANGE_DATA (result_type)->bias = bias;

  if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
    TYPE_UNSIGNED (result_type) = 1;

  /* Ada allows the declaration of range types whose upper bound is
     less than the lower bound, so checking the lower bound is not
     enough.  Make sure we do not mark a range type whose upper bound
     is negative as unsigned.  */
  if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
    TYPE_UNSIGNED (result_type) = 0;

  return result_type;
}

/* Create a range type using either a blank type supplied in
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   INDEX_TYPE.

   Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
   to HIGH_BOUND, inclusive.

   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into a range type?  */

struct type *
create_static_range_type (struct type *result_type, struct type *index_type,
			  LONGEST low_bound, LONGEST high_bound)
{
  struct dynamic_prop low, high;

  low.kind = PROP_CONST;
  low.data.const_val = low_bound;

  high.kind = PROP_CONST;
  high.data.const_val = high_bound;

  result_type = create_range_type (result_type, index_type, &low, &high, 0);

  return result_type;
}

/* Predicate tests whether BOUNDS are static.  Returns 1 if all bounds values
   are static, otherwise returns 0.  */

static int
has_static_range (const struct range_bounds *bounds)
{
  return (bounds->low.kind == PROP_CONST
	  && bounds->high.kind == PROP_CONST);
}


/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
   TYPE.  Return 1 if type is a range type, 0 if it is discrete (and
   bounds will fit in LONGEST), or -1 otherwise.  */

int
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
{
  type = check_typedef (type);
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      *lowp = TYPE_LOW_BOUND (type);
      *highp = TYPE_HIGH_BOUND (type);
      return 1;
    case TYPE_CODE_ENUM:
      if (TYPE_NFIELDS (type) > 0)
	{
	  /* The enums may not be sorted by value, so search all
	     entries.  */
	  int i;

	  *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
	  for (i = 0; i < TYPE_NFIELDS (type); i++)
	    {
	      if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
		*lowp = TYPE_FIELD_ENUMVAL (type, i);
	      if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
		*highp = TYPE_FIELD_ENUMVAL (type, i);
	    }

	  /* Set unsigned indicator if warranted.  */
	  if (*lowp >= 0)
	    {
	      TYPE_UNSIGNED (type) = 1;
	    }
	}
      else
	{
	  *lowp = 0;
	  *highp = -1;
	}
      return 0;
    case TYPE_CODE_BOOL:
      *lowp = 0;
      *highp = 1;
      return 0;
    case TYPE_CODE_INT:
      if (TYPE_LENGTH (type) > sizeof (LONGEST))	/* Too big */
	return -1;
      if (!TYPE_UNSIGNED (type))
	{
	  *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
	  *highp = -*lowp - 1;
	  return 0;
	}
      /* fall through */
    case TYPE_CODE_CHAR:
      *lowp = 0;
      /* This round-about calculation is to avoid shifting by
         TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
         if TYPE_LENGTH (type) == sizeof (LONGEST).  */
      *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
      *highp = (*highp - 1) | *highp;
      return 0;
    default:
      return -1;
    }
}

/* Assuming TYPE is a simple, non-empty array type, compute its upper
   and lower bound.  Save the low bound into LOW_BOUND if not NULL.
   Save the high bound into HIGH_BOUND if not NULL.

   Return 1 if the operation was successful.  Return zero otherwise,
   in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.

   We now simply use get_discrete_bounds call to get the values
   of the low and high bounds.
   get_discrete_bounds can return three values:
   1, meaning that index is a range,
   0, meaning that index is a discrete type,
   or -1 for failure.  */

int
get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
{
  struct type *index = TYPE_INDEX_TYPE (type);
  LONGEST low = 0;
  LONGEST high = 0;
  int res;

  if (index == NULL)
    return 0;

  res = get_discrete_bounds (index, &low, &high);
  if (res == -1)
    return 0;

  /* Check if the array bounds are undefined.  */
  if (res == 1
      && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
	  || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
    return 0;

  if (low_bound)
    *low_bound = low;

  if (high_bound)
    *high_bound = high;

  return 1;
}

/* Assuming that TYPE is a discrete type and VAL is a valid integer
   representation of a value of this type, save the corresponding
   position number in POS.

   Its differs from VAL only in the case of enumeration types.  In
   this case, the position number of the value of the first listed
   enumeration literal is zero; the position number of the value of
   each subsequent enumeration literal is one more than that of its
   predecessor in the list.

   Return 1 if the operation was successful.  Return zero otherwise,
   in which case the value of POS is unmodified.
*/

int
discrete_position (struct type *type, LONGEST val, LONGEST *pos)
{
  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      int i;

      for (i = 0; i < TYPE_NFIELDS (type); i += 1)
        {
          if (val == TYPE_FIELD_ENUMVAL (type, i))
	    {
	      *pos = i;
	      return 1;
	    }
        }
      /* Invalid enumeration value.  */
      return 0;
    }
  else
    {
      *pos = val;
      return 1;
    }
}

/* Create an array type using either a blank type supplied in
   RESULT_TYPE, or creating a new type, inheriting the objfile from
   RANGE_TYPE.

   Elements will be of type ELEMENT_TYPE, the indices will be of type
   RANGE_TYPE.

   BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
   This byte stride property is added to the resulting array type
   as a DYN_PROP_BYTE_STRIDE.  As a consequence, the BYTE_STRIDE_PROP
   argument can only be used to create types that are objfile-owned
   (see add_dyn_prop), meaning that either this function must be called
   with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.

   BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
   If BIT_STRIDE is not zero, build a packed array type whose element
   size is BIT_STRIDE.  Otherwise, ignore this parameter.

   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into an array
   type?  */

struct type *
create_array_type_with_stride (struct type *result_type,
			       struct type *element_type,
			       struct type *range_type,
			       struct dynamic_prop *byte_stride_prop,
			       unsigned int bit_stride)
{
  if (byte_stride_prop != NULL
      && byte_stride_prop->kind == PROP_CONST)
    {
      /* The byte stride is actually not dynamic.  Pretend we were
	 called with bit_stride set instead of byte_stride_prop.
	 This will give us the same result type, while avoiding
	 the need to handle this as a special case.  */
      bit_stride = byte_stride_prop->data.const_val * 8;
      byte_stride_prop = NULL;
    }

  if (result_type == NULL)
    result_type = alloc_type_copy (range_type);

  TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
  TYPE_TARGET_TYPE (result_type) = element_type;
  if (byte_stride_prop == NULL
      && has_static_range (TYPE_RANGE_DATA (range_type))
      && (!type_not_associated (result_type)
	  && !type_not_allocated (result_type)))
    {
      LONGEST low_bound, high_bound;

      if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
	low_bound = high_bound = 0;
      element_type = check_typedef (element_type);
      /* Be careful when setting the array length.  Ada arrays can be
	 empty arrays with the high_bound being smaller than the low_bound.
	 In such cases, the array length should be zero.  */
      if (high_bound < low_bound)
	TYPE_LENGTH (result_type) = 0;
      else if (bit_stride > 0)
	TYPE_LENGTH (result_type) =
	  (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
      else
	TYPE_LENGTH (result_type) =
	  TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
    }
  else
    {
      /* This type is dynamic and its length needs to be computed
         on demand.  In the meantime, avoid leaving the TYPE_LENGTH
         undefined by setting it to zero.  Although we are not expected
         to trust TYPE_LENGTH in this case, setting the size to zero
         allows us to avoid allocating objects of random sizes in case
         we accidently do.  */
      TYPE_LENGTH (result_type) = 0;
    }

  TYPE_NFIELDS (result_type) = 1;
  TYPE_FIELDS (result_type) =
    (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
  TYPE_INDEX_TYPE (result_type) = range_type;
  if (byte_stride_prop != NULL)
    add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
  else if (bit_stride > 0)
    TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;

  /* TYPE_TARGET_STUB will take care of zero length arrays.  */
  if (TYPE_LENGTH (result_type) == 0)
    TYPE_TARGET_STUB (result_type) = 1;

  return result_type;
}

/* Same as create_array_type_with_stride but with no bit_stride
   (BIT_STRIDE = 0), thus building an unpacked array.  */

struct type *
create_array_type (struct type *result_type,
		   struct type *element_type,
		   struct type *range_type)
{
  return create_array_type_with_stride (result_type, element_type,
					range_type, NULL, 0);
}

struct type *
lookup_array_range_type (struct type *element_type,
			 LONGEST low_bound, LONGEST high_bound)
{
  struct type *index_type;
  struct type *range_type;

  if (TYPE_OBJFILE_OWNED (element_type))
    index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
  else
    index_type = builtin_type (get_type_arch (element_type))->builtin_int;
  range_type = create_static_range_type (NULL, index_type,
					 low_bound, high_bound);

  return create_array_type (NULL, element_type, range_type);
}

/* Create a string type using either a blank type supplied in
   RESULT_TYPE, or creating a new type.  String types are similar
   enough to array of char types that we can use create_array_type to
   build the basic type and then bash it into a string type.

   For fixed length strings, the range type contains 0 as the lower
   bound and the length of the string minus one as the upper bound.

   FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
   sure it is TYPE_CODE_UNDEF before we bash it into a string
   type?  */

struct type *
create_string_type (struct type *result_type,
		    struct type *string_char_type,
		    struct type *range_type)
{
  result_type = create_array_type (result_type,
				   string_char_type,
				   range_type);
  TYPE_CODE (result_type) = TYPE_CODE_STRING;
  return result_type;
}

struct type *
lookup_string_range_type (struct type *string_char_type,
			  LONGEST low_bound, LONGEST high_bound)
{
  struct type *result_type;

  result_type = lookup_array_range_type (string_char_type,
					 low_bound, high_bound);
  TYPE_CODE (result_type) = TYPE_CODE_STRING;
  return result_type;
}

struct type *
create_set_type (struct type *result_type, struct type *domain_type)
{
  if (result_type == NULL)
    result_type = alloc_type_copy (domain_type);

  TYPE_CODE (result_type) = TYPE_CODE_SET;
  TYPE_NFIELDS (result_type) = 1;
  TYPE_FIELDS (result_type)
    = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));

  if (!TYPE_STUB (domain_type))
    {
      LONGEST low_bound, high_bound, bit_length;

      if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
	low_bound = high_bound = 0;
      bit_length = high_bound - low_bound + 1;
      TYPE_LENGTH (result_type)
	= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
      if (low_bound >= 0)
	TYPE_UNSIGNED (result_type) = 1;
    }
  TYPE_FIELD_TYPE (result_type, 0) = domain_type;

  return result_type;
}

/* Convert ARRAY_TYPE to a vector type.  This may modify ARRAY_TYPE
   and any array types nested inside it.  */

void
make_vector_type (struct type *array_type)
{
  struct type *inner_array, *elt_type;
  int flags;

  /* Find the innermost array type, in case the array is
     multi-dimensional.  */
  inner_array = array_type;
  while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
    inner_array = TYPE_TARGET_TYPE (inner_array);

  elt_type = TYPE_TARGET_TYPE (inner_array);
  if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
    {
      flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
      elt_type = make_qualified_type (elt_type, flags, NULL);
      TYPE_TARGET_TYPE (inner_array) = elt_type;
    }

  TYPE_VECTOR (array_type) = 1;
}

struct type *
init_vector_type (struct type *elt_type, int n)
{
  struct type *array_type;

  array_type = lookup_array_range_type (elt_type, 0, n - 1);
  make_vector_type (array_type);
  return array_type;
}

/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
   belongs to.  In c++ this is the class of "this", but TYPE_THIS_TYPE is too
   confusing.  "self" is a common enough replacement for "this".
   TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
   TYPE_CODE_METHOD.  */

struct type *
internal_type_self_type (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_METHODPTR:
    case TYPE_CODE_MEMBERPTR:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	return NULL;
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
      return TYPE_MAIN_TYPE (type)->type_specific.self_type;
    case TYPE_CODE_METHOD:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	return NULL;
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
      return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
    default:
      gdb_assert_not_reached ("bad type");
    }
}

/* Set the type of the class that TYPE belongs to.
   In c++ this is the class of "this".
   TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
   TYPE_CODE_METHOD.  */

void
set_type_self_type (struct type *type, struct type *self_type)
{
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_METHODPTR:
    case TYPE_CODE_MEMBERPTR:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
      TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
      break;
    case TYPE_CODE_METHOD:
      if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
	INIT_FUNC_SPECIFIC (type);
      gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
      TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
      break;
    default:
      gdb_assert_not_reached ("bad type");
    }
}

/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
   TO_TYPE.  A member pointer is a wierd thing -- it amounts to a
   typed offset into a struct, e.g. "an int at offset 8".  A MEMBER
   TYPE doesn't include the offset (that's the value of the MEMBER
   itself), but does include the structure type into which it points
   (for some reason).

   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   allocated.  */

void
smash_to_memberptr_type (struct type *type, struct type *self_type,
			 struct type *to_type)
{
  smash_type (type);
  TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
  TYPE_TARGET_TYPE (type) = to_type;
  set_type_self_type (type, self_type);
  /* Assume that a data member pointer is the same size as a normal
     pointer.  */
  TYPE_LENGTH (type)
    = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
}

/* Smash TYPE to be a type of pointer to methods type TO_TYPE.

   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   allocated.  */

void
smash_to_methodptr_type (struct type *type, struct type *to_type)
{
  smash_type (type);
  TYPE_CODE (type) = TYPE_CODE_METHODPTR;
  TYPE_TARGET_TYPE (type) = to_type;
  set_type_self_type (type, TYPE_SELF_TYPE (to_type));
  TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
}

/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
   METHOD just means `function that gets an extra "this" argument'.

   When "smashing" the type, we preserve the objfile that the old type
   pointed to, since we aren't changing where the type is actually
   allocated.  */

void
smash_to_method_type (struct type *type, struct type *self_type,
		      struct type *to_type, struct field *args,
		      int nargs, int varargs)
{
  smash_type (type);
  TYPE_CODE (type) = TYPE_CODE_METHOD;
  TYPE_TARGET_TYPE (type) = to_type;
  set_type_self_type (type, self_type);
  TYPE_FIELDS (type) = args;
  TYPE_NFIELDS (type) = nargs;
  if (varargs)
    TYPE_VARARGS (type) = 1;
  TYPE_LENGTH (type) = 1;	/* In practice, this is never needed.  */
}

/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
   Since GCC PR debug/47510 DWARF provides associated information to detect the
   anonymous class linkage name from its typedef.

   Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
   apply it itself.  */

const char *
type_name_or_error (struct type *type)
{
  struct type *saved_type = type;
  const char *name;
  struct objfile *objfile;

  type = check_typedef (type);

  name = TYPE_NAME (type);
  if (name != NULL)
    return name;

  name = TYPE_NAME (saved_type);
  objfile = TYPE_OBJFILE (saved_type);
  error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
	 name ? name : "<anonymous>",
	 objfile ? objfile_name (objfile) : "<arch>");
}

/* Lookup a typedef or primitive type named NAME, visible in lexical
   block BLOCK.  If NOERR is nonzero, return zero if NAME is not
   suitably defined.  */

struct type *
lookup_typename (const struct language_defn *language,
		 struct gdbarch *gdbarch, const char *name,
		 const struct block *block, int noerr)
{
  struct symbol *sym;

  sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
				   language->la_language, NULL).symbol;
  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
    return SYMBOL_TYPE (sym);

  if (noerr)
    return NULL;
  error (_("No type named %s."), name);
}

struct type *
lookup_unsigned_typename (const struct language_defn *language,
			  struct gdbarch *gdbarch, const char *name)
{
  char *uns = (char *) alloca (strlen (name) + 10);

  strcpy (uns, "unsigned ");
  strcpy (uns + 9, name);
  return lookup_typename (language, gdbarch, uns, NULL, 0);
}

struct type *
lookup_signed_typename (const struct language_defn *language,
			struct gdbarch *gdbarch, const char *name)
{
  struct type *t;
  char *uns = (char *) alloca (strlen (name) + 8);

  strcpy (uns, "signed ");
  strcpy (uns + 7, name);
  t = lookup_typename (language, gdbarch, uns, NULL, 1);
  /* If we don't find "signed FOO" just try again with plain "FOO".  */
  if (t != NULL)
    return t;
  return lookup_typename (language, gdbarch, name, NULL, 0);
}

/* Lookup a structure type named "struct NAME",
   visible in lexical block BLOCK.  */

struct type *
lookup_struct (const char *name, const struct block *block)
{
  struct symbol *sym;

  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;

  if (sym == NULL)
    {
      error (_("No struct type named %s."), name);
    }
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
    {
      error (_("This context has class, union or enum %s, not a struct."),
	     name);
    }
  return (SYMBOL_TYPE (sym));
}

/* Lookup a union type named "union NAME",
   visible in lexical block BLOCK.  */

struct type *
lookup_union (const char *name, const struct block *block)
{
  struct symbol *sym;
  struct type *t;

  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;

  if (sym == NULL)
    error (_("No union type named %s."), name);

  t = SYMBOL_TYPE (sym);

  if (TYPE_CODE (t) == TYPE_CODE_UNION)
    return t;

  /* If we get here, it's not a union.  */
  error (_("This context has class, struct or enum %s, not a union."), 
	 name);
}

/* Lookup an enum type named "enum NAME",
   visible in lexical block BLOCK.  */

struct type *
lookup_enum (const char *name, const struct block *block)
{
  struct symbol *sym;

  sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
  if (sym == NULL)
    {
      error (_("No enum type named %s."), name);
    }
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
    {
      error (_("This context has class, struct or union %s, not an enum."), 
	     name);
    }
  return (SYMBOL_TYPE (sym));
}

/* Lookup a template type named "template NAME<TYPE>",
   visible in lexical block BLOCK.  */

struct type *
lookup_template_type (const char *name, struct type *type, 
		      const struct block *block)
{
  struct symbol *sym;
  char *nam = (char *) 
    alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);

  strcpy (nam, name);
  strcat (nam, "<");
  strcat (nam, TYPE_NAME (type));
  strcat (nam, " >");	/* FIXME, extra space still introduced in gcc?  */

  sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;

  if (sym == NULL)
    {
      error (_("No template type named %s."), name);
    }
  if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
    {
      error (_("This context has class, union or enum %s, not a struct."),
	     name);
    }
  return (SYMBOL_TYPE (sym));
}

/* See gdbtypes.h.  */

struct_elt
lookup_struct_elt (struct type *type, const char *name, int noerr)
{
  int i;

  for (;;)
    {
      type = check_typedef (type);
      if (TYPE_CODE (type) != TYPE_CODE_PTR
	  && TYPE_CODE (type) != TYPE_CODE_REF)
	break;
      type = TYPE_TARGET_TYPE (type);
    }

  if (TYPE_CODE (type) != TYPE_CODE_STRUCT 
      && TYPE_CODE (type) != TYPE_CODE_UNION)
    {
      std::string type_name = type_to_string (type);
      error (_("Type %s is not a structure or union type."),
	     type_name.c_str ());
    }

  for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
    {
      const char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	{
	  return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
	}
     else if (!t_field_name || *t_field_name == '\0')
	{
	  struct_elt elt
	    = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
	  if (elt.field != NULL)
	    {
	      elt.offset += TYPE_FIELD_BITPOS (type, i);
	      return elt;
	    }
	}
    }

  /* OK, it's not in this class.  Recursively check the baseclasses.  */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
      if (elt.field != NULL)
	return elt;
    }

  if (noerr)
    return {nullptr, 0};

  std::string type_name = type_to_string (type);
  error (_("Type %s has no component named %s."), type_name.c_str (), name);
}

/* See gdbtypes.h.  */

struct type *
lookup_struct_elt_type (struct type *type, const char *name, int noerr)
{
  struct_elt elt = lookup_struct_elt (type, name, noerr);
  if (elt.field != NULL)
    return FIELD_TYPE (*elt.field);
  else
    return NULL;
}

/* Store in *MAX the largest number representable by unsigned integer type
   TYPE.  */

void
get_unsigned_type_max (struct type *type, ULONGEST *max)
{
  unsigned int n;

  type = check_typedef (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
  gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));

  /* Written this way to avoid overflow.  */
  n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
  *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
}

/* Store in *MIN, *MAX the smallest and largest numbers representable by
   signed integer type TYPE.  */

void
get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
{
  unsigned int n;

  type = check_typedef (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
  gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));

  n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
  *min = -((ULONGEST) 1 << (n - 1));
  *max = ((ULONGEST) 1 << (n - 1)) - 1;
}

/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
   cplus_stuff.vptr_fieldno.

   cplus_stuff is initialized to cplus_struct_default which does not
   set vptr_fieldno to -1 for portability reasons (IWBN to use C99
   designated initializers).  We cope with that here.  */

int
internal_type_vptr_fieldno (struct type *type)
{
  type = check_typedef (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
	      || TYPE_CODE (type) == TYPE_CODE_UNION);
  if (!HAVE_CPLUS_STRUCT (type))
    return -1;
  return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
}

/* Set the value of cplus_stuff.vptr_fieldno.  */

void
set_type_vptr_fieldno (struct type *type, int fieldno)
{
  type = check_typedef (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
	      || TYPE_CODE (type) == TYPE_CODE_UNION);
  if (!HAVE_CPLUS_STRUCT (type))
    ALLOCATE_CPLUS_STRUCT_TYPE (type);
  TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
}

/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
   cplus_stuff.vptr_basetype.  */

struct type *
internal_type_vptr_basetype (struct type *type)
{
  type = check_typedef (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
	      || TYPE_CODE (type) == TYPE_CODE_UNION);
  gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
  return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
}

/* Set the value of cplus_stuff.vptr_basetype.  */

void
set_type_vptr_basetype (struct type *type, struct type *basetype)
{
  type = check_typedef (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
	      || TYPE_CODE (type) == TYPE_CODE_UNION);
  if (!HAVE_CPLUS_STRUCT (type))
    ALLOCATE_CPLUS_STRUCT_TYPE (type);
  TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
}

/* Lookup the vptr basetype/fieldno values for TYPE.
   If found store vptr_basetype in *BASETYPEP if non-NULL, and return
   vptr_fieldno.  Also, if found and basetype is from the same objfile,
   cache the results.
   If not found, return -1 and ignore BASETYPEP.
   Callers should be aware that in some cases (for example,
   the type or one of its baseclasses is a stub type and we are
   debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
   this function will not be able to find the
   virtual function table pointer, and vptr_fieldno will remain -1 and
   vptr_basetype will remain NULL or incomplete.  */

int
get_vptr_fieldno (struct type *type, struct type **basetypep)
{
  type = check_typedef (type);

  if (TYPE_VPTR_FIELDNO (type) < 0)
    {
      int i;

      /* We must start at zero in case the first (and only) baseclass
         is virtual (and hence we cannot share the table pointer).  */
      for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
	{
	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
	  int fieldno;
	  struct type *basetype;

	  fieldno = get_vptr_fieldno (baseclass, &basetype);
	  if (fieldno >= 0)
	    {
	      /* If the type comes from a different objfile we can't cache
		 it, it may have a different lifetime.  PR 2384 */
	      if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
		{
		  set_type_vptr_fieldno (type, fieldno);
		  set_type_vptr_basetype (type, basetype);
		}
	      if (basetypep)
		*basetypep = basetype;
	      return fieldno;
	    }
	}

      /* Not found.  */
      return -1;
    }
  else
    {
      if (basetypep)
	*basetypep = TYPE_VPTR_BASETYPE (type);
      return TYPE_VPTR_FIELDNO (type);
    }
}

static void
stub_noname_complaint (void)
{
  complaint (_("stub type has NULL name"));
}

/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
   attached to it, and that property has a non-constant value.  */

static int
array_type_has_dynamic_stride (struct type *type)
{
  struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);

  return (prop != NULL && prop->kind != PROP_CONST);
}

/* Worker for is_dynamic_type.  */

static int
is_dynamic_type_internal (struct type *type, int top_level)
{
  type = check_typedef (type);

  /* We only want to recognize references at the outermost level.  */
  if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
    type = check_typedef (TYPE_TARGET_TYPE (type));

  /* Types that have a dynamic TYPE_DATA_LOCATION are considered
     dynamic, even if the type itself is statically defined.
     From a user's point of view, this may appear counter-intuitive;
     but it makes sense in this context, because the point is to determine
     whether any part of the type needs to be resolved before it can
     be exploited.  */
  if (TYPE_DATA_LOCATION (type) != NULL
      && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
	  || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
    return 1;

  if (TYPE_ASSOCIATED_PROP (type))
    return 1;

  if (TYPE_ALLOCATED_PROP (type))
    return 1;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      {
	/* A range type is obviously dynamic if it has at least one
	   dynamic bound.  But also consider the range type to be
	   dynamic when its subtype is dynamic, even if the bounds
	   of the range type are static.  It allows us to assume that
	   the subtype of a static range type is also static.  */
	return (!has_static_range (TYPE_RANGE_DATA (type))
		|| is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
      }

    case TYPE_CODE_ARRAY:
      {
	gdb_assert (TYPE_NFIELDS (type) == 1);

	/* The array is dynamic if either the bounds are dynamic...  */
	if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
	  return 1;
	/* ... or the elements it contains have a dynamic contents...  */
	if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
	  return 1;
	/* ... or if it has a dynamic stride...  */
	if (array_type_has_dynamic_stride (type))
	  return 1;
	return 0;
      }

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      {
	int i;

	for (i = 0; i < TYPE_NFIELDS (type); ++i)
	  if (!field_is_static (&TYPE_FIELD (type, i))
	      && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
	    return 1;
      }
      break;
    }

  return 0;
}

/* See gdbtypes.h.  */

int
is_dynamic_type (struct type *type)
{
  return is_dynamic_type_internal (type, 1);
}

static struct type *resolve_dynamic_type_internal
  (struct type *type, struct property_addr_info *addr_stack, int top_level);

/* Given a dynamic range type (dyn_range_type) and a stack of
   struct property_addr_info elements, return a static version
   of that type.  */

static struct type *
resolve_dynamic_range (struct type *dyn_range_type,
		       struct property_addr_info *addr_stack)
{
  CORE_ADDR value;
  struct type *static_range_type, *static_target_type;
  const struct dynamic_prop *prop;
  struct dynamic_prop low_bound, high_bound;

  gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);

  prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
  if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    {
      low_bound.kind = PROP_CONST;
      low_bound.data.const_val = value;
    }
  else
    {
      low_bound.kind = PROP_UNDEFINED;
      low_bound.data.const_val = 0;
    }

  prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
  if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    {
      high_bound.kind = PROP_CONST;
      high_bound.data.const_val = value;

      if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
	high_bound.data.const_val
	  = low_bound.data.const_val + high_bound.data.const_val - 1;
    }
  else
    {
      high_bound.kind = PROP_UNDEFINED;
      high_bound.data.const_val = 0;
    }

  static_target_type
    = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
				     addr_stack, 0);
  LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
  static_range_type = create_range_type (copy_type (dyn_range_type),
					 static_target_type,
					 &low_bound, &high_bound, bias);
  TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
  return static_range_type;
}

/* Resolves dynamic bound values of an array type TYPE to static ones.
   ADDR_STACK is a stack of struct property_addr_info to be used
   if needed during the dynamic resolution.  */

static struct type *
resolve_dynamic_array (struct type *type,
		       struct property_addr_info *addr_stack)
{
  CORE_ADDR value;
  struct type *elt_type;
  struct type *range_type;
  struct type *ary_dim;
  struct dynamic_prop *prop;
  unsigned int bit_stride = 0;

  gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);

  type = copy_type (type);

  elt_type = type;
  range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
  range_type = resolve_dynamic_range (range_type, addr_stack);

  /* Resolve allocated/associated here before creating a new array type, which
     will update the length of the array accordingly.  */
  prop = TYPE_ALLOCATED_PROP (type);
  if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    {
      TYPE_DYN_PROP_ADDR (prop) = value;
      TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
    }
  prop = TYPE_ASSOCIATED_PROP (type);
  if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    {
      TYPE_DYN_PROP_ADDR (prop) = value;
      TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
    }

  ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));

  if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
    elt_type = resolve_dynamic_array (ary_dim, addr_stack);
  else
    elt_type = TYPE_TARGET_TYPE (type);

  prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
  if (prop != NULL)
    {
      if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
	{
	  remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
	  bit_stride = (unsigned int) (value * 8);
	}
      else
	{
	  /* Could be a bug in our code, but it could also happen
	     if the DWARF info is not correct.  Issue a warning,
	     and assume no byte/bit stride (leave bit_stride = 0).  */
	  warning (_("cannot determine array stride for type %s"),
		   TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
	}
    }
  else
    bit_stride = TYPE_FIELD_BITSIZE (type, 0);

  return create_array_type_with_stride (type, elt_type, range_type, NULL,
                                        bit_stride);
}

/* Resolve dynamic bounds of members of the union TYPE to static
   bounds.  ADDR_STACK is a stack of struct property_addr_info
   to be used if needed during the dynamic resolution.  */

static struct type *
resolve_dynamic_union (struct type *type,
		       struct property_addr_info *addr_stack)
{
  struct type *resolved_type;
  int i;
  unsigned int max_len = 0;

  gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);

  resolved_type = copy_type (type);
  TYPE_FIELDS (resolved_type)
    = (struct field *) TYPE_ALLOC (resolved_type,
				   TYPE_NFIELDS (resolved_type)
				   * sizeof (struct field));
  memcpy (TYPE_FIELDS (resolved_type),
	  TYPE_FIELDS (type),
	  TYPE_NFIELDS (resolved_type) * sizeof (struct field));
  for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
    {
      struct type *t;

      if (field_is_static (&TYPE_FIELD (type, i)))
	continue;

      t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
					 addr_stack, 0);
      TYPE_FIELD_TYPE (resolved_type, i) = t;
      if (TYPE_LENGTH (t) > max_len)
	max_len = TYPE_LENGTH (t);
    }

  TYPE_LENGTH (resolved_type) = max_len;
  return resolved_type;
}

/* Resolve dynamic bounds of members of the struct TYPE to static
   bounds.  ADDR_STACK is a stack of struct property_addr_info to
   be used if needed during the dynamic resolution.  */

static struct type *
resolve_dynamic_struct (struct type *type,
			struct property_addr_info *addr_stack)
{
  struct type *resolved_type;
  int i;
  unsigned resolved_type_bit_length = 0;

  gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
  gdb_assert (TYPE_NFIELDS (type) > 0);

  resolved_type = copy_type (type);
  TYPE_FIELDS (resolved_type)
    = (struct field *) TYPE_ALLOC (resolved_type,
				   TYPE_NFIELDS (resolved_type)
				   * sizeof (struct field));
  memcpy (TYPE_FIELDS (resolved_type),
	  TYPE_FIELDS (type),
	  TYPE_NFIELDS (resolved_type) * sizeof (struct field));
  for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
    {
      unsigned new_bit_length;
      struct property_addr_info pinfo;

      if (field_is_static (&TYPE_FIELD (type, i)))
	continue;

      /* As we know this field is not a static field, the field's
	 field_loc_kind should be FIELD_LOC_KIND_BITPOS.  Verify
	 this is the case, but only trigger a simple error rather
	 than an internal error if that fails.  While failing
	 that verification indicates a bug in our code, the error
	 is not severe enough to suggest to the user he stops
	 his debugging session because of it.  */
      if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
	error (_("Cannot determine struct field location"
		 " (invalid location kind)"));

      pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
      pinfo.valaddr = addr_stack->valaddr;
      pinfo.addr
	= (addr_stack->addr
	   + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
      pinfo.next = addr_stack;

      TYPE_FIELD_TYPE (resolved_type, i)
	= resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
					 &pinfo, 0);
      gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
		  == FIELD_LOC_KIND_BITPOS);

      new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
      if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
	new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
      else
	new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
			   * TARGET_CHAR_BIT);

      /* Normally, we would use the position and size of the last field
	 to determine the size of the enclosing structure.  But GCC seems
	 to be encoding the position of some fields incorrectly when
	 the struct contains a dynamic field that is not placed last.
	 So we compute the struct size based on the field that has
	 the highest position + size - probably the best we can do.  */
      if (new_bit_length > resolved_type_bit_length)
	resolved_type_bit_length = new_bit_length;
    }

  /* The length of a type won't change for fortran, but it does for C and Ada.
     For fortran the size of dynamic fields might change over time but not the
     type length of the structure.  If we adapt it, we run into problems
     when calculating the element offset for arrays of structs.  */
  if (current_language->la_language != language_fortran)
    TYPE_LENGTH (resolved_type)
      = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;

  /* The Ada language uses this field as a cache for static fixed types: reset
     it as RESOLVED_TYPE must have its own static fixed type.  */
  TYPE_TARGET_TYPE (resolved_type) = NULL;

  return resolved_type;
}

/* Worker for resolved_dynamic_type.  */

static struct type *
resolve_dynamic_type_internal (struct type *type,
			       struct property_addr_info *addr_stack,
			       int top_level)
{
  struct type *real_type = check_typedef (type);
  struct type *resolved_type = type;
  struct dynamic_prop *prop;
  CORE_ADDR value;

  if (!is_dynamic_type_internal (real_type, top_level))
    return type;

  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
    {
      resolved_type = copy_type (type);
      TYPE_TARGET_TYPE (resolved_type)
	= resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
					 top_level);
    }
  else 
    {
      /* Before trying to resolve TYPE, make sure it is not a stub.  */
      type = real_type;

      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_REF:
	  {
	    struct property_addr_info pinfo;

	    pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
	    pinfo.valaddr = NULL;
	    if (addr_stack->valaddr != NULL)
	      pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
	    else
	      pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
	    pinfo.next = addr_stack;

	    resolved_type = copy_type (type);
	    TYPE_TARGET_TYPE (resolved_type)
	      = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
					       &pinfo, top_level);
	    break;
	  }

	case TYPE_CODE_ARRAY:
	  resolved_type = resolve_dynamic_array (type, addr_stack);
	  break;

	case TYPE_CODE_RANGE:
	  resolved_type = resolve_dynamic_range (type, addr_stack);
	  break;

	case TYPE_CODE_UNION:
	  resolved_type = resolve_dynamic_union (type, addr_stack);
	  break;

	case TYPE_CODE_STRUCT:
	  resolved_type = resolve_dynamic_struct (type, addr_stack);
	  break;
	}
    }

  /* Resolve data_location attribute.  */
  prop = TYPE_DATA_LOCATION (resolved_type);
  if (prop != NULL
      && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
    {
      TYPE_DYN_PROP_ADDR (prop) = value;
      TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
    }

  return resolved_type;
}

/* See gdbtypes.h  */

struct type *
resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
		      CORE_ADDR addr)
{
  struct property_addr_info pinfo
    = {check_typedef (type), valaddr, addr, NULL};

  return resolve_dynamic_type_internal (type, &pinfo, 1);
}

/* See gdbtypes.h  */

struct dynamic_prop *
get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
{
  struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);

  while (node != NULL)
    {
      if (node->prop_kind == prop_kind)
        return &node->prop;
      node = node->next;
    }
  return NULL;
}

/* See gdbtypes.h  */

void
add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
              struct type *type)
{
  struct dynamic_prop_list *temp;

  gdb_assert (TYPE_OBJFILE_OWNED (type));

  temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
		 struct dynamic_prop_list);
  temp->prop_kind = prop_kind;
  temp->prop = prop;
  temp->next = TYPE_DYN_PROP_LIST (type);

  TYPE_DYN_PROP_LIST (type) = temp;
}

/* Remove dynamic property from TYPE in case it exists.  */

void
remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
                 struct type *type)
{
  struct dynamic_prop_list *prev_node, *curr_node;

  curr_node = TYPE_DYN_PROP_LIST (type);
  prev_node = NULL;

  while (NULL != curr_node)
    {
      if (curr_node->prop_kind == prop_kind)
	{
	  /* Update the linked list but don't free anything.
	     The property was allocated on objstack and it is not known
	     if we are on top of it.  Nevertheless, everything is released
	     when the complete objstack is freed.  */
	  if (NULL == prev_node)
	    TYPE_DYN_PROP_LIST (type) = curr_node->next;
	  else
	    prev_node->next = curr_node->next;

	  return;
	}

      prev_node = curr_node;
      curr_node = curr_node->next;
    }
}

/* Find the real type of TYPE.  This function returns the real type,
   after removing all layers of typedefs, and completing opaque or stub
   types.  Completion changes the TYPE argument, but stripping of
   typedefs does not.

   Instance flags (e.g. const/volatile) are preserved as typedefs are
   stripped.  If necessary a new qualified form of the underlying type
   is created.

   NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
   not been computed and we're either in the middle of reading symbols, or
   there was no name for the typedef in the debug info.

   NOTE: Lookup of opaque types can throw errors for invalid symbol files.
   QUITs in the symbol reading code can also throw.
   Thus this function can throw an exception.

   If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
   the target type.

   If this is a stubbed struct (i.e. declared as struct foo *), see if
   we can find a full definition in some other file.  If so, copy this
   definition, so we can use it in future.  There used to be a comment
   (but not any code) that if we don't find a full definition, we'd
   set a flag so we don't spend time in the future checking the same
   type.  That would be a mistake, though--we might load in more
   symbols which contain a full definition for the type.  */

struct type *
check_typedef (struct type *type)
{
  struct type *orig_type = type;
  /* While we're removing typedefs, we don't want to lose qualifiers.
     E.g., const/volatile.  */
  int instance_flags = TYPE_INSTANCE_FLAGS (type);

  gdb_assert (type);

  while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
    {
      if (!TYPE_TARGET_TYPE (type))
	{
	  const char *name;
	  struct symbol *sym;

	  /* It is dangerous to call lookup_symbol if we are currently
	     reading a symtab.  Infinite recursion is one danger.  */
	  if (currently_reading_symtab)
	    return make_qualified_type (type, instance_flags, NULL);

	  name = TYPE_NAME (type);
	  /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
	     VAR_DOMAIN as appropriate?  */
	  if (name == NULL)
	    {
	      stub_noname_complaint ();
	      return make_qualified_type (type, instance_flags, NULL);
	    }
	  sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
	  if (sym)
	    TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
	  else					/* TYPE_CODE_UNDEF */
	    TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
	}
      type = TYPE_TARGET_TYPE (type);

      /* Preserve the instance flags as we traverse down the typedef chain.

	 Handling address spaces/classes is nasty, what do we do if there's a
	 conflict?
	 E.g., what if an outer typedef marks the type as class_1 and an inner
	 typedef marks the type as class_2?
	 This is the wrong place to do such error checking.  We leave it to
	 the code that created the typedef in the first place to flag the
	 error.  We just pick the outer address space (akin to letting the
	 outer cast in a chain of casting win), instead of assuming
	 "it can't happen".  */
      {
	const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
				| TYPE_INSTANCE_FLAG_DATA_SPACE);
	const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
	int new_instance_flags = TYPE_INSTANCE_FLAGS (type);

	/* Treat code vs data spaces and address classes separately.  */
	if ((instance_flags & ALL_SPACES) != 0)
	  new_instance_flags &= ~ALL_SPACES;
	if ((instance_flags & ALL_CLASSES) != 0)
	  new_instance_flags &= ~ALL_CLASSES;

	instance_flags |= new_instance_flags;
      }
    }

  /* If this is a struct/class/union with no fields, then check
     whether a full definition exists somewhere else.  This is for
     systems where a type definition with no fields is issued for such
     types, instead of identifying them as stub types in the first
     place.  */

  if (TYPE_IS_OPAQUE (type) 
      && opaque_type_resolution 
      && !currently_reading_symtab)
    {
      const char *name = TYPE_NAME (type);
      struct type *newtype;

      if (name == NULL)
	{
	  stub_noname_complaint ();
	  return make_qualified_type (type, instance_flags, NULL);
	}
      newtype = lookup_transparent_type (name);

      if (newtype)
	{
	  /* If the resolved type and the stub are in the same
	     objfile, then replace the stub type with the real deal.
	     But if they're in separate objfiles, leave the stub
	     alone; we'll just look up the transparent type every time
	     we call check_typedef.  We can't create pointers between
	     types allocated to different objfiles, since they may
	     have different lifetimes.  Trying to copy NEWTYPE over to
	     TYPE's objfile is pointless, too, since you'll have to
	     move over any other types NEWTYPE refers to, which could
	     be an unbounded amount of stuff.  */
	  if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
	    type = make_qualified_type (newtype,
					TYPE_INSTANCE_FLAGS (type),
					type);
	  else
	    type = newtype;
	}
    }
  /* Otherwise, rely on the stub flag being set for opaque/stubbed
     types.  */
  else if (TYPE_STUB (type) && !currently_reading_symtab)
    {
      const char *name = TYPE_NAME (type);
      /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
         as appropriate?  */
      struct symbol *sym;

      if (name == NULL)
	{
	  stub_noname_complaint ();
	  return make_qualified_type (type, instance_flags, NULL);
	}
      sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
      if (sym)
        {
          /* Same as above for opaque types, we can replace the stub
             with the complete type only if they are in the same
             objfile.  */
	  if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
            type = make_qualified_type (SYMBOL_TYPE (sym),
					TYPE_INSTANCE_FLAGS (type),
					type);
	  else
	    type = SYMBOL_TYPE (sym);
        }
    }

  if (TYPE_TARGET_STUB (type))
    {
      struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));

      if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
	{
	  /* Nothing we can do.  */
	}
      else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
	{
	  TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
	  TYPE_TARGET_STUB (type) = 0;
	}
    }

  type = make_qualified_type (type, instance_flags, NULL);

  /* Cache TYPE_LENGTH for future use.  */
  TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);

  return type;
}

/* Parse a type expression in the string [P..P+LENGTH).  If an error
   occurs, silently return a void type.  */

static struct type *
safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
{
  struct ui_file *saved_gdb_stderr;
  struct type *type = NULL; /* Initialize to keep gcc happy.  */

  /* Suppress error messages.  */
  saved_gdb_stderr = gdb_stderr;
  gdb_stderr = &null_stream;

  /* Call parse_and_eval_type() without fear of longjmp()s.  */
  try
    {
      type = parse_and_eval_type (p, length);
    }
  catch (const gdb_exception_error &except)
    {
      type = builtin_type (gdbarch)->builtin_void;
    }

  /* Stop suppressing error messages.  */
  gdb_stderr = saved_gdb_stderr;

  return type;
}

/* Ugly hack to convert method stubs into method types.

   He ain't kiddin'.  This demangles the name of the method into a
   string including argument types, parses out each argument type,
   generates a string casting a zero to that type, evaluates the
   string, and stuffs the resulting type into an argtype vector!!!
   Then it knows the type of the whole function (including argument
   types for overloading), which info used to be in the stab's but was
   removed to hack back the space required for them.  */

static void
check_stub_method (struct type *type, int method_id, int signature_id)
{
  struct gdbarch *gdbarch = get_type_arch (type);
  struct fn_field *f;
  char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
  char *demangled_name = gdb_demangle (mangled_name,
				       DMGL_PARAMS | DMGL_ANSI);
  char *argtypetext, *p;
  int depth = 0, argcount = 1;
  struct field *argtypes;
  struct type *mtype;

  /* Make sure we got back a function string that we can use.  */
  if (demangled_name)
    p = strchr (demangled_name, '(');
  else
    p = NULL;

  if (demangled_name == NULL || p == NULL)
    error (_("Internal: Cannot demangle mangled name `%s'."), 
	   mangled_name);

  /* Now, read in the parameters that define this type.  */
  p += 1;
  argtypetext = p;
  while (*p)
    {
      if (*p == '(' || *p == '<')
	{
	  depth += 1;
	}
      else if (*p == ')' || *p == '>')
	{
	  depth -= 1;
	}
      else if (*p == ',' && depth == 0)
	{
	  argcount += 1;
	}

      p += 1;
    }

  /* If we read one argument and it was ``void'', don't count it.  */
  if (startswith (argtypetext, "(void)"))
    argcount -= 1;

  /* We need one extra slot, for the THIS pointer.  */

  argtypes = (struct field *)
    TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
  p = argtypetext;

  /* Add THIS pointer for non-static methods.  */
  f = TYPE_FN_FIELDLIST1 (type, method_id);
  if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
    argcount = 0;
  else
    {
      argtypes[0].type = lookup_pointer_type (type);
      argcount = 1;
    }

  if (*p != ')')		/* () means no args, skip while.  */
    {
      depth = 0;
      while (*p)
	{
	  if (depth <= 0 && (*p == ',' || *p == ')'))
	    {
	      /* Avoid parsing of ellipsis, they will be handled below.
	         Also avoid ``void'' as above.  */
	      if (strncmp (argtypetext, "...", p - argtypetext) != 0
		  && strncmp (argtypetext, "void", p - argtypetext) != 0)
		{
		  argtypes[argcount].type =
		    safe_parse_type (gdbarch, argtypetext, p - argtypetext);
		  argcount += 1;
		}
	      argtypetext = p + 1;
	    }

	  if (*p == '(' || *p == '<')
	    {
	      depth += 1;
	    }
	  else if (*p == ')' || *p == '>')
	    {
	      depth -= 1;
	    }

	  p += 1;
	}
    }

  TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;

  /* Now update the old "stub" type into a real type.  */
  mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
  /* MTYPE may currently be a function (TYPE_CODE_FUNC).
     We want a method (TYPE_CODE_METHOD).  */
  smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
			argtypes, argcount, p[-2] == '.');
  TYPE_STUB (mtype) = 0;
  TYPE_FN_FIELD_STUB (f, signature_id) = 0;

  xfree (demangled_name);
}

/* This is the external interface to check_stub_method, above.  This
   function unstubs all of the signatures for TYPE's METHOD_ID method
   name.  After calling this function TYPE_FN_FIELD_STUB will be
   cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
   correct.

   This function unfortunately can not die until stabs do.  */

void
check_stub_method_group (struct type *type, int method_id)
{
  int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);

  for (int j = 0; j < len; j++)
    {
      if (TYPE_FN_FIELD_STUB (f, j))
	check_stub_method (type, method_id, j);
    }
}

/* Ensure it is in .rodata (if available) by working around GCC PR 44690.  */
const struct cplus_struct_type cplus_struct_default = { };

void
allocate_cplus_struct_type (struct type *type)
{
  if (HAVE_CPLUS_STRUCT (type))
    /* Structure was already allocated.  Nothing more to do.  */
    return;

  TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
  TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
    TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
  *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
  set_type_vptr_fieldno (type, -1);
}

const struct gnat_aux_type gnat_aux_default =
  { NULL };

/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
   and allocate the associated gnat-specific data.  The gnat-specific
   data is also initialized to gnat_aux_default.  */

void
allocate_gnat_aux_type (struct type *type)
{
  TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
  TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
    TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
  *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
}

/* Helper function to initialize a newly allocated type.  Set type code
   to CODE and initialize the type-specific fields accordingly.  */

static void
set_type_code (struct type *type, enum type_code code)
{
  TYPE_CODE (type) = code;

  switch (code)
    {
      case TYPE_CODE_STRUCT:
      case TYPE_CODE_UNION:
      case TYPE_CODE_NAMESPACE:
        INIT_CPLUS_SPECIFIC (type);
        break;
      case TYPE_CODE_FLT:
        TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
        break;
      case TYPE_CODE_FUNC:
	INIT_FUNC_SPECIFIC (type);
        break;
    }
}

/* Helper function to verify floating-point format and size.
   BIT is the type size in bits; if BIT equals -1, the size is
   determined by the floatformat.  Returns size to be used.  */

static int
verify_floatformat (int bit, const struct floatformat *floatformat)
{
  gdb_assert (floatformat != NULL);

  if (bit == -1)
    bit = floatformat->totalsize;

  gdb_assert (bit >= 0);
  gdb_assert (bit >= floatformat->totalsize);

  return bit;
}

/* Return the floating-point format for a floating-point variable of
   type TYPE.  */

const struct floatformat *
floatformat_from_type (const struct type *type)
{
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
  gdb_assert (TYPE_FLOATFORMAT (type));
  return TYPE_FLOATFORMAT (type);
}

/* Helper function to initialize the standard scalar types.

   If NAME is non-NULL, then it is used to initialize the type name.
   Note that NAME is not copied; it is required to have a lifetime at
   least as long as OBJFILE.  */

struct type *
init_type (struct objfile *objfile, enum type_code code, int bit,
	   const char *name)
{
  struct type *type;

  type = alloc_type (objfile);
  set_type_code (type, code);
  gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
  TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
  TYPE_NAME (type) = name;

  return type;
}

/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
   to use with variables that have no debug info.  NAME is the type
   name.  */

static struct type *
init_nodebug_var_type (struct objfile *objfile, const char *name)
{
  return init_type (objfile, TYPE_CODE_ERROR, 0, name);
}

/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
init_integer_type (struct objfile *objfile,
		   int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_INT, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
init_character_type (struct objfile *objfile,
		     int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
   BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
   the type's TYPE_UNSIGNED flag.  NAME is the type name.  */

struct type *
init_boolean_type (struct objfile *objfile,
		   int bit, int unsigned_p, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
  if (unsigned_p)
    TYPE_UNSIGNED (t) = 1;

  return t;
}

/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
   BIT is the type size in bits; if BIT equals -1, the size is
   determined by the floatformat.  NAME is the type name.  Set the
   TYPE_FLOATFORMAT from FLOATFORMATS.  */

struct type *
init_float_type (struct objfile *objfile,
		 int bit, const char *name,
		 const struct floatformat **floatformats)
{
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
  struct type *t;

  bit = verify_floatformat (bit, fmt);
  t = init_type (objfile, TYPE_CODE_FLT, bit, name);
  TYPE_FLOATFORMAT (t) = fmt;

  return t;
}

/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
   BIT is the type size in bits.  NAME is the type name.  */

struct type *
init_decfloat_type (struct objfile *objfile, int bit, const char *name)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
  return t;
}

/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
   NAME is the type name.  TARGET_TYPE is the component float type.  */

struct type *
init_complex_type (struct objfile *objfile,
		   const char *name, struct type *target_type)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_COMPLEX,
		 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
  TYPE_TARGET_TYPE (t) = target_type;
  return t;
}

/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
   BIT is the pointer type size in bits.  NAME is the type name.
   TARGET_TYPE is the pointer target type.  Always sets the pointer type's
   TYPE_UNSIGNED flag.  */

struct type *
init_pointer_type (struct objfile *objfile,
		   int bit, const char *name, struct type *target_type)
{
  struct type *t;

  t = init_type (objfile, TYPE_CODE_PTR, bit, name);
  TYPE_TARGET_TYPE (t) = target_type;
  TYPE_UNSIGNED (t) = 1;
  return t;
}

/* See gdbtypes.h.  */

unsigned
type_raw_align (struct type *type)
{
  if (type->align_log2 != 0)
    return 1 << (type->align_log2 - 1);
  return 0;
}

/* See gdbtypes.h.  */

unsigned
type_align (struct type *type)
{
  /* Check alignment provided in the debug information.  */
  unsigned raw_align = type_raw_align (type);
  if (raw_align != 0)
    return raw_align;

  /* Allow the architecture to provide an alignment.  */
  struct gdbarch *arch = get_type_arch (type);
  ULONGEST align = gdbarch_type_align (arch, type);
  if (align != 0)
    return align;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_FUNC:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_INT:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_FLT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_DECFLOAT:
    case TYPE_CODE_METHODPTR:
    case TYPE_CODE_MEMBERPTR:
      align = type_length_units (check_typedef (type));
      break;

    case TYPE_CODE_ARRAY:
    case TYPE_CODE_COMPLEX:
    case TYPE_CODE_TYPEDEF:
      align = type_align (TYPE_TARGET_TYPE (type));
      break;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      {
	int number_of_non_static_fields = 0;
	for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
	  {
	    if (!field_is_static (&TYPE_FIELD (type, i)))
	      {
		number_of_non_static_fields++;
		ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
		if (f_align == 0)
		  {
		    /* Don't pretend we know something we don't.  */
		    align = 0;
		    break;
		  }
		if (f_align > align)
		  align = f_align;
	      }
	  }
	/* A struct with no fields, or with only static fields has an
	   alignment of 1.  */
	if (number_of_non_static_fields == 0)
	  align = 1;
      }
      break;

    case TYPE_CODE_SET:
    case TYPE_CODE_STRING:
      /* Not sure what to do here, and these can't appear in C or C++
	 anyway.  */
      break;

    case TYPE_CODE_VOID:
      align = 1;
      break;

    case TYPE_CODE_ERROR:
    case TYPE_CODE_METHOD:
    default:
      break;
    }

  if ((align & (align - 1)) != 0)
    {
      /* Not a power of 2, so pass.  */
      align = 0;
    }

  return align;
}

/* See gdbtypes.h.  */

bool
set_type_align (struct type *type, ULONGEST align)
{
  /* Must be a power of 2.  Zero is ok.  */
  gdb_assert ((align & (align - 1)) == 0);

  unsigned result = 0;
  while (align != 0)
    {
      ++result;
      align >>= 1;
    }

  if (result >= (1 << TYPE_ALIGN_BITS))
    return false;

  type->align_log2 = result;
  return true;
}


/* Queries on types.  */

int
can_dereference (struct type *t)
{
  /* FIXME: Should we return true for references as well as
     pointers?  */
  t = check_typedef (t);
  return
    (t != NULL
     && TYPE_CODE (t) == TYPE_CODE_PTR
     && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
}

int
is_integral_type (struct type *t)
{
  t = check_typedef (t);
  return
    ((t != NULL)
     && ((TYPE_CODE (t) == TYPE_CODE_INT)
	 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
	 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
	 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
	 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
	 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
}

int
is_floating_type (struct type *t)
{
  t = check_typedef (t);
  return
    ((t != NULL)
     && ((TYPE_CODE (t) == TYPE_CODE_FLT)
	 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
}

/* Return true if TYPE is scalar.  */

int
is_scalar_type (struct type *type)
{
  type = check_typedef (type);

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_ARRAY:
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_SET:
    case TYPE_CODE_STRING:
      return 0;
    default:
      return 1;
    }
}

/* Return true if T is scalar, or a composite type which in practice has
   the memory layout of a scalar type.  E.g., an array or struct with only
   one scalar element inside it, or a union with only scalar elements.  */

int
is_scalar_type_recursive (struct type *t)
{
  t = check_typedef (t);

  if (is_scalar_type (t))
    return 1;
  /* Are we dealing with an array or string of known dimensions?  */
  else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
	    || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
	   && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
    {
      LONGEST low_bound, high_bound;
      struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));

      get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);

      return high_bound == low_bound && is_scalar_type_recursive (elt_type);
    }
  /* Are we dealing with a struct with one element?  */
  else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
    return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
  else if (TYPE_CODE (t) == TYPE_CODE_UNION)
    {
      int i, n = TYPE_NFIELDS (t);

      /* If all elements of the union are scalar, then the union is scalar.  */
      for (i = 0; i < n; i++)
	if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
	  return 0;

      return 1;
    }

  return 0;
}

/* Return true is T is a class or a union.  False otherwise.  */

int
class_or_union_p (const struct type *t)
{
  return (TYPE_CODE (t) == TYPE_CODE_STRUCT
          || TYPE_CODE (t) == TYPE_CODE_UNION);
}

/* A helper function which returns true if types A and B represent the
   "same" class type.  This is true if the types have the same main
   type, or the same name.  */

int
class_types_same_p (const struct type *a, const struct type *b)
{
  return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
	  || (TYPE_NAME (a) && TYPE_NAME (b)
	      && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
}

/* If BASE is an ancestor of DCLASS return the distance between them.
   otherwise return -1;
   eg:

   class A {};
   class B: public A {};
   class C: public B {};
   class D: C {};

   distance_to_ancestor (A, A, 0) = 0
   distance_to_ancestor (A, B, 0) = 1
   distance_to_ancestor (A, C, 0) = 2
   distance_to_ancestor (A, D, 0) = 3

   If PUBLIC is 1 then only public ancestors are considered,
   and the function returns the distance only if BASE is a public ancestor
   of DCLASS.
   Eg:

   distance_to_ancestor (A, D, 1) = -1.  */

static int
distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
{
  int i;
  int d;

  base = check_typedef (base);
  dclass = check_typedef (dclass);

  if (class_types_same_p (base, dclass))
    return 0;

  for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
    {
      if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
	continue;

      d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
      if (d >= 0)
	return 1 + d;
    }

  return -1;
}

/* Check whether BASE is an ancestor or base class or DCLASS
   Return 1 if so, and 0 if not.
   Note: If BASE and DCLASS are of the same type, this function
   will return 1. So for some class A, is_ancestor (A, A) will
   return 1.  */

int
is_ancestor (struct type *base, struct type *dclass)
{
  return distance_to_ancestor (base, dclass, 0) >= 0;
}

/* Like is_ancestor, but only returns true when BASE is a public
   ancestor of DCLASS.  */

int
is_public_ancestor (struct type *base, struct type *dclass)
{
  return distance_to_ancestor (base, dclass, 1) >= 0;
}

/* A helper function for is_unique_ancestor.  */

static int
is_unique_ancestor_worker (struct type *base, struct type *dclass,
			   int *offset,
			   const gdb_byte *valaddr, int embedded_offset,
			   CORE_ADDR address, struct value *val)
{
  int i, count = 0;

  base = check_typedef (base);
  dclass = check_typedef (dclass);

  for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
    {
      struct type *iter;
      int this_offset;

      iter = check_typedef (TYPE_BASECLASS (dclass, i));

      this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
				      address, val);

      if (class_types_same_p (base, iter))
	{
	  /* If this is the first subclass, set *OFFSET and set count
	     to 1.  Otherwise, if this is at the same offset as
	     previous instances, do nothing.  Otherwise, increment
	     count.  */
	  if (*offset == -1)
	    {
	      *offset = this_offset;
	      count = 1;
	    }
	  else if (this_offset == *offset)
	    {
	      /* Nothing.  */
	    }
	  else
	    ++count;
	}
      else
	count += is_unique_ancestor_worker (base, iter, offset,
					    valaddr,
					    embedded_offset + this_offset,
					    address, val);
    }

  return count;
}

/* Like is_ancestor, but only returns true if BASE is a unique base
   class of the type of VAL.  */

int
is_unique_ancestor (struct type *base, struct value *val)
{
  int offset = -1;

  return is_unique_ancestor_worker (base, value_type (val), &offset,
				    value_contents_for_printing (val),
				    value_embedded_offset (val),
				    value_address (val), val) == 1;
}


/* Overload resolution.  */

/* Return the sum of the rank of A with the rank of B.  */

struct rank
sum_ranks (struct rank a, struct rank b)
{
  struct rank c;
  c.rank = a.rank + b.rank;
  c.subrank = a.subrank + b.subrank;
  return c;
}

/* Compare rank A and B and return:
   0 if a = b
   1 if a is better than b
  -1 if b is better than a.  */

int
compare_ranks (struct rank a, struct rank b)
{
  if (a.rank == b.rank)
    {
      if (a.subrank == b.subrank)
	return 0;
      if (a.subrank < b.subrank)
	return 1;
      if (a.subrank > b.subrank)
	return -1;
    }

  if (a.rank < b.rank)
    return 1;

  /* a.rank > b.rank */
  return -1;
}

/* Functions for overload resolution begin here.  */

/* Compare two badness vectors A and B and return the result.
   0 => A and B are identical
   1 => A and B are incomparable
   2 => A is better than B
   3 => A is worse than B  */

int
compare_badness (const badness_vector &a, const badness_vector &b)
{
  int i;
  int tmp;
  short found_pos = 0;		/* any positives in c? */
  short found_neg = 0;		/* any negatives in c? */

  /* differing sizes => incomparable */
  if (a.size () != b.size ())
    return 1;

  /* Subtract b from a */
  for (i = 0; i < a.size (); i++)
    {
      tmp = compare_ranks (b[i], a[i]);
      if (tmp > 0)
	found_pos = 1;
      else if (tmp < 0)
	found_neg = 1;
    }

  if (found_pos)
    {
      if (found_neg)
	return 1;		/* incomparable */
      else
	return 3;		/* A > B */
    }
  else
    /* no positives */
    {
      if (found_neg)
	return 2;		/* A < B */
      else
	return 0;		/* A == B */
    }
}

/* Rank a function by comparing its parameter types (PARMS), to the
   types of an argument list (ARGS).  Return the badness vector.  This
   has ARGS.size() + 1 entries.  */

badness_vector
rank_function (gdb::array_view<type *> parms,
	       gdb::array_view<value *> args)
{
  /* add 1 for the length-match rank.  */
  badness_vector bv;
  bv.reserve (1 + args.size ());

  /* First compare the lengths of the supplied lists.
     If there is a mismatch, set it to a high value.  */

  /* pai/1997-06-03 FIXME: when we have debug info about default
     arguments and ellipsis parameter lists, we should consider those
     and rank the length-match more finely.  */

  bv.push_back ((args.size () != parms.size ())
		? LENGTH_MISMATCH_BADNESS
		: EXACT_MATCH_BADNESS);

  /* Now rank all the parameters of the candidate function.  */
  size_t min_len = std::min (parms.size (), args.size ());

  for (size_t i = 0; i < min_len; i++)
    bv.push_back (rank_one_type (parms[i], value_type (args[i]),
				 args[i]));

  /* If more arguments than parameters, add dummy entries.  */
  for (size_t i = min_len; i < args.size (); i++)
    bv.push_back (TOO_FEW_PARAMS_BADNESS);

  return bv;
}

/* Compare the names of two integer types, assuming that any sign
   qualifiers have been checked already.  We do it this way because
   there may be an "int" in the name of one of the types.  */

static int
integer_types_same_name_p (const char *first, const char *second)
{
  int first_p, second_p;

  /* If both are shorts, return 1; if neither is a short, keep
     checking.  */
  first_p = (strstr (first, "short") != NULL);
  second_p = (strstr (second, "short") != NULL);
  if (first_p && second_p)
    return 1;
  if (first_p || second_p)
    return 0;

  /* Likewise for long.  */
  first_p = (strstr (first, "long") != NULL);
  second_p = (strstr (second, "long") != NULL);
  if (first_p && second_p)
    return 1;
  if (first_p || second_p)
    return 0;

  /* Likewise for char.  */
  first_p = (strstr (first, "char") != NULL);
  second_p = (strstr (second, "char") != NULL);
  if (first_p && second_p)
    return 1;
  if (first_p || second_p)
    return 0;

  /* They must both be ints.  */
  return 1;
}

/* Compares type A to type B.  Returns true if they represent the same
   type, false otherwise.  */

bool
types_equal (struct type *a, struct type *b)
{
  /* Identical type pointers.  */
  /* However, this still doesn't catch all cases of same type for b
     and a.  The reason is that builtin types are different from
     the same ones constructed from the object.  */
  if (a == b)
    return true;

  /* Resolve typedefs */
  if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
    a = check_typedef (a);
  if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
    b = check_typedef (b);

  /* If after resolving typedefs a and b are not of the same type
     code then they are not equal.  */
  if (TYPE_CODE (a) != TYPE_CODE (b))
    return false;

  /* If a and b are both pointers types or both reference types then
     they are equal of the same type iff the objects they refer to are
     of the same type.  */
  if (TYPE_CODE (a) == TYPE_CODE_PTR
      || TYPE_CODE (a) == TYPE_CODE_REF)
    return types_equal (TYPE_TARGET_TYPE (a),
                        TYPE_TARGET_TYPE (b));

  /* Well, damnit, if the names are exactly the same, I'll say they
     are exactly the same.  This happens when we generate method
     stubs.  The types won't point to the same address, but they
     really are the same.  */

  if (TYPE_NAME (a) && TYPE_NAME (b)
      && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
    return true;

  /* Check if identical after resolving typedefs.  */
  if (a == b)
    return true;

  /* Two function types are equal if their argument and return types
     are equal.  */
  if (TYPE_CODE (a) == TYPE_CODE_FUNC)
    {
      int i;

      if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
	return false;
      
      if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
	return false;

      for (i = 0; i < TYPE_NFIELDS (a); ++i)
	if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
	  return false;

      return true;
    }

  return false;
}

/* Deep comparison of types.  */

/* An entry in the type-equality bcache.  */

struct type_equality_entry
{
  type_equality_entry (struct type *t1, struct type *t2)
    : type1 (t1),
      type2 (t2)
  {
  }

  struct type *type1, *type2;
};

/* A helper function to compare two strings.  Returns true if they are
   the same, false otherwise.  Handles NULLs properly.  */

static bool
compare_maybe_null_strings (const char *s, const char *t)
{
  if (s == NULL || t == NULL)
    return s == t;
  return strcmp (s, t) == 0;
}

/* A helper function for check_types_worklist that checks two types for
   "deep" equality.  Returns true if the types are considered the
   same, false otherwise.  */

static bool
check_types_equal (struct type *type1, struct type *type2,
		   std::vector<type_equality_entry> *worklist)
{
  type1 = check_typedef (type1);
  type2 = check_typedef (type2);

  if (type1 == type2)
    return true;

  if (TYPE_CODE (type1) != TYPE_CODE (type2)
      || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
      || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
      || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
      || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
      || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
      || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
      || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
      || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
      || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
    return false;

  if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
    return false;
  if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
    return false;

  if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
    {
      if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
	return false;
    }
  else
    {
      int i;

      for (i = 0; i < TYPE_NFIELDS (type1); ++i)
	{
	  const struct field *field1 = &TYPE_FIELD (type1, i);
	  const struct field *field2 = &TYPE_FIELD (type2, i);

	  if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
	      || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
	      || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
	    return false;
	  if (!compare_maybe_null_strings (FIELD_NAME (*field1),
					   FIELD_NAME (*field2)))
	    return false;
	  switch (FIELD_LOC_KIND (*field1))
	    {
	    case FIELD_LOC_KIND_BITPOS:
	      if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
		return false;
	      break;
	    case FIELD_LOC_KIND_ENUMVAL:
	      if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
		return false;
	      break;
	    case FIELD_LOC_KIND_PHYSADDR:
	      if (FIELD_STATIC_PHYSADDR (*field1)
		  != FIELD_STATIC_PHYSADDR (*field2))
		return false;
	      break;
	    case FIELD_LOC_KIND_PHYSNAME:
	      if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
					       FIELD_STATIC_PHYSNAME (*field2)))
		return false;
	      break;
	    case FIELD_LOC_KIND_DWARF_BLOCK:
	      {
		struct dwarf2_locexpr_baton *block1, *block2;

		block1 = FIELD_DWARF_BLOCK (*field1);
		block2 = FIELD_DWARF_BLOCK (*field2);
		if (block1->per_cu != block2->per_cu
		    || block1->size != block2->size
		    || memcmp (block1->data, block2->data, block1->size) != 0)
		  return false;
	      }
	      break;
	    default:
	      internal_error (__FILE__, __LINE__, _("Unsupported field kind "
						    "%d by check_types_equal"),
			      FIELD_LOC_KIND (*field1));
	    }

	  worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
	}
    }

  if (TYPE_TARGET_TYPE (type1) != NULL)
    {
      if (TYPE_TARGET_TYPE (type2) == NULL)
	return false;

      worklist->emplace_back (TYPE_TARGET_TYPE (type1),
			      TYPE_TARGET_TYPE (type2));
    }
  else if (TYPE_TARGET_TYPE (type2) != NULL)
    return false;

  return true;
}

/* Check types on a worklist for equality.  Returns false if any pair
   is not equal, true if they are all considered equal.  */

static bool
check_types_worklist (std::vector<type_equality_entry> *worklist,
		      struct bcache *cache)
{
  while (!worklist->empty ())
    {
      int added;

      struct type_equality_entry entry = std::move (worklist->back ());
      worklist->pop_back ();

      /* If the type pair has already been visited, we know it is
	 ok.  */
      cache->insert (&entry, sizeof (entry), &added);
      if (!added)
	continue;

      if (!check_types_equal (entry.type1, entry.type2, worklist))
	return false;
    }

  return true;
}

/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
   "deep comparison".  Otherwise return false.  */

bool
types_deeply_equal (struct type *type1, struct type *type2)
{
  std::vector<type_equality_entry> worklist;

  gdb_assert (type1 != NULL && type2 != NULL);

  /* Early exit for the simple case.  */
  if (type1 == type2)
    return true;

  struct bcache cache (nullptr, nullptr);
  worklist.emplace_back (type1, type2);
  return check_types_worklist (&worklist, &cache);
}

/* Allocated status of type TYPE.  Return zero if type TYPE is allocated.
   Otherwise return one.  */

int
type_not_allocated (const struct type *type)
{
  struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);

  return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
         && !TYPE_DYN_PROP_ADDR (prop));
}

/* Associated status of type TYPE.  Return zero if type TYPE is associated.
   Otherwise return one.  */

int
type_not_associated (const struct type *type)
{
  struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);

  return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
         && !TYPE_DYN_PROP_ADDR (prop));
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR.  */

static struct rank
rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
{
  struct rank rank = {0,0};

  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_PTR:

      /* Allowed pointer conversions are:
	 (a) pointer to void-pointer conversion.  */
      if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
	return VOID_PTR_CONVERSION_BADNESS;

      /* (b) pointer to ancestor-pointer conversion.  */
      rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
					   TYPE_TARGET_TYPE (arg),
					   0);
      if (rank.subrank >= 0)
	return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);

      return INCOMPATIBLE_TYPE_BADNESS;
    case TYPE_CODE_ARRAY:
      {
	struct type *t1 = TYPE_TARGET_TYPE (parm);
	struct type *t2 = TYPE_TARGET_TYPE (arg);

	if (types_equal (t1, t2))
	  {
	    /* Make sure they are CV equal.  */
	    if (TYPE_CONST (t1) != TYPE_CONST (t2))
	      rank.subrank |= CV_CONVERSION_CONST;
	    if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
	      rank.subrank |= CV_CONVERSION_VOLATILE;
	    if (rank.subrank != 0)
	      return sum_ranks (CV_CONVERSION_BADNESS, rank);
	    return EXACT_MATCH_BADNESS;
	  }
	return INCOMPATIBLE_TYPE_BADNESS;
      }
    case TYPE_CODE_FUNC:
      return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
    case TYPE_CODE_INT:
      if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
	{
	  if (value_as_long (value) == 0)
	    {
	      /* Null pointer conversion: allow it to be cast to a pointer.
		 [4.10.1 of C++ standard draft n3290]  */
	      return NULL_POINTER_CONVERSION_BADNESS;
	    }
	  else
	    {
	      /* If type checking is disabled, allow the conversion.  */
	      if (!strict_type_checking)
		return NS_INTEGER_POINTER_CONVERSION_BADNESS;
	    }
	}
      /* fall through  */
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY.  */

static struct rank
rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_PTR:
    case TYPE_CODE_ARRAY:
      return rank_one_type (TYPE_TARGET_TYPE (parm),
			    TYPE_TARGET_TYPE (arg), NULL);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC.  */

static struct rank
rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_PTR:	/* funcptr -> func */
      return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT.  */

static struct rank
rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_INT:
      if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
	{
	  /* Deal with signed, unsigned, and plain chars and
	     signed and unsigned ints.  */
	  if (TYPE_NOSIGN (parm))
	    {
	      /* This case only for character types.  */
	      if (TYPE_NOSIGN (arg))
		return EXACT_MATCH_BADNESS;	/* plain char -> plain char */
	      else		/* signed/unsigned char -> plain char */
		return INTEGER_CONVERSION_BADNESS;
	    }
	  else if (TYPE_UNSIGNED (parm))
	    {
	      if (TYPE_UNSIGNED (arg))
		{
		  /* unsigned int -> unsigned int, or
		     unsigned long -> unsigned long */
		  if (integer_types_same_name_p (TYPE_NAME (parm),
						 TYPE_NAME (arg)))
		    return EXACT_MATCH_BADNESS;
		  else if (integer_types_same_name_p (TYPE_NAME (arg),
						      "int")
			   && integer_types_same_name_p (TYPE_NAME (parm),
							 "long"))
		    /* unsigned int -> unsigned long */
		    return INTEGER_PROMOTION_BADNESS;
		  else
		    /* unsigned long -> unsigned int */
		    return INTEGER_CONVERSION_BADNESS;
		}
	      else
		{
		  if (integer_types_same_name_p (TYPE_NAME (arg),
						 "long")
		      && integer_types_same_name_p (TYPE_NAME (parm),
						    "int"))
		    /* signed long -> unsigned int */
		    return INTEGER_CONVERSION_BADNESS;
		  else
		    /* signed int/long -> unsigned int/long */
		    return INTEGER_CONVERSION_BADNESS;
		}
	    }
	  else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
	    {
	      if (integer_types_same_name_p (TYPE_NAME (parm),
					     TYPE_NAME (arg)))
		return EXACT_MATCH_BADNESS;
	      else if (integer_types_same_name_p (TYPE_NAME (arg),
						  "int")
		       && integer_types_same_name_p (TYPE_NAME (parm),
						     "long"))
		return INTEGER_PROMOTION_BADNESS;
	      else
		return INTEGER_CONVERSION_BADNESS;
	    }
	  else
	    return INTEGER_CONVERSION_BADNESS;
	}
      else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
	return INTEGER_PROMOTION_BADNESS;
      else
	return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
      if (TYPE_DECLARED_CLASS (arg))
	return INCOMPATIBLE_TYPE_BADNESS;
      return INTEGER_PROMOTION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    case TYPE_CODE_PTR:
      return NS_POINTER_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM.  */

static struct rank
rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
	return INCOMPATIBLE_TYPE_BADNESS;
      return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR.  */

static struct rank
rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      if (TYPE_DECLARED_CLASS (arg))
	return INCOMPATIBLE_TYPE_BADNESS;
      return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    case TYPE_CODE_INT:
      if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
	return INTEGER_CONVERSION_BADNESS;
      else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
	return INTEGER_PROMOTION_BADNESS;
      /* fall through */
    case TYPE_CODE_CHAR:
      /* Deal with signed, unsigned, and plain chars for C++ and
	 with int cases falling through from previous case.  */
      if (TYPE_NOSIGN (parm))
	{
	  if (TYPE_NOSIGN (arg))
	    return EXACT_MATCH_BADNESS;
	  else
	    return INTEGER_CONVERSION_BADNESS;
	}
      else if (TYPE_UNSIGNED (parm))
	{
	  if (TYPE_UNSIGNED (arg))
	    return EXACT_MATCH_BADNESS;
	  else
	    return INTEGER_PROMOTION_BADNESS;
	}
      else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
	return EXACT_MATCH_BADNESS;
      else
	return INTEGER_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE.  */

static struct rank
rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
      return INTEGER_CONVERSION_BADNESS;
    case TYPE_CODE_FLT:
      return INT_FLOAT_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL.  */

static struct rank
rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
      /* n3290 draft, section 4.12.1 (conv.bool):

	 "A prvalue of arithmetic, unscoped enumeration, pointer, or
	 pointer to member type can be converted to a prvalue of type
	 bool.  A zero value, null pointer value, or null member pointer
	 value is converted to false; any other value is converted to
	 true.  A prvalue of type std::nullptr_t can be converted to a
	 prvalue of type bool; the resulting value is false."  */
    case TYPE_CODE_INT:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_FLT:
    case TYPE_CODE_MEMBERPTR:
    case TYPE_CODE_PTR:
      return BOOL_CONVERSION_BADNESS;
    case TYPE_CODE_RANGE:
      return INCOMPATIBLE_TYPE_BADNESS;
    case TYPE_CODE_BOOL:
      return EXACT_MATCH_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT.  */

static struct rank
rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_FLT:
      if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
	return FLOAT_PROMOTION_BADNESS;
      else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
	return EXACT_MATCH_BADNESS;
      else
	return FLOAT_CONVERSION_BADNESS;
    case TYPE_CODE_INT:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_CHAR:
      return INT_FLOAT_CONVERSION_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX.  */

static struct rank
rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {		/* Strictly not needed for C++, but...  */
    case TYPE_CODE_FLT:
      return FLOAT_PROMOTION_BADNESS;
    case TYPE_CODE_COMPLEX:
      return EXACT_MATCH_BADNESS;
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT.  */

static struct rank
rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
{
  struct rank rank = {0, 0};

  switch (TYPE_CODE (arg))
    {
    case TYPE_CODE_STRUCT:
      /* Check for derivation */
      rank.subrank = distance_to_ancestor (parm, arg, 0);
      if (rank.subrank >= 0)
	return sum_ranks (BASE_CONVERSION_BADNESS, rank);
      /* fall through */
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET.  */

static struct rank
rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
{
  switch (TYPE_CODE (arg))
    {
      /* Not in C++ */
    case TYPE_CODE_SET:
      return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
			    TYPE_FIELD_TYPE (arg, 0), NULL);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }
}

/* Compare one type (PARM) for compatibility with another (ARG).
 * PARM is intended to be the parameter type of a function; and
 * ARG is the supplied argument's type.  This function tests if
 * the latter can be converted to the former.
 * VALUE is the argument's value or NULL if none (or called recursively)
 *
 * Return 0 if they are identical types;
 * Otherwise, return an integer which corresponds to how compatible
 * PARM is to ARG.  The higher the return value, the worse the match.
 * Generally the "bad" conversions are all uniformly assigned a 100.  */

struct rank
rank_one_type (struct type *parm, struct type *arg, struct value *value)
{
  struct rank rank = {0,0};

  /* Resolve typedefs */
  if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
    parm = check_typedef (parm);
  if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
    arg = check_typedef (arg);

  if (TYPE_IS_REFERENCE (parm) && value != NULL)
    {
      if (VALUE_LVAL (value) == not_lval)
	{
	  /* Rvalues should preferably bind to rvalue references or const
	     lvalue references.  */
	  if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
	    rank.subrank = REFERENCE_CONVERSION_RVALUE;
	  else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
	    rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
	  else
	    return INCOMPATIBLE_TYPE_BADNESS;
	  return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
	}
      else
	{
	  /* Lvalues should prefer lvalue overloads.  */
	  if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
	    {
	      rank.subrank = REFERENCE_CONVERSION_RVALUE;
	      return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
	    }
	}
    }

  if (types_equal (parm, arg))
    {
      struct type *t1 = parm;
      struct type *t2 = arg;

      /* For pointers and references, compare target type.  */
      if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
	{
	  t1 = TYPE_TARGET_TYPE (parm);
	  t2 = TYPE_TARGET_TYPE (arg);
	}

      /* Make sure they are CV equal, too.  */
      if (TYPE_CONST (t1) != TYPE_CONST (t2))
	rank.subrank |= CV_CONVERSION_CONST;
      if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
	rank.subrank |= CV_CONVERSION_VOLATILE;
      if (rank.subrank != 0)
	return sum_ranks (CV_CONVERSION_BADNESS, rank);
      return EXACT_MATCH_BADNESS;
    }

  /* See through references, since we can almost make non-references
     references.  */

  if (TYPE_IS_REFERENCE (arg))
    return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
                       REFERENCE_CONVERSION_BADNESS));
  if (TYPE_IS_REFERENCE (parm))
    return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
                       REFERENCE_CONVERSION_BADNESS));
  if (overload_debug)
  /* Debugging only.  */
    fprintf_filtered (gdb_stderr, 
		      "------ Arg is %s [%d], parm is %s [%d]\n",
		      TYPE_NAME (arg), TYPE_CODE (arg), 
		      TYPE_NAME (parm), TYPE_CODE (parm));

  /* x -> y means arg of type x being supplied for parameter of type y.  */

  switch (TYPE_CODE (parm))
    {
    case TYPE_CODE_PTR:
      return rank_one_type_parm_ptr (parm, arg, value);
    case TYPE_CODE_ARRAY:
      return rank_one_type_parm_array (parm, arg, value);
    case TYPE_CODE_FUNC:
      return rank_one_type_parm_func (parm, arg, value);
    case TYPE_CODE_INT:
      return rank_one_type_parm_int (parm, arg, value);
    case TYPE_CODE_ENUM:
      return rank_one_type_parm_enum (parm, arg, value);
    case TYPE_CODE_CHAR:
      return rank_one_type_parm_char (parm, arg, value);
    case TYPE_CODE_RANGE:
      return rank_one_type_parm_range (parm, arg, value);
    case TYPE_CODE_BOOL:
      return rank_one_type_parm_bool (parm, arg, value);
    case TYPE_CODE_FLT:
      return rank_one_type_parm_float (parm, arg, value);
    case TYPE_CODE_COMPLEX:
      return rank_one_type_parm_complex (parm, arg, value);
    case TYPE_CODE_STRUCT:
      return rank_one_type_parm_struct (parm, arg, value);
    case TYPE_CODE_SET:
      return rank_one_type_parm_set (parm, arg, value);
    default:
      return INCOMPATIBLE_TYPE_BADNESS;
    }				/* switch (TYPE_CODE (arg)) */
}

/* End of functions for overload resolution.  */

/* Routines to pretty-print types.  */

static void
print_bit_vector (B_TYPE *bits, int nbits)
{
  int bitno;

  for (bitno = 0; bitno < nbits; bitno++)
    {
      if ((bitno % 8) == 0)
	{
	  puts_filtered (" ");
	}
      if (B_TST (bits, bitno))
	printf_filtered (("1"));
      else
	printf_filtered (("0"));
    }
}

/* Note the first arg should be the "this" pointer, we may not want to
   include it since we may get into a infinitely recursive
   situation.  */

static void
print_args (struct field *args, int nargs, int spaces)
{
  if (args != NULL)
    {
      int i;

      for (i = 0; i < nargs; i++)
	{
	  printfi_filtered (spaces, "[%d] name '%s'\n", i,
			    args[i].name != NULL ? args[i].name : "<NULL>");
	  recursive_dump_type (args[i].type, spaces + 2);
	}
    }
}

int
field_is_static (struct field *f)
{
  /* "static" fields are the fields whose location is not relative
     to the address of the enclosing struct.  It would be nice to
     have a dedicated flag that would be set for static fields when
     the type is being created.  But in practice, checking the field
     loc_kind should give us an accurate answer.  */
  return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
	  || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
}

static void
dump_fn_fieldlists (struct type *type, int spaces)
{
  int method_idx;
  int overload_idx;
  struct fn_field *f;

  printfi_filtered (spaces, "fn_fieldlists ");
  gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
  printf_filtered ("\n");
  for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
    {
      f = TYPE_FN_FIELDLIST1 (type, method_idx);
      printfi_filtered (spaces + 2, "[%d] name '%s' (",
			method_idx,
			TYPE_FN_FIELDLIST_NAME (type, method_idx));
      gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
			      gdb_stdout);
      printf_filtered (_(") length %d\n"),
		       TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
      for (overload_idx = 0;
	   overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
	   overload_idx++)
	{
	  printfi_filtered (spaces + 4, "[%d] physname '%s' (",
			    overload_idx,
			    TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
	  gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
				  gdb_stdout);
	  printf_filtered (")\n");
	  printfi_filtered (spaces + 8, "type ");
	  gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), 
				  gdb_stdout);
	  printf_filtered ("\n");

	  recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
			       spaces + 8 + 2);

	  printfi_filtered (spaces + 8, "args ");
	  gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), 
				  gdb_stdout);
	  printf_filtered ("\n");
	  print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
		      TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
		      spaces + 8 + 2);
	  printfi_filtered (spaces + 8, "fcontext ");
	  gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
				  gdb_stdout);
	  printf_filtered ("\n");

	  printfi_filtered (spaces + 8, "is_const %d\n",
			    TYPE_FN_FIELD_CONST (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_volatile %d\n",
			    TYPE_FN_FIELD_VOLATILE (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_private %d\n",
			    TYPE_FN_FIELD_PRIVATE (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_protected %d\n",
			    TYPE_FN_FIELD_PROTECTED (f, overload_idx));
	  printfi_filtered (spaces + 8, "is_stub %d\n",
			    TYPE_FN_FIELD_STUB (f, overload_idx));
	  printfi_filtered (spaces + 8, "voffset %u\n",
			    TYPE_FN_FIELD_VOFFSET (f, overload_idx));
	}
    }
}

static void
print_cplus_stuff (struct type *type, int spaces)
{
  printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
  printfi_filtered (spaces, "vptr_basetype ");
  gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
  puts_filtered ("\n");
  if (TYPE_VPTR_BASETYPE (type) != NULL)
    recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);

  printfi_filtered (spaces, "n_baseclasses %d\n",
		    TYPE_N_BASECLASSES (type));
  printfi_filtered (spaces, "nfn_fields %d\n",
		    TYPE_NFN_FIELDS (type));
  if (TYPE_N_BASECLASSES (type) > 0)
    {
      printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
			TYPE_N_BASECLASSES (type));
      gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), 
			      gdb_stdout);
      printf_filtered (")");

      print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
			TYPE_N_BASECLASSES (type));
      puts_filtered ("\n");
    }
  if (TYPE_NFIELDS (type) > 0)
    {
      if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
	{
	  printfi_filtered (spaces, 
			    "private_field_bits (%d bits at *",
			    TYPE_NFIELDS (type));
	  gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), 
				  gdb_stdout);
	  printf_filtered (")");
	  print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
			    TYPE_NFIELDS (type));
	  puts_filtered ("\n");
	}
      if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
	{
	  printfi_filtered (spaces, 
			    "protected_field_bits (%d bits at *",
			    TYPE_NFIELDS (type));
	  gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), 
				  gdb_stdout);
	  printf_filtered (")");
	  print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
			    TYPE_NFIELDS (type));
	  puts_filtered ("\n");
	}
    }
  if (TYPE_NFN_FIELDS (type) > 0)
    {
      dump_fn_fieldlists (type, spaces);
    }
}

/* Print the contents of the TYPE's type_specific union, assuming that
   its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF.  */

static void
print_gnat_stuff (struct type *type, int spaces)
{
  struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);

  if (descriptive_type == NULL)
    printfi_filtered (spaces + 2, "no descriptive type\n");
  else
    {
      printfi_filtered (spaces + 2, "descriptive type\n");
      recursive_dump_type (descriptive_type, spaces + 4);
    }
}

static struct obstack dont_print_type_obstack;