/* $Id$ */ #include #include #include #include #include #include #include #define Elf32_Word unsigned long /* USE_SOURCE_CODE enables some symbolic debugging functions of this code. This is only useful if the program will have access to the source code for the binary being examined. */ /* #define USE_SOURCE_CODE 1 */ #ifdef USE_SOURCE_CODE extern int line_info_from_addr __P ((Elf32_Word, char *, char *, int *)); extern struct symreflist *symByAddr; extern char *symbol_name_from_addr __P ((Elf32_Word, int, int *)); #endif /* USE_SOURCE_CODE */ int print_operands __P ((struct ppc_ctx *)); int get_operand_value __P ((struct opcode *, unsigned long, enum OP_FIELD, unsigned long *)); struct opcode *find_opcode __P ((unsigned long)); struct opcode *find_opcode_by_name __P ((char *)); char *spr_name __P ((int)); int spr_value __P ((char *)); char *tbr_name __P ((int)); int tbr_value __P ((char *)); int parse_operand __P ((unsigned long, struct opcode *, struct operand *, char *, int *)); int get_word __P ((char **, char *)); long read_number __P ((char *)); int downstring __P ((char *)); /*====================================================================== * Entry point for the PPC disassembler. * * Arguments: * memaddr The address to start disassembling from. * * virtual If this value is non-zero, then this will be * used as the base address for the output and * symbol lookups. If this value is zero then * memaddr is used as the absolute address. * * num_instr The number of instructions to disassemble. Since * each instruction is 32 bits long, this can be * computed if you know the total size of the region. * * pfunc The address of a function that is called to print * each line of output. The function should take a * single character pointer as its parameters a la puts. * * flags Sets options for the output. This is a * bitwise-inclusive-OR of the following * values. Note that only one of the radix * options may be set. * * F_RADOCTAL - output radix is unsigned base 8. * F_RADUDECIMAL - output radix is unsigned base 10. * F_RADSDECIMAL - output radix is signed base 10. * F_RADHEX - output radix is unsigned base 16. * F_SIMPLE - use simplified mnemonics. * F_SYMBOL - lookup symbols for addresses. * F_INSTR - output raw instruction. * F_LINENO - show line # info if available. * * Returns true if the area was successfully disassembled or false if * a problem was encountered with accessing the memory. */ int disppc (unsigned char *memaddr, unsigned char *virtual, int num_instr, int (*pfunc) (const char *), unsigned long flags) { int i; struct ppc_ctx ctx; #ifdef USE_SOURCE_CODE int line_no = 0; int last_line_no = 0; char funcname[128] = { 0 }; char filename[256] = { 0 }; char last_funcname[128] = { 0 }; int symoffset; char *symname; char *cursym = (char *) 0; #endif /* USE_SOURCE_CODE */ /*------------------------------------------------------------*/ ctx.flags = flags; ctx.virtual = virtual; /* Figure out the output radix before we go any further */ if (ctx.flags & F_RADOCTAL) { /* Unsigned octal output */ strcpy (ctx.radix_fmt, "O%o"); } else if (ctx.flags & F_RADUDECIMAL) { /* Unsigned decimal output */ strcpy (ctx.radix_fmt, "%u"); } else if (ctx.flags & F_RADSDECIMAL) { /* Signed decimal output */ strcpy (ctx.radix_fmt, "%d"); } else { /* Unsigned hex output */ strcpy (ctx.radix_fmt, "0x%x"); } if (ctx.virtual == 0) { ctx.virtual = memaddr; } #ifdef USE_SOURCE_CODE if (ctx.flags & F_SYMBOL) { if (symByAddr == 0) /* no symbols loaded */ ctx.flags &= ~F_SYMBOL; else { cursym = (char *) 0; symoffset = 0; } } #endif /* USE_SOURCE_CODE */ /* format each line as "XXXXXXXX: IIIIIIII disassembly" where, XXXXXXXX is the memory address in hex, is the symbolic location if F_SYMBOL is set. IIIIIIII is the raw machine code in hex if F_INSTR is set, and disassembly is the disassembled machine code with numbers formatted according to the 'radix' parameter */ for (i = 0; i < num_instr; ++i, memaddr += 4, ctx.virtual += 4) { #ifdef USE_SOURCE_CODE if (ctx.flags & F_LINENO) { if ((line_info_from_addr ((Elf32_Word) ctx.virtual, filename, funcname, &line_no) == true) && ((line_no != last_line_no) || (strcmp (last_funcname, funcname) != 0))) { print_source_line (filename, funcname, line_no, pfunc); } last_line_no = line_no; strcpy (last_funcname, funcname); } #endif /* USE_SOURCE_CODE */ sprintf (ctx.data, "%08lx: ", (unsigned long) ctx.virtual); ctx.datalen = 10; #ifdef USE_SOURCE_CODE if (ctx.flags & F_SYMBOL) { if ((symname = symbol_name_from_addr((Elf32_Word) ctx.virtual, true, 0)) != 0) { cursym = symname; symoffset = 0; } else { if ((cursym == 0) && ((symname = symbol_name_from_addr((Elf32_Word) ctx.virtual, false, &symoffset)) != 0)) { cursym = symname; } else { symoffset += 4; } } if (cursym != 0) { sprintf (&ctx.data[ctx.datalen], "<%s+", cursym); ctx.datalen = strlen (ctx.data); sprintf (&ctx.data[ctx.datalen], ctx.radix_fmt, symoffset); strcat (ctx.data, ">"); ctx.datalen = strlen (ctx.data); } } #endif /* USE_SOURCE_CODE */ ctx.instr = INSTRUCTION (memaddr); if (ctx.flags & F_INSTR) { /* Find the opcode structure for this opcode. If one is not found then it must be an illegal instruction */ sprintf (&ctx.data[ctx.datalen], " %02lx %02lx %02lx %02lx ", ((ctx.instr >> 24) & 0xff), ((ctx.instr >> 16) & 0xff), ((ctx.instr >> 8) & 0xff), (ctx.instr & 0xff)); ctx.datalen += 18; } else { strcat (ctx.data, " "); ctx.datalen += 3; } if ((ctx.op = find_opcode (ctx.instr)) == 0) { /* Illegal Opcode */ sprintf (&ctx.data[ctx.datalen], " .long 0x%08lx", ctx.instr); ctx.datalen += 24; (*pfunc) (ctx.data); continue; } if (((ctx.flags & F_SIMPLE) == 0) || (ctx.op->hfunc == 0) || ((*ctx.op->hfunc) (&ctx) == false)) { sprintf (&ctx.data[ctx.datalen], "%-7s ", ctx.op->name); ctx.datalen += 8; print_operands (&ctx); } (*pfunc) (ctx.data); } return true; } /* disppc */ /*====================================================================== * Called by the disassembler to print the operands for an instruction. * * Arguments: * ctx A pointer to the disassembler context record. * * always returns 0. */ int print_operands (struct ppc_ctx *ctx) { int open_parens = 0; int field; unsigned long operand; struct operand *opr; #ifdef USE_SOURCE_CODE char *symname; int offset; #endif /* USE_SOURCE_CODE */ /*------------------------------------------------------------*/ /* Walk through the operands and list each in order */ for (field = 0; ctx->op->fields[field] != 0; ++field) { if (ctx->op->fields[field] > n_operands) { continue; /* bad operand ?! */ } opr = &operands[ctx->op->fields[field] - 1]; if (opr->hint & OH_SILENT) { continue; } if ((field > 0) && !open_parens) { strcat (ctx->data, ","); ctx->datalen++; } operand = (ctx->instr >> opr->shift) & ((1 << opr->bits) - 1); if (opr->hint & OH_ADDR) { if ((operand & (1 << (opr->bits - 1))) != 0) { operand = operand - (1 << opr->bits); } if (ctx->op->hint & H_RELATIVE) operand = (operand << 2) + (unsigned long) ctx->virtual; else operand = (operand << 2); sprintf (&ctx->data[ctx->datalen], "0x%lx", operand); ctx->datalen = strlen (ctx->data); #ifdef USE_SOURCE_CODE if ((ctx->flags & F_SYMBOL) && ((symname = symbol_name_from_addr (operand, 0, &offset)) != 0)) { sprintf (&ctx->data[ctx->datalen], " <%s", symname); if (offset != 0) { strcat (ctx->data, "+"); ctx->datalen = strlen (ctx->data); sprintf (&ctx->data[ctx->datalen], ctx->radix_fmt, offset); } strcat (ctx->data, ">"); } #endif /* USE_SOURCE_CODE */ } else if (opr->hint & OH_REG) { if ((operand == 0) && (opr->field == O_rA) && (ctx->op->hint & H_RA0_IS_0)) { strcat (ctx->data, "0"); } else { sprintf (&ctx->data[ctx->datalen], "r%d", (short) operand); } if (open_parens) { strcat (ctx->data, ")"); open_parens--; } } else if (opr->hint & OH_SPR) { strcat (ctx->data, spr_name (operand)); } else if (opr->hint & OH_TBR) { strcat (ctx->data, tbr_name (operand)); } else if (opr->hint & OH_LITERAL) { switch (opr->field) { case O_cr2: strcat (ctx->data, "cr2"); ctx->datalen += 3; break; default: break; } } else { sprintf (&ctx->data[ctx->datalen], ctx->radix_fmt, (unsigned short) operand); if (open_parens) { strcat (ctx->data, ")"); open_parens--; } else if (opr->hint & OH_OFFSET) { strcat (ctx->data, "("); open_parens++; } } ctx->datalen = strlen (ctx->data); } return 0; } /* print_operands */ /*====================================================================== * Called to get the value of an arbitrary operand with in an instruction. * * Arguments: * op The pointer to the opcode structure to which * the operands belong. * * instr The instruction (32 bits) containing the opcode * and the operands to print. By the time that * this routine is called the operand has already * been added to the output. * * field The field (operand) to get the value of. * * value The address of an unsigned long to be filled in * with the value of the operand if it is found. This * will only be filled in if the function returns * true. This may be passed as 0 if the value is * not required. * * Returns true if the operand was found or false if it was not. */ int get_operand_value (struct opcode *op, unsigned long instr, enum OP_FIELD field, unsigned long *value) { int i; struct operand *opr; /*------------------------------------------------------------*/ if (field > n_operands) { return false; /* bad operand ?! */ } /* Walk through the operands and list each in order */ for (i = 0; op->fields[i] != 0; ++i) { if (op->fields[i] != field) { continue; } opr = &operands[op->fields[i] - 1]; if (value) { *value = (instr >> opr->shift) & ((1 << opr->bits) - 1); } return true; } return false; } /* operand_value */ /*====================================================================== * Called by the disassembler to match an opcode value to an opcode structure. * * Arguments: * instr The instruction (32 bits) to match. This value * may contain operand values as well as the opcode * since they will be masked out anyway for this * search. * * Returns the address of an opcode struct (from the opcode table) if the * operand successfully matched an entry, or 0 if no match was found. */ struct opcode *find_opcode (unsigned long instr) { struct opcode *ptr; int top = 0; int bottom = n_opcodes - 1; int idx; /*------------------------------------------------------------*/ while (top <= bottom) { idx = (top + bottom) >> 1; ptr = &opcodes[idx]; if ((instr & ptr->mask) < ptr->opcode) { bottom = idx - 1; } else if ((instr & ptr->mask) > ptr->opcode) { top = idx + 1; } else { return ptr; } } return (struct opcode *) 0; } /* find_opcode */ /*====================================================================== * Called by the assembler to match an opcode name to an opcode structure. * * Arguments: * name The text name of the opcode, e.g. "b", "mtspr", etc. * * The opcodes are sorted numerically by their instruction binary code * so a search for the name cannot use the binary search used by the * other find routine. * * Returns the address of an opcode struct (from the opcode table) if the * name successfully matched an entry, or 0 if no match was found. */ struct opcode *find_opcode_by_name (char *name) { int idx; /*------------------------------------------------------------*/ downstring (name); for (idx = 0; idx < n_opcodes; ++idx) { if (!strcmp (name, opcodes[idx].name)) return &opcodes[idx]; } return (struct opcode *) 0; } /* find_opcode_by_name */ /*====================================================================== * Convert the 'spr' operand from its numeric value to its symbolic name. * * Arguments: * value The value of the 'spr' operand. This value should * be unmodified from its encoding in the instruction. * the split-field computations will be performed * here before the switch. * * Returns the address of a character array containing the name of the * special purpose register defined by the 'value' parameter, or the * address of a character array containing "???" if no match was found. */ char *spr_name (int value) { unsigned short spr; static char other[10]; int i; /*------------------------------------------------------------*/ /* spr is a 10 bit field whose interpretation has the high and low five-bit fields reversed from their encoding in the operand */ spr = ((value >> 5) & 0x1f) | ((value & 0x1f) << 5); for (i = 0; i < n_sprs; ++i) { if (spr == spr_map[i].spr_val) return spr_map[i].spr_name; } sprintf (other, "%d", spr); return other; } /* spr_name */ /*====================================================================== * Convert the 'spr' operand from its symbolic name to its numeric value * * Arguments: * name The symbolic name of the 'spr' operand. The * split-field encoding will be done by this routine. * NOTE: name can be a number. * * Returns the numeric value for the spr appropriate for encoding a machine * instruction. Returns 0 if unable to find the SPR. */ int spr_value (char *name) { struct spr_info *sprp; int spr; int i; /*------------------------------------------------------------*/ if (!name || !*name) return 0; if (isdigit ((int) name[0])) { i = htonl (read_number (name)); spr = ((i >> 5) & 0x1f) | ((i & 0x1f) << 5); return spr; } downstring (name); for (i = 0; i < n_sprs; ++i) { sprp = &spr_map[i]; if (strcmp (name, sprp->spr_name) == 0) { /* spr is a 10 bit field whose interpretation has the high and low five-bit fields reversed from their encoding in the operand */ i = htonl (sprp->spr_val); spr = ((i >> 5) & 0x1f) | ((i & 0x1f) << 5); return spr; } } return 0; } /* spr_value */ /*====================================================================== * Convert the 'tbr' operand from its numeric value to its symbolic name. * * Arguments: * value The value of the 'tbr' operand. This value should * be unmodified from its encoding in the instruction. * the split-field computations will be performed * here before the switch. * * Returns the address of a character array containing the name of the * time base register defined by the 'value' parameter, or the address * of a character array containing "???" if no match was found. */ char *tbr_name (int value) { unsigned short tbr; /*------------------------------------------------------------*/ /* tbr is a 10 bit field whose interpretation has the high and low five-bit fields reversed from their encoding in the operand */ tbr = ((value >> 5) & 0x1f) | ((value & 0x1f) << 5); if (tbr == 268) return "TBL"; else if (tbr == 269) return "TBU"; return "???"; } /* tbr_name */ /*====================================================================== * Convert the 'tbr' operand from its symbolic name to its numeric value. * * Arguments: * name The symbolic name of the 'tbr' operand. The * split-field encoding will be done by this routine. * * Returns the numeric value for the spr appropriate for encoding a machine * instruction. Returns 0 if unable to find the TBR. */ int tbr_value (char *name) { int tbr; int val; /*------------------------------------------------------------*/ if (!name || !*name) return 0; downstring (name); if (isdigit ((int) name[0])) { val = read_number (name); if (val != 268 && val != 269) return 0; } else if (strcmp (name, "tbl") == 0) val = 268; else if (strcmp (name, "tbu") == 0) val = 269; else return 0; /* tbr is a 10 bit field whose interpretation has the high and low five-bit fields reversed from their encoding in the operand */ val = htonl (val); tbr = ((val >> 5) & 0x1f) | ((val & 0x1f) << 5); return tbr; } /* tbr_name */ /*====================================================================== * The next several functions (handle_xxx) are the routines that handle * disassembling the opcodes with simplified mnemonics. * * Arguments: * ctx A pointer to the disassembler context record. * * Returns true if the simpler form was printed or false if it was not. */ int handle_bc (struct ppc_ctx *ctx) { unsigned long bo; unsigned long bi; static struct opcode blt = { B_OPCODE (16, 0, 0), B_MASK, {O_BD, 0}, 0, "blt", H_RELATIVE }; static struct opcode bne = { B_OPCODE (16, 0, 0), B_MASK, {O_cr2, O_BD, 0}, 0, "bne", H_RELATIVE }; static struct opcode bdnz = { B_OPCODE (16, 0, 0), B_MASK, {O_BD, 0}, 0, "bdnz", H_RELATIVE }; /*------------------------------------------------------------*/ if (get_operand_value(ctx->op, ctx->instr, O_BO, &bo) == false) return false; if (get_operand_value(ctx->op, ctx->instr, O_BI, &bi) == false) return false; if ((bo == 12) && (bi == 0)) { ctx->op = &blt; sprintf (&ctx->data[ctx->datalen], "%-7s ", ctx->op->name); ctx->datalen += 8; print_operands (ctx); return true; } else if ((bo == 4) && (bi == 10)) { ctx->op = =⃥ sprintf (&ctx->data[ctx->datalen], "%-7s ", ctx->op->name); ctx->datalen += 8; print_operands (ctx); return true; } else if ((bo == 16) && (bi == 0)) { ctx->op = &bdnz; sprintf (&ctx->data[ctx->datalen], "%-7s ", ctx->op->name); ctx->datalen += 8; print_operands (ctx); return true; } return false; } /* handle_blt */ /*====================================================================== * Outputs source line information for the disassembler. This should * be modified in the future to lookup the actual line of source code * from the file, but for now this will do. * * Arguments: * filename The address of a character array containing the * absolute path and file name of the source file. * * funcname The address of a character array containing the * name of the function (not C++ demangled (yet)) * to which this code belongs. * * line_no An integer specifying the source line number that * generated this code. * * pfunc The address of a function to call to print the output. * * * Returns true if it was able to output the line info, or false if it was * not. */ int print_source_line (char *filename, char *funcname, int line_no, int (*pfunc) (const char *)) { char out_buf[256]; /*------------------------------------------------------------*/ (*pfunc) (""); /* output a newline */ sprintf (out_buf, "%s %s(): line %d", filename, funcname, line_no); (*pfunc) (out_buf); return true; } /* print_source_line */ /*====================================================================== * Entry point for the PPC assembler. * * Arguments: * asm_buf An array of characters containing the assembly opcode * and operands to convert to a POWERPC machine * instruction. * * Returns the machine instruction or zero. */ unsigned long asmppc (unsigned long memaddr, char *asm_buf, int *err) { struct opcode *opc; struct operand *oper[MAX_OPERANDS]; unsigned long instr; unsigned long param; char *ptr = asm_buf; char scratch[20]; int i; int w_operands = 0; /* wanted # of operands */ int n_operands = 0; /* # of operands read */ int asm_debug = 0; /*------------------------------------------------------------*/ if (err) *err = 0; if (get_word (&ptr, scratch) == 0) return 0; /* Lookup the opcode structure based on the opcode name */ if ((opc = find_opcode_by_name (scratch)) == (struct opcode *) 0) { if (err) *err = E_ASM_BAD_OPCODE; return 0; } if (asm_debug) { printf ("asmppc: Opcode = \"%s\"\n", opc->name); } for (i = 0; i < 8; ++i) { if (opc->fields[i] == 0) break; ++w_operands; } if (asm_debug) { printf ("asmppc: Expecting %d operands\n", w_operands); } instr = opc->opcode; /* read each operand */ while (n_operands < w_operands) { oper[n_operands] = &operands[opc->fields[n_operands] - 1]; if (oper[n_operands]->hint & OH_SILENT) { /* Skip silent operands, they are covered in opc->opcode */ if (asm_debug) { printf ("asmppc: Operand %d \"%s\" SILENT\n", n_operands, oper[n_operands]->name); } ++n_operands; continue; } if (get_word (&ptr, scratch) == 0) break; if (asm_debug) { printf ("asmppc: Operand %d \"%s\" : \"%s\"\n", n_operands, oper[n_operands]->name, scratch); } if ((param = parse_operand (memaddr, opc, oper[n_operands], scratch, err)) == -1) return 0; instr |= param; ++n_operands; } if (n_operands < w_operands) { if (err) *err = E_ASM_NUM_OPERANDS; return 0; } if (asm_debug) { printf ("asmppc: Instruction = 0x%08lx\n", instr); } return instr; } /* asmppc */ /*====================================================================== * Called by the assembler to interpret a single operand * * Arguments: * ctx A pointer to the disassembler context record. * * Returns 0 if the operand is ok, or -1 if it is bad. */ int parse_operand (unsigned long memaddr, struct opcode *opc, struct operand *oper, char *txt, int *err) { long data; long mask; int is_neg = 0; /*------------------------------------------------------------*/ mask = (1 << oper->bits) - 1; if (oper->hint & OH_ADDR) { data = read_number (txt); if (opc->hint & H_RELATIVE) data = data - memaddr; if (data < 0) is_neg = 1; data >>= 2; data &= (mask >> 1); if (is_neg) data |= 1 << (oper->bits - 1); } else if (oper->hint & OH_REG) { if (txt[0] == 'r' || txt[0] == 'R') txt++; else if (txt[0] == '%' && (txt[1] == 'r' || txt[1] == 'R')) txt += 2; data = read_number (txt); if (data > 31) { if (err) *err = E_ASM_BAD_REGISTER; return -1; } data = htonl (data); } else if (oper->hint & OH_SPR) { if ((data = spr_value (txt)) == 0) { if (err) *err = E_ASM_BAD_SPR; return -1; } } else if (oper->hint & OH_TBR) { if ((data = tbr_value (txt)) == 0) { if (err) *err = E_ASM_BAD_TBR; return -1; } } else { data = htonl (read_number (txt)); } return (data & mask) << oper->shift; } /* parse_operand */ char *asm_error_str (int err) { switch (err) { case E_ASM_BAD_OPCODE: return "Bad opcode"; case E_ASM_NUM_OPERANDS: return "Bad number of operands"; case E_ASM_BAD_REGISTER: return "Bad register number"; case E_ASM_BAD_SPR: return "Bad SPR name or number"; case E_ASM_BAD_TBR: return "Bad TBR name or number"; } return ""; } /* asm_error_str */ /*====================================================================== * Copy a word from one buffer to another, ignores leading white spaces. * * Arguments: * src The address of a character pointer to the * source buffer. * dest A pointer to a character buffer to write the word * into. * * Returns the number of non-white space characters copied, or zero. */ int get_word (char **src, char *dest) { char *ptr = *src; int nchars = 0; /*------------------------------------------------------------*/ /* Eat white spaces */ while (*ptr && isblank (*ptr)) ptr++; if (*ptr == 0) { *src = ptr; return 0; } /* Find the text of the word */ while (*ptr && !isblank (*ptr) && (*ptr != ',')) dest[nchars++] = *ptr++; ptr = (*ptr == ',') ? ptr + 1 : ptr; dest[nchars] = 0; *src = ptr; return nchars; } /* get_word */ /*====================================================================== * Convert a numeric string to a number, be aware of base notations. * * Arguments: * txt The numeric string. * * Returns the converted numeric value. */ long read_number (char *txt) { long val; int is_neg = 0; /*------------------------------------------------------------*/ if (txt == 0 || *txt == 0) return 0; if (*txt == '-') { is_neg = 1; ++txt; } if (txt[0] == '0' && (txt[1] == 'x' || txt[1] == 'X')) /* hex */ val = hextoul(&txt[2], NULL); else /* decimal */ val = simple_strtoul (txt, NULL, 10); if (is_neg) val = -val; return val; } /* read_number */ int downstring (char *s) { if (!s || !*s) return 0; while (*s) { if (isupper (*s)) *s = tolower (*s); s++; } return 0; } /* downstring */ /*====================================================================== * Examines the instruction at the current address and determines the * next address to be executed. This will take into account branches * of different types so that a "step" and "next" operations can be * supported. * * Arguments: * nextaddr The address (to be filled in) of the next * instruction to execute. This will only be a valid * address if true is returned. * * step_over A flag indicating how to compute addresses for * branch statements: * true = Step over the branch (next) * false = step into the branch (step) * * Returns true if it was able to compute the address. Returns false if * it has a problem reading the current instruction or one of the registers. */ int find_next_address (unsigned char *nextaddr, int step_over, struct pt_regs *regs) { unsigned long pc; /* SRR0 register from PPC */ unsigned long ctr; /* CTR register from PPC */ unsigned long cr; /* CR register from PPC */ unsigned long lr; /* LR register from PPC */ unsigned long instr; /* instruction at SRR0 */ unsigned long next; /* computed instruction for 'next' */ unsigned long step; /* computed instruction for 'step' */ unsigned long addr = 0; /* target address operand */ unsigned long aa = 0; /* AA operand */ unsigned long lk = 0; /* LK operand */ unsigned long bo = 0; /* BO operand */ unsigned long bi = 0; /* BI operand */ struct opcode *op = 0; /* opcode structure for 'instr' */ int ctr_ok = 0; int cond_ok = 0; int conditional = 0; int branch = 0; /*------------------------------------------------------------*/ if (nextaddr == 0 || regs == 0) { printf ("find_next_address: bad args"); return false; } pc = regs->nip & 0xfffffffc; instr = INSTRUCTION (pc); if ((op = find_opcode (instr)) == (struct opcode *) 0) { printf ("find_next_address: can't parse opcode 0x%lx", instr); return false; } ctr = regs->ctr; cr = regs->ccr; lr = regs->link; switch (op->opcode) { case B_OPCODE (16, 0, 0): /* bc */ case B_OPCODE (16, 0, 1): /* bcl */ case B_OPCODE (16, 1, 0): /* bca */ case B_OPCODE (16, 1, 1): /* bcla */ if (!get_operand_value (op, instr, O_BD, &addr) || !get_operand_value (op, instr, O_BO, &bo) || !get_operand_value (op, instr, O_BI, &bi) || !get_operand_value (op, instr, O_AA, &aa) || !get_operand_value (op, instr, O_LK, &lk)) return false; if ((addr & (1 << 13)) != 0) addr = addr - (1 << 14); addr <<= 2; conditional = 1; branch = 1; break; case I_OPCODE (18, 0, 0): /* b */ case I_OPCODE (18, 0, 1): /* bl */ case I_OPCODE (18, 1, 0): /* ba */ case I_OPCODE (18, 1, 1): /* bla */ if (!get_operand_value (op, instr, O_LI, &addr) || !get_operand_value (op, instr, O_AA, &aa) || !get_operand_value (op, instr, O_LK, &lk)) return false; if ((addr & (1 << 23)) != 0) addr = addr - (1 << 24); addr <<= 2; conditional = 0; branch = 1; break; case XL_OPCODE (19, 528, 0): /* bcctr */ case XL_OPCODE (19, 528, 1): /* bcctrl */ if (!get_operand_value (op, instr, O_BO, &bo) || !get_operand_value (op, instr, O_BI, &bi) || !get_operand_value (op, instr, O_LK, &lk)) return false; addr = ctr; aa = 1; conditional = 1; branch = 1; break; case XL_OPCODE (19, 16, 0): /* bclr */ case XL_OPCODE (19, 16, 1): /* bclrl */ if (!get_operand_value (op, instr, O_BO, &bo) || !get_operand_value (op, instr, O_BI, &bi) || !get_operand_value (op, instr, O_LK, &lk)) return false; addr = lr; aa = 1; conditional = 1; branch = 1; break; default: conditional = 0; branch = 0; break; } if (conditional) { switch ((bo & 0x1e) >> 1) { case 0: /* 0000y */ if (--ctr != 0) ctr_ok = 1; cond_ok = !(cr & (1 << (31 - bi))); break; case 1: /* 0001y */ if (--ctr == 0) ctr_ok = 1; cond_ok = !(cr & (1 << (31 - bi))); break; case 2: /* 001zy */ ctr_ok = 1; cond_ok = !(cr & (1 << (31 - bi))); break; case 4: /* 0100y */ if (--ctr != 0) ctr_ok = 1; cond_ok = cr & (1 << (31 - bi)); break; case 5: /* 0101y */ if (--ctr == 0) ctr_ok = 1; cond_ok = cr & (1 << (31 - bi)); break; case 6: /* 011zy */ ctr_ok = 1; cond_ok = cr & (1 << (31 - bi)); break; case 8: /* 1z00y */ if (--ctr != 0) ctr_ok = cond_ok = 1; break; case 9: /* 1z01y */ if (--ctr == 0) ctr_ok = cond_ok = 1; break; case 10: /* 1z1zz */ ctr_ok = cond_ok = 1; break; } } if (branch && (!conditional || (ctr_ok && cond_ok))) { if (aa) step = addr; else step = addr + pc; if (lk) next = pc + 4; else next = step; } else { step = next = pc + 4; } if (step_over == true) *(unsigned long *) nextaddr = next; else *(unsigned long *) nextaddr = step; return true; } /* find_next_address */ /* * Copyright (c) 2000 William L. Pitts and W. Gerald Hicks * All rights reserved. * * Redistribution and use in source and binary forms are freely * permitted provided that the above copyright notice and this * paragraph and the following disclaimer are duplicated in all * such forms. * * This software is provided "AS IS" and without any express or * implied warranties, including, without limitation, the implied * warranties of merchantability and fitness for a particular * purpose. */