aboutsummaryrefslogtreecommitdiff
path: root/board/genesi
diff options
context:
space:
mode:
authorBenoît Thébaudeau <benoit.thebaudeau@advansee.com>2013-05-03 10:32:25 +0000
committerStefano Babic <sbabic@denx.de>2013-05-05 17:55:04 +0200
commitf49d92a35bce06d7844efecbd53896dc12b4ebdf (patch)
tree3a0e5ae3bd4bc818ca0d21f88a09a67633585c5b /board/genesi
parente2003c16c02a1ed186f93b8aafb76919a9bf9e1c (diff)
downloadu-boot-f49d92a35bce06d7844efecbd53896dc12b4ebdf.zip
u-boot-f49d92a35bce06d7844efecbd53896dc12b4ebdf.tar.gz
u-boot-f49d92a35bce06d7844efecbd53896dc12b4ebdf.tar.bz2
imx: iomux-mx51: Fix MX51_PAD_EIM_CS2__GPIO2_27
In ALT1 mode, EIM_CS2 is GPIO2[27], not ESDHC1.CD. Hence, rename MX51_PAD_EIM_CS2__SD1_CD to MX51_PAD_EIM_CS2__GPIO2_27. Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
Diffstat (limited to 'board/genesi')
-rw-r--r--board/genesi/mx51_efikamx/efikamx.c2
1 files changed, 1 insertions, 1 deletions
diff --git a/board/genesi/mx51_efikamx/efikamx.c b/board/genesi/mx51_efikamx/efikamx.c
index 69d41db..13582a2 100644
--- a/board/genesi/mx51_efikamx/efikamx.c
+++ b/board/genesi/mx51_efikamx/efikamx.c
@@ -293,7 +293,7 @@ static iomux_v3_cfg_t const efikamx_sdhc1_pads[] = {
static iomux_v3_cfg_t const efikamx_sdhc1_cd_pads[] = {
MX51_PAD_GPIO1_0__SD1_CD,
- MX51_PAD_EIM_CS2__SD1_CD,
+ NEW_PAD_CTRL(MX51_PAD_EIM_CS2__GPIO2_27, MX51_ESDHC_PAD_CTRL),
};
#define EFIKAMX_SDHC1_CD IMX_GPIO_NR(1, 0)
'>2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770 46771 46772 46773
\input texinfo      @c -*-texinfo-*-
@c Copyright (C) 1988--2020 Free Software Foundation, Inc.
@c
@c %**start of header
@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
@c of @set vars.  However, you can override filename with makeinfo -o.
@setfilename gdb.info
@c
@c man begin INCLUDE
@include gdb-cfg.texi
@c man end
@c
@settitle Debugging with @value{GDBN}
@setchapternewpage odd
@c %**end of header

@iftex
@c @smallbook
@c @cropmarks
@end iftex

@finalout
@c To avoid file-name clashes between index.html and Index.html, when
@c the manual is produced on a Posix host and then moved to a
@c case-insensitive filesystem (e.g., MS-Windows), we separate the
@c indices into two: Concept Index and all the rest.
@syncodeindex ky fn
@syncodeindex tp fn

@c readline appendices use @vindex, @findex and @ftable,
@c annotate.texi and gdbmi use @findex.
@syncodeindex vr fn

@c !!set GDB manual's edition---not the same as GDB version!
@c This is updated by GNU Press.
@set EDITION Tenth

@c !!set GDB edit command default editor
@set EDITOR /bin/ex

@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.

@c This is a dir.info fragment to support semi-automated addition of
@c manuals to an info tree.
@dircategory Software development
@direntry
* Gdb: (gdb).                     The GNU debugger.
* gdbserver: (gdb) Server.        The GNU debugging server.
@end direntry

@copying
@c man begin COPYRIGHT
Copyright @copyright{} 1988-2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Free Software'' and ``Free Software Needs
Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
and with the Back-Cover Texts as in (a) below.

(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
this GNU Manual.  Buying copies from GNU Press supports the FSF in
developing GNU and promoting software freedom.''
@c man end
@end copying

@ifnottex
This file documents the @sc{gnu} debugger @value{GDBN}.

This is the @value{EDITION} Edition, of @cite{Debugging with
@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
@ifset VERSION_PACKAGE
@value{VERSION_PACKAGE}
@end ifset
Version @value{GDBVN}.

@insertcopying
@end ifnottex

@titlepage
@title Debugging with @value{GDBN}
@subtitle The @sc{gnu} Source-Level Debugger
@sp 1
@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
@ifset VERSION_PACKAGE
@sp 1
@subtitle @value{VERSION_PACKAGE}
@end ifset
@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
@page
@tex
{\parskip=0pt
\hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
\hfill {\it Debugging with @value{GDBN}}\par
\hfill \TeX{}info \texinfoversion\par
}
@end tex

@vskip 0pt plus 1filll
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA@*
ISBN 978-0-9831592-3-0 @*

@insertcopying
@end titlepage
@page

@ifnottex
@node Top, Summary, (dir), (dir)

@top Debugging with @value{GDBN}

This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.

This is the @value{EDITION} Edition, for @value{GDBN}
@ifset VERSION_PACKAGE
@value{VERSION_PACKAGE}
@end ifset
Version @value{GDBVN}.

Copyright (C) 1988-2020 Free Software Foundation, Inc.

This edition of the GDB manual is dedicated to the memory of Fred
Fish.  Fred was a long-standing contributor to GDB and to Free
software in general.  We will miss him.

@menu
* Summary::                     Summary of @value{GDBN}
* Sample Session::              A sample @value{GDBN} session

* Invocation::                  Getting in and out of @value{GDBN}
* Commands::                    @value{GDBN} commands
* Running::                     Running programs under @value{GDBN}
* Stopping::                    Stopping and continuing
* Reverse Execution::           Running programs backward
* Process Record and Replay::   Recording inferior's execution and replaying it
* Stack::                       Examining the stack
* Source::                      Examining source files
* Data::                        Examining data
* Optimized Code::              Debugging optimized code
* Macros::                      Preprocessor Macros
* Tracepoints::                 Debugging remote targets non-intrusively
* Overlays::                    Debugging programs that use overlays

* Languages::                   Using @value{GDBN} with different languages

* Symbols::                     Examining the symbol table
* Altering::                    Altering execution
* GDB Files::                   @value{GDBN} files
* Targets::                     Specifying a debugging target
* Remote Debugging::            Debugging remote programs
* Configurations::              Configuration-specific information
* Controlling GDB::             Controlling @value{GDBN}
* Extending GDB::               Extending @value{GDBN}
* Interpreters::		Command Interpreters
* TUI::                         @value{GDBN} Text User Interface
* Emacs::                       Using @value{GDBN} under @sc{gnu} Emacs
* GDB/MI::                      @value{GDBN}'s Machine Interface.
* Annotations::                 @value{GDBN}'s annotation interface.
* JIT Interface::               Using the JIT debugging interface.
* In-Process Agent::            In-Process Agent

* GDB Bugs::                    Reporting bugs in @value{GDBN}

@ifset SYSTEM_READLINE
* Command Line Editing: (rluserman).         Command Line Editing
* Using History Interactively: (history).    Using History Interactively
@end ifset
@ifclear SYSTEM_READLINE
* Command Line Editing::        Command Line Editing
* Using History Interactively:: Using History Interactively
@end ifclear
* In Memoriam::                 In Memoriam
* Formatting Documentation::    How to format and print @value{GDBN} documentation
* Installing GDB::              Installing GDB
* Maintenance Commands::        Maintenance Commands
* Remote Protocol::             GDB Remote Serial Protocol
* Agent Expressions::           The GDB Agent Expression Mechanism
* Target Descriptions::         How targets can describe themselves to
                                @value{GDBN}
* Operating System Information:: Getting additional information from
                                 the operating system
* Trace File Format::		GDB trace file format
* Index Section Format::        .gdb_index section format
* Man Pages::			Manual pages
* Copying::			GNU General Public License says
                                how you can copy and share GDB
* GNU Free Documentation License::  The license for this documentation
* Concept Index::               Index of @value{GDBN} concepts
* Command and Variable Index::  Index of @value{GDBN} commands, variables,
                                  functions, and Python data types
@end menu

@end ifnottex

@contents

@node Summary
@unnumbered Summary of @value{GDBN}

The purpose of a debugger such as @value{GDBN} is to allow you to see what is
going on ``inside'' another program while it executes---or what another
program was doing at the moment it crashed.

@value{GDBN} can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:

@itemize @bullet
@item
Start your program, specifying anything that might affect its behavior.

@item
Make your program stop on specified conditions.

@item
Examine what has happened, when your program has stopped.

@item
Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.
@end itemize

You can use @value{GDBN} to debug programs written in C and C@t{++}.
For more information, see @ref{Supported Languages,,Supported Languages}.
For more information, see @ref{C,,C and C++}.

Support for D is partial.  For information on D, see
@ref{D,,D}.

@cindex Modula-2
Support for Modula-2 is partial.  For information on Modula-2, see
@ref{Modula-2,,Modula-2}.

Support for OpenCL C is partial.  For information on OpenCL C, see
@ref{OpenCL C,,OpenCL C}.

@cindex Pascal
Debugging Pascal programs which use sets, subranges, file variables, or
nested functions does not currently work.  @value{GDBN} does not support
entering expressions, printing values, or similar features using Pascal
syntax.

@cindex Fortran
@value{GDBN} can be used to debug programs written in Fortran, although
it may be necessary to refer to some variables with a trailing
underscore.

@value{GDBN} can be used to debug programs written in Objective-C,
using either the Apple/NeXT or the GNU Objective-C runtime.

@menu
* Free Software::               Freely redistributable software
* Free Documentation::          Free Software Needs Free Documentation
* Contributors::                Contributors to GDB
@end menu

@node Free Software
@unnumberedsec Free Software

@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
General Public License
(GPL).  The GPL gives you the freedom to copy or adapt a licensed
program---but every person getting a copy also gets with it the
freedom to modify that copy (which means that they must get access to
the source code), and the freedom to distribute further copies.
Typical software companies use copyrights to limit your freedoms; the
Free Software Foundation uses the GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says that
you have these freedoms and that you cannot take these freedoms away
from anyone else.

@node Free Documentation
@unnumberedsec Free Software Needs Free Documentation

The biggest deficiency in the free software community today is not in
the software---it is the lack of good free documentation that we can
include with the free software.  Many of our most important
programs do not come with free reference manuals and free introductory
texts.  Documentation is an essential part of any software package;
when an important free software package does not come with a free
manual and a free tutorial, that is a major gap.  We have many such
gaps today.

Consider Perl, for instance.  The tutorial manuals that people
normally use are non-free.  How did this come about?  Because the
authors of those manuals published them with restrictive terms---no
copying, no modification, source files not available---which exclude
them from the free software world.

That wasn't the first time this sort of thing happened, and it was far
from the last.  Many times we have heard a GNU user eagerly describe a
manual that he is writing, his intended contribution to the community,
only to learn that he had ruined everything by signing a publication
contract to make it non-free.

Free documentation, like free software, is a matter of freedom, not
price.  The problem with the non-free manual is not that publishers
charge a price for printed copies---that in itself is fine.  (The Free
Software Foundation sells printed copies of manuals, too.)  The
problem is the restrictions on the use of the manual.  Free manuals
are available in source code form, and give you permission to copy and
modify.  Non-free manuals do not allow this.

The criteria of freedom for a free manual are roughly the same as for
free software.  Redistribution (including the normal kinds of
commercial redistribution) must be permitted, so that the manual can
accompany every copy of the program, both on-line and on paper.

Permission for modification of the technical content is crucial too.
When people modify the software, adding or changing features, if they
are conscientious they will change the manual too---so they can
provide accurate and clear documentation for the modified program.  A
manual that leaves you no choice but to write a new manual to document
a changed version of the program is not really available to our
community.

Some kinds of limits on the way modification is handled are
acceptable.  For example, requirements to preserve the original
author's copyright notice, the distribution terms, or the list of
authors, are ok.  It is also no problem to require modified versions
to include notice that they were modified.  Even entire sections that
may not be deleted or changed are acceptable, as long as they deal
with nontechnical topics (like this one).  These kinds of restrictions
are acceptable because they don't obstruct the community's normal use
of the manual.

However, it must be possible to modify all the @emph{technical}
content of the manual, and then distribute the result in all the usual
media, through all the usual channels.  Otherwise, the restrictions
obstruct the use of the manual, it is not free, and we need another
manual to replace it.

Please spread the word about this issue.  Our community continues to
lose manuals to proprietary publishing.  If we spread the word that
free software needs free reference manuals and free tutorials, perhaps
the next person who wants to contribute by writing documentation will
realize, before it is too late, that only free manuals contribute to
the free software community.

If you are writing documentation, please insist on publishing it under
the GNU Free Documentation License or another free documentation
license.  Remember that this decision requires your approval---you
don't have to let the publisher decide.  Some commercial publishers
will use a free license if you insist, but they will not propose the
option; it is up to you to raise the issue and say firmly that this is
what you want.  If the publisher you are dealing with refuses, please
try other publishers.  If you're not sure whether a proposed license
is free, write to @email{licensing@@gnu.org}.

You can encourage commercial publishers to sell more free, copylefted
manuals and tutorials by buying them, and particularly by buying
copies from the publishers that paid for their writing or for major
improvements.  Meanwhile, try to avoid buying non-free documentation
at all.  Check the distribution terms of a manual before you buy it,
and insist that whoever seeks your business must respect your freedom.
Check the history of the book, and try to reward the publishers that
have paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation
published by other publishers, at
@url{http://www.fsf.org/doc/other-free-books.html}.

@node Contributors
@unnumberedsec Contributors to @value{GDBN}

Richard Stallman was the original author of @value{GDBN}, and of many
other @sc{gnu} programs.  Many others have contributed to its
development.  This section attempts to credit major contributors.  One
of the virtues of free software is that everyone is free to contribute
to it; with regret, we cannot actually acknowledge everyone here.  The
file @file{ChangeLog} in the @value{GDBN} distribution approximates a
blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

@quotation
@emph{Plea:} Additions to this section are particularly welcome.  If you
or your friends (or enemies, to be evenhanded) have been unfairly
omitted from this list, we would like to add your names!
@end quotation

So that they may not regard their many labors as thankless, we
particularly thank those who shepherded @value{GDBN} through major
releases:
Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
Jim Blandy (release 4.18);
Jason Molenda (release 4.17);
Stan Shebs (release 4.14);
Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
Jim Kingdon (releases 3.5, 3.4, and 3.3);
and Randy Smith (releases 3.2, 3.1, and 3.0).

Richard Stallman, assisted at various times by Peter TerMaat, Chris
Hanson, and Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
in @value{GDBN}, with significant additional contributions from Per
Bothner and Daniel Berlin.  James Clark wrote the @sc{gnu} C@t{++}
demangler.  Early work on C@t{++} was by Peter TerMaat (who also did
much general update work leading to release 3.0).

@value{GDBN} uses the BFD subroutine library to examine multiple
object-file formats; BFD was a joint project of David V.
Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did
the original support for encapsulated COFF.

Brent Benson of Harris Computer Systems contributed DWARF 2 support.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
support.
Jean-Daniel Fekete contributed Sun 386i support.
Chris Hanson improved the HP9000 support.
Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
David Johnson contributed Encore Umax support.
Jyrki Kuoppala contributed Altos 3068 support.
Jeff Law contributed HP PA and SOM support.
Keith Packard contributed NS32K support.
Doug Rabson contributed Acorn Risc Machine support.
Bob Rusk contributed Harris Nighthawk CX-UX support.
Chris Smith contributed Convex support (and Fortran debugging).
Jonathan Stone contributed Pyramid support.
Michael Tiemann contributed SPARC support.
Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
Pace Willison contributed Intel 386 support.
Jay Vosburgh contributed Symmetry support.
Marko Mlinar contributed OpenRISC 1000 support.

Andreas Schwab contributed M68K @sc{gnu}/Linux support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared
libraries.

Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
about several machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
remote debugging.  Intel Corporation, Wind River Systems, AMD, and ARM
contributed remote debugging modules for the i960, VxWorks, A29K UDI,
and RDI targets, respectively.

Brian Fox is the author of the readline libraries providing
command-line editing and command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the
Modula-2 support, and contributed the Languages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4.
He also enhanced the command-completion support to cover C@t{++} overloaded
symbols.

Hitachi America (now Renesas America), Ltd. sponsored the support for
H8/300, H8/500, and Super-H processors.

NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.

Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
processors.

Toshiba sponsored the support for the TX39 Mips processor.

Matsushita sponsored the support for the MN10200 and MN10300 processors.

Fujitsu sponsored the support for SPARClite and FR30 processors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
watchpoints.

Michael Snyder added support for tracepoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
nearly innumerable bug fixes and cleanups throughout @value{GDBN}.

The following people at the Hewlett-Packard Company contributed
support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
compiler, and the Text User Interface (nee Terminal User Interface):
Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni.  Kim Haase
provided HP-specific information in this manual.

DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
Robert Hoehne made significant contributions to the DJGPP port.

Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
development since 1991.  Cygnus engineers who have worked on @value{GDBN}
fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni.  In
addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
Zuhn have made contributions both large and small.

Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
Cygnus Solutions, implemented the original @sc{gdb/mi} interface.

Jim Blandy added support for preprocessor macros, while working for Red
Hat.

Andrew Cagney designed @value{GDBN}'s architecture vector.  Many
people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
with the migration of old architectures to this new framework.

Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
unwinder framework, this consisting of a fresh new design featuring
frame IDs, independent frame sniffers, and the sentinel frame.  Mark
Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
trad unwinders.  The architecture-specific changes, each involving a
complete rewrite of the architecture's frame code, were carried out by
Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
Weigand.

Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
Tensilica, Inc.@: contributed support for Xtensa processors.  Others
who have worked on the Xtensa port of @value{GDBN} in the past include
Steve Tjiang, John Newlin, and Scott Foehner.

Michael Eager and staff of Xilinx, Inc., contributed support for the
Xilinx MicroBlaze architecture.

Initial support for the FreeBSD/mips target and native configuration
was developed by SRI International and the University of Cambridge
Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
("CTSRD"), as part of the DARPA CRASH research programme.

Initial support for the FreeBSD/riscv target and native configuration
was developed by SRI International and the University of Cambridge
Computer Laboratory (Department of Computer Science and Technology)
under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the DARPA
SSITH research programme.

The original port to the OpenRISC 1000 is believed to be due to
Alessandro Forin and Per Bothner.  More recent ports have been the work
of Jeremy Bennett, Franck Jullien, Stefan Wallentowitz and
Stafford Horne.

@node Sample Session
@chapter A Sample @value{GDBN} Session

You can use this manual at your leisure to read all about @value{GDBN}.
However, a handful of commands are enough to get started using the
debugger.  This chapter illustrates those commands.

@iftex
In this sample session, we emphasize user input like this: @b{input},
to make it easier to pick out from the surrounding output.
@end iftex

@c FIXME: this example may not be appropriate for some configs, where
@c FIXME...primary interest is in remote use.

One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
processor) exhibits the following bug: sometimes, when we change its
quote strings from the default, the commands used to capture one macro
definition within another stop working.  In the following short @code{m4}
session, we define a macro @code{foo} which expands to @code{0000}; we
then use the @code{m4} built-in @code{defn} to define @code{bar} as the
same thing.  However, when we change the open quote string to
@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
procedure fails to define a new synonym @code{baz}:

@smallexample
$ @b{cd gnu/m4}
$ @b{./m4}
@b{define(foo,0000)}

@b{foo}
0000
@b{define(bar,defn(`foo'))}

@b{bar}
0000
@b{changequote(<QUOTE>,<UNQUOTE>)}

@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
@b{baz}
@b{Ctrl-d}
m4: End of input: 0: fatal error: EOF in string
@end smallexample

@noindent
Let us use @value{GDBN} to try to see what is going on.

@smallexample
$ @b{@value{GDBP} m4}
@c FIXME: this falsifies the exact text played out, to permit smallbook
@c FIXME... format to come out better.
@value{GDBN} is free software and you are welcome to distribute copies
 of it under certain conditions; type "show copying" to see
 the conditions.
There is absolutely no warranty for @value{GDBN}; type "show warranty"
 for details.

@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
(@value{GDBP})
@end smallexample

@noindent
@value{GDBN} reads only enough symbol data to know where to find the
rest when needed; as a result, the first prompt comes up very quickly.
We now tell @value{GDBN} to use a narrower display width than usual, so
that examples fit in this manual.

@smallexample
(@value{GDBP}) @b{set width 70}
@end smallexample

@noindent
We need to see how the @code{m4} built-in @code{changequote} works.
Having looked at the source, we know the relevant subroutine is
@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
@code{break} command.

@smallexample
(@value{GDBP}) @b{break m4_changequote}
Breakpoint 1 at 0x62f4: file builtin.c, line 879.
@end smallexample

@noindent
Using the @code{run} command, we start @code{m4} running under @value{GDBN}
control; as long as control does not reach the @code{m4_changequote}
subroutine, the program runs as usual:

@smallexample
(@value{GDBP}) @b{run}
Starting program: /work/Editorial/gdb/gnu/m4/m4
@b{define(foo,0000)}

@b{foo}
0000
@end smallexample

@noindent
To trigger the breakpoint, we call @code{changequote}.  @value{GDBN}
suspends execution of @code{m4}, displaying information about the
context where it stops.

@smallexample
@b{changequote(<QUOTE>,<UNQUOTE>)}

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
    at builtin.c:879
879         if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
@end smallexample

@noindent
Now we use the command @code{n} (@code{next}) to advance execution to
the next line of the current function.

@smallexample
(@value{GDBP}) @b{n}
882         set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
 : nil,
@end smallexample

@noindent
@code{set_quotes} looks like a promising subroutine.  We can go into it
by using the command @code{s} (@code{step}) instead of @code{next}.
@code{step} goes to the next line to be executed in @emph{any}
subroutine, so it steps into @code{set_quotes}.

@smallexample
(@value{GDBP}) @b{s}
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
    at input.c:530
530         if (lquote != def_lquote)
@end smallexample

@noindent
The display that shows the subroutine where @code{m4} is now
suspended (and its arguments) is called a stack frame display.  It
shows a summary of the stack.  We can use the @code{backtrace}
command (which can also be spelled @code{bt}), to see where we are
in the stack as a whole: the @code{backtrace} command displays a
stack frame for each active subroutine.

@smallexample
(@value{GDBP}) @b{bt}
#0  set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
    at input.c:530
#1  0x6344 in m4_changequote (argc=3, argv=0x33c70)
    at builtin.c:882
#2  0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3  0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
    at macro.c:71
#4  0x79dc in expand_input () at macro.c:40
#5  0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
@end smallexample

@noindent
We step through a few more lines to see what happens.  The first two
times, we can use @samp{s}; the next two times we use @code{n} to avoid
falling into the @code{xstrdup} subroutine.

@smallexample
(@value{GDBP}) @b{s}
0x3b5c  532         if (rquote != def_rquote)
(@value{GDBP}) @b{s}
0x3b80  535         lquote = (lq == nil || *lq == '\0') ?  \
def_lquote : xstrdup(lq);
(@value{GDBP}) @b{n}
536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
 : xstrdup(rq);
(@value{GDBP}) @b{n}
538         len_lquote = strlen(rquote);
@end smallexample

@noindent
The last line displayed looks a little odd; we can examine the variables
@code{lquote} and @code{rquote} to see if they are in fact the new left
and right quotes we specified.  We use the command @code{p}
(@code{print}) to see their values.

@smallexample
(@value{GDBP}) @b{p lquote}
$1 = 0x35d40 "<QUOTE>"
(@value{GDBP}) @b{p rquote}
$2 = 0x35d50 "<UNQUOTE>"
@end smallexample

@noindent
@code{lquote} and @code{rquote} are indeed the new left and right quotes.
To look at some context, we can display ten lines of source
surrounding the current line with the @code{l} (@code{list}) command.

@smallexample
(@value{GDBP}) @b{l}
533             xfree(rquote);
534
535         lquote = (lq == nil || *lq == '\0') ? def_lquote\
 : xstrdup (lq);
536         rquote = (rq == nil || *rq == '\0') ? def_rquote\
 : xstrdup (rq);
537
538         len_lquote = strlen(rquote);
539         len_rquote = strlen(lquote);
540     @}
541
542     void
@end smallexample

@noindent
Let us step past the two lines that set @code{len_lquote} and
@code{len_rquote}, and then examine the values of those variables.

@smallexample
(@value{GDBP}) @b{n}
539         len_rquote = strlen(lquote);
(@value{GDBP}) @b{n}
540     @}
(@value{GDBP}) @b{p len_lquote}
$3 = 9
(@value{GDBP}) @b{p len_rquote}
$4 = 7
@end smallexample

@noindent
That certainly looks wrong, assuming @code{len_lquote} and
@code{len_rquote} are meant to be the lengths of @code{lquote} and
@code{rquote} respectively.  We can set them to better values using
the @code{p} command, since it can print the value of
any expression---and that expression can include subroutine calls and
assignments.

@smallexample
(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
$5 = 7
(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
$6 = 9
@end smallexample

@noindent
Is that enough to fix the problem of using the new quotes with the
@code{m4} built-in @code{defn}?  We can allow @code{m4} to continue
executing with the @code{c} (@code{continue}) command, and then try the
example that caused trouble initially:

@smallexample
(@value{GDBP}) @b{c}
Continuing.

@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}

baz
0000
@end smallexample

@noindent
Success!  The new quotes now work just as well as the default ones.  The
problem seems to have been just the two typos defining the wrong
lengths.  We allow @code{m4} exit by giving it an EOF as input:

@smallexample
@b{Ctrl-d}
Program exited normally.
@end smallexample

@noindent
The message @samp{Program exited normally.} is from @value{GDBN}; it
indicates @code{m4} has finished executing.  We can end our @value{GDBN}
session with the @value{GDBN} @code{quit} command.

@smallexample
(@value{GDBP}) @b{quit}
@end smallexample

@node Invocation
@chapter Getting In and Out of @value{GDBN}

This chapter discusses how to start @value{GDBN}, and how to get out of it.
The essentials are:
@itemize @bullet
@item
type @samp{@value{GDBP}} to start @value{GDBN}.
@item
type @kbd{quit} or @kbd{Ctrl-d} to exit.
@end itemize

@menu
* Invoking GDB::                How to start @value{GDBN}
* Quitting GDB::                How to quit @value{GDBN}
* Shell Commands::              How to use shell commands inside @value{GDBN}
* Logging Output::              How to log @value{GDBN}'s output to a file
@end menu

@node Invoking GDB
@section Invoking @value{GDBN}

Invoke @value{GDBN} by running the program @code{@value{GDBP}}.  Once started,
@value{GDBN} reads commands from the terminal until you tell it to exit.

You can also run @code{@value{GDBP}} with a variety of arguments and options,
to specify more of your debugging environment at the outset.

The command-line options described here are designed
to cover a variety of situations; in some environments, some of these
options may effectively be unavailable.

The most usual way to start @value{GDBN} is with one argument,
specifying an executable program:

@smallexample
@value{GDBP} @var{program}
@end smallexample

@noindent
You can also start with both an executable program and a core file
specified:

@smallexample
@value{GDBP} @var{program} @var{core}
@end smallexample

You can, instead, specify a process ID as a second argument or use option
@code{-p}, if you want to debug a running process:

@smallexample
@value{GDBP} @var{program} 1234
@value{GDBP} -p 1234
@end smallexample

@noindent
would attach @value{GDBN} to process @code{1234}.  With option @option{-p} you
can omit the @var{program} filename.

Taking advantage of the second command-line argument requires a fairly
complete operating system; when you use @value{GDBN} as a remote
debugger attached to a bare board, there may not be any notion of
``process'', and there is often no way to get a core dump.  @value{GDBN}
will warn you if it is unable to attach or to read core dumps.

You can optionally have @code{@value{GDBP}} pass any arguments after the
executable file to the inferior using @code{--args}.  This option stops
option processing.
@smallexample
@value{GDBP} --args gcc -O2 -c foo.c
@end smallexample
This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.

You can run @code{@value{GDBP}} without printing the front material, which describes
@value{GDBN}'s non-warranty, by specifying @code{--silent}
(or @code{-q}/@code{--quiet}):

@smallexample
@value{GDBP} --silent
@end smallexample

@noindent
You can further control how @value{GDBN} starts up by using command-line
options.  @value{GDBN} itself can remind you of the options available.

@noindent
Type

@smallexample
@value{GDBP} -help
@end smallexample

@noindent
to display all available options and briefly describe their use
(@samp{@value{GDBP} -h} is a shorter equivalent).

All options and command line arguments you give are processed
in sequential order.  The order makes a difference when the
@samp{-x} option is used.


@menu
* File Options::                Choosing files
* Mode Options::                Choosing modes
* Startup::                     What @value{GDBN} does during startup
@end menu

@node File Options
@subsection Choosing Files

When @value{GDBN} starts, it reads any arguments other than options as
specifying an executable file and core file (or process ID).  This is
the same as if the arguments were specified by the @samp{-se} and
@samp{-c} (or @samp{-p}) options respectively.  (@value{GDBN} reads the
first argument that does not have an associated option flag as
equivalent to the @samp{-se} option followed by that argument; and the
second argument that does not have an associated option flag, if any, as
equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
If the second argument begins with a decimal digit, @value{GDBN} will
first attempt to attach to it as a process, and if that fails, attempt
to open it as a corefile.  If you have a corefile whose name begins with
a digit, you can prevent @value{GDBN} from treating it as a pid by
prefixing it with @file{./}, e.g.@: @file{./12345}.

If @value{GDBN} has not been configured to included core file support,
such as for most embedded targets, then it will complain about a second
argument and ignore it.

Many options have both long and short forms; both are shown in the
following list.  @value{GDBN} also recognizes the long forms if you truncate
them, so long as enough of the option is present to be unambiguous.
(If you prefer, you can flag option arguments with @samp{--} rather
than @samp{-}, though we illustrate the more usual convention.)

@c NOTE: the @cindex entries here use double dashes ON PURPOSE.  This
@c way, both those who look for -foo and --foo in the index, will find
@c it.

@table @code
@item -symbols @var{file}
@itemx -s @var{file}
@cindex @code{--symbols}
@cindex @code{-s}
Read symbol table from file @var{file}.

@item -exec @var{file}
@itemx -e @var{file}
@cindex @code{--exec}
@cindex @code{-e}
Use file @var{file} as the executable file to execute when appropriate,
and for examining pure data in conjunction with a core dump.

@item -se @var{file}
@cindex @code{--se}
Read symbol table from file @var{file} and use it as the executable
file.

@item -core @var{file}
@itemx -c @var{file}
@cindex @code{--core}
@cindex @code{-c}
Use file @var{file} as a core dump to examine.

@item -pid @var{number}
@itemx -p @var{number}
@cindex @code{--pid}
@cindex @code{-p}
Connect to process ID @var{number}, as with the @code{attach} command.

@item -command @var{file}
@itemx -x @var{file}
@cindex @code{--command}
@cindex @code{-x}
Execute commands from file @var{file}.  The contents of this file is
evaluated exactly as the @code{source} command would.
@xref{Command Files,, Command files}.

@item -eval-command @var{command}
@itemx -ex @var{command}
@cindex @code{--eval-command}
@cindex @code{-ex}
Execute a single @value{GDBN} command.

This option may be used multiple times to call multiple commands.  It may
also be interleaved with @samp{-command} as required.

@smallexample
@value{GDBP} -ex 'target sim' -ex 'load' \
   -x setbreakpoints -ex 'run' a.out
@end smallexample

@item -init-command @var{file}
@itemx -ix @var{file}
@cindex @code{--init-command}
@cindex @code{-ix}
Execute commands from file @var{file} before loading the inferior (but
after loading gdbinit files).
@xref{Startup}.

@item -init-eval-command @var{command}
@itemx -iex @var{command}
@cindex @code{--init-eval-command}
@cindex @code{-iex}
Execute a single @value{GDBN} command before loading the inferior (but
after loading gdbinit files).
@xref{Startup}.

@item -directory @var{directory}
@itemx -d @var{directory}
@cindex @code{--directory}
@cindex @code{-d}
Add @var{directory} to the path to search for source and script files.

@item -r
@itemx -readnow
@cindex @code{--readnow}
@cindex @code{-r}
Read each symbol file's entire symbol table immediately, rather than
the default, which is to read it incrementally as it is needed.
This makes startup slower, but makes future operations faster.

@item --readnever
@anchor{--readnever}
@cindex @code{--readnever}, command-line option
Do not read each symbol file's symbolic debug information.  This makes
startup faster but at the expense of not being able to perform
symbolic debugging.  DWARF unwind information is also not read,
meaning backtraces may become incomplete or inaccurate.  One use of
this is when a user simply wants to do the following sequence: attach,
dump core, detach.  Loading the debugging information in this case is
an unnecessary cause of delay.
@end table

@node Mode Options
@subsection Choosing Modes

You can run @value{GDBN} in various alternative modes---for example, in
batch mode or quiet mode.

@table @code
@anchor{-nx}
@item -nx
@itemx -n
@cindex @code{--nx}
@cindex @code{-n}
Do not execute commands found in any initialization file.
There are three init files, loaded in the following order:

@table @code
@item @file{system.gdbinit}
This is the system-wide init file.
Its location is specified with the @code{--with-system-gdbinit}
configure option (@pxref{System-wide configuration}).
It is loaded first when @value{GDBN} starts, before command line options
have been processed.
@item @file{system.gdbinit.d}
This is the system-wide init directory.
Its location is specified with the @code{--with-system-gdbinit-dir}
configure option (@pxref{System-wide configuration}).
Files in this directory are loaded in alphabetical order immediately after
system.gdbinit (if enabled) when @value{GDBN} starts, before command line
options have been processed.  Files need to have a recognized scripting
language extension (@file{.py}/@file{.scm}) or be named with a @file{.gdb}
extension to be interpreted as regular @value{GDBN} commands.  @value{GDBN}
will not recurse into any subdirectories of this directory.
@item @file{~/.gdbinit}
This is the init file in your home directory.
It is loaded next, after @file{system.gdbinit}, and before
command options have been processed.
@item @file{./.gdbinit}
This is the init file in the current directory.
It is loaded last, after command line options other than @code{-x} and
@code{-ex} have been processed.  Command line options @code{-x} and
@code{-ex} are processed last, after @file{./.gdbinit} has been loaded.
@end table

For further documentation on startup processing, @xref{Startup}.
For documentation on how to write command files,
@xref{Command Files,,Command Files}.

@anchor{-nh}
@item -nh
@cindex @code{--nh}
Do not execute commands found in @file{~/.gdbinit}, the init file
in your home directory.
@xref{Startup}.

@item -quiet
@itemx -silent
@itemx -q
@cindex @code{--quiet}
@cindex @code{--silent}
@cindex @code{-q}
``Quiet''.  Do not print the introductory and copyright messages.  These
messages are also suppressed in batch mode.

@item -batch
@cindex @code{--batch}
Run in batch mode.  Exit with status @code{0} after processing all the
command files specified with @samp{-x} (and all commands from
initialization files, if not inhibited with @samp{-n}).  Exit with
nonzero status if an error occurs in executing the @value{GDBN} commands
in the command files.  Batch mode also disables pagination, sets unlimited
terminal width and height @pxref{Screen Size}, and acts as if @kbd{set confirm
off} were in effect (@pxref{Messages/Warnings}).

Batch mode may be useful for running @value{GDBN} as a filter, for
example to download and run a program on another computer; in order to
make this more useful, the message

@smallexample
Program exited normally.
@end smallexample

@noindent
(which is ordinarily issued whenever a program running under
@value{GDBN} control terminates) is not issued when running in batch
mode.

@item -batch-silent
@cindex @code{--batch-silent}
Run in batch mode exactly like @samp{-batch}, but totally silently.  All
@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
unaffected).  This is much quieter than @samp{-silent} and would be useless
for an interactive session.

This is particularly useful when using targets that give @samp{Loading section}
messages, for example.

Note that targets that give their output via @value{GDBN}, as opposed to
writing directly to @code{stdout}, will also be made silent.

@item -return-child-result
@cindex @code{--return-child-result}
The return code from @value{GDBN} will be the return code from the child
process (the process being debugged), with the following exceptions:

@itemize @bullet
@item
@value{GDBN} exits abnormally.  E.g., due to an incorrect argument or an
internal error.  In this case the exit code is the same as it would have been
without @samp{-return-child-result}.
@item
The user quits with an explicit value.  E.g., @samp{quit 1}.
@item
The child process never runs, or is not allowed to terminate, in which case
the exit code will be -1.
@end itemize

This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
when @value{GDBN} is being used as a remote program loader or simulator
interface.

@item -nowindows
@itemx -nw
@cindex @code{--nowindows}
@cindex @code{-nw}
``No windows''.  If @value{GDBN} comes with a graphical user interface
(GUI) built in, then this option tells @value{GDBN} to only use the command-line
interface.  If no GUI is available, this option has no effect.

@item -windows
@itemx -w
@cindex @code{--windows}
@cindex @code{-w}
If @value{GDBN} includes a GUI, then this option requires it to be
used if possible.

@item -cd @var{directory}
@cindex @code{--cd}
Run @value{GDBN} using @var{directory} as its working directory,
instead of the current directory.

@item -data-directory @var{directory}
@itemx -D @var{directory}
@cindex @code{--data-directory}
@cindex @code{-D}
Run @value{GDBN} using @var{directory} as its data directory.
The data directory is where @value{GDBN} searches for its
auxiliary files.  @xref{Data Files}.

@item -fullname
@itemx -f
@cindex @code{--fullname}
@cindex @code{-f}
@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
subprocess.  It tells @value{GDBN} to output the full file name and line
number in a standard, recognizable fashion each time a stack frame is
displayed (which includes each time your program stops).  This
recognizable format looks like two @samp{\032} characters, followed by
the file name, line number and character position separated by colons,
and a newline.  The Emacs-to-@value{GDBN} interface program uses the two
@samp{\032} characters as a signal to display the source code for the
frame.

@item -annotate @var{level}
@cindex @code{--annotate}
This option sets the @dfn{annotation level} inside @value{GDBN}.  Its
effect is identical to using @samp{set annotate @var{level}}
(@pxref{Annotations}).  The annotation @var{level} controls how much
information @value{GDBN} prints together with its prompt, values of
expressions, source lines, and other types of output.  Level 0 is the
normal, level 1 is for use when @value{GDBN} is run as a subprocess of
@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
that control @value{GDBN}, and level 2 has been deprecated.

The annotation mechanism has largely been superseded by @sc{gdb/mi}
(@pxref{GDB/MI}).

@item --args
@cindex @code{--args}
Change interpretation of command line so that arguments following the
executable file are passed as command line arguments to the inferior.
This option stops option processing.

@item -baud @var{bps}
@itemx -b @var{bps}
@cindex @code{--baud}
@cindex @code{-b}
Set the line speed (baud rate or bits per second) of any serial
interface used by @value{GDBN} for remote debugging.

@item -l @var{timeout}
@cindex @code{-l}
Set the timeout (in seconds) of any communication used by @value{GDBN}
for remote debugging.

@item -tty @var{device}
@itemx -t @var{device}
@cindex @code{--tty}
@cindex @code{-t}
Run using @var{device} for your program's standard input and output.
@c FIXME: kingdon thinks there is more to -tty.  Investigate.

@c resolve the situation of these eventually
@item -tui
@cindex @code{--tui}
Activate the @dfn{Text User Interface} when starting.  The Text User
Interface manages several text windows on the terminal, showing
source, assembly, registers and @value{GDBN} command outputs
(@pxref{TUI, ,@value{GDBN} Text User Interface}).  Do not use this
option if you run @value{GDBN} from Emacs (@pxref{Emacs, ,
Using @value{GDBN} under @sc{gnu} Emacs}).

@item -interpreter @var{interp}
@cindex @code{--interpreter}
Use the interpreter @var{interp} for interface with the controlling
program or device.  This option is meant to be set by programs which
communicate with @value{GDBN} using it as a back end.
@xref{Interpreters, , Command Interpreters}.

@samp{--interpreter=mi} (or @samp{--interpreter=mi3}) causes
@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} version 3 (@pxref{GDB/MI, ,
The @sc{gdb/mi} Interface}) included since @value{GDBN} version 9.1.  @sc{gdb/mi}
version 2 (@code{mi2}), included in @value{GDBN} 6.0 and version 1 (@code{mi1}),
included in @value{GDBN} 5.3, are also available.  Earlier @sc{gdb/mi}
interfaces are no longer supported.

@item -write
@cindex @code{--write}
Open the executable and core files for both reading and writing.  This
is equivalent to the @samp{set write on} command inside @value{GDBN}
(@pxref{Patching}).

@item -statistics
@cindex @code{--statistics}
This option causes @value{GDBN} to print statistics about time and
memory usage after it completes each command and returns to the prompt.

@item -version
@cindex @code{--version}
This option causes @value{GDBN} to print its version number and
no-warranty blurb, and exit.

@item -configuration
@cindex @code{--configuration}
This option causes @value{GDBN} to print details about its build-time
configuration parameters, and then exit.  These details can be
important when reporting @value{GDBN} bugs (@pxref{GDB Bugs}).

@end table

@node Startup
@subsection What @value{GDBN} Does During Startup
@cindex @value{GDBN} startup

Here's the description of what @value{GDBN} does during session startup:

@enumerate
@item
Sets up the command interpreter as specified by the command line
(@pxref{Mode Options, interpreter}).

@item
@cindex init file
Reads the system-wide @dfn{init file} (if @option{--with-system-gdbinit} was
used when building @value{GDBN}; @pxref{System-wide configuration,
 ,System-wide configuration and settings}) and the files in the system-wide
gdbinit directory (if @option{--with-system-gdbinit-dir} was used) and executes
all the commands in those files.  The files need to be named with a @file{.gdb}
extension to be interpreted as @value{GDBN} commands, or they can be written
in a supported scripting language with an appropriate file extension.

@anchor{Home Directory Init File}
@item
Reads the init file (if any) in your home directory@footnote{On
DOS/Windows systems, the home directory is the one pointed to by the
@code{HOME} environment variable.} and executes all the commands in
that file.

@anchor{Option -init-eval-command}
@item
Executes commands and command files specified by the @samp{-iex} and
@samp{-ix} options in their specified order.  Usually you should use the
@samp{-ex} and @samp{-x} options instead, but this way you can apply
settings before @value{GDBN} init files get executed and before inferior
gets loaded.

@item
Processes command line options and operands.

@anchor{Init File in the Current Directory during Startup}
@item
Reads and executes the commands from init file (if any) in the current
working directory as long as @samp{set auto-load local-gdbinit} is set to
@samp{on} (@pxref{Init File in the Current Directory}).
This is only done if the current directory is
different from your home directory.  Thus, you can have more than one
init file, one generic in your home directory, and another, specific
to the program you are debugging, in the directory where you invoke
@value{GDBN}.

@item
If the command line specified a program to debug, or a process to
attach to, or a core file, @value{GDBN} loads any auto-loaded
scripts provided for the program or for its loaded shared libraries.
@xref{Auto-loading}.

If you wish to disable the auto-loading during startup,
you must do something like the following:

@smallexample
$ gdb -iex "set auto-load python-scripts off" myprogram
@end smallexample

Option @samp{-ex} does not work because the auto-loading is then turned
off too late.

@item
Executes commands and command files specified by the @samp{-ex} and
@samp{-x} options in their specified order.  @xref{Command Files}, for
more details about @value{GDBN} command files.

@item
Reads the command history recorded in the @dfn{history file}.
@xref{Command History}, for more details about the command history and the
files where @value{GDBN} records it.
@end enumerate

Init files use the same syntax as @dfn{command files} (@pxref{Command
Files}) and are processed by @value{GDBN} in the same way.  The init
file in your home directory can set options (such as @samp{set
complaints}) that affect subsequent processing of command line options
and operands.  Init files are not executed if you use the @samp{-nx}
option (@pxref{Mode Options, ,Choosing Modes}).

To display the list of init files loaded by gdb at startup, you
can use @kbd{gdb --help}.

@cindex init file name
@cindex @file{.gdbinit}
@cindex @file{gdb.ini}
The @value{GDBN} init files are normally called @file{.gdbinit}.
The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
the limitations of file names imposed by DOS filesystems.  The Windows
port of @value{GDBN} uses the standard name, but if it finds a
@file{gdb.ini} file in your home directory, it warns you about that
and suggests to rename the file to the standard name.


@node Quitting GDB
@section Quitting @value{GDBN}
@cindex exiting @value{GDBN}
@cindex leaving @value{GDBN}

@table @code
@kindex quit @r{[}@var{expression}@r{]}
@kindex q @r{(@code{quit})}
@item quit @r{[}@var{expression}@r{]}
@itemx q
To exit @value{GDBN}, use the @code{quit} command (abbreviated
@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}).  If you
do not supply @var{expression}, @value{GDBN} will terminate normally;
otherwise it will terminate using the result of @var{expression} as the
error code.
@end table

@cindex interrupt
An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
terminates the action of any @value{GDBN} command that is in progress and
returns to @value{GDBN} command level.  It is safe to type the interrupt
character at any time because @value{GDBN} does not allow it to take effect
until a time when it is safe.

If you have been using @value{GDBN} to control an attached process or
device, you can release it with the @code{detach} command
(@pxref{Attach, ,Debugging an Already-running Process}).

@node Shell Commands
@section Shell Commands

If you need to execute occasional shell commands during your
debugging session, there is no need to leave or suspend @value{GDBN}; you can
just use the @code{shell} command.

@table @code
@kindex shell
@kindex !
@cindex shell escape
@item shell @var{command-string}
@itemx !@var{command-string}
Invoke a standard shell to execute @var{command-string}.
Note that no space is needed between @code{!} and @var{command-string}.
If it exists, the environment variable @code{SHELL} determines which
shell to run.  Otherwise @value{GDBN} uses the default shell
(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
@end table

The utility @code{make} is often needed in development environments.
You do not have to use the @code{shell} command for this purpose in
@value{GDBN}:

@table @code
@kindex make
@cindex calling make
@item make @var{make-args}
Execute the @code{make} program with the specified
arguments.  This is equivalent to @samp{shell make @var{make-args}}.
@end table

@table @code
@kindex pipe
@kindex |
@cindex send the output of a gdb command to a shell command
@anchor{pipe}
@item pipe [@var{command}] | @var{shell_command}
@itemx | [@var{command}] | @var{shell_command}
@itemx pipe -d @var{delim} @var{command} @var{delim} @var{shell_command}
@itemx | -d @var{delim} @var{command} @var{delim} @var{shell_command}
Executes @var{command} and sends its output to @var{shell_command}.
Note that no space is needed around @code{|}.
If no @var{command} is provided, the last command executed is repeated.

In case the @var{command} contains a @code{|}, the option @code{-d @var{delim}}
can be used to specify an alternate delimiter string @var{delim} that separates
the @var{command} from the @var{shell_command}.

Example:
@smallexample
@group
(gdb) p var
$1 = @{
  black = 144,
  red = 233,
  green = 377,
  blue = 610,
  white = 987
@}
@end group
@group
(gdb) pipe p var|wc
      7      19      80
(gdb) |p var|wc -l
7
@end group
@group
(gdb) p /x var
$4 = @{
  black = 0x90,
  red = 0xe9,
  green = 0x179,
  blue = 0x262,
  white = 0x3db
@}
(gdb) ||grep red
  red => 0xe9,
@end group
@group
(gdb) | -d ! echo this contains a | char\n ! sed -e 's/|/PIPE/'
this contains a PIPE char
(gdb) | -d xxx echo this contains a | char!\n xxx sed -e 's/|/PIPE/'
this contains a PIPE char!
(gdb)
@end group
@end smallexample
@end table

The convenience variables @code{$_shell_exitcode} and @code{$_shell_exitsignal}
can be used to examine the exit status of the last shell command launched
by @code{shell}, @code{make}, @code{pipe} and @code{|}.
@xref{Convenience Vars,, Convenience Variables}.

@node Logging Output
@section Logging Output
@cindex logging @value{GDBN} output
@cindex save @value{GDBN} output to a file

You may want to save the output of @value{GDBN} commands to a file.
There are several commands to control @value{GDBN}'s logging.

@table @code
@kindex set logging
@item set logging on
Enable logging.
@item set logging off
Disable logging.
@cindex logging file name
@item set logging file @var{file}
Change the name of the current logfile.  The default logfile is @file{gdb.txt}.
@item set logging overwrite [on|off]
By default, @value{GDBN} will append to the logfile.  Set @code{overwrite} if
you want @code{set logging on} to overwrite the logfile instead.
@item set logging redirect [on|off]
By default, @value{GDBN} output will go to both the terminal and the logfile.
Set @code{redirect} if you want output to go only to the log file.
@item set logging debugredirect [on|off]
By default, @value{GDBN} debug output will go to both the terminal and the logfile.
Set @code{debugredirect} if you want debug output to go only to the log file.
@kindex show logging
@item show logging
Show the current values of the logging settings.
@end table

You can also redirect the output of a @value{GDBN} command to a
shell command.  @xref{pipe}.
@node Commands
@chapter @value{GDBN} Commands

You can abbreviate a @value{GDBN} command to the first few letters of the command
name, if that abbreviation is unambiguous; and you can repeat certain
@value{GDBN} commands by typing just @key{RET}.  You can also use the @key{TAB}
key to get @value{GDBN} to fill out the rest of a word in a command (or to
show you the alternatives available, if there is more than one possibility).

@menu
* Command Syntax::              How to give commands to @value{GDBN}
* Command Settings::            How to change default behavior of commands
* Completion::                  Command completion
* Command Options::             Command options
* Help::                        How to ask @value{GDBN} for help
@end menu

@node Command Syntax
@section Command Syntax

A @value{GDBN} command is a single line of input.  There is no limit on
how long it can be.  It starts with a command name, which is followed by
arguments whose meaning depends on the command name.  For example, the
command @code{step} accepts an argument which is the number of times to
step, as in @samp{step 5}.  You can also use the @code{step} command
with no arguments.  Some commands do not allow any arguments.

@cindex abbreviation
@value{GDBN} command names may always be truncated if that abbreviation is
unambiguous.  Other possible command abbreviations are listed in the
documentation for individual commands.  In some cases, even ambiguous
abbreviations are allowed; for example, @code{s} is specially defined as
equivalent to @code{step} even though there are other commands whose
names start with @code{s}.  You can test abbreviations by using them as
arguments to the @code{help} command.

@cindex repeating commands
@kindex RET @r{(repeat last command)}
A blank line as input to @value{GDBN} (typing just @key{RET}) means to
repeat the previous command.  Certain commands (for example, @code{run})
will not repeat this way; these are commands whose unintentional
repetition might cause trouble and which you are unlikely to want to
repeat.  User-defined commands can disable this feature; see
@ref{Define, dont-repeat}.

The @code{list} and @code{x} commands, when you repeat them with
@key{RET}, construct new arguments rather than repeating
exactly as typed.  This permits easy scanning of source or memory.

@value{GDBN} can also use @key{RET} in another way: to partition lengthy
output, in a way similar to the common utility @code{more}
(@pxref{Screen Size,,Screen Size}).  Since it is easy to press one
@key{RET} too many in this situation, @value{GDBN} disables command
repetition after any command that generates this sort of display.

@kindex # @r{(a comment)}
@cindex comment
Any text from a @kbd{#} to the end of the line is a comment; it does
nothing.  This is useful mainly in command files (@pxref{Command
Files,,Command Files}).

@cindex repeating command sequences
@kindex Ctrl-o @r{(operate-and-get-next)}
The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
commands.  This command accepts the current line, like @key{RET}, and
then fetches the next line relative to the current line from the history
for editing.


@node Command Settings
@section Command Settings
@cindex default behavior of commands, changing
@cindex default settings, changing

Many commands change their behavior according to command-specific
variables or settings.  These settings can be changed with the
@code{set} subcommands.  For example, the @code{print} command
(@pxref{Data, ,Examining Data}) prints arrays differently depending on
settings changeable with the commands @code{set print elements
NUMBER-OF-ELEMENTS} and @code{set print array-indexes}, among others.

You can change these settings to your preference in the gdbinit files
loaded at @value{GDBN} startup.  @xref{Startup}.

The settings can also be changed interactively during the debugging
session.  For example, to change the limit of array elements to print,
you can do the following:
@smallexample
(@value{GDBN}) set print elements 10
(@value{GDBN}) print some_array
$1 = @{0, 10, 20, 30, 40, 50, 60, 70, 80, 90...@}
@end smallexample

The above @code{set print elements 10} command changes the number of
elements to print from the default of 200 to 10.  If you only intend
this limit of 10 to be used for printing @code{some_array}, then you
must restore the limit back to 200, with @code{set print elements
200}.

Some commands allow overriding settings with command options.  For
example, the @code{print} command supports a number of options that
allow overriding relevant global print settings as set by @code{set
print} subcommands.  @xref{print options}.  The example above could be
rewritten as:
@smallexample
(@value{GDBN}) print -elements 10 -- some_array
$1 = @{0, 10, 20, 30, 40, 50, 60, 70, 80, 90...@}
@end smallexample

Alternatively, you can use the @code{with} command to change a setting
temporarily, for the duration of a command invocation.

@table @code
@kindex with command
@kindex w @r{(@code{with})}
@cindex settings
@cindex temporarily change settings
@item with @var{setting} [@var{value}] [-- @var{command}]
@itemx w @var{setting} [@var{value}] [-- @var{command}]
Temporarily set @var{setting} to @var{value} for the duration of
@var{command}.

@var{setting} is any setting you can change with the @code{set}
subcommands.  @var{value} is the value to assign to @code{setting}
while running @code{command}.

If no @var{command} is provided, the last command executed is
repeated.

If a @var{command} is provided, it must be preceded by a double dash
(@code{--}) separator.  This is required because some settings accept
free-form arguments, such as expressions or filenames.

For example, the command
@smallexample
(@value{GDBN}) with print array on -- print some_array
@end smallexample
@noindent
is equivalent to the following 3 commands:
@smallexample
(@value{GDBN}) set print array on
(@value{GDBN}) print some_array
(@value{GDBN}) set print array off
@end smallexample

The @code{with} command is particularly useful when you want to
override a setting while running user-defined commands, or commands
defined in Python or Guile.  @xref{Extending GDB,, Extending GDB}.

@smallexample
(@value{GDBN}) with print pretty on -- my_complex_command
@end smallexample

To change several settings for the same command, you can nest
@code{with} commands.  For example, @code{with language ada -- with
print elements 10} temporarily changes the language to Ada and sets a
limit of 10 elements to print for arrays and strings.

@end table

@node Completion
@section Command Completion

@cindex completion
@cindex word completion
@value{GDBN} can fill in the rest of a word in a command for you, if there is
only one possibility; it can also show you what the valid possibilities
are for the next word in a command, at any time.  This works for @value{GDBN}
commands, @value{GDBN} subcommands, command options, and the names of symbols
in your program.

Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
of a word.  If there is only one possibility, @value{GDBN} fills in the
word, and waits for you to finish the command (or press @key{RET} to
enter it).  For example, if you type

@c FIXME "@key" does not distinguish its argument sufficiently to permit
@c complete accuracy in these examples; space introduced for clarity.
@c If texinfo enhancements make it unnecessary, it would be nice to
@c replace " @key" by "@key" in the following...
@smallexample
(@value{GDBP}) info bre @key{TAB}
@end smallexample

@noindent
@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
the only @code{info} subcommand beginning with @samp{bre}:

@smallexample
(@value{GDBP}) info breakpoints
@end smallexample

@noindent
You can either press @key{RET} at this point, to run the @code{info
breakpoints} command, or backspace and enter something else, if
@samp{breakpoints} does not look like the command you expected.  (If you
were sure you wanted @code{info breakpoints} in the first place, you
might as well just type @key{RET} immediately after @samp{info bre},
to exploit command abbreviations rather than command completion).

If there is more than one possibility for the next word when you press
@key{TAB}, @value{GDBN} sounds a bell.  You can either supply more
characters and try again, or just press @key{TAB} a second time;
@value{GDBN} displays all the possible completions for that word.  For
example, you might want to set a breakpoint on a subroutine whose name
begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
just sounds the bell.  Typing @key{TAB} again displays all the
function names in your program that begin with those characters, for
example:

@smallexample
(@value{GDBP}) b make_ @key{TAB}
@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
make_a_section_from_file     make_environ
make_abs_section             make_function_type
make_blockvector             make_pointer_type
make_cleanup                 make_reference_type
make_command                 make_symbol_completion_list
(@value{GDBP}) b make_
@end smallexample

@noindent
After displaying the available possibilities, @value{GDBN} copies your
partial input (@samp{b make_} in the example) so you can finish the
command.

If you just want to see the list of alternatives in the first place, you
can press @kbd{M-?} rather than pressing @key{TAB} twice.  @kbd{M-?}
means @kbd{@key{META} ?}.  You can type this either by holding down a
key designated as the @key{META} shift on your keyboard (if there is
one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.

If the number of possible completions is large, @value{GDBN} will
print as much of the list as it has collected, as well as a message
indicating that the list may be truncated.

@smallexample
(@value{GDBP}) b m@key{TAB}@key{TAB}
main
<... the rest of the possible completions ...>
*** List may be truncated, max-completions reached. ***
(@value{GDBP}) b m
@end smallexample

@noindent
This behavior can be controlled with the following commands:

@table @code
@kindex set max-completions
@item set max-completions @var{limit}
@itemx set max-completions unlimited
Set the maximum number of completion candidates.  @value{GDBN} will
stop looking for more completions once it collects this many candidates.
This is useful when completing on things like function names as collecting
all the possible candidates can be time consuming.
The default value is 200.  A value of zero disables tab-completion.
Note that setting either no limit or a very large limit can make
completion slow.
@kindex show max-completions
@item show max-completions
Show the maximum number of candidates that @value{GDBN} will collect and show
during completion.
@end table

@cindex quotes in commands
@cindex completion of quoted strings
Sometimes the string you need, while logically a ``word'', may contain
parentheses or other characters that @value{GDBN} normally excludes from
its notion of a word.  To permit word completion to work in this
situation, you may enclose words in @code{'} (single quote marks) in
@value{GDBN} commands.

A likely situation where you might need this is in typing an
expression that involves a C@t{++} symbol name with template
parameters.  This is because when completing expressions, GDB treats
the @samp{<} character as word delimiter, assuming that it's the
less-than comparison operator (@pxref{C Operators, , C and C@t{++}
Operators}).

For example, when you want to call a C@t{++} template function
interactively using the @code{print} or @code{call} commands, you may
need to distinguish whether you mean the version of @code{name} that
was specialized for @code{int}, @code{name<int>()}, or the version
that was specialized for @code{float}, @code{name<float>()}.  To use
the word-completion facilities in this situation, type a single quote
@code{'} at the beginning of the function name.  This alerts
@value{GDBN} that it may need to consider more information than usual
when you press @key{TAB} or @kbd{M-?} to request word completion:

@smallexample
(@value{GDBP}) p 'func< @kbd{M-?}
func<int>()    func<float>()
(@value{GDBP}) p 'func<
@end smallexample

When setting breakpoints however (@pxref{Specify Location}), you don't
usually need to type a quote before the function name, because
@value{GDBN} understands that you want to set a breakpoint on a
function:

@smallexample
(@value{GDBP}) b func< @kbd{M-?}
func<int>()    func<float>()
(@value{GDBP}) b func<
@end smallexample

This is true even in the case of typing the name of C@t{++} overloaded
functions (multiple definitions of the same function, distinguished by
argument type).  For example, when you want to set a breakpoint you
don't need to distinguish whether you mean the version of @code{name}
that takes an @code{int} parameter, @code{name(int)}, or the version
that takes a @code{float} parameter, @code{name(float)}.

@smallexample
(@value{GDBP}) b bubble( @kbd{M-?}
bubble(int)    bubble(double)
(@value{GDBP}) b bubble(dou @kbd{M-?}
bubble(double)
@end smallexample

See @ref{quoting names} for a description of other scenarios that
require quoting.

For more information about overloaded functions, see @ref{C Plus Plus
Expressions, ,C@t{++} Expressions}.  You can use the command @code{set
overload-resolution off} to disable overload resolution;
see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.

@cindex completion of structure field names
@cindex structure field name completion
@cindex completion of union field names
@cindex union field name completion
When completing in an expression which looks up a field in a
structure, @value{GDBN} also tries@footnote{The completer can be
confused by certain kinds of invalid expressions.  Also, it only
examines the static type of the expression, not the dynamic type.} to
limit completions to the field names available in the type of the
left-hand-side:

@smallexample
(@value{GDBP}) p gdb_stdout.@kbd{M-?}
magic                to_fputs             to_rewind
to_data              to_isatty            to_write
to_delete            to_put               to_write_async_safe
to_flush             to_read
@end smallexample

@noindent
This is because the @code{gdb_stdout} is a variable of the type
@code{struct ui_file} that is defined in @value{GDBN} sources as
follows:

@smallexample
struct ui_file
@{
   int *magic;
   ui_file_flush_ftype *to_flush;
   ui_file_write_ftype *to_write;
   ui_file_write_async_safe_ftype *to_write_async_safe;
   ui_file_fputs_ftype *to_fputs;
   ui_file_read_ftype *to_read;
   ui_file_delete_ftype *to_delete;
   ui_file_isatty_ftype *to_isatty;
   ui_file_rewind_ftype *to_rewind;
   ui_file_put_ftype *to_put;
   void *to_data;
@}
@end smallexample

@node Command Options
@section Command options

@cindex command options
Some commands accept options starting with a leading dash.  For
example, @code{print -pretty}.  Similarly to command names, you can
abbreviate a @value{GDBN} option to the first few letters of the
option name, if that abbreviation is unambiguous, and you can also use
the @key{TAB} key to get @value{GDBN} to fill out the rest of a word
in an option (or to show you the alternatives available, if there is
more than one possibility).

@cindex command options, raw input
Some commands take raw input as argument.  For example, the print
command processes arbitrary expressions in any of the languages
supported by @value{GDBN}.  With such commands, because raw input may
start with a leading dash that would be confused with an option or any
of its abbreviations, e.g.@: @code{print -p} (short for @code{print
-pretty} or printing negative @code{p}?), if you specify any command
option, then you must use a double-dash (@code{--}) delimiter to
indicate the end of options.

@cindex command options, boolean

Some options are described as accepting an argument which can be
either @code{on} or @code{off}.  These are known as @dfn{boolean
options}.  Similarly to boolean settings commands---@code{on} and
@code{off} are the typical values, but any of @code{1}, @code{yes} and
@code{enable} can also be used as ``true'' value, and any of @code{0},
@code{no} and @code{disable} can also be used as ``false'' value.  You
can also omit a ``true'' value, as it is implied by default.

For example, these are equivalent:

@smallexample
(@value{GDBP}) print -object on -pretty off -element unlimited -- *myptr
(@value{GDBP}) p -o -p 0 -e u -- *myptr
@end smallexample

You can discover the set of options some command accepts by completing
on @code{-} after the command name.  For example:

@smallexample
(@value{GDBP}) print -@key{TAB}@key{TAB}
-address         -max-depth       -raw-values      -union
-array           -null-stop       -repeats         -vtbl
-array-indexes   -object          -static-members
-elements        -pretty          -symbol
@end smallexample

Completion will in some cases guide you with a suggestion of what kind
of argument an option expects.  For example:

@smallexample
(@value{GDBP}) print -elements @key{TAB}@key{TAB}
NUMBER     unlimited
@end smallexample

Here, the option expects a number (e.g., @code{100}), not literal
@code{NUMBER}.  Such metasyntactical arguments are always presented in
uppercase.

(For more on using the @code{print} command, see @ref{Data, ,Examining
Data}.)

@node Help
@section Getting Help
@cindex online documentation
@kindex help

You can always ask @value{GDBN} itself for information on its commands,
using the command @code{help}.

@table @code
@kindex h @r{(@code{help})}
@item help
@itemx h
You can use @code{help} (abbreviated @code{h}) with no arguments to
display a short list of named classes of commands:

@smallexample
(@value{GDBP}) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without
               stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(@value{GDBP})
@end smallexample
@c the above line break eliminates huge line overfull...

@item help @var{class}
Using one of the general help classes as an argument, you can get a
list of the individual commands in that class.  For example, here is the
help display for the class @code{status}:

@smallexample
(@value{GDBP}) help status
Status inquiries.

List of commands:

@c Line break in "show" line falsifies real output, but needed
@c to fit in smallbook page size.
info -- Generic command for showing things
        about the program being debugged
show -- Generic command for showing things
        about the debugger

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(@value{GDBP})
@end smallexample

@item help @var{command}
With a command name as @code{help} argument, @value{GDBN} displays a
short paragraph on how to use that command.

@kindex apropos
@item apropos [-v] @var{regexp}
The @code{apropos} command searches through all of the @value{GDBN}
commands, and their documentation, for the regular expression specified in
@var{args}.  It prints out all matches found.  The optional flag  @samp{-v},
which stands for @samp{verbose}, indicates to output the full documentation
of the matching commands and highlight the parts of the documentation
matching @var{regexp}.  For example:

@smallexample
apropos alias
@end smallexample

@noindent
results in:

@smallexample
@group
alias -- Define a new command that is an alias of an existing command
aliases -- Aliases of other commands
d -- Delete some breakpoints or auto-display expressions
del -- Delete some breakpoints or auto-display expressions
delete -- Delete some breakpoints or auto-display expressions
@end group
@end smallexample

@noindent
while

@smallexample
apropos -v cut.*thread apply
@end smallexample

@noindent
results in the below output, where @samp{cut for 'thread apply}
is highlighted if styling is enabled.

@smallexample
@group
taas -- Apply a command to all threads (ignoring errors
and empty output).
Usage: taas COMMAND
shortcut for 'thread apply all -s COMMAND'

tfaas -- Apply a command to all frames of all threads
(ignoring errors and empty output).
Usage: tfaas COMMAND
shortcut for 'thread apply all -s frame apply all -s COMMAND'
@end group
@end smallexample

@kindex complete
@item complete @var{args}
The @code{complete @var{args}} command lists all the possible completions
for the beginning of a command.  Use @var{args} to specify the beginning of the
command you want completed.  For example:

@smallexample
complete i
@end smallexample

@noindent results in:

@smallexample
@group
if
ignore
info
inspect
@end group
@end smallexample

@noindent This is intended for use by @sc{gnu} Emacs.
@end table

In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
and @code{show} to inquire about the state of your program, or the state
of @value{GDBN} itself.  Each command supports many topics of inquiry; this
manual introduces each of them in the appropriate context.  The listings
under @code{info} and under @code{show} in the Command, Variable, and
Function Index point to all the sub-commands.  @xref{Command and Variable
Index}.

@c @group
@table @code
@kindex info
@kindex i @r{(@code{info})}
@item info
This command (abbreviated @code{i}) is for describing the state of your
program.  For example, you can show the arguments passed to a function
with @code{info args}, list the registers currently in use with @code{info
registers}, or list the breakpoints you have set with @code{info breakpoints}.
You can get a complete list of the @code{info} sub-commands with
@w{@code{help info}}.

@kindex set
@item set
You can assign the result of an expression to an environment variable with
@code{set}.  For example, you can set the @value{GDBN} prompt to a $-sign with
@code{set prompt $}.

@kindex show
@item show
In contrast to @code{info}, @code{show} is for describing the state of
@value{GDBN} itself.
You can change most of the things you can @code{show}, by using the
related command @code{set}; for example, you can control what number
system is used for displays with @code{set radix}, or simply inquire
which is currently in use with @code{show radix}.

@kindex info set
To display all the settable parameters and their current
values, you can use @code{show} with no arguments; you may also use
@code{info set}.  Both commands produce the same display.
@c FIXME: "info set" violates the rule that "info" is for state of
@c FIXME...program.  Ck w/ GNU: "info set" to be called something else,
@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
@end table
@c @end group

Here are several miscellaneous @code{show} subcommands, all of which are
exceptional in lacking corresponding @code{set} commands:

@table @code
@kindex show version
@cindex @value{GDBN} version number
@item show version
Show what version of @value{GDBN} is running.  You should include this
information in @value{GDBN} bug-reports.  If multiple versions of
@value{GDBN} are in use at your site, you may need to determine which
version of @value{GDBN} you are running; as @value{GDBN} evolves, new
commands are introduced, and old ones may wither away.  Also, many
system vendors ship variant versions of @value{GDBN}, and there are
variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
The version number is the same as the one announced when you start
@value{GDBN}.

@kindex show copying
@kindex info copying
@cindex display @value{GDBN} copyright
@item show copying
@itemx info copying
Display information about permission for copying @value{GDBN}.

@kindex show warranty
@kindex info warranty
@item show warranty
@itemx info warranty
Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
if your version of @value{GDBN} comes with one.

@kindex show configuration
@item show configuration
Display detailed information about the way @value{GDBN} was configured
when it was built.  This displays the optional arguments passed to the
@file{configure} script and also configuration parameters detected
automatically by @command{configure}.  When reporting a @value{GDBN}
bug (@pxref{GDB Bugs}), it is important to include this information in
your report.

@end table

@node Running
@chapter Running Programs Under @value{GDBN}

When you run a program under @value{GDBN}, you must first generate
debugging information when you compile it.

You may start @value{GDBN} with its arguments, if any, in an environment
of your choice.  If you are doing native debugging, you may redirect
your program's input and output, debug an already running process, or
kill a child process.

@menu
* Compilation::                 Compiling for debugging
* Starting::                    Starting your program
* Arguments::                   Your program's arguments
* Environment::                 Your program's environment

* Working Directory::           Your program's working directory
* Input/Output::                Your program's input and output
* Attach::                      Debugging an already-running process
* Kill Process::                Killing the child process
* Inferiors Connections and Programs:: Debugging multiple inferiors
					 connections and programs
* Threads::                     Debugging programs with multiple threads
* Forks::                       Debugging forks
* Checkpoint/Restart::          Setting a @emph{bookmark} to return to later
@end menu

@node Compilation
@section Compiling for Debugging

In order to debug a program effectively, you need to generate
debugging information when you compile it.  This debugging information
is stored in the object file; it describes the data type of each
variable or function and the correspondence between source line numbers
and addresses in the executable code.

To request debugging information, specify the @samp{-g} option when you run
the compiler.

Programs that are to be shipped to your customers are compiled with
optimizations, using the @samp{-O} compiler option.  However, some
compilers are unable to handle the @samp{-g} and @samp{-O} options
together.  Using those compilers, you cannot generate optimized
executables containing debugging information.

@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
without @samp{-O}, making it possible to debug optimized code.  We
recommend that you @emph{always} use @samp{-g} whenever you compile a
program.  You may think your program is correct, but there is no sense
in pushing your luck.  For more information, see @ref{Optimized Code}.

Older versions of the @sc{gnu} C compiler permitted a variant option
@w{@samp{-gg}} for debugging information.  @value{GDBN} no longer supports this
format; if your @sc{gnu} C compiler has this option, do not use it.

@value{GDBN} knows about preprocessor macros and can show you their
expansion (@pxref{Macros}).  Most compilers do not include information
about preprocessor macros in the debugging information if you specify
the @option{-g} flag alone.  Version 3.1 and later of @value{NGCC},
the @sc{gnu} C compiler, provides macro information if you are using
the DWARF debugging format, and specify the option @option{-g3}.

@xref{Debugging Options,,Options for Debugging Your Program or GCC,
gcc, Using the @sc{gnu} Compiler Collection (GCC)}, for more
information on @value{NGCC} options affecting debug information.

You will have the best debugging experience if you use the latest
version of the DWARF debugging format that your compiler supports.
DWARF is currently the most expressive and best supported debugging
format in @value{GDBN}.

@need 2000
@node Starting
@section Starting your Program
@cindex starting
@cindex running

@table @code
@kindex run
@kindex r @r{(@code{run})}
@item run
@itemx r
Use the @code{run} command to start your program under @value{GDBN}.
You must first specify the program name with an argument to
@value{GDBN} (@pxref{Invocation, ,Getting In and Out of
@value{GDBN}}), or by using the @code{file} or @code{exec-file}
command (@pxref{Files, ,Commands to Specify Files}).

@end table

If you are running your program in an execution environment that
supports processes, @code{run} creates an inferior process and makes
that process run your program.  In some environments without processes,
@code{run} jumps to the start of your program.  Other targets,
like @samp{remote}, are always running.  If you get an error
message like this one:

@smallexample
The "remote" target does not support "run".
Try "help target" or "continue".
@end smallexample

@noindent
then use @code{continue} to run your program.  You may need @code{load}
first (@pxref{load}).

The execution of a program is affected by certain information it
receives from its superior.  @value{GDBN} provides ways to specify this
information, which you must do @emph{before} starting your program.  (You
can change it after starting your program, but such changes only affect
your program the next time you start it.)  This information may be
divided into four categories:

@table @asis
@item The @emph{arguments.}
Specify the arguments to give your program as the arguments of the
@code{run} command.  If a shell is available on your target, the shell
is used to pass the arguments, so that you may use normal conventions
(such as wildcard expansion or variable substitution) in describing
the arguments.
In Unix systems, you can control which shell is used with the
@code{SHELL} environment variable.  If you do not define @code{SHELL},
@value{GDBN} uses the default shell (@file{/bin/sh}).  You can disable
use of any shell with the @code{set startup-with-shell} command (see
below for details).

@item The @emph{environment.}
Your program normally inherits its environment from @value{GDBN}, but you can
use the @value{GDBN} commands @code{set environment} and @code{unset
environment} to change parts of the environment that affect
your program.  @xref{Environment, ,Your Program's Environment}.

@item The @emph{working directory.}
You can set your program's working directory with the command
@kbd{set cwd}.  If you do not set any working directory with this
command, your program will inherit @value{GDBN}'s working directory if
native debugging, or the remote server's working directory if remote
debugging.  @xref{Working Directory, ,Your Program's Working
Directory}.

@item The @emph{standard input and output.}
Your program normally uses the same device for standard input and
standard output as @value{GDBN} is using.  You can redirect input and output
in the @code{run} command line, or you can use the @code{tty} command to
set a different device for your program.
@xref{Input/Output, ,Your Program's Input and Output}.

@cindex pipes
@emph{Warning:} While input and output redirection work, you cannot use
pipes to pass the output of the program you are debugging to another
program; if you attempt this, @value{GDBN} is likely to wind up debugging the
wrong program.
@end table

When you issue the @code{run} command, your program begins to execute
immediately.  @xref{Stopping, ,Stopping and Continuing}, for discussion
of how to arrange for your program to stop.  Once your program has
stopped, you may call functions in your program, using the @code{print}
or @code{call} commands.  @xref{Data, ,Examining Data}.

If the modification time of your symbol file has changed since the last
time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
table, and reads it again.  When it does this, @value{GDBN} tries to retain
your current breakpoints.

@table @code
@kindex start
@item start
@cindex run to main procedure
The name of the main procedure can vary from language to language.
With C or C@t{++}, the main procedure name is always @code{main}, but
other languages such as Ada do not require a specific name for their
main procedure.  The debugger provides a convenient way to start the
execution of the program and to stop at the beginning of the main
procedure, depending on the language used.

The @samp{start} command does the equivalent of setting a temporary
breakpoint at the beginning of the main procedure and then invoking
the @samp{run} command.

@cindex elaboration phase
Some programs contain an @dfn{elaboration} phase where some startup code is
executed before the main procedure is called.  This depends on the
languages used to write your program.  In C@t{++}, for instance,
constructors for static and global objects are executed before
@code{main} is called.  It is therefore possible that the debugger stops
before reaching the main procedure.  However, the temporary breakpoint
will remain to halt execution.

Specify the arguments to give to your program as arguments to the
@samp{start} command.  These arguments will be given verbatim to the
underlying @samp{run} command.  Note that the same arguments will be
reused if no argument is provided during subsequent calls to
@samp{start} or @samp{run}.

It is sometimes necessary to debug the program during elaboration.  In
these cases, using the @code{start} command would stop the execution
of your program too late, as the program would have already completed
the elaboration phase.  Under these circumstances, either insert
breakpoints in your elaboration code before running your program or
use the @code{starti} command.

@kindex starti
@item starti
@cindex run to first instruction
The @samp{starti} command does the equivalent of setting a temporary
breakpoint at the first instruction of a program's execution and then
invoking the @samp{run} command.  For programs containing an
elaboration phase, the @code{starti} command will stop execution at
the start of the elaboration phase.

@anchor{set exec-wrapper}
@kindex set exec-wrapper
@item set exec-wrapper @var{wrapper}
@itemx show exec-wrapper
@itemx unset exec-wrapper
When @samp{exec-wrapper} is set, the specified wrapper is used to
launch programs for debugging.  @value{GDBN} starts your program
with a shell command of the form @kbd{exec @var{wrapper}
@var{program}}.  Quoting is added to @var{program} and its
arguments, but not to @var{wrapper}, so you should add quotes if
appropriate for your shell.  The wrapper runs until it executes
your program, and then @value{GDBN} takes control.

You can use any program that eventually calls @code{execve} with
its arguments as a wrapper.  Several standard Unix utilities do
this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
with @code{exec "$@@"} will also work.

For example, you can use @code{env} to pass an environment variable to
the debugged program, without setting the variable in your shell's
environment:

@smallexample
(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
(@value{GDBP}) run
@end smallexample

This command is available when debugging locally on most targets, excluding
@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.

@kindex set startup-with-shell
@anchor{set startup-with-shell}
@item set startup-with-shell
@itemx set startup-with-shell on
@itemx set startup-with-shell off
@itemx show startup-with-shell
On Unix systems, by default, if a shell is available on your target,
@value{GDBN}) uses it to start your program.  Arguments of the
@code{run} command are passed to the shell, which does variable
substitution, expands wildcard characters and performs redirection of
I/O.  In some circumstances, it may be useful to disable such use of a
shell, for example, when debugging the shell itself or diagnosing
startup failures such as:

@smallexample
(@value{GDBP}) run
Starting program: ./a.out
During startup program terminated with signal SIGSEGV, Segmentation fault.
@end smallexample

@noindent
which indicates the shell or the wrapper specified with
@samp{exec-wrapper} crashed, not your program.  Most often, this is
caused by something odd in your shell's non-interactive mode
initialization file---such as @file{.cshrc} for C-shell,
$@file{.zshenv} for the Z shell, or the file specified in the
@samp{BASH_ENV} environment variable for BASH.

@anchor{set auto-connect-native-target}
@kindex set auto-connect-native-target
@item set auto-connect-native-target
@itemx set auto-connect-native-target on
@itemx set auto-connect-native-target off
@itemx show auto-connect-native-target

By default, if the current inferior is not connected to any target yet
(e.g., with @code{target remote}), the @code{run} command starts your
program as a native process under @value{GDBN}, on your local machine.
If you're sure you don't want to debug programs on your local machine,
you can tell @value{GDBN} to not connect to the native target
automatically with the @code{set auto-connect-native-target off}
command.

If @code{on}, which is the default, and if the current inferior is not
connected to a target already, the @code{run} command automaticaly
connects to the native target, if one is available.

If @code{off}, and if the current inferior is not connected to a
target already, the @code{run} command fails with an error:

@smallexample
(@value{GDBP}) run
Don't know how to run.  Try "help target".
@end smallexample

If the current inferior is already connected to a target, @value{GDBN}
always uses it with the @code{run} command.

In any case, you can explicitly connect to the native target with the
@code{target native} command.  For example,

@smallexample
(@value{GDBP}) set auto-connect-native-target off
(@value{GDBP}) run
Don't know how to run.  Try "help target".
(@value{GDBP}) target native
(@value{GDBP}) run
Starting program: ./a.out
[Inferior 1 (process 10421) exited normally]
@end smallexample

In case you connected explicitly to the @code{native} target,
@value{GDBN} remains connected even if all inferiors exit, ready for
the next @code{run} command.  Use the @code{disconnect} command to
disconnect.

Examples of other commands that likewise respect the
@code{auto-connect-native-target} setting: @code{attach}, @code{info
proc}, @code{info os}.

@kindex set disable-randomization
@item set disable-randomization
@itemx set disable-randomization on
This option (enabled by default in @value{GDBN}) will turn off the native
randomization of the virtual address space of the started program.  This option
is useful for multiple debugging sessions to make the execution better
reproducible and memory addresses reusable across debugging sessions.

This feature is implemented only on certain targets, including @sc{gnu}/Linux.
On @sc{gnu}/Linux you can get the same behavior using

@smallexample
(@value{GDBP}) set exec-wrapper setarch `uname -m` -R
@end smallexample

@item set disable-randomization off
Leave the behavior of the started executable unchanged.  Some bugs rear their
ugly heads only when the program is loaded at certain addresses.  If your bug
disappears when you run the program under @value{GDBN}, that might be because
@value{GDBN} by default disables the address randomization on platforms, such
as @sc{gnu}/Linux, which do that for stand-alone programs.  Use @kbd{set
disable-randomization off} to try to reproduce such elusive bugs.

On targets where it is available, virtual address space randomization
protects the programs against certain kinds of security attacks.  In these
cases the attacker needs to know the exact location of a concrete executable
code.  Randomizing its location makes it impossible to inject jumps misusing
a code at its expected addresses.

Prelinking shared libraries provides a startup performance advantage but it
makes addresses in these libraries predictable for privileged processes by
having just unprivileged access at the target system.  Reading the shared
library binary gives enough information for assembling the malicious code
misusing it.  Still even a prelinked shared library can get loaded at a new
random address just requiring the regular relocation process during the
startup.  Shared libraries not already prelinked are always loaded at
a randomly chosen address.

Position independent executables (PIE) contain position independent code
similar to the shared libraries and therefore such executables get loaded at
a randomly chosen address upon startup.  PIE executables always load even
already prelinked shared libraries at a random address.  You can build such
executable using @command{gcc -fPIE -pie}.

Heap (malloc storage), stack and custom mmap areas are always placed randomly
(as long as the randomization is enabled).

@item show disable-randomization
Show the current setting of the explicit disable of the native randomization of
the virtual address space of the started program.

@end table

@node Arguments
@section Your Program's Arguments

@cindex arguments (to your program)
The arguments to your program can be specified by the arguments of the
@code{run} command.
They are passed to a shell, which expands wildcard characters and
performs redirection of I/O, and thence to your program.  Your
@code{SHELL} environment variable (if it exists) specifies what shell
@value{GDBN} uses.  If you do not define @code{SHELL}, @value{GDBN} uses
the default shell (@file{/bin/sh} on Unix).

On non-Unix systems, the program is usually invoked directly by
@value{GDBN}, which emulates I/O redirection via the appropriate system
calls, and the wildcard characters are expanded by the startup code of
the program, not by the shell.

@code{run} with no arguments uses the same arguments used by the previous
@code{run}, or those set by the @code{set args} command.

@table @code
@kindex set args
@item set args
Specify the arguments to be used the next time your program is run.  If
@code{set args} has no arguments, @code{run} executes your program
with no arguments.  Once you have run your program with arguments,
using @code{set args} before the next @code{run} is the only way to run
it again without arguments.

@kindex show args
@item show args
Show the arguments to give your program when it is started.
@end table

@node Environment
@section Your Program's Environment

@cindex environment (of your program)
The @dfn{environment} consists of a set of environment variables and
their values.  Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your search
path for programs to run.  Usually you set up environment variables with
the shell and they are inherited by all the other programs you run.  When
debugging, it can be useful to try running your program with a modified
environment without having to start @value{GDBN} over again.

@table @code
@kindex path
@item path @var{directory}
Add @var{directory} to the front of the @code{PATH} environment variable
(the search path for executables) that will be passed to your program.
The value of @code{PATH} used by @value{GDBN} does not change.
You may specify several directory names, separated by whitespace or by a
system-dependent separator character (@samp{:} on Unix, @samp{;} on
MS-DOS and MS-Windows).  If @var{directory} is already in the path, it
is moved to the front, so it is searched sooner.

You can use the string @samp{$cwd} to refer to whatever is the current
working directory at the time @value{GDBN} searches the path.  If you
use @samp{.} instead, it refers to the directory where you executed the
@code{path} command.  @value{GDBN} replaces @samp{.} in the
@var{directory} argument (with the current path) before adding
@var{directory} to the search path.
@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
@c document that, since repeating it would be a no-op.

@kindex show paths
@item show paths
Display the list of search paths for executables (the @code{PATH}
environment variable).

@kindex show environment
@item show environment @r{[}@var{varname}@r{]}
Print the value of environment variable @var{varname} to be given to
your program when it starts.  If you do not supply @var{varname},
print the names and values of all environment variables to be given to
your program.  You can abbreviate @code{environment} as @code{env}.

@kindex set environment
@anchor{set environment}
@item set environment @var{varname} @r{[}=@var{value}@r{]}
Set environment variable @var{varname} to @var{value}.  The value
changes for your program (and the shell @value{GDBN} uses to launch
it), not for @value{GDBN} itself.  The @var{value} may be any string; the
values of environment variables are just strings, and any
interpretation is supplied by your program itself.  The @var{value}
parameter is optional; if it is eliminated, the variable is set to a
null value.
@c "any string" here does not include leading, trailing
@c blanks. Gnu asks: does anyone care?

For example, this command:

@smallexample
set env USER = foo
@end smallexample

@noindent
tells the debugged program, when subsequently run, that its user is named
@samp{foo}.  (The spaces around @samp{=} are used for clarity here; they
are not actually required.)

Note that on Unix systems, @value{GDBN} runs your program via a shell,
which also inherits the environment set with @code{set environment}.
If necessary, you can avoid that by using the @samp{env} program as a
wrapper instead of using @code{set environment}.  @xref{set
exec-wrapper}, for an example doing just that.

Environment variables that are set by the user are also transmitted to
@command{gdbserver} to be used when starting the remote inferior.
@pxref{QEnvironmentHexEncoded}.

@kindex unset environment
@anchor{unset environment}
@item unset environment @var{varname}
Remove variable @var{varname} from the environment to be passed to your
program.  This is different from @samp{set env @var{varname} =};
@code{unset environment} removes the variable from the environment,
rather than assigning it an empty value.

Environment variables that are unset by the user are also unset on
@command{gdbserver} when starting the remote inferior.
@pxref{QEnvironmentUnset}.
@end table

@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
the shell indicated by your @code{SHELL} environment variable if it
exists (or @code{/bin/sh} if not).  If your @code{SHELL} variable
names a shell that runs an initialization file when started
non-interactively---such as @file{.cshrc} for C-shell, $@file{.zshenv}
for the Z shell, or the file specified in the @samp{BASH_ENV}
environment variable for BASH---any variables you set in that file
affect your program.  You may wish to move setting of environment
variables to files that are only run when you sign on, such as
@file{.login} or @file{.profile}.

@node Working Directory
@section Your Program's Working Directory

@cindex working directory (of your program)
Each time you start your program with @code{run}, the inferior will be
initialized with the current working directory specified by the
@kbd{set cwd} command.  If no directory has been specified by this
command, then the inferior will inherit @value{GDBN}'s current working
directory as its working directory if native debugging, or it will
inherit the remote server's current working directory if remote
debugging.

@table @code
@kindex set cwd
@cindex change inferior's working directory
@anchor{set cwd command}
@item set cwd @r{[}@var{directory}@r{]}
Set the inferior's working directory to @var{directory}, which will be
@code{glob}-expanded in order to resolve tildes (@file{~}).  If no
argument has been specified, the command clears the setting and resets
it to an empty state.  This setting has no effect on @value{GDBN}'s
working directory, and it only takes effect the next time you start
the inferior.  The @file{~} in @var{directory} is a short for the
@dfn{home directory}, usually pointed to by the @env{HOME} environment
variable.  On MS-Windows, if @env{HOME} is not defined, @value{GDBN}
uses the concatenation of @env{HOMEDRIVE} and @env{HOMEPATH} as
fallback.

You can also change @value{GDBN}'s current working directory by using
the @code{cd} command.
@xref{cd command}.

@kindex show cwd
@cindex show inferior's working directory
@item show cwd
Show the inferior's working directory.  If no directory has been
specified by @kbd{set cwd}, then the default inferior's working
directory is the same as @value{GDBN}'s working directory.

@kindex cd
@cindex change @value{GDBN}'s working directory
@anchor{cd command}
@item cd @r{[}@var{directory}@r{]}
Set the @value{GDBN} working directory to @var{directory}.  If not
given, @var{directory} uses @file{'~'}.

The @value{GDBN} working directory serves as a default for the
commands that specify files for @value{GDBN} to operate on.
@xref{Files, ,Commands to Specify Files}.
@xref{set cwd command}.

@kindex pwd
@item pwd
Print the @value{GDBN} working directory.
@end table

It is generally impossible to find the current working directory of
the process being debugged (since a program can change its directory
during its run).  If you work on a system where @value{GDBN} supports
the @code{info proc} command (@pxref{Process Information}), you can
use the @code{info proc} command to find out the
current working directory of the debuggee.

@node Input/Output
@section Your Program's Input and Output

@cindex redirection
@cindex i/o
@cindex terminal
By default, the program you run under @value{GDBN} does input and output to
the same terminal that @value{GDBN} uses.  @value{GDBN} switches the terminal
to its own terminal modes to interact with you, but it records the terminal
modes your program was using and switches back to them when you continue
running your program.

@table @code
@kindex info terminal
@item info terminal
Displays information recorded by @value{GDBN} about the terminal modes your
program is using.
@end table

You can redirect your program's input and/or output using shell
redirection with the @code{run} command.  For example,

@smallexample
run > outfile
@end smallexample

@noindent
starts your program, diverting its output to the file @file{outfile}.

@kindex tty
@cindex controlling terminal
Another way to specify where your program should do input and output is
with the @code{tty} command.  This command accepts a file name as
argument, and causes this file to be the default for future @code{run}
commands.  It also resets the controlling terminal for the child
process, for future @code{run} commands.  For example,

@smallexample
tty /dev/ttyb
@end smallexample

@noindent
directs that processes started with subsequent @code{run} commands
default to do input and output on the terminal @file{/dev/ttyb} and have
that as their controlling terminal.

An explicit redirection in @code{run} overrides the @code{tty} command's
effect on the input/output device, but not its effect on the controlling
terminal.

When you use the @code{tty} command or redirect input in the @code{run}
command, only the input @emph{for your program} is affected.  The input
for @value{GDBN} still comes from your terminal.  @code{tty} is an alias
for @code{set inferior-tty}.

@cindex inferior tty
@cindex set inferior controlling terminal
You can use the @code{show inferior-tty} command to tell @value{GDBN} to
display the name of the terminal that will be used for future runs of your
program.

@table @code
@item set inferior-tty [ @var{tty} ]
@kindex set inferior-tty
Set the tty for the program being debugged to @var{tty}.  Omitting @var{tty}
restores the default behavior, which is to use the same terminal as
@value{GDBN}.

@item show inferior-tty
@kindex show inferior-tty
Show the current tty for the program being debugged.
@end table

@node Attach
@section Debugging an Already-running Process
@kindex attach
@cindex attach

@table @code
@item attach @var{process-id}
This command attaches to a running process---one that was started
outside @value{GDBN}.  (@code{info files} shows your active
targets.)  The command takes as argument a process ID.  The usual way to
find out the @var{process-id} of a Unix process is with the @code{ps} utility,
or with the @samp{jobs -l} shell command.

@code{attach} does not repeat if you press @key{RET} a second time after
executing the command.
@end table

To use @code{attach}, your program must be running in an environment
which supports processes; for example, @code{attach} does not work for
programs on bare-board targets that lack an operating system.  You must
also have permission to send the process a signal.

When you use @code{attach}, the debugger finds the program running in
the process first by looking in the current working directory, then (if
the program is not found) by using the source file search path
(@pxref{Source Path, ,Specifying Source Directories}).  You can also use
the @code{file} command to load the program.  @xref{Files, ,Commands to
Specify Files}.

@anchor{set exec-file-mismatch}
If the debugger can determine the name of the executable file running
in the process it is attaching to, and this file name does not match
the name of the current exec-file loaded by @value{GDBN}, the option
@code{exec-file-mismatch} specifies how to handle the mismatch.

@table @code
@kindex exec-file-mismatch
@cindex set exec-file-mismatch
@item set exec-file-mismatch @samp{ask|warn|off}

Whether to detect mismatch between the name of the current executable
file loaded by @value{GDBN} and the name of the executable file used to
start the process.  If @samp{ask}, the default, display a warning
and ask the user whether to load the process executable file; if
@samp{warn}, just display a warning; if @samp{off}, don't attempt to
detect a mismatch.

@cindex show exec-file-mismatch
@item show exec-file-mismatch
Show the current value of @code{exec-file-mismatch}.

@end table

The first thing @value{GDBN} does after arranging to debug the specified
process is to stop it.  You can examine and modify an attached process
with all the @value{GDBN} commands that are ordinarily available when
you start processes with @code{run}.  You can insert breakpoints; you
can step and continue; you can modify storage.  If you would rather the
process continue running, you may use the @code{continue} command after
attaching @value{GDBN} to the process.

@table @code
@kindex detach
@item detach
When you have finished debugging the attached process, you can use the
@code{detach} command to release it from @value{GDBN} control.  Detaching
the process continues its execution.  After the @code{detach} command,
that process and @value{GDBN} become completely independent once more, and you
are ready to @code{attach} another process or start one with @code{run}.
@code{detach} does not repeat if you press @key{RET} again after
executing the command.
@end table

If you exit @value{GDBN} while you have an attached process, you detach
that process.  If you use the @code{run} command, you kill that process.
By default, @value{GDBN} asks for confirmation if you try to do either of these
things; you can control whether or not you need to confirm by using the
@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
Messages}).

@node Kill Process
@section Killing the Child Process

@table @code
@kindex kill
@item kill
Kill the child process in which your program is running under @value{GDBN}.
@end table

This command is useful if you wish to debug a core dump instead of a
running process.  @value{GDBN} ignores any core dump file while your program
is running.

On some operating systems, a program cannot be executed outside @value{GDBN}
while you have breakpoints set on it inside @value{GDBN}.  You can use the
@code{kill} command in this situation to permit running your program
outside the debugger.

The @code{kill} command is also useful if you wish to recompile and
relink your program, since on many systems it is impossible to modify an
executable file while it is running in a process.  In this case, when you
next type @code{run}, @value{GDBN} notices that the file has changed, and
reads the symbol table again (while trying to preserve your current
breakpoint settings).

@node Inferiors Connections and Programs
@section Debugging Multiple Inferiors Connections and Programs

@value{GDBN} lets you run and debug multiple programs in a single
session.  In addition, @value{GDBN} on some systems may let you run
several programs simultaneously (otherwise you have to exit from one
before starting another).  On some systems @value{GDBN} may even let
you debug several programs simultaneously on different remote systems.
In the most general case, you can have multiple threads of execution
in each of multiple processes, launched from multiple executables,
running on different machines.

@cindex inferior
@value{GDBN} represents the state of each program execution with an
object called an @dfn{inferior}.  An inferior typically corresponds to
a process, but is more general and applies also to targets that do not
have processes.  Inferiors may be created before a process runs, and
may be retained after a process exits.  Inferiors have unique
identifiers that are different from process ids.  Usually each
inferior will also have its own distinct address space, although some
embedded targets may have several inferiors running in different parts
of a single address space.  Each inferior may in turn have multiple
threads running in it.

To find out what inferiors exist at any moment, use @w{@code{info
inferiors}}:

@table @code
@kindex info inferiors [ @var{id}@dots{} ]
@item info inferiors
Print a list of all inferiors currently being managed by @value{GDBN}.
By default all inferiors are printed, but the argument @var{id}@dots{}
-- a space separated list of inferior numbers -- can be used to limit
the display to just the requested inferiors.

@value{GDBN} displays for each inferior (in this order):

@enumerate
@item
the inferior number assigned by @value{GDBN}

@item
the target system's inferior identifier

@item
the target connection the inferior is bound to, including the unique
connection number assigned by @value{GDBN}, and the protocol used by
the connection.

@item
the name of the executable the inferior is running.

@end enumerate

@noindent
An asterisk @samp{*} preceding the @value{GDBN} inferior number
indicates the current inferior.

For example,
@end table
@c end table here to get a little more width for example

@smallexample
(@value{GDBP}) info inferiors
  Num  Description       Connection                      Executable
* 1    process 3401      1 (native)                      goodbye
  2    process 2307      2 (extended-remote host:10000)  hello
@end smallexample

To find out what open target connections exist at any moment, use
@w{@code{info connections}}:

@table @code
@kindex info connections [ @var{id}@dots{} ]
@item info connections
Print a list of all open target connections currently being managed by
@value{GDBN}.  By default all connections are printed, but the
argument @var{id}@dots{} -- a space separated list of connections
numbers -- can be used to limit the display to just the requested
connections.

@value{GDBN} displays for each connection (in this order):

@enumerate
@item
the connection number assigned by @value{GDBN}.

@item
the protocol used by the connection.

@item
a textual description of the protocol used by the connection.

@end enumerate

@noindent
An asterisk @samp{*} preceding the connection number indicates the
connection of the current inferior.

For example,
@end table
@c end table here to get a little more width for example

@smallexample
(@value{GDBP}) info connections
  Num  What                        Description
* 1    extended-remote host:10000  Extended remote serial target in gdb-specific protocol
  2    native                      Native process
  3    core                        Local core dump file
@end smallexample

To switch focus between inferiors, use the @code{inferior} command:

@table @code
@kindex inferior @var{infno}
@item inferior @var{infno}
Make inferior number @var{infno} the current inferior.  The argument
@var{infno} is the inferior number assigned by @value{GDBN}, as shown
in the first field of the @samp{info inferiors} display.
@end table

@vindex $_inferior@r{, convenience variable}
The debugger convenience variable @samp{$_inferior} contains the
number of the current inferior.  You may find this useful in writing
breakpoint conditional expressions, command scripts, and so forth.
@xref{Convenience Vars,, Convenience Variables}, for general
information on convenience variables.

You can get multiple executables into a debugging session via the
@code{add-inferior} and @w{@code{clone-inferior}} commands.  On some
systems @value{GDBN} can add inferiors to the debug session
automatically by following calls to @code{fork} and @code{exec}.  To
remove inferiors from the debugging session use the
@w{@code{remove-inferiors}} command.

@table @code
@kindex add-inferior
@item add-inferior [ -copies @var{n} ] [ -exec @var{executable} ] [-no-connection ]
Adds @var{n} inferiors to be run using @var{executable} as the
executable; @var{n} defaults to 1.  If no executable is specified,
the inferiors begins empty, with no program.  You can still assign or
change the program assigned to the inferior at any time by using the
@code{file} command with the executable name as its argument.

By default, the new inferior begins connected to the same target
connection as the current inferior.  For example, if the current
inferior was connected to @code{gdbserver} with @code{target remote},
then the new inferior will be connected to the same @code{gdbserver}
instance.  The @samp{-no-connection} option starts the new inferior
with no connection yet.  You can then for example use the @code{target
remote} command to connect to some other @code{gdbserver} instance,
use @code{run} to spawn a local program, etc.

@kindex clone-inferior
@item clone-inferior [ -copies @var{n} ] [ @var{infno} ]
Adds @var{n} inferiors ready to execute the same program as inferior
@var{infno}; @var{n} defaults to 1, and @var{infno} defaults to the
number of the current inferior.  This is a convenient command when you
want to run another instance of the inferior you are debugging.

@smallexample
(@value{GDBP}) info inferiors
  Num  Description       Connection   Executable
* 1    process 29964     1 (native)   helloworld
(@value{GDBP}) clone-inferior
Added inferior 2.
1 inferiors added.
(@value{GDBP}) info inferiors
  Num  Description       Connection   Executable
* 1    process 29964     1 (native)   helloworld
  2    <null>            1 (native)   helloworld
@end smallexample

You can now simply switch focus to inferior 2 and run it.

@kindex remove-inferiors
@item remove-inferiors @var{infno}@dots{}
Removes the inferior or inferiors @var{infno}@dots{}.  It is not
possible to remove an inferior that is running with this command.  For
those, use the @code{kill} or @code{detach} command first.

@end table

To quit debugging one of the running inferiors that is not the current
inferior, you can either detach from it by using the @w{@code{detach
inferior}} command (allowing it to run independently), or kill it
using the @w{@code{kill inferiors}} command:

@table @code
@kindex detach inferiors @var{infno}@dots{}
@item detach inferior @var{infno}@dots{}
Detach from the inferior or inferiors identified by @value{GDBN}
inferior number(s) @var{infno}@dots{}.  Note that the inferior's entry
still stays on the list of inferiors shown by @code{info inferiors},
but its Description will show @samp{<null>}.

@kindex kill inferiors @var{infno}@dots{}
@item kill inferiors @var{infno}@dots{}
Kill the inferior or inferiors identified by @value{GDBN} inferior
number(s) @var{infno}@dots{}.  Note that the inferior's entry still
stays on the list of inferiors shown by @code{info inferiors}, but its
Description will show @samp{<null>}.
@end table

After the successful completion of a command such as @code{detach},
@code{detach inferiors}, @code{kill} or @code{kill inferiors}, or after
a normal process exit, the inferior is still valid and listed with
@code{info inferiors}, ready to be restarted.


To be notified when inferiors are started or exit under @value{GDBN}'s
control use @w{@code{set print inferior-events}}:

@table @code
@kindex set print inferior-events
@cindex print messages on inferior start and exit
@item set print inferior-events
@itemx set print inferior-events on
@itemx set print inferior-events off
The @code{set print inferior-events} command allows you to enable or
disable printing of messages when @value{GDBN} notices that new
inferiors have started or that inferiors have exited or have been
detached.  By default, these messages will not be printed.

@kindex show print inferior-events
@item show print inferior-events
Show whether messages will be printed when @value{GDBN} detects that
inferiors have started, exited or have been detached.
@end table

Many commands will work the same with multiple programs as with a
single program: e.g., @code{print myglobal} will simply display the
value of @code{myglobal} in the current inferior.


Occasionally, when debugging @value{GDBN} itself, it may be useful to
get more info about the relationship of inferiors, programs, address
spaces in a debug session.  You can do that with the @w{@code{maint
info program-spaces}} command.

@table @code
@kindex maint info program-spaces
@item maint info program-spaces
Print a list of all program spaces currently being managed by
@value{GDBN}.

@value{GDBN} displays for each program space (in this order):

@enumerate
@item
the program space number assigned by @value{GDBN}

@item
the name of the executable loaded into the program space, with e.g.,
the @code{file} command.

@end enumerate

@noindent
An asterisk @samp{*} preceding the @value{GDBN} program space number
indicates the current program space.

In addition, below each program space line, @value{GDBN} prints extra
information that isn't suitable to display in tabular form.  For
example, the list of inferiors bound to the program space.

@smallexample
(@value{GDBP}) maint info program-spaces
  Id   Executable
* 1    hello
  2    goodbye
        Bound inferiors: ID 1 (process 21561)
@end smallexample

Here we can see that no inferior is running the program @code{hello},
while @code{process 21561} is running the program @code{goodbye}.  On
some targets, it is possible that multiple inferiors are bound to the
same program space.  The most common example is that of debugging both
the parent and child processes of a @code{vfork} call.  For example,

@smallexample
(@value{GDBP}) maint info program-spaces
  Id   Executable
* 1    vfork-test
        Bound inferiors: ID 2 (process 18050), ID 1 (process 18045)
@end smallexample

Here, both inferior 2 and inferior 1 are running in the same program
space as a result of inferior 1 having executed a @code{vfork} call.
@end table

@node Threads
@section Debugging Programs with Multiple Threads

@cindex threads of execution
@cindex multiple threads
@cindex switching threads
In some operating systems, such as GNU/Linux and Solaris, a single program
may have more than one @dfn{thread} of execution.  The precise semantics
of threads differ from one operating system to another, but in general
the threads of a single program are akin to multiple processes---except
that they share one address space (that is, they can all examine and
modify the same variables).  On the other hand, each thread has its own
registers and execution stack, and perhaps private memory.

@value{GDBN} provides these facilities for debugging multi-thread
programs:

@itemize @bullet
@item automatic notification of new threads
@item @samp{thread @var{thread-id}}, a command to switch among threads
@item @samp{info threads}, a command to inquire about existing threads
@item @samp{thread apply [@var{thread-id-list} | all] @var{args}},
a command to apply a command to a list of threads
@item thread-specific breakpoints
@item @samp{set print thread-events}, which controls printing of 
messages on thread start and exit.
@item @samp{set libthread-db-search-path @var{path}}, which lets
the user specify which @code{libthread_db} to use if the default choice
isn't compatible with the program.
@end itemize

@cindex focus of debugging
@cindex current thread
The @value{GDBN} thread debugging facility allows you to observe all
threads while your program runs---but whenever @value{GDBN} takes
control, one thread in particular is always the focus of debugging.
This thread is called the @dfn{current thread}.  Debugging commands show
program information from the perspective of the current thread.

@cindex @code{New} @var{systag} message
@cindex thread identifier (system)
@c FIXME-implementors!! It would be more helpful if the [New...] message
@c included GDB's numeric thread handle, so you could just go to that
@c thread without first checking `info threads'.
Whenever @value{GDBN} detects a new thread in your program, it displays
the target system's identification for the thread with a message in the
form @samp{[New @var{systag}]}, where @var{systag} is a thread identifier
whose form varies depending on the particular system.  For example, on
@sc{gnu}/Linux, you might see

@smallexample
[New Thread 0x41e02940 (LWP 25582)]
@end smallexample

@noindent
when @value{GDBN} notices a new thread.  In contrast, on other systems,
the @var{systag} is simply something like @samp{process 368}, with no
further qualifier.

@c FIXME!! (1) Does the [New...] message appear even for the very first
@c         thread of a program, or does it only appear for the
@c         second---i.e.@: when it becomes obvious we have a multithread
@c         program?
@c         (2) *Is* there necessarily a first thread always?  Or do some
@c         multithread systems permit starting a program with multiple
@c         threads ab initio?

@anchor{thread numbers}
@cindex thread number, per inferior
@cindex thread identifier (GDB)
For debugging purposes, @value{GDBN} associates its own thread number
---always a single integer---with each thread of an inferior.  This
number is unique between all threads of an inferior, but not unique
between threads of different inferiors.

@cindex qualified thread ID
You can refer to a given thread in an inferior using the qualified
@var{inferior-num}.@var{thread-num} syntax, also known as
@dfn{qualified thread ID}, with @var{inferior-num} being the inferior
number and @var{thread-num} being the thread number of the given
inferior.  For example, thread @code{2.3} refers to thread number 3 of
inferior 2.  If you omit @var{inferior-num} (e.g., @code{thread 3}),
then @value{GDBN} infers you're referring to a thread of the current
inferior.

Until you create a second inferior, @value{GDBN} does not show the
@var{inferior-num} part of thread IDs, even though you can always use
the full @var{inferior-num}.@var{thread-num} form to refer to threads
of inferior 1, the initial inferior.

@anchor{thread ID lists}
@cindex thread ID lists
Some commands accept a space-separated @dfn{thread ID list} as
argument.  A list element can be:

@enumerate
@item
A thread ID as shown in the first field of the @samp{info threads}
display, with or without an inferior qualifier.  E.g., @samp{2.1} or
@samp{1}.

@item
A range of thread numbers, again with or without an inferior
qualifier, as in @var{inf}.@var{thr1}-@var{thr2} or
@var{thr1}-@var{thr2}.  E.g., @samp{1.2-4} or @samp{2-4}.

@item
All threads of an inferior, specified with a star wildcard, with or
without an inferior qualifier, as in @var{inf}.@code{*} (e.g.,
@samp{1.*}) or @code{*}.  The former refers to all threads of the
given inferior, and the latter form without an inferior qualifier
refers to all threads of the current inferior.

@end enumerate

For example, if the current inferior is 1, and inferior 7 has one
thread with ID 7.1, the thread list @samp{1 2-3 4.5 6.7-9 7.*}
includes threads 1 to 3 of inferior 1, thread 5 of inferior 4, threads
7 to 9 of inferior 6 and all threads of inferior 7.  That is, in
expanded qualified form, the same as @samp{1.1 1.2 1.3 4.5 6.7 6.8 6.9
7.1}.


@anchor{global thread numbers}
@cindex global thread number
@cindex global thread identifier (GDB)
In addition to a @emph{per-inferior} number, each thread is also
assigned a unique @emph{global} number, also known as @dfn{global
thread ID}, a single integer.  Unlike the thread number component of
the thread ID, no two threads have the same global ID, even when
you're debugging multiple inferiors.

From @value{GDBN}'s perspective, a process always has at least one
thread.  In other words, @value{GDBN} assigns a thread number to the
program's ``main thread'' even if the program is not multi-threaded.

@vindex $_thread@r{, convenience variable}
@vindex $_gthread@r{, convenience variable}
The debugger convenience variables @samp{$_thread} and
@samp{$_gthread} contain, respectively, the per-inferior thread number
and the global thread number of the current thread.  You may find this
useful in writing breakpoint conditional expressions, command scripts,
and so forth.  @xref{Convenience Vars,, Convenience Variables}, for
general information on convenience variables.

If @value{GDBN} detects the program is multi-threaded, it augments the
usual message about stopping at a breakpoint with the ID and name of
the thread that hit the breakpoint.

@smallexample
Thread 2 "client" hit Breakpoint 1, send_message () at client.c:68
@end smallexample

Likewise when the program receives a signal:

@smallexample
Thread 1 "main" received signal SIGINT, Interrupt.
@end smallexample

@table @code
@kindex info threads
@item info threads @r{[}@var{thread-id-list}@r{]}

Display information about one or more threads.  With no arguments
displays information about all threads.  You can specify the list of
threads that you want to display using the thread ID list syntax
(@pxref{thread ID lists}).

@value{GDBN} displays for each thread (in this order):

@enumerate
@item
the per-inferior thread number assigned by @value{GDBN}

@item
the global thread number assigned by @value{GDBN}, if the @samp{-gid}
option was specified

@item
the target system's thread identifier (@var{systag})

@item
the thread's name, if one is known.  A thread can either be named by
the user (see @code{thread name}, below), or, in some cases, by the
program itself.

@item
the current stack frame summary for that thread
@end enumerate

@noindent
An asterisk @samp{*} to the left of the @value{GDBN} thread number
indicates the current thread.

For example,
@end table
@c end table here to get a little more width for example

@smallexample
(@value{GDBP}) info threads
  Id   Target Id             Frame
* 1    process 35 thread 13  main (argc=1, argv=0x7ffffff8)
  2    process 35 thread 23  0x34e5 in sigpause ()
  3    process 35 thread 27  0x34e5 in sigpause ()
    at threadtest.c:68
@end smallexample

If you're debugging multiple inferiors, @value{GDBN} displays thread
IDs using the qualified @var{inferior-num}.@var{thread-num} format.
Otherwise, only @var{thread-num} is shown.

If you specify the @samp{-gid} option, @value{GDBN} displays a column
indicating each thread's global thread ID:

@smallexample
(@value{GDBP}) info threads
  Id   GId  Target Id             Frame
  1.1  1    process 35 thread 13  main (argc=1, argv=0x7ffffff8)
  1.2  3    process 35 thread 23  0x34e5 in sigpause ()
  1.3  4    process 35 thread 27  0x34e5 in sigpause ()
* 2.1  2    process 65 thread 1   main (argc=1, argv=0x7ffffff8)
@end smallexample

On Solaris, you can display more information about user threads with a
Solaris-specific command:

@table @code
@item maint info sol-threads
@kindex maint info sol-threads
@cindex thread info (Solaris)
Display info on Solaris user threads.
@end table

@table @code
@kindex thread @var{thread-id}
@item thread @var{thread-id}
Make thread ID @var{thread-id} the current thread.  The command
argument @var{thread-id} is the @value{GDBN} thread ID, as shown in
the first field of the @samp{info threads} display, with or without an
inferior qualifier (e.g., @samp{2.1} or @samp{1}).

@value{GDBN} responds by displaying the system identifier of the
thread you selected, and its current stack frame summary:

@smallexample
(@value{GDBP}) thread 2
[Switching to thread 2 (Thread 0xb7fdab70 (LWP 12747))]
#0  some_function (ignore=0x0) at example.c:8
8	    printf ("hello\n");
@end smallexample

@noindent
As with the @samp{[New @dots{}]} message, the form of the text after
@samp{Switching to} depends on your system's conventions for identifying
threads.

@anchor{thread apply all}
@kindex thread apply
@cindex apply command to several threads
@item thread apply [@var{thread-id-list} | all [-ascending]] [@var{flag}]@dots{} @var{command}
The @code{thread apply} command allows you to apply the named
@var{command} to one or more threads.  Specify the threads that you
want affected using the thread ID list syntax (@pxref{thread ID
lists}), or specify @code{all} to apply to all threads.  To apply a
command to all threads in descending order, type @kbd{thread apply all
@var{command}}.  To apply a command to all threads in ascending order,
type @kbd{thread apply all -ascending @var{command}}.

The @var{flag} arguments control what output to produce and how to handle
errors raised when applying @var{command} to a thread.  @var{flag}
must start with a @code{-} directly followed by one letter in
@code{qcs}.  If several flags are provided, they must be given
individually, such as @code{-c -q}.

By default, @value{GDBN} displays some thread information before the
output produced by @var{command}, and an error raised during the
execution of a @var{command} will abort @code{thread apply}.  The
following flags can be used to fine-tune this behavior:

@table @code
@item -c
The flag @code{-c}, which stands for @samp{continue}, causes any
errors in @var{command} to be displayed, and the execution of
@code{thread apply} then continues.
@item -s
The flag @code{-s}, which stands for @samp{silent}, causes any errors
or empty output produced by a @var{command} to be silently ignored.
That is, the execution continues, but the thread information and errors
are not printed.
@item -q
The flag @code{-q} (@samp{quiet}) disables printing the thread
information.
@end table

Flags @code{-c} and @code{-s} cannot be used together.

@kindex taas
@cindex apply command to all threads (ignoring errors and empty output)
@item taas [@var{option}]@dots{} @var{command}
Shortcut for @code{thread apply all -s [@var{option}]@dots{} @var{command}}.
Applies @var{command} on all threads, ignoring errors and empty output.

The @code{taas} command accepts the same options as the @code{thread
apply all} command.  @xref{thread apply all}.

@kindex tfaas
@cindex apply a command to all frames of all threads (ignoring errors and empty output)
@item tfaas [@var{option}]@dots{} @var{command}
Shortcut for @code{thread apply all -s -- frame apply all -s [@var{option}]@dots{} @var{command}}.
Applies @var{command} on all frames of all threads, ignoring errors
and empty output.  Note that the flag @code{-s} is specified twice:
The first @code{-s} ensures that @code{thread apply} only shows the thread
information of the threads for which @code{frame apply} produces
some output.  The second @code{-s} is needed to ensure that @code{frame
apply} shows the frame information of a frame only if the
@var{command} successfully produced some output.

It can for example be used to print a local variable or a function
argument without knowing the thread or frame where this variable or argument
is, using:
@smallexample
(@value{GDBP}) tfaas p some_local_var_i_do_not_remember_where_it_is
@end smallexample

The @code{tfaas} command accepts the same options as the @code{frame
apply} command.  @xref{frame apply}.

@kindex thread name
@cindex name a thread
@item thread name [@var{name}]
This command assigns a name to the current thread.  If no argument is
given, any existing user-specified name is removed.  The thread name
appears in the @samp{info threads} display.

On some systems, such as @sc{gnu}/Linux, @value{GDBN} is able to
determine the name of the thread as given by the OS.  On these
systems, a name specified with @samp{thread name} will override the
system-give name, and removing the user-specified name will cause
@value{GDBN} to once again display the system-specified name.

@kindex thread find
@cindex search for a thread
@item thread find [@var{regexp}]
Search for and display thread ids whose name or @var{systag}
matches the supplied regular expression.

As well as being the complement to the @samp{thread name} command, 
this command also allows you to identify a thread by its target 
@var{systag}.  For instance, on @sc{gnu}/Linux, the target @var{systag}
is the LWP id.

@smallexample
(@value{GDBN}) thread find 26688
Thread 4 has target id 'Thread 0x41e02940 (LWP 26688)'
(@value{GDBN}) info thread 4
  Id   Target Id         Frame 
  4    Thread 0x41e02940 (LWP 26688) 0x00000031ca6cd372 in select ()
@end smallexample

@kindex set print thread-events
@cindex print messages on thread start and exit
@item set print thread-events
@itemx set print thread-events on
@itemx set print thread-events off
The @code{set print thread-events} command allows you to enable or
disable printing of messages when @value{GDBN} notices that new threads have
started or that threads have exited.  By default, these messages will
be printed if detection of these events is supported by the target.
Note that these messages cannot be disabled on all targets.

@kindex show print thread-events
@item show print thread-events
Show whether messages will be printed when @value{GDBN} detects that threads
have started and exited.
@end table

@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
more information about how @value{GDBN} behaves when you stop and start
programs with multiple threads.

@xref{Set Watchpoints,,Setting Watchpoints}, for information about
watchpoints in programs with multiple threads.

@anchor{set libthread-db-search-path}
@table @code
@kindex set libthread-db-search-path
@cindex search path for @code{libthread_db}
@item set libthread-db-search-path @r{[}@var{path}@r{]}
If this variable is set, @var{path} is a colon-separated list of
directories @value{GDBN} will use to search for @code{libthread_db}.
If you omit @var{path}, @samp{libthread-db-search-path} will be reset to
its default value (@code{$sdir:$pdir} on @sc{gnu}/Linux and Solaris systems).
Internally, the default value comes from the @code{LIBTHREAD_DB_SEARCH_PATH}
macro.

On @sc{gnu}/Linux and Solaris systems, @value{GDBN} uses a ``helper''
@code{libthread_db} library to obtain information about threads in the
inferior process.  @value{GDBN} will use @samp{libthread-db-search-path}
to find @code{libthread_db}.  @value{GDBN} also consults first if inferior
specific thread debugging library loading is enabled
by @samp{set auto-load libthread-db} (@pxref{libthread_db.so.1 file}).

A special entry @samp{$sdir} for @samp{libthread-db-search-path}
refers to the default system directories that are
normally searched for loading shared libraries.  The @samp{$sdir} entry
is the only kind not needing to be enabled by @samp{set auto-load libthread-db}
(@pxref{libthread_db.so.1 file}).

A special entry @samp{$pdir} for @samp{libthread-db-search-path}
refers to the directory from which @code{libpthread}
was loaded in the inferior process.

For any @code{libthread_db} library @value{GDBN} finds in above directories,
@value{GDBN} attempts to initialize it with the current inferior process.
If this initialization fails (which could happen because of a version
mismatch between @code{libthread_db} and @code{libpthread}), @value{GDBN}
will unload @code{libthread_db}, and continue with the next directory.
If none of @code{libthread_db} libraries initialize successfully,
@value{GDBN} will issue a warning and thread debugging will be disabled.

Setting @code{libthread-db-search-path} is currently implemented
only on some platforms.

@kindex show libthread-db-search-path 
@item show libthread-db-search-path 
Display current libthread_db search path.

@kindex set debug libthread-db
@kindex show debug libthread-db
@cindex debugging @code{libthread_db}
@item set debug libthread-db
@itemx show debug libthread-db
Turns on or off display of @code{libthread_db}-related events.
Use @code{1} to enable, @code{0} to disable.
@end table

@node Forks
@section Debugging Forks

@cindex fork, debugging programs which call
@cindex multiple processes
@cindex processes, multiple
On most systems, @value{GDBN} has no special support for debugging
programs which create additional processes using the @code{fork}
function.  When a program forks, @value{GDBN} will continue to debug the
parent process and the child process will run unimpeded.  If you have
set a breakpoint in any code which the child then executes, the child
will get a @code{SIGTRAP} signal which (unless it catches the signal)
will cause it to terminate.

However, if you want to debug the child process there is a workaround
which isn't too painful.  Put a call to @code{sleep} in the code which
the child process executes after the fork.  It may be useful to sleep
only if a certain environment variable is set, or a certain file exists,
so that the delay need not occur when you don't want to run @value{GDBN}
on the child.  While the child is sleeping, use the @code{ps} program to
get its process ID.  Then tell @value{GDBN} (a new invocation of
@value{GDBN} if you are also debugging the parent process) to attach to
the child process (@pxref{Attach}).  From that point on you can debug
the child process just like any other process which you attached to.

On some systems, @value{GDBN} provides support for debugging programs
that create additional processes using the @code{fork} or @code{vfork}
functions.  On @sc{gnu}/Linux platforms, this feature is supported
with kernel version 2.5.46 and later.

The fork debugging commands are supported in native mode and when
connected to @code{gdbserver} in either @code{target remote} mode or
@code{target extended-remote} mode.

By default, when a program forks, @value{GDBN} will continue to debug
the parent process and the child process will run unimpeded.

If you want to follow the child process instead of the parent process,
use the command @w{@code{set follow-fork-mode}}.

@table @code
@kindex set follow-fork-mode
@item set follow-fork-mode @var{mode}
Set the debugger response to a program call of @code{fork} or
@code{vfork}.  A call to @code{fork} or @code{vfork} creates a new
process.  The @var{mode} argument can be:

@table @code
@item parent
The original process is debugged after a fork.  The child process runs
unimpeded.  This is the default.

@item child
The new process is debugged after a fork.  The parent process runs
unimpeded.

@end table

@kindex show follow-fork-mode
@item show follow-fork-mode
Display the current debugger response to a @code{fork} or @code{vfork} call.
@end table

@cindex debugging multiple processes
On Linux, if you want to debug both the parent and child processes, use the
command @w{@code{set detach-on-fork}}.

@table @code
@kindex set detach-on-fork
@item set detach-on-fork @var{mode}
Tells gdb whether to detach one of the processes after a fork, or
retain debugger control over them both.

@table @code
@item on
The child process (or parent process, depending on the value of
@code{follow-fork-mode}) will be detached and allowed to run 
independently.  This is the default.

@item off
Both processes will be held under the control of @value{GDBN}.
One process (child or parent, depending on the value of 
@code{follow-fork-mode}) is debugged as usual, while the other
is held suspended.  

@end table

@kindex show detach-on-fork
@item show detach-on-fork
Show whether detach-on-fork mode is on/off.
@end table

If you choose to set @samp{detach-on-fork} mode off, then @value{GDBN}
will retain control of all forked processes (including nested forks).
You can list the forked processes under the control of @value{GDBN} by
using the @w{@code{info inferiors}} command, and switch from one fork
to another by using the @code{inferior} command (@pxref{Inferiors Connections and
Programs, ,Debugging Multiple Inferiors Connections and Programs}).

To quit debugging one of the forked processes, you can either detach
from it by using the @w{@code{detach inferiors}} command (allowing it
to run independently), or kill it using the @w{@code{kill inferiors}}
command.  @xref{Inferiors Connections and Programs, ,Debugging
Multiple Inferiors Connections and Programs}.

If you ask to debug a child process and a @code{vfork} is followed by an
@code{exec}, @value{GDBN} executes the new target up to the first
breakpoint in the new target.  If you have a breakpoint set on
@code{main} in your original program, the breakpoint will also be set on
the child process's @code{main}.

On some systems, when a child process is spawned by @code{vfork}, you
cannot debug the child or parent until an @code{exec} call completes.

If you issue a @code{run} command to @value{GDBN} after an @code{exec}
call executes, the new target restarts.  To restart the parent
process, use the @code{file} command with the parent executable name
as its argument.  By default, after an @code{exec} call executes,
@value{GDBN} discards the symbols of the previous executable image.
You can change this behaviour with the @w{@code{set follow-exec-mode}}
command.

@table @code
@kindex set follow-exec-mode
@item set follow-exec-mode @var{mode}

Set debugger response to a program call of @code{exec}.  An
@code{exec} call replaces the program image of a process.

@code{follow-exec-mode} can be:

@table @code
@item new
@value{GDBN} creates a new inferior and rebinds the process to this
new inferior.  The program the process was running before the
@code{exec} call can be restarted afterwards by restarting the
original inferior.

For example:

@smallexample
(@value{GDBP}) info inferiors
(gdb) info inferior
  Id   Description   Executable
* 1    <null>        prog1
(@value{GDBP}) run
process 12020 is executing new program: prog2
Program exited normally.
(@value{GDBP}) info inferiors
  Id   Description   Executable
  1    <null>        prog1
* 2    <null>        prog2
@end smallexample

@item same
@value{GDBN} keeps the process bound to the same inferior.  The new
executable image replaces the previous executable loaded in the
inferior.  Restarting the inferior after the @code{exec} call, with
e.g., the @code{run} command, restarts the executable the process was
running after the @code{exec} call.  This is the default mode.

For example:

@smallexample
(@value{GDBP}) info inferiors
  Id   Description   Executable
* 1    <null>        prog1
(@value{GDBP}) run
process 12020 is executing new program: prog2
Program exited normally.
(@value{GDBP}) info inferiors
  Id   Description   Executable
* 1    <null>        prog2
@end smallexample

@end table
@end table

@code{follow-exec-mode} is supported in native mode and
@code{target extended-remote} mode.

You can use the @code{catch} command to make @value{GDBN} stop whenever
a @code{fork}, @code{vfork}, or @code{exec} call is made.  @xref{Set
Catchpoints, ,Setting Catchpoints}.

@node Checkpoint/Restart
@section Setting a @emph{Bookmark} to Return to Later

@cindex checkpoint
@cindex restart
@cindex bookmark
@cindex snapshot of a process
@cindex rewind program state

On certain operating systems@footnote{Currently, only
@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
program's state, called a @dfn{checkpoint}, and come back to it
later.

Returning to a checkpoint effectively undoes everything that has
happened in the program since the @code{checkpoint} was saved.  This
includes changes in memory, registers, and even (within some limits)
system state.  Effectively, it is like going back in time to the
moment when the checkpoint was saved.

Thus, if you're stepping thru a program and you think you're 
getting close to the point where things go wrong, you can save
a checkpoint.  Then, if you accidentally go too far and miss
the critical statement, instead of having to restart your program
from the beginning, you can just go back to the checkpoint and
start again from there.

This can be especially useful if it takes a lot of time or 
steps to reach the point where you think the bug occurs.  

To use the @code{checkpoint}/@code{restart} method of debugging:

@table @code
@kindex checkpoint
@item checkpoint
Save a snapshot of the debugged program's current execution state.
The @code{checkpoint} command takes no arguments, but each checkpoint
is assigned a small integer id, similar to a breakpoint id.

@kindex info checkpoints
@item info checkpoints
List the checkpoints that have been saved in the current debugging
session.  For each checkpoint, the following information will be
listed:

@table @code
@item Checkpoint ID
@item Process ID
@item Code Address
@item Source line, or label
@end table

@kindex restart @var{checkpoint-id}
@item restart @var{checkpoint-id}
Restore the program state that was saved as checkpoint number
@var{checkpoint-id}.  All program variables, registers, stack frames
etc.@:  will be returned to the values that they had when the checkpoint
was saved.  In essence, gdb will ``wind back the clock'' to the point
in time when the checkpoint was saved.

Note that breakpoints, @value{GDBN} variables, command history etc.
are not affected by restoring a checkpoint.  In general, a checkpoint
only restores things that reside in the program being debugged, not in
the debugger.

@kindex delete checkpoint @var{checkpoint-id}
@item delete checkpoint @var{checkpoint-id}
Delete the previously-saved checkpoint identified by @var{checkpoint-id}.

@end table

Returning to a previously saved checkpoint will restore the user state
of the program being debugged, plus a significant subset of the system
(OS) state, including file pointers.  It won't ``un-write'' data from
a file, but it will rewind the file pointer to the previous location,
so that the previously written data can be overwritten.  For files
opened in read mode, the pointer will also be restored so that the
previously read data can be read again.

Of course, characters that have been sent to a printer (or other
external device) cannot be ``snatched back'', and characters received
from eg.@: a serial device can be removed from internal program buffers,
but they cannot be ``pushed back'' into the serial pipeline, ready to
be received again.  Similarly, the actual contents of files that have
been changed cannot be restored (at this time).

However, within those constraints, you actually can ``rewind'' your
program to a previously saved point in time, and begin debugging it
again --- and you can change the course of events so as to debug a
different execution path this time.

@cindex checkpoints and process id
Finally, there is one bit of internal program state that will be
different when you return to a checkpoint --- the program's process
id.  Each checkpoint will have a unique process id (or @var{pid}), 
and each will be different from the program's original @var{pid}.
If your program has saved a local copy of its process id, this could
potentially pose a problem.

@subsection A Non-obvious Benefit of Using Checkpoints

On some systems such as @sc{gnu}/Linux, address space randomization
is performed on new processes for security reasons.  This makes it 
difficult or impossible to set a breakpoint, or watchpoint, on an
absolute address if you have to restart the program, since the 
absolute location of a symbol will change from one execution to the
next.

A checkpoint, however, is an @emph{identical} copy of a process. 
Therefore if you create a checkpoint at (eg.@:) the start of main, 
and simply return to that checkpoint instead of restarting the 
process, you can avoid the effects of address randomization and
your symbols will all stay in the same place.

@node Stopping
@chapter Stopping and Continuing

The principal purposes of using a debugger are so that you can stop your
program before it terminates; or so that, if your program runs into
trouble, you can investigate and find out why.

Inside @value{GDBN}, your program may stop for any of several reasons,
such as a signal, a breakpoint, or reaching a new line after a
@value{GDBN} command such as @code{step}.  You may then examine and
change variables, set new breakpoints or remove old ones, and then
continue execution.  Usually, the messages shown by @value{GDBN} provide
ample explanation of the status of your program---but you can also
explicitly request this information at any time.

@table @code
@kindex info program
@item info program
Display information about the status of your program: whether it is
running or not, what process it is, and why it stopped.
@end table

@menu
* Breakpoints::                 Breakpoints, watchpoints, and catchpoints
* Continuing and Stepping::     Resuming execution
* Skipping Over Functions and Files::
                                Skipping over functions and files
* Signals::                     Signals
* Thread Stops::                Stopping and starting multi-thread programs
@end menu

@node Breakpoints
@section Breakpoints, Watchpoints, and Catchpoints

@cindex breakpoints
A @dfn{breakpoint} makes your program stop whenever a certain point in
the program is reached.  For each breakpoint, you can add conditions to
control in finer detail whether your program stops.  You can set
breakpoints with the @code{break} command and its variants (@pxref{Set
Breaks, ,Setting Breakpoints}), to specify the place where your program
should stop by line number, function name or exact address in the
program.

On some systems, you can set breakpoints in shared libraries before
the executable is run.

@cindex watchpoints
@cindex data breakpoints
@cindex memory tracing
@cindex breakpoint on memory address
@cindex breakpoint on variable modification
A @dfn{watchpoint} is a special breakpoint that stops your program
when the value of an expression changes.  The expression may be a value
of a variable, or it could involve values of one or more variables
combined by operators, such as @samp{a + b}.  This is sometimes called
@dfn{data breakpoints}.  You must use a different command to set
watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
from that, you can manage a watchpoint like any other breakpoint: you
enable, disable, and delete both breakpoints and watchpoints using the
same commands.

You can arrange to have values from your program displayed automatically
whenever @value{GDBN} stops at a breakpoint.  @xref{Auto Display,,
Automatic Display}.

@cindex catchpoints
@cindex breakpoint on events
A @dfn{catchpoint} is another special breakpoint that stops your program
when a certain kind of event occurs, such as the throwing of a C@t{++}
exception or the loading of a library.  As with watchpoints, you use a
different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
Catchpoints}), but aside from that, you can manage a catchpoint like any
other breakpoint.  (To stop when your program receives a signal, use the
@code{handle} command; see @ref{Signals, ,Signals}.)

@cindex breakpoint numbers
@cindex numbers for breakpoints
@value{GDBN} assigns a number to each breakpoint, watchpoint, or
catchpoint when you create it; these numbers are successive integers
starting with one.  In many of the commands for controlling various
features of breakpoints you use the breakpoint number to say which
breakpoint you want to change.  Each breakpoint may be @dfn{enabled} or
@dfn{disabled}; if disabled, it has no effect on your program until you
enable it again.

@cindex breakpoint ranges
@cindex breakpoint lists
@cindex ranges of breakpoints
@cindex lists of breakpoints
Some @value{GDBN} commands accept a space-separated list of breakpoints
on which to operate.  A list element can be either a single breakpoint number,
like @samp{5}, or a range of such numbers, like @samp{5-7}.
When a breakpoint list is given to a command, all breakpoints in that list
are operated on.

@menu
* Set Breaks::                  Setting breakpoints
* Set Watchpoints::             Setting watchpoints
* Set Catchpoints::             Setting catchpoints
* Delete Breaks::               Deleting breakpoints
* Disabling::                   Disabling breakpoints
* Conditions::                  Break conditions
* Break Commands::              Breakpoint command lists
* Dynamic Printf::              Dynamic printf
* Save Breakpoints::            How to save breakpoints in a file
* Static Probe Points::         Listing static probe points
* Error in Breakpoints::        ``Cannot insert breakpoints''
* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
@end menu

@node Set Breaks
@subsection Setting Breakpoints

@c FIXME LMB what does GDB do if no code on line of breakpt?
@c       consider in particular declaration with/without initialization.
@c
@c FIXME 2 is there stuff on this already? break at fun start, already init?

@kindex break
@kindex b @r{(@code{break})}
@vindex $bpnum@r{, convenience variable}
@cindex latest breakpoint
Breakpoints are set with the @code{break} command (abbreviated
@code{b}).  The debugger convenience variable @samp{$bpnum} records the
number of the breakpoint you've set most recently; see @ref{Convenience
Vars,, Convenience Variables}, for a discussion of what you can do with
convenience variables.

@table @code
@item break @var{location}
Set a breakpoint at the given @var{location}, which can specify a
function name, a line number, or an address of an instruction.
(@xref{Specify Location}, for a list of all the possible ways to
specify a @var{location}.)  The breakpoint will stop your program just
before it executes any of the code in the specified @var{location}.

When using source languages that permit overloading of symbols, such as
C@t{++}, a function name may refer to more than one possible place to break.
@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
that situation.

It is also possible to insert a breakpoint that will stop the program
only if a specific thread (@pxref{Thread-Specific Breakpoints})
or a specific task (@pxref{Ada Tasks}) hits that breakpoint.

@item break
When called without any arguments, @code{break} sets a breakpoint at
the next instruction to be executed in the selected stack frame
(@pxref{Stack, ,Examining the Stack}).  In any selected frame but the
innermost, this makes your program stop as soon as control
returns to that frame.  This is similar to the effect of a
@code{finish} command in the frame inside the selected frame---except
that @code{finish} does not leave an active breakpoint.  If you use
@code{break} without an argument in the innermost frame, @value{GDBN} stops
the next time it reaches the current location; this may be useful
inside loops.

@value{GDBN} normally ignores breakpoints when it resumes execution, until at
least one instruction has been executed.  If it did not do this, you
would be unable to proceed past a breakpoint without first disabling the
breakpoint.  This rule applies whether or not the breakpoint already
existed when your program stopped.

@item break @dots{} if @var{cond}
Set a breakpoint with condition @var{cond}; evaluate the expression
@var{cond} each time the breakpoint is reached, and stop only if the
value is nonzero---that is, if @var{cond} evaluates as true.
@samp{@dots{}} stands for one of the possible arguments described
above (or no argument) specifying where to break.  @xref{Conditions,
,Break Conditions}, for more information on breakpoint conditions.

@kindex tbreak
@item tbreak @var{args}
Set a breakpoint enabled only for one stop.  The @var{args} are the
same as for the @code{break} command, and the breakpoint is set in the same
way, but the breakpoint is automatically deleted after the first time your
program stops there.  @xref{Disabling, ,Disabling Breakpoints}.

@kindex hbreak
@cindex hardware breakpoints
@item hbreak @var{args}
Set a hardware-assisted breakpoint.  The @var{args} are the same as for the
@code{break} command and the breakpoint is set in the same way, but the
breakpoint requires hardware support and some target hardware may not
have this support.  The main purpose of this is EPROM/ROM code
debugging, so you can set a breakpoint at an instruction without
changing the instruction.  This can be used with the new trap-generation
provided by SPARClite DSU and most x86-based targets.  These targets
will generate traps when a program accesses some data or instruction
address that is assigned to the debug registers.  However the hardware
breakpoint registers can take a limited number of breakpoints.  For
example, on the DSU, only two data breakpoints can be set at a time, and
@value{GDBN} will reject this command if more than two are used.  Delete
or disable unused hardware breakpoints before setting new ones
(@pxref{Disabling, ,Disabling Breakpoints}).
@xref{Conditions, ,Break Conditions}.
For remote targets, you can restrict the number of hardware
breakpoints @value{GDBN} will use, see @ref{set remote
hardware-breakpoint-limit}.

@kindex thbreak
@item thbreak @var{args}
Set a hardware-assisted breakpoint enabled only for one stop.  The @var{args}
are the same as for the @code{hbreak} command and the breakpoint is set in
the same way.  However, like the @code{tbreak} command,
the breakpoint is automatically deleted after the
first time your program stops there.  Also, like the @code{hbreak}
command, the breakpoint requires hardware support and some target hardware
may not have this support.  @xref{Disabling, ,Disabling Breakpoints}.
See also @ref{Conditions, ,Break Conditions}.

@kindex rbreak
@cindex regular expression
@cindex breakpoints at functions matching a regexp
@cindex set breakpoints in many functions
@item rbreak @var{regex}
Set breakpoints on all functions matching the regular expression
@var{regex}.  This command sets an unconditional breakpoint on all
matches, printing a list of all breakpoints it set.  Once these
breakpoints are set, they are treated just like the breakpoints set with
the @code{break} command.  You can delete them, disable them, or make
them conditional the same way as any other breakpoint.

In programs using different languages, @value{GDBN} chooses the syntax
to print the list of all breakpoints it sets according to the
@samp{set language} value: using @samp{set language auto}
(see @ref{Automatically, ,Set Language Automatically}) means to use the
language of the breakpoint's function, other values mean to use
the manually specified language (see @ref{Manually, ,Set Language Manually}).

The syntax of the regular expression is the standard one used with tools
like @file{grep}.  Note that this is different from the syntax used by
shells, so for instance @code{foo*} matches all functions that include
an @code{fo} followed by zero or more @code{o}s.  There is an implicit
@code{.*} leading and trailing the regular expression you supply, so to
match only functions that begin with @code{foo}, use @code{^foo}.

@cindex non-member C@t{++} functions, set breakpoint in
When debugging C@t{++} programs, @code{rbreak} is useful for setting
breakpoints on overloaded functions that are not members of any special
classes.

@cindex set breakpoints on all functions
The @code{rbreak} command can be used to set breakpoints in
@strong{all} the functions in a program, like this:

@smallexample
(@value{GDBP}) rbreak .
@end smallexample

@item rbreak @var{file}:@var{regex}
If @code{rbreak} is called with a filename qualification, it limits
the search for functions matching the given regular expression to the
specified @var{file}.  This can be used, for example, to set breakpoints on
every function in a given file:

@smallexample
(@value{GDBP}) rbreak file.c:.
@end smallexample

The colon separating the filename qualifier from the regex may
optionally be surrounded by spaces.

@kindex info breakpoints
@cindex @code{$_} and @code{info breakpoints}
@item info breakpoints @r{[}@var{list}@dots{}@r{]}
@itemx info break @r{[}@var{list}@dots{}@r{]}
Print a table of all breakpoints, watchpoints, and catchpoints set and
not deleted.  Optional argument @var{n} means print information only
about the specified breakpoint(s) (or watchpoint(s) or catchpoint(s)).
For each breakpoint, following columns are printed:

@table @emph
@item Breakpoint Numbers
@item Type
Breakpoint, watchpoint, or catchpoint.
@item Disposition
Whether the breakpoint is marked to be disabled or deleted when hit.
@item Enabled or Disabled
Enabled breakpoints are marked with @samp{y}.  @samp{n} marks breakpoints
that are not enabled.
@item Address
Where the breakpoint is in your program, as a memory address.  For a
pending breakpoint whose address is not yet known, this field will
contain @samp{<PENDING>}.  Such breakpoint won't fire until a shared
library that has the symbol or line referred by breakpoint is loaded.
See below for details.  A breakpoint with several locations will
have @samp{<MULTIPLE>} in this field---see below for details.
@item What
Where the breakpoint is in the source for your program, as a file and
line number.  For a pending breakpoint, the original string passed to
the breakpoint command will be listed as it cannot be resolved until
the appropriate shared library is loaded in the future.
@end table

@noindent
If a breakpoint is conditional, there are two evaluation modes: ``host'' and
``target''.  If mode is ``host'', breakpoint condition evaluation is done by
@value{GDBN} on the host's side.  If it is ``target'', then the condition
is evaluated by the target.  The @code{info break} command shows
the condition on the line following the affected breakpoint, together with
its condition evaluation mode in between parentheses.

Breakpoint commands, if any, are listed after that.  A pending breakpoint is
allowed to have a condition specified for it.  The condition is not parsed for
validity until a shared library is loaded that allows the pending
breakpoint to resolve to a valid location.

@noindent
@code{info break} with a breakpoint
number @var{n} as argument lists only that breakpoint.  The
convenience variable @code{$_} and the default examining-address for
the @code{x} command are set to the address of the last breakpoint
listed (@pxref{Memory, ,Examining Memory}).

@noindent
@code{info break} displays a count of the number of times the breakpoint
has been hit.  This is especially useful in conjunction with the
@code{ignore} command.  You can ignore a large number of breakpoint
hits, look at the breakpoint info to see how many times the breakpoint
was hit, and then run again, ignoring one less than that number.  This
will get you quickly to the last hit of that breakpoint.

@noindent
For a breakpoints with an enable count (xref) greater than 1,
@code{info break} also displays that count.

@end table

@value{GDBN} allows you to set any number of breakpoints at the same place in
your program.  There is nothing silly or meaningless about this.  When
the breakpoints are conditional, this is even useful
(@pxref{Conditions, ,Break Conditions}).

@cindex multiple locations, breakpoints
@cindex breakpoints, multiple locations
It is possible that a breakpoint corresponds to several locations
in your program.  Examples of this situation are:

@itemize @bullet
@item
Multiple functions in the program may have the same name.

@item
For a C@t{++} constructor, the @value{NGCC} compiler generates several
instances of the function body, used in different cases.

@item
For a C@t{++} template function, a given line in the function can
correspond to any number of instantiations.

@item
For an inlined function, a given source line can correspond to
several places where that function is inlined.
@end itemize

In all those cases, @value{GDBN} will insert a breakpoint at all
the relevant locations.

A breakpoint with multiple locations is displayed in the breakpoint
table using several rows---one header row, followed by one row for
each breakpoint location.  The header row has @samp{<MULTIPLE>} in the
address column.  The rows for individual locations contain the actual
addresses for locations, and show the functions to which those
locations belong.  The number column for a location is of the form
@var{breakpoint-number}.@var{location-number}.

For example:

@smallexample
Num     Type           Disp Enb  Address    What
1       breakpoint     keep y    <MULTIPLE>
        stop only if i==1
        breakpoint already hit 1 time
1.1                         y    0x080486a2 in void foo<int>() at t.cc:8
1.2                         y    0x080486ca in void foo<double>() at t.cc:8
@end smallexample

You cannot delete the individual locations from a breakpoint.  However,
each location can be individually enabled or disabled by passing
@var{breakpoint-number}.@var{location-number} as argument to the
@code{enable} and @code{disable} commands.  It's also possible to
@code{enable} and @code{disable} a range of @var{location-number}
locations using a @var{breakpoint-number} and two @var{location-number}s,
in increasing order, separated by a hyphen, like
@kbd{@var{breakpoint-number}.@var{location-number1}-@var{location-number2}},
in which case @value{GDBN} acts on all the locations in the range (inclusive).
Disabling or enabling the parent breakpoint (@pxref{Disabling}) affects
all of the locations that belong to that breakpoint.

@cindex pending breakpoints
It's quite common to have a breakpoint inside a shared library.
Shared libraries can be loaded and unloaded explicitly,
and possibly repeatedly, as the program is executed.  To support
this use case, @value{GDBN} updates breakpoint locations whenever
any shared library is loaded or unloaded.  Typically, you would
set a breakpoint in a shared library at the beginning of your
debugging session, when the library is not loaded, and when the
symbols from the library are not available.  When you try to set
breakpoint, @value{GDBN} will ask you if you want to set
a so called @dfn{pending breakpoint}---breakpoint whose address
is not yet resolved.

After the program is run, whenever a new shared library is loaded,
@value{GDBN} reevaluates all the breakpoints.  When a newly loaded
shared library contains the symbol or line referred to by some
pending breakpoint, that breakpoint is resolved and becomes an
ordinary breakpoint.  When a library is unloaded, all breakpoints
that refer to its symbols or source lines become pending again.

This logic works for breakpoints with multiple locations, too.  For
example, if you have a breakpoint in a C@t{++} template function, and
a newly loaded shared library has an instantiation of that template,
a new location is added to the list of locations for the breakpoint.

Except for having unresolved address, pending breakpoints do not
differ from regular breakpoints.  You can set conditions or commands,
enable and disable them and perform other breakpoint operations.

@value{GDBN} provides some additional commands for controlling what
happens when the @samp{break} command cannot resolve breakpoint
address specification to an address:

@kindex set breakpoint pending
@kindex show breakpoint pending
@table @code
@item set breakpoint pending auto
This is the default behavior.  When @value{GDBN} cannot find the breakpoint
location, it queries you whether a pending breakpoint should be created.

@item set breakpoint pending on
This indicates that an unrecognized breakpoint location should automatically
result in a pending breakpoint being created.

@item set breakpoint pending off
This indicates that pending breakpoints are not to be created.  Any
unrecognized breakpoint location results in an error.  This setting does
not affect any pending breakpoints previously created.

@item show breakpoint pending
Show the current behavior setting for creating pending breakpoints.
@end table

The settings above only affect the @code{break} command and its
variants.  Once breakpoint is set, it will be automatically updated
as shared libraries are loaded and unloaded.

@cindex automatic hardware breakpoints
For some targets, @value{GDBN} can automatically decide if hardware or
software breakpoints should be used, depending on whether the
breakpoint address is read-only or read-write.  This applies to
breakpoints set with the @code{break} command as well as to internal
breakpoints set by commands like @code{next} and @code{finish}.  For
breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
breakpoints.

You can control this automatic behaviour with the following commands:

@kindex set breakpoint auto-hw
@kindex show breakpoint auto-hw
@table @code
@item set breakpoint auto-hw on
This is the default behavior.  When @value{GDBN} sets a breakpoint, it
will try to use the target memory map to decide if software or hardware
breakpoint must be used.

@item set breakpoint auto-hw off
This indicates @value{GDBN} should not automatically select breakpoint
type.  If the target provides a memory map, @value{GDBN} will warn when
trying to set software breakpoint at a read-only address.
@end table

@value{GDBN} normally implements breakpoints by replacing the program code
at the breakpoint address with a special instruction, which, when
executed, given control to the debugger.  By default, the program
code is so modified only when the program is resumed.  As soon as
the program stops, @value{GDBN} restores the original instructions.  This
behaviour guards against leaving breakpoints inserted in the
target should gdb abrubptly disconnect.  However, with slow remote
targets, inserting and removing breakpoint can reduce the performance.
This behavior can be controlled with the following commands::

@kindex set breakpoint always-inserted
@kindex show breakpoint always-inserted
@table @code
@item set breakpoint always-inserted off
All breakpoints, including newly added by the user, are inserted in
the target only when the target is resumed.  All breakpoints are
removed from the target when it stops.  This is the default mode.

@item set breakpoint always-inserted on
Causes all breakpoints to be inserted in the target at all times.  If
the user adds a new breakpoint, or changes an existing breakpoint, the
breakpoints in the target are updated immediately.  A breakpoint is
removed from the target only when breakpoint itself is deleted.
@end table

@value{GDBN} handles conditional breakpoints by evaluating these conditions
when a breakpoint breaks.  If the condition is true, then the process being
debugged stops, otherwise the process is resumed.

If the target supports evaluating conditions on its end, @value{GDBN} may
download the breakpoint, together with its conditions, to it.

This feature can be controlled via the following commands:

@kindex set breakpoint condition-evaluation
@kindex show breakpoint condition-evaluation
@table @code
@item set breakpoint condition-evaluation host
This option commands @value{GDBN} to evaluate the breakpoint
conditions on the host's side.  Unconditional breakpoints are sent to
the target which in turn receives the triggers and reports them back to GDB
for condition evaluation.  This is the standard evaluation mode.

@item set breakpoint condition-evaluation target
This option commands @value{GDBN} to download breakpoint conditions
to the target at the moment of their insertion.  The target
is responsible for evaluating the conditional expression and reporting
breakpoint stop events back to @value{GDBN} whenever the condition
is true.  Due to limitations of target-side evaluation, some conditions
cannot be evaluated there, e.g., conditions that depend on local data
that is only known to the host.  Examples include
conditional expressions involving convenience variables, complex types
that cannot be handled by the agent expression parser and expressions
that are too long to be sent over to the target, specially when the
target is a remote system.  In these cases, the conditions will be
evaluated by @value{GDBN}.

@item set breakpoint condition-evaluation auto
This is the default mode.  If the target supports evaluating breakpoint
conditions on its end, @value{GDBN} will download breakpoint conditions to
the target (limitations mentioned previously apply).  If the target does
not support breakpoint condition evaluation, then @value{GDBN} will fallback
to evaluating all these conditions on the host's side.
@end table


@cindex negative breakpoint numbers
@cindex internal @value{GDBN} breakpoints
@value{GDBN} itself sometimes sets breakpoints in your program for
special purposes, such as proper handling of @code{longjmp} (in C
programs).  These internal breakpoints are assigned negative numbers,
starting with @code{-1}; @samp{info breakpoints} does not display them.
You can see these breakpoints with the @value{GDBN} maintenance command
@samp{maint info breakpoints} (@pxref{maint info breakpoints}).


@node Set Watchpoints
@subsection Setting Watchpoints

@cindex setting watchpoints
You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place where
this may happen.  (This is sometimes called a @dfn{data breakpoint}.)
The expression may be as simple as the value of a single variable, or
as complex as many variables combined by operators.  Examples include:

@itemize @bullet
@item
A reference to the value of a single variable.

@item
An address cast to an appropriate data type.  For example,
@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
address (assuming an @code{int} occupies 4 bytes).

@item
An arbitrarily complex expression, such as @samp{a*b + c/d}.  The
expression can use any operators valid in the program's native
language (@pxref{Languages}).
@end itemize

You can set a watchpoint on an expression even if the expression can
not be evaluated yet.  For instance, you can set a watchpoint on
@samp{*global_ptr} before @samp{global_ptr} is initialized.
@value{GDBN} will stop when your program sets @samp{global_ptr} and
the expression produces a valid value.  If the expression becomes
valid in some other way than changing a variable (e.g.@: if the memory
pointed to by @samp{*global_ptr} becomes readable as the result of a
@code{malloc} call), @value{GDBN} may not stop until the next time
the expression changes.

@cindex software watchpoints
@cindex hardware watchpoints
Depending on your system, watchpoints may be implemented in software or
hardware.  @value{GDBN} does software watchpointing by single-stepping your
program and testing the variable's value each time, which is hundreds of
times slower than normal execution.  (But this may still be worth it, to
catch errors where you have no clue what part of your program is the
culprit.)

On some systems, such as most PowerPC or x86-based targets,
@value{GDBN} includes support for hardware watchpoints, which do not
slow down the running of your program.

@table @code
@kindex watch
@item watch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{thread-id}@r{]} @r{[}mask @var{maskvalue}@r{]}
Set a watchpoint for an expression.  @value{GDBN} will break when the
expression @var{expr} is written into by the program and its value
changes.  The simplest (and the most popular) use of this command is
to watch the value of a single variable:

@smallexample
(@value{GDBP}) watch foo
@end smallexample

If the command includes a @code{@r{[}thread @var{thread-id}@r{]}}
argument, @value{GDBN} breaks only when the thread identified by
@var{thread-id} changes the value of @var{expr}.  If any other threads
change the value of @var{expr}, @value{GDBN} will not break.  Note
that watchpoints restricted to a single thread in this way only work
with Hardware Watchpoints.

Ordinarily a watchpoint respects the scope of variables in @var{expr}
(see below).  The @code{-location} argument tells @value{GDBN} to
instead watch the memory referred to by @var{expr}.  In this case,
@value{GDBN} will evaluate @var{expr}, take the address of the result,
and watch the memory at that address.  The type of the result is used
to determine the size of the watched memory.  If the expression's
result does not have an address, then @value{GDBN} will print an
error.

The @code{@r{[}mask @var{maskvalue}@r{]}} argument allows creation
of masked watchpoints, if the current architecture supports this
feature (e.g., PowerPC Embedded architecture, see @ref{PowerPC
Embedded}.)  A @dfn{masked watchpoint} specifies a mask in addition
to an address to watch.  The mask specifies that some bits of an address
(the bits which are reset in the mask) should be ignored when matching
the address accessed by the inferior against the watchpoint address.
Thus, a masked watchpoint watches many addresses simultaneously---those
addresses whose unmasked bits are identical to the unmasked bits in the
watchpoint address.  The @code{mask} argument implies @code{-location}.
Examples:

@smallexample
(@value{GDBP}) watch foo mask 0xffff00ff
(@value{GDBP}) watch *0xdeadbeef mask 0xffffff00
@end smallexample

@kindex rwatch
@item rwatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{thread-id}@r{]} @r{[}mask @var{maskvalue}@r{]}
Set a watchpoint that will break when the value of @var{expr} is read
by the program.

@kindex awatch
@item awatch @r{[}-l@r{|}-location@r{]} @var{expr} @r{[}thread @var{thread-id}@r{]} @r{[}mask @var{maskvalue}@r{]}
Set a watchpoint that will break when @var{expr} is either read from
or written into by the program.

@kindex info watchpoints @r{[}@var{list}@dots{}@r{]}
@item info watchpoints @r{[}@var{list}@dots{}@r{]}
This command prints a list of watchpoints, using the same format as
@code{info break} (@pxref{Set Breaks}).
@end table

If you watch for a change in a numerically entered address you need to
dereference it, as the address itself is just a constant number which will
never change.  @value{GDBN} refuses to create a watchpoint that watches
a never-changing value:

@smallexample
(@value{GDBP}) watch 0x600850
Cannot watch constant value 0x600850.
(@value{GDBP}) watch *(int *) 0x600850
Watchpoint 1: *(int *) 6293584
@end smallexample

@value{GDBN} sets a @dfn{hardware watchpoint} if possible.  Hardware
watchpoints execute very quickly, and the debugger reports a change in
value at the exact instruction where the change occurs.  If @value{GDBN}
cannot set a hardware watchpoint, it sets a software watchpoint, which
executes more slowly and reports the change in value at the next
@emph{statement}, not the instruction, after the change occurs.

@cindex use only software watchpoints
You can force @value{GDBN} to use only software watchpoints with the
@kbd{set can-use-hw-watchpoints 0} command.  With this variable set to
zero, @value{GDBN} will never try to use hardware watchpoints, even if
the underlying system supports them.  (Note that hardware-assisted
watchpoints that were set @emph{before} setting
@code{can-use-hw-watchpoints} to zero will still use the hardware
mechanism of watching expression values.)

@table @code
@item set can-use-hw-watchpoints
@kindex set can-use-hw-watchpoints
Set whether or not to use hardware watchpoints.

@item show can-use-hw-watchpoints
@kindex show can-use-hw-watchpoints
Show the current mode of using hardware watchpoints.
@end table

For remote targets, you can restrict the number of hardware
watchpoints @value{GDBN} will use, see @ref{set remote
hardware-breakpoint-limit}.

When you issue the @code{watch} command, @value{GDBN} reports

@smallexample
Hardware watchpoint @var{num}: @var{expr}
@end smallexample

@noindent
if it was able to set a hardware watchpoint.

Currently, the @code{awatch} and @code{rwatch} commands can only set
hardware watchpoints, because accesses to data that don't change the
value of the watched expression cannot be detected without examining
every instruction as it is being executed, and @value{GDBN} does not do
that currently.  If @value{GDBN} finds that it is unable to set a
hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
will print a message like this:

@smallexample
Expression cannot be implemented with read/access watchpoint.
@end smallexample

Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
data type of the watched expression is wider than what a hardware
watchpoint on the target machine can handle.  For example, some systems
can only watch regions that are up to 4 bytes wide; on such systems you
cannot set hardware watchpoints for an expression that yields a
double-precision floating-point number (which is typically 8 bytes
wide).  As a work-around, it might be possible to break the large region
into a series of smaller ones and watch them with separate watchpoints.

If you set too many hardware watchpoints, @value{GDBN} might be unable
to insert all of them when you resume the execution of your program.
Since the precise number of active watchpoints is unknown until such
time as the program is about to be resumed, @value{GDBN} might not be
able to warn you about this when you set the watchpoints, and the
warning will be printed only when the program is resumed:

@smallexample
Hardware watchpoint @var{num}: Could not insert watchpoint
@end smallexample

@noindent
If this happens, delete or disable some of the watchpoints.

Watching complex expressions that reference many variables can also
exhaust the resources available for hardware-assisted watchpoints.
That's because @value{GDBN} needs to watch every variable in the
expression with separately allocated resources.

If you call a function interactively using @code{print} or @code{call},
any watchpoints you have set will be inactive until @value{GDBN} reaches another
kind of breakpoint or the call completes.

@value{GDBN} automatically deletes watchpoints that watch local
(automatic) variables, or expressions that involve such variables, when
they go out of scope, that is, when the execution leaves the block in
which these variables were defined.  In particular, when the program
being debugged terminates, @emph{all} local variables go out of scope,
and so only watchpoints that watch global variables remain set.  If you
rerun the program, you will need to set all such watchpoints again.  One
way of doing that would be to set a code breakpoint at the entry to the
@code{main} function and when it breaks, set all the watchpoints.

@cindex watchpoints and threads
@cindex threads and watchpoints
In multi-threaded programs, watchpoints will detect changes to the
watched expression from every thread.

@quotation
@emph{Warning:} In multi-threaded programs, software watchpoints
have only limited usefulness.  If @value{GDBN} creates a software
watchpoint, it can only watch the value of an expression @emph{in a
single thread}.  If you are confident that the expression can only
change due to the current thread's activity (and if you are also
confident that no other thread can become current), then you can use
software watchpoints as usual.  However, @value{GDBN} may not notice
when a non-current thread's activity changes the expression.  (Hardware
watchpoints, in contrast, watch an expression in all threads.)
@end quotation

@xref{set remote hardware-watchpoint-limit}.

@node Set Catchpoints
@subsection Setting Catchpoints
@cindex catchpoints, setting
@cindex exception handlers
@cindex event handling

You can use @dfn{catchpoints} to cause the debugger to stop for certain
kinds of program events, such as C@t{++} exceptions or the loading of a
shared library.  Use the @code{catch} command to set a catchpoint.

@table @code
@kindex catch
@item catch @var{event}
Stop when @var{event} occurs.  The @var{event} can be any of the following:

@table @code
@item throw @r{[}@var{regexp}@r{]}
@itemx rethrow @r{[}@var{regexp}@r{]}
@itemx catch @r{[}@var{regexp}@r{]}
@kindex catch throw
@kindex catch rethrow
@kindex catch catch
@cindex stop on C@t{++} exceptions
The throwing, re-throwing, or catching of a C@t{++} exception.

If @var{regexp} is given, then only exceptions whose type matches the
regular expression will be caught.

@vindex $_exception@r{, convenience variable}
The convenience variable @code{$_exception} is available at an
exception-related catchpoint, on some systems.  This holds the
exception being thrown.

There are currently some limitations to C@t{++} exception handling in
@value{GDBN}:

@itemize @bullet
@item
The support for these commands is system-dependent.  Currently, only
systems using the @samp{gnu-v3} C@t{++} ABI (@pxref{ABI}) are
supported.

@item
The regular expression feature and the @code{$_exception} convenience
variable rely on the presence of some SDT probes in @code{libstdc++}.
If these probes are not present, then these features cannot be used.
These probes were first available in the GCC 4.8 release, but whether
or not they are available in your GCC also depends on how it was
built.

@item
The @code{$_exception} convenience variable is only valid at the
instruction at which an exception-related catchpoint is set.

@item
When an exception-related catchpoint is hit, @value{GDBN} stops at a
location in the system library which implements runtime exception
support for C@t{++}, usually @code{libstdc++}.  You can use @code{up}
(@pxref{Selection}) to get to your code.

@item
If you call a function interactively, @value{GDBN} normally returns
control to you when the function has finished executing.  If the call
raises an exception, however, the call may bypass the mechanism that
returns control to you and cause your program either to abort or to
simply continue running until it hits a breakpoint, catches a signal
that @value{GDBN} is listening for, or exits.  This is the case even if
you set a catchpoint for the exception; catchpoints on exceptions are
disabled within interactive calls.  @xref{Calling}, for information on
controlling this with @code{set unwind-on-terminating-exception}.

@item
You cannot raise an exception interactively.

@item
You cannot install an exception handler interactively.
@end itemize

@item exception @r{[}@var{name}@r{]}
@kindex catch exception
@cindex Ada exception catching
@cindex catch Ada exceptions
An Ada exception being raised.  If an exception name is specified
at the end of the command (eg @code{catch exception Program_Error}),
the debugger will stop only when this specific exception is raised.
Otherwise, the debugger stops execution when any Ada exception is raised.

When inserting an exception catchpoint on a user-defined exception whose
name is identical to one of the exceptions defined by the language, the
fully qualified name must be used as the exception name.  Otherwise,
@value{GDBN} will assume that it should stop on the pre-defined exception
rather than the user-defined one.  For instance, assuming an exception
called @code{Constraint_Error} is defined in package @code{Pck}, then
the command to use to catch such exceptions is @kbd{catch exception
Pck.Constraint_Error}.

@vindex $_ada_exception@r{, convenience variable}
The convenience variable @code{$_ada_exception} holds the address of
the exception being thrown.  This can be useful when setting a
condition for such a catchpoint.

@item exception unhandled
@kindex catch exception unhandled
An exception that was raised but is not handled by the program.  The
convenience variable @code{$_ada_exception} is set as for @code{catch
exception}.

@item handlers @r{[}@var{name}@r{]}
@kindex catch handlers
@cindex Ada exception handlers catching
@cindex catch Ada exceptions when handled
An Ada exception being handled.  If an exception name is
specified at the end of the command
 (eg @kbd{catch handlers Program_Error}), the debugger will stop
only when this specific exception is handled.
Otherwise, the debugger stops execution when any Ada exception is handled.

When inserting a handlers catchpoint on a user-defined
exception whose name is identical to one of the exceptions
defined by the language, the fully qualified name must be used
as the exception name.  Otherwise, @value{GDBN} will assume that it
should stop on the pre-defined exception rather than the
user-defined one.  For instance, assuming an exception called
 @code{Constraint_Error} is defined in package @code{Pck}, then the
command to use to catch such exceptions handling is
@kbd{catch handlers Pck.Constraint_Error}.

The convenience variable @code{$_ada_exception} is set as for
@code{catch exception}.

@item assert
@kindex catch assert
A failed Ada assertion.  Note that the convenience variable
@code{$_ada_exception} is @emph{not} set by this catchpoint.

@item exec
@kindex catch exec
@cindex break on fork/exec
A call to @code{exec}.

@anchor{catch syscall}
@item syscall
@itemx syscall @r{[}@var{name} @r{|} @var{number} @r{|} @r{group:}@var{groupname} @r{|} @r{g:}@var{groupname}@r{]} @dots{}
@kindex catch syscall
@cindex break on a system call.
A call to or return from a system call, a.k.a.@: @dfn{syscall}.  A
syscall is a mechanism for application programs to request a service
from the operating system (OS) or one of the OS system services.
@value{GDBN} can catch some or all of the syscalls issued by the
debuggee, and show the related information for each syscall.  If no
argument is specified, calls to and returns from all system calls
will be caught.

@var{name} can be any system call name that is valid for the
underlying OS.  Just what syscalls are valid depends on the OS.  On
GNU and Unix systems, you can find the full list of valid syscall
names on @file{/usr/include/asm/unistd.h}.

@c For MS-Windows, the syscall names and the corresponding numbers
@c can be found, e.g., on this URL:
@c http://www.metasploit.com/users/opcode/syscalls.html
@c but we don't support Windows syscalls yet.

Normally, @value{GDBN} knows in advance which syscalls are valid for
each OS, so you can use the @value{GDBN} command-line completion
facilities (@pxref{Completion,, command completion}) to list the
available choices.

You may also specify the system call numerically.  A syscall's
number is the value passed to the OS's syscall dispatcher to
identify the requested service.  When you specify the syscall by its
name, @value{GDBN} uses its database of syscalls to convert the name
into the corresponding numeric code, but using the number directly
may be useful if @value{GDBN}'s database does not have the complete
list of syscalls on your system (e.g., because @value{GDBN} lags
behind the OS upgrades).

You may specify a group of related syscalls to be caught at once using
the @code{group:} syntax (@code{g:} is a shorter equivalent).  For
instance, on some platforms @value{GDBN} allows you to catch all
network related syscalls, by passing the argument @code{group:network}
to @code{catch syscall}.  Note that not all syscall groups are
available in every system.  You can use the command completion
facilities (@pxref{Completion,, command completion}) to list the
syscall groups available on your environment.

The example below illustrates how this command works if you don't provide
arguments to it:

@smallexample
(@value{GDBP}) catch syscall
Catchpoint 1 (syscall)
(@value{GDBP}) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall 'close'), \
	   0xffffe424 in __kernel_vsyscall ()
(@value{GDBP}) c
Continuing.

Catchpoint 1 (returned from syscall 'close'), \
	0xffffe424 in __kernel_vsyscall ()
(@value{GDBP})
@end smallexample

Here is an example of catching a system call by name:

@smallexample
(@value{GDBP}) catch syscall chroot
Catchpoint 1 (syscall 'chroot' [61])
(@value{GDBP}) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall 'chroot'), \
		   0xffffe424 in __kernel_vsyscall ()
(@value{GDBP}) c
Continuing.

Catchpoint 1 (returned from syscall 'chroot'), \
	0xffffe424 in __kernel_vsyscall ()
(@value{GDBP})
@end smallexample

An example of specifying a system call numerically.  In the case
below, the syscall number has a corresponding entry in the XML
file, so @value{GDBN} finds its name and prints it:

@smallexample
(@value{GDBP}) catch syscall 252
Catchpoint 1 (syscall(s) 'exit_group')
(@value{GDBP}) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall 'exit_group'), \
		   0xffffe424 in __kernel_vsyscall ()
(@value{GDBP}) c
Continuing.

Program exited normally.
(@value{GDBP})
@end smallexample

Here is an example of catching a syscall group:

@smallexample
(@value{GDBP}) catch syscall group:process
Catchpoint 1 (syscalls 'exit' [1] 'fork' [2] 'waitpid' [7]
'execve' [11] 'wait4' [114] 'clone' [120] 'vfork' [190]
'exit_group' [252] 'waitid' [284] 'unshare' [310])
(@value{GDBP}) r
Starting program: /tmp/catch-syscall

Catchpoint 1 (call to syscall fork), 0x00007ffff7df4e27 in open64 ()
   from /lib64/ld-linux-x86-64.so.2

(@value{GDBP}) c
Continuing.
@end smallexample

However, there can be situations when there is no corresponding name
in XML file for that syscall number.  In this case, @value{GDBN} prints
a warning message saying that it was not able to find the syscall name,
but the catchpoint will be set anyway.  See the example below:

@smallexample
(@value{GDBP}) catch syscall 764
warning: The number '764' does not represent a known syscall.
Catchpoint 2 (syscall 764)
(@value{GDBP})
@end smallexample

If you configure @value{GDBN} using the @samp{--without-expat} option,
it will not be able to display syscall names.  Also, if your
architecture does not have an XML file describing its system calls,
you will not be able to see the syscall names.  It is important to
notice that these two features are used for accessing the syscall
name database.  In either case, you will see a warning like this:

@smallexample
(@value{GDBP}) catch syscall
warning: Could not open "syscalls/i386-linux.xml"
warning: Could not load the syscall XML file 'syscalls/i386-linux.xml'.
GDB will not be able to display syscall names.
Catchpoint 1 (syscall)
(@value{GDBP})
@end smallexample

Of course, the file name will change depending on your architecture and system.

Still using the example above, you can also try to catch a syscall by its
number.  In this case, you would see something like:

@smallexample
(@value{GDBP}) catch syscall 252
Catchpoint 1 (syscall(s) 252)
@end smallexample

Again, in this case @value{GDBN} would not be able to display syscall's names.

@item fork
@kindex catch fork
A call to @code{fork}.

@item vfork
@kindex catch vfork
A call to @code{vfork}.

@item load @r{[}@var{regexp}@r{]}
@itemx unload @r{[}@var{regexp}@r{]}
@kindex catch load
@kindex catch unload
The loading or unloading of a shared library.  If @var{regexp} is
given, then the catchpoint will stop only if the regular expression
matches one of the affected libraries.

@item signal @r{[}@var{signal}@dots{} @r{|} @samp{all}@r{]}
@kindex catch signal
The delivery of a signal.

With no arguments, this catchpoint will catch any signal that is not
used internally by @value{GDBN}, specifically, all signals except
@samp{SIGTRAP} and @samp{SIGINT}.

With the argument @samp{all}, all signals, including those used by
@value{GDBN}, will be caught.  This argument cannot be used with other
signal names.

Otherwise, the arguments are a list of signal names as given to
@code{handle} (@pxref{Signals}).  Only signals specified in this list
will be caught.

One reason that @code{catch signal} can be more useful than
@code{handle} is that you can attach commands and conditions to the
catchpoint.

When a signal is caught by a catchpoint, the signal's @code{stop} and
@code{print} settings, as specified by @code{handle}, are ignored.
However, whether the signal is still delivered to the inferior depends
on the @code{pass} setting; this can be changed in the catchpoint's
commands.

@end table

@item tcatch @var{event}
@kindex tcatch
Set a catchpoint that is enabled only for one stop.  The catchpoint is
automatically deleted after the first time the event is caught.

@end table

Use the @code{info break} command to list the current catchpoints.


@node Delete Breaks
@subsection Deleting Breakpoints

@cindex clearing breakpoints, watchpoints, catchpoints
@cindex deleting breakpoints, watchpoints, catchpoints
It is often necessary to eliminate a breakpoint, watchpoint, or
catchpoint once it has done its job and you no longer want your program
to stop there.  This is called @dfn{deleting} the breakpoint.  A
breakpoint that has been deleted no longer exists; it is forgotten.

With the @code{clear} command you can delete breakpoints according to
where they are in your program.  With the @code{delete} command you can
delete individual breakpoints, watchpoints, or catchpoints by specifying
their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it.  @value{GDBN}
automatically ignores breakpoints on the first instruction to be executed
when you continue execution without changing the execution address.

@table @code
@kindex clear
@item clear
Delete any breakpoints at the next instruction to be executed in the
selected stack frame (@pxref{Selection, ,Selecting a Frame}).  When
the innermost frame is selected, this is a good way to delete a
breakpoint where your program just stopped.

@item clear @var{location}
Delete any breakpoints set at the specified @var{location}.
@xref{Specify Location}, for the various forms of @var{location}; the
most useful ones are listed below:

@table @code
@item clear @var{function}
@itemx clear @var{filename}:@var{function}
Delete any breakpoints set at entry to the named @var{function}.

@item clear @var{linenum}
@itemx clear @var{filename}:@var{linenum}
Delete any breakpoints set at or within the code of the specified
@var{linenum} of the specified @var{filename}.
@end table

@cindex delete breakpoints
@kindex delete
@kindex d @r{(@code{delete})}
@item delete @r{[}breakpoints@r{]} @r{[}@var{list}@dots{}@r{]}
Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
list specified as argument.  If no argument is specified, delete all
breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
confirm off}).  You can abbreviate this command as @code{d}.
@end table

@node Disabling
@subsection Disabling Breakpoints

@cindex enable/disable a breakpoint
Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
prefer to @dfn{disable} it.  This makes the breakpoint inoperative as if
it had been deleted, but remembers the information on the breakpoint so
that you can @dfn{enable} it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with
the @code{enable} and @code{disable} commands, optionally specifying
one or more breakpoint numbers as arguments.  Use @code{info break} to
print a list of all breakpoints, watchpoints, and catchpoints if you
do not know which numbers to use.

Disabling and enabling a breakpoint that has multiple locations
affects all of its locations.

A breakpoint, watchpoint, or catchpoint can have any of several
different states of enablement:

@itemize @bullet
@item
Enabled.  The breakpoint stops your program.  A breakpoint set
with the @code{break} command starts out in this state.
@item
Disabled.  The breakpoint has no effect on your program.
@item
Enabled once.  The breakpoint stops your program, but then becomes
disabled.
@item
Enabled for a count.  The breakpoint stops your program for the next
N times, then becomes disabled.
@item
Enabled for deletion.  The breakpoint stops your program, but
immediately after it does so it is deleted permanently.  A breakpoint
set with the @code{tbreak} command starts out in this state.
@end itemize

You can use the following commands to enable or disable breakpoints,
watchpoints, and catchpoints:

@table @code
@kindex disable
@kindex dis @r{(@code{disable})}
@item disable @r{[}breakpoints@r{]} @r{[}@var{list}@dots{}@r{]}
Disable the specified breakpoints---or all breakpoints, if none are
listed.  A disabled breakpoint has no effect but is not forgotten.  All
options such as ignore-counts, conditions and commands are remembered in
case the breakpoint is enabled again later.  You may abbreviate
@code{disable} as @code{dis}.

@kindex enable
@item enable @r{[}breakpoints@r{]} @r{[}@var{list}@dots{}@r{]}
Enable the specified breakpoints (or all defined breakpoints).  They
become effective once again in stopping your program.

@item enable @r{[}breakpoints@r{]} once @var{list}@dots{}
Enable the specified breakpoints temporarily.  @value{GDBN} disables any
of these breakpoints immediately after stopping your program.

@item enable @r{[}breakpoints@r{]} count @var{count} @var{list}@dots{}
Enable the specified breakpoints temporarily.  @value{GDBN} records
@var{count} with each of the specified breakpoints, and decrements a
breakpoint's count when it is hit.  When any count reaches 0,
@value{GDBN} disables that breakpoint.  If a breakpoint has an ignore
count (@pxref{Conditions, ,Break Conditions}), that will be
decremented to 0 before @var{count} is affected.

@item enable @r{[}breakpoints@r{]} delete @var{list}@dots{}
Enable the specified breakpoints to work once, then die.  @value{GDBN}
deletes any of these breakpoints as soon as your program stops there.
Breakpoints set by the @code{tbreak} command start out in this state.
@end table

@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
@c confusing: tbreak is also initially enabled.
Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
,Setting Breakpoints}), breakpoints that you set are initially enabled;
subsequently, they become disabled or enabled only when you use one of
the commands above.  (The command @code{until} can set and delete a
breakpoint of its own, but it does not change the state of your other
breakpoints; see @ref{Continuing and Stepping, ,Continuing and
Stepping}.)

@node Conditions
@subsection Break Conditions
@cindex conditional breakpoints
@cindex breakpoint conditions

@c FIXME what is scope of break condition expr?  Context where wanted?
@c      in particular for a watchpoint?
The simplest sort of breakpoint breaks every time your program reaches a
specified place.  You can also specify a @dfn{condition} for a
breakpoint.  A condition is just a Boolean expression in your
programming language (@pxref{Expressions, ,Expressions}).  A breakpoint with
a condition evaluates the expression each time your program reaches it,
and your program stops only if the condition is @emph{true}.

This is the converse of using assertions for program validation; in that
situation, you want to stop when the assertion is violated---that is,
when the condition is false.  In C, if you want to test an assertion expressed
by the condition @var{assert}, you should set the condition
@samp{! @var{assert}} on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow---but
it might be simpler, say, to just set a watchpoint on a variable name,
and specify a condition that tests whether the new value is an interesting
one.

Break conditions can have side effects, and may even call functions in
your program.  This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to
format special data structures.  The effects are completely predictable
unless there is another enabled breakpoint at the same address.  (In
that case, @value{GDBN} might see the other breakpoint first and stop your
program without checking the condition of this one.)  Note that
breakpoint commands are usually more convenient and flexible than break
conditions for the
purpose of performing side effects when a breakpoint is reached
(@pxref{Break Commands, ,Breakpoint Command Lists}).

Breakpoint conditions can also be evaluated on the target's side if
the target supports it.  Instead of evaluating the conditions locally,
@value{GDBN} encodes the expression into an agent expression
(@pxref{Agent Expressions}) suitable for execution on the target,
independently of @value{GDBN}.  Global variables become raw memory
locations, locals become stack accesses, and so forth.

In this case, @value{GDBN} will only be notified of a breakpoint trigger
when its condition evaluates to true.  This mechanism may provide faster
response times depending on the performance characteristics of the target
since it does not need to keep @value{GDBN} informed about
every breakpoint trigger, even those with false conditions.

Break conditions can be specified when a breakpoint is set, by using
@samp{if} in the arguments to the @code{break} command.  @xref{Set
Breaks, ,Setting Breakpoints}.  They can also be changed at any time
with the @code{condition} command.

You can also use the @code{if} keyword with the @code{watch} command.
The @code{catch} command does not recognize the @code{if} keyword;
@code{condition} is the only way to impose a further condition on a
catchpoint.

@table @code
@kindex condition
@item condition @var{bnum} @var{expression}
Specify @var{expression} as the break condition for breakpoint,
watchpoint, or catchpoint number @var{bnum}.  After you set a condition,
breakpoint @var{bnum} stops your program only if the value of
@var{expression} is true (nonzero, in C).  When you use
@code{condition}, @value{GDBN} checks @var{expression} immediately for
syntactic correctness, and to determine whether symbols in it have
referents in the context of your breakpoint.  If @var{expression} uses
symbols not referenced in the context of the breakpoint, @value{GDBN}
prints an error message:

@smallexample
No symbol "foo" in current context.
@end smallexample

@noindent
@value{GDBN} does
not actually evaluate @var{expression} at the time the @code{condition}
command (or a command that sets a breakpoint with a condition, like
@code{break if @dots{}}) is given, however.  @xref{Expressions, ,Expressions}.

@item condition @var{bnum}
Remove the condition from breakpoint number @var{bnum}.  It becomes
an ordinary unconditional breakpoint.
@end table

@cindex ignore count (of breakpoint)
A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times.  This is so
useful that there is a special way to do it, using the @dfn{ignore
count} of the breakpoint.  Every breakpoint has an ignore count, which
is an integer.  Most of the time, the ignore count is zero, and
therefore has no effect.  But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements
the ignore count by one and continues.  As a result, if the ignore count
value is @var{n}, the breakpoint does not stop the next @var{n} times
your program reaches it.

@table @code
@kindex ignore
@item ignore @var{bnum} @var{count}
Set the ignore count of breakpoint number @var{bnum} to @var{count}.
The next @var{count} times the breakpoint is reached, your program's
execution does not stop; other than to decrement the ignore count, @value{GDBN}
takes no action.

To make the breakpoint stop the next time it is reached, specify
a count of zero.

When you use @code{continue} to resume execution of your program from a
breakpoint, you can specify an ignore count directly as an argument to
@code{continue}, rather than using @code{ignore}.  @xref{Continuing and
Stepping,,Continuing and Stepping}.

If a breakpoint has a positive ignore count and a condition, the
condition is not checked.  Once the ignore count reaches zero,
@value{GDBN} resumes checking the condition.

You could achieve the effect of the ignore count with a condition such
as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
is decremented each time.  @xref{Convenience Vars, ,Convenience
Variables}.
@end table

Ignore counts apply to breakpoints, watchpoints, and catchpoints.


@node Break Commands
@subsection Breakpoint Command Lists

@cindex breakpoint commands
You can give any breakpoint (or watchpoint or catchpoint) a series of
commands to execute when your program stops due to that breakpoint.  For
example, you might want to print the values of certain expressions, or
enable other breakpoints.

@table @code
@kindex commands
@kindex end@r{ (breakpoint commands)}
@item commands @r{[}@var{list}@dots{}@r{]}
@itemx @dots{} @var{command-list} @dots{}
@itemx end
Specify a list of commands for the given breakpoints.  The commands
themselves appear on the following lines.  Type a line containing just
@code{end} to terminate the commands.

To remove all commands from a breakpoint, type @code{commands} and
follow it immediately with @code{end}; that is, give no commands.

With no argument, @code{commands} refers to the last breakpoint,
watchpoint, or catchpoint set (not to the breakpoint most recently
encountered).  If the most recent breakpoints were set with a single
command, then the @code{commands} will apply to all the breakpoints
set by that command.  This applies to breakpoints set by
@code{rbreak}, and also applies when a single @code{break} command
creates multiple breakpoints (@pxref{Ambiguous Expressions,,Ambiguous
Expressions}).
@end table

Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
disabled within a @var{command-list}.

You can use breakpoint commands to start your program up again.  Simply
use the @code{continue} command, or @code{step}, or any other command
that resumes execution.

Any other commands in the command list, after a command that resumes
execution, are ignored.  This is because any time you resume execution
(even with a simple @code{next} or @code{step}), you may encounter
another breakpoint---which could have its own command list, leading to
ambiguities about which list to execute.

@kindex silent
If the first command you specify in a command list is @code{silent}, the
usual message about stopping at a breakpoint is not printed.  This may
be desirable for breakpoints that are to print a specific message and
then continue.  If none of the remaining commands print anything, you
see no sign that the breakpoint was reached.  @code{silent} is
meaningful only at the beginning of a breakpoint command list.

The commands @code{echo}, @code{output}, and @code{printf} allow you to
print precisely controlled output, and are often useful in silent
breakpoints.  @xref{Output, ,Commands for Controlled Output}.

For example, here is how you could use breakpoint commands to print the
value of @code{x} at entry to @code{foo} whenever @code{x} is positive.

@smallexample
break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end
@end smallexample

One application for breakpoint commands is to compensate for one bug so
you can test for another.  Put a breakpoint just after the erroneous line
of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them.  End with the @code{continue} command
so that your program does not stop, and start with the @code{silent}
command so that no output is produced.  Here is an example:

@smallexample
break 403
commands
silent
set x = y + 4
cont
end
@end smallexample

@node Dynamic Printf
@subsection Dynamic Printf

@cindex dynamic printf
@cindex dprintf
The dynamic printf command @code{dprintf} combines a breakpoint with
formatted printing of your program's data to give you the effect of
inserting @code{printf} calls into your program on-the-fly, without
having to recompile it.

In its most basic form, the output goes to the GDB console.  However,
you can set the variable @code{dprintf-style} for alternate handling.
For instance, you can ask to format the output by calling your
program's @code{printf} function.  This has the advantage that the
characters go to the program's output device, so they can recorded in
redirects to files and so forth.

If you are doing remote debugging with a stub or agent, you can also
ask to have the printf handled by the remote agent.  In addition to
ensuring that the output goes to the remote program's device along
with any other output the program might produce, you can also ask that
the dprintf remain active even after disconnecting from the remote
target.  Using the stub/agent is also more efficient, as it can do
everything without needing to communicate with @value{GDBN}.

@table @code
@kindex dprintf
@item dprintf @var{location},@var{template},@var{expression}[,@var{expression}@dots{}]
Whenever execution reaches @var{location}, print the values of one or
more @var{expressions} under the control of the string @var{template}.
To print several values, separate them with commas.

@item set dprintf-style @var{style}
Set the dprintf output to be handled in one of several different
styles enumerated below.  A change of style affects all existing
dynamic printfs immediately.  (If you need individual control over the
print commands, simply define normal breakpoints with
explicitly-supplied command lists.)

@table @code
@item gdb
@kindex dprintf-style gdb
Handle the output using the @value{GDBN} @code{printf} command.

@item call
@kindex dprintf-style call
Handle the output by calling a function in your program (normally
@code{printf}).

@item agent
@kindex dprintf-style agent
Have the remote debugging agent (such as @code{gdbserver}) handle
the output itself.  This style is only available for agents that
support running commands on the target.
@end table

@item set dprintf-function @var{function}
Set the function to call if the dprintf style is @code{call}.  By
default its value is @code{printf}.  You may set it to any expression.
that @value{GDBN} can evaluate to a function, as per the @code{call}
command.

@item set dprintf-channel @var{channel}
Set a ``channel'' for dprintf.  If set to a non-empty value,
@value{GDBN} will evaluate it as an expression and pass the result as
a first argument to the @code{dprintf-function}, in the manner of
@code{fprintf} and similar functions.  Otherwise, the dprintf format
string will be the first argument, in the manner of @code{printf}.

As an example, if you wanted @code{dprintf} output to go to a logfile
that is a standard I/O stream assigned to the variable @code{mylog},
you could do the following:

@example
(gdb) set dprintf-style call
(gdb) set dprintf-function fprintf
(gdb) set dprintf-channel mylog
(gdb) dprintf 25,"at line 25, glob=%d\n",glob
Dprintf 1 at 0x123456: file main.c, line 25.
(gdb) info break
1       dprintf        keep y   0x00123456 in main at main.c:25
        call (void) fprintf (mylog,"at line 25, glob=%d\n",glob)
        continue
(gdb)
@end example

Note that the @code{info break} displays the dynamic printf commands
as normal breakpoint commands; you can thus easily see the effect of
the variable settings.

@item set disconnected-dprintf on
@itemx set disconnected-dprintf off
@kindex set disconnected-dprintf
Choose whether @code{dprintf} commands should continue to run if
@value{GDBN} has disconnected from the target.  This only applies
if the @code{dprintf-style} is @code{agent}.

@item show disconnected-dprintf off
@kindex show disconnected-dprintf
Show the current choice for disconnected @code{dprintf}.

@end table

@value{GDBN} does not check the validity of function and channel,
relying on you to supply values that are meaningful for the contexts
in which they are being used.  For instance, the function and channel
may be the values of local variables, but if that is the case, then
all enabled dynamic prints must be at locations within the scope of
those locals.  If evaluation fails, @value{GDBN} will report an error.

@node Save Breakpoints
@subsection How to save breakpoints to a file

To save breakpoint definitions to a file use the @w{@code{save
breakpoints}} command.

@table @code
@kindex save breakpoints
@cindex save breakpoints to a file for future sessions
@item save breakpoints [@var{filename}]
This command saves all current breakpoint definitions together with
their commands and ignore counts, into a file @file{@var{filename}}
suitable for use in a later debugging session.  This includes all
types of breakpoints (breakpoints, watchpoints, catchpoints,
tracepoints).  To read the saved breakpoint definitions, use the
@code{source} command (@pxref{Command Files}).  Note that watchpoints
with expressions involving local variables may fail to be recreated
because it may not be possible to access the context where the
watchpoint is valid anymore.  Because the saved breakpoint definitions
are simply a sequence of @value{GDBN} commands that recreate the
breakpoints, you can edit the file in your favorite editing program,
and remove the breakpoint definitions you're not interested in, or
that can no longer be recreated.
@end table

@node Static Probe Points
@subsection Static Probe Points

@cindex static probe point, SystemTap
@cindex static probe point, DTrace
@value{GDBN} supports @dfn{SDT} probes in the code.  @acronym{SDT} stands
for Statically Defined Tracing, and the probes are designed to have a tiny
runtime code and data footprint, and no dynamic relocations.

Currently, the following types of probes are supported on
ELF-compatible systems:

@itemize @bullet

@item @code{SystemTap} (@uref{http://sourceware.org/systemtap/})
@acronym{SDT} probes@footnote{See
@uref{http://sourceware.org/systemtap/wiki/AddingUserSpaceProbingToApps}
for more information on how to add @code{SystemTap} @acronym{SDT}
probes in your applications.}.  @code{SystemTap} probes are usable
from assembly, C and C@t{++} languages@footnote{See
@uref{http://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation}
for a good reference on how the @acronym{SDT} probes are implemented.}.  

@item @code{DTrace} (@uref{http://oss.oracle.com/projects/DTrace})
@acronym{USDT} probes.  @code{DTrace} probes are usable from C and
C@t{++} languages.
@end itemize

@cindex semaphores on static probe points
Some @code{SystemTap} probes have an associated semaphore variable;
for instance, this happens automatically if you defined your probe
using a DTrace-style @file{.d} file.  If your probe has a semaphore,
@value{GDBN} will automatically enable it when you specify a
breakpoint using the @samp{-probe-stap} notation.  But, if you put a
breakpoint at a probe's location by some other method (e.g.,
@code{break file:line}), then @value{GDBN} will not automatically set
the semaphore.  @code{DTrace} probes do not support semaphores.

You can examine the available static static probes using @code{info
probes}, with optional arguments:

@table @code
@kindex info probes
@item info probes @r{[}@var{type}@r{]} @r{[}@var{provider} @r{[}@var{name} @r{[}@var{objfile}@r{]}@r{]}@r{]}
If given, @var{type} is either @code{stap} for listing
@code{SystemTap} probes or @code{dtrace} for listing @code{DTrace}
probes.  If omitted all probes are listed regardless of their types.

If given, @var{provider} is a regular expression used to match against provider
names when selecting which probes to list.  If omitted, probes by all
probes from all providers are listed.

If given, @var{name} is a regular expression to match against probe names
when selecting which probes to list.  If omitted, probe names are not
considered when deciding whether to display them.

If given, @var{objfile} is a regular expression used to select which
object files (executable or shared libraries) to examine.  If not
given, all object files are considered.

@item info probes all
List the available static probes, from all types.
@end table

@cindex enabling and disabling probes
Some probe points can be enabled and/or disabled.  The effect of
enabling or disabling a probe depends on the type of probe being
handled.  Some @code{DTrace} probes can be enabled or
disabled, but @code{SystemTap} probes cannot be disabled.

You can enable (or disable) one or more probes using the following
commands, with optional arguments:

@table @code
@kindex enable probes
@item enable probes @r{[}@var{provider} @r{[}@var{name} @r{[}@var{objfile}@r{]}@r{]}@r{]}
If given, @var{provider} is a regular expression used to match against
provider names when selecting which probes to enable.  If omitted,
all probes from all providers are enabled.

If given, @var{name} is a regular expression to match against probe
names when selecting which probes to enable.  If omitted, probe names
are not considered when deciding whether to enable them.

If given, @var{objfile} is a regular expression used to select which
object files (executable or shared libraries) to examine.  If not
given, all object files are considered.

@kindex disable probes
@item disable probes @r{[}@var{provider} @r{[}@var{name} @r{[}@var{objfile}@r{]}@r{]}@r{]}
See the @code{enable probes} command above for a description of the
optional arguments accepted by this command.
@end table

@vindex $_probe_arg@r{, convenience variable}
A probe may specify up to twelve arguments.  These are available at the
point at which the probe is defined---that is, when the current PC is
at the probe's location.  The arguments are available using the
convenience variables (@pxref{Convenience Vars})
@code{$_probe_arg0}@dots{}@code{$_probe_arg11}.  In @code{SystemTap}
probes each probe argument is an integer of the appropriate size;
types are not preserved.  In @code{DTrace} probes types are preserved
provided that they are recognized as such by @value{GDBN}; otherwise
the value of the probe argument will be a long integer.  The
convenience variable @code{$_probe_argc} holds the number of arguments
at the current probe point.

These variables are always available, but attempts to access them at
any location other than a probe point will cause @value{GDBN} to give
an error message.


@c  @ifclear BARETARGET
@node Error in Breakpoints
@subsection ``Cannot insert breakpoints''

If you request too many active hardware-assisted breakpoints and
watchpoints, you will see this error message:

@c FIXME: the precise wording of this message may change; the relevant
@c source change is not committed yet (Sep 3, 1999).
@smallexample
Stopped; cannot insert breakpoints.
You may have requested too many hardware breakpoints and watchpoints.
@end smallexample

@noindent
This message is printed when you attempt to resume the program, since
only then @value{GDBN} knows exactly how many hardware breakpoints and
watchpoints it needs to insert.

When this message is printed, you need to disable or remove some of the
hardware-assisted breakpoints and watchpoints, and then continue.

@node Breakpoint-related Warnings
@subsection ``Breakpoint address adjusted...''
@cindex breakpoint address adjusted

Some processor architectures place constraints on the addresses at
which breakpoints may be placed.  For architectures thus constrained,
@value{GDBN} will attempt to adjust the breakpoint's address to comply
with the constraints dictated by the architecture.

One example of such an architecture is the Fujitsu FR-V.  The FR-V is
a VLIW architecture in which a number of RISC-like instructions may be
bundled together for parallel execution.  The FR-V architecture
constrains the location of a breakpoint instruction within such a
bundle to the instruction with the lowest address.  @value{GDBN}
honors this constraint by adjusting a breakpoint's address to the
first in the bundle.

It is not uncommon for optimized code to have bundles which contain
instructions from different source statements, thus it may happen that
a breakpoint's address will be adjusted from one source statement to
another.  Since this adjustment may significantly alter @value{GDBN}'s
breakpoint related behavior from what the user expects, a warning is
printed when the breakpoint is first set and also when the breakpoint
is hit.

A warning like the one below is printed when setting a breakpoint
that's been subject to address adjustment:

@smallexample
warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
@end smallexample

Such warnings are printed both for user settable and @value{GDBN}'s
internal breakpoints.  If you see one of these warnings, you should
verify that a breakpoint set at the adjusted address will have the
desired affect.  If not, the breakpoint in question may be removed and
other breakpoints may be set which will have the desired behavior.
E.g., it may be sufficient to place the breakpoint at a later
instruction.  A conditional breakpoint may also be useful in some
cases to prevent the breakpoint from triggering too often.

@value{GDBN} will also issue a warning when stopping at one of these
adjusted breakpoints:

@smallexample
warning: Breakpoint 1 address previously adjusted from 0x00010414
to 0x00010410.
@end smallexample

When this warning is encountered, it may be too late to take remedial
action except in cases where the breakpoint is hit earlier or more
frequently than expected.

@node Continuing and Stepping
@section Continuing and Stepping

@cindex stepping
@cindex continuing
@cindex resuming execution
@dfn{Continuing} means resuming program execution until your program
completes normally.  In contrast, @dfn{stepping} means executing just
one more ``step'' of your program, where ``step'' may mean either one
line of source code, or one machine instruction (depending on what
particular command you use).  Either when continuing or when stepping,
your program may stop even sooner, due to a breakpoint or a signal.  (If
it stops due to a signal, you may want to use @code{handle}, or use
@samp{signal 0} to resume execution (@pxref{Signals, ,Signals}),
or you may step into the signal's handler (@pxref{stepping and signal
handlers}).)

@table @code
@kindex continue
@kindex c @r{(@code{continue})}
@kindex fg @r{(resume foreground execution)}
@item continue @r{[}@var{ignore-count}@r{]}
@itemx c @r{[}@var{ignore-count}@r{]}
@itemx fg @r{[}@var{ignore-count}@r{]}
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed.  The optional argument
@var{ignore-count} allows you to specify a further number of times to
ignore a breakpoint at this location; its effect is like that of
@code{ignore} (@pxref{Conditions, ,Break Conditions}).

The argument @var{ignore-count} is meaningful only when your program
stopped due to a breakpoint.  At other times, the argument to
@code{continue} is ignored.

The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
debugged program is deemed to be the foreground program) are provided
purely for convenience, and have exactly the same behavior as
@code{continue}.
@end table

To resume execution at a different place, you can use @code{return}
(@pxref{Returning, ,Returning from a Function}) to go back to the
calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
Different Address}) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint
(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
beginning of the function or the section of your program where a problem
is believed to lie, run your program until it stops at that breakpoint,
and then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

@table @code
@kindex step
@kindex s @r{(@code{step})}
@item step
Continue running your program until control reaches a different source
line, then stop it and return control to @value{GDBN}.  This command is
abbreviated @code{s}.

@quotation
@c "without debugging information" is imprecise; actually "without line
@c numbers in the debugging information".  (gcc -g1 has debugging info but
@c not line numbers).  But it seems complex to try to make that
@c distinction here.
@emph{Warning:} If you use the @code{step} command while control is
within a function that was compiled without debugging information,
execution proceeds until control reaches a function that does have
debugging information.  Likewise, it will not step into a function which
is compiled without debugging information.  To step through functions
without debugging information, use the @code{stepi} command, described
below.
@end quotation

The @code{step} command only stops at the first instruction of a source
line.  This prevents the multiple stops that could otherwise occur in
@code{switch} statements, @code{for} loops, etc.  @code{step} continues
to stop if a function that has debugging information is called within
the line.  In other words, @code{step} @emph{steps inside} any functions
called within the line.

Also, the @code{step} command only enters a function if there is line
number information for the function.  Otherwise it acts like the
@code{next} command.  This avoids problems when using @code{cc -gl}
on @acronym{MIPS} machines.  Previously, @code{step} entered subroutines if there
was any debugging information about the routine.

@item step @var{count}
Continue running as in @code{step}, but do so @var{count} times.  If a
breakpoint is reached, or a signal not related to stepping occurs before
@var{count} steps, stepping stops right away.

@kindex next
@kindex n @r{(@code{next})}
@item next @r{[}@var{count}@r{]}
Continue to the next source line in the current (innermost) stack frame.
This is similar to @code{step}, but function calls that appear within
the line of code are executed without stopping.  Execution stops when
control reaches a different line of code at the original stack level
that was executing when you gave the @code{next} command.  This command
is abbreviated @code{n}.

An argument @var{count} is a repeat count, as for @code{step}.


@c  FIX ME!!  Do we delete this, or is there a way it fits in with
@c  the following paragraph?   ---  Vctoria
@c
@c  @code{next} within a function that lacks debugging information acts like
@c  @code{step}, but any function calls appearing within the code of the
@c  function are executed without stopping.

The @code{next} command only stops at the first instruction of a
source line.  This prevents multiple stops that could otherwise occur in
@code{switch} statements, @code{for} loops, etc.

@kindex set step-mode
@item set step-mode
@cindex functions without line info, and stepping
@cindex stepping into functions with no line info
@itemx set step-mode on
The @code{set step-mode on} command causes the @code{step} command to
stop at the first instruction of a function which contains no debug line
information rather than stepping over it.

This is useful in cases where you may be interested in inspecting the
machine instructions of a function which has no symbolic info and do not
want @value{GDBN} to automatically skip over this function.

@item set step-mode off
Causes the @code{step} command to step over any functions which contains no
debug information.  This is the default.

@item show step-mode
Show whether @value{GDBN} will stop in or step over functions without
source line debug information.

@kindex finish
@kindex fin @r{(@code{finish})}
@item finish
Continue running until just after function in the selected stack frame
returns.  Print the returned value (if any).  This command can be
abbreviated as @code{fin}.

Contrast this with the @code{return} command (@pxref{Returning,
,Returning from a Function}).

@kindex set print finish
@kindex show print finish
@item set print finish @r{[}on|off@r{]}
@itemx show print finish
By default the @code{finish} command will show the value that is
returned by the function.  This can be disabled using @code{set print
finish off}.  When disabled, the value is still entered into the value
history (@pxref{Value History}), but not displayed.

@kindex until
@kindex u @r{(@code{until})}
@cindex run until specified location
@item until
@itemx u
Continue running until a source line past the current line, in the
current stack frame, is reached.  This command is used to avoid single
stepping through a loop more than once.  It is like the @code{next}
command, except that when @code{until} encounters a jump, it
automatically continues execution until the program counter is greater
than the address of the jump.

This means that when you reach the end of a loop after single stepping
though it, @code{until} makes your program continue execution until it
exits the loop.  In contrast, a @code{next} command at the end of a loop
simply steps back to the beginning of the loop, which forces you to step
through the next iteration.

@code{until} always stops your program if it attempts to exit the current
stack frame.

@code{until} may produce somewhat counterintuitive results if the order
of machine code does not match the order of the source lines.  For
example, in the following excerpt from a debugging session, the @code{f}
(@code{frame}) command shows that execution is stopped at line
@code{206}; yet when we use @code{until}, we get to line @code{195}:

@smallexample
(@value{GDBP}) f
#0  main (argc=4, argv=0xf7fffae8) at m4.c:206
206                 expand_input();
(@value{GDBP}) until
195             for ( ; argc > 0; NEXTARG) @{
@end smallexample

This happened because, for execution efficiency, the compiler had
generated code for the loop closure test at the end, rather than the
start, of the loop---even though the test in a C @code{for}-loop is
written before the body of the loop.  The @code{until} command appeared
to step back to the beginning of the loop when it advanced to this
expression; however, it has not really gone to an earlier
statement---not in terms of the actual machine code.

@code{until} with no argument works by means of single
instruction stepping, and hence is slower than @code{until} with an
argument.

@item until @var{location}
@itemx u @var{location}
Continue running your program until either the specified @var{location} is
reached, or the current stack frame returns.  The location is any of
the forms described in @ref{Specify Location}.
This form of the command uses temporary breakpoints, and
hence is quicker than @code{until} without an argument.  The specified
location is actually reached only if it is in the current frame.  This
implies that @code{until} can be used to skip over recursive function
invocations.  For instance in the code below, if the current location is
line @code{96}, issuing @code{until 99} will execute the program up to
line @code{99} in the same invocation of factorial, i.e., after the inner
invocations have returned.

@smallexample
94	int factorial (int value)
95	@{
96	    if (value > 1) @{
97            value *= factorial (value - 1);
98	    @}
99	    return (value);
100     @}
@end smallexample


@kindex advance @var{location}
@item advance @var{location}
Continue running the program up to the given @var{location}.  An argument is
required, which should be of one of the forms described in
@ref{Specify Location}.
Execution will also stop upon exit from the current stack
frame.  This command is similar to @code{until}, but @code{advance} will
not skip over recursive function calls, and the target location doesn't
have to be in the same frame as the current one.


@kindex stepi
@kindex si @r{(@code{stepi})}
@item stepi
@itemx stepi @var{arg}
@itemx si
Execute one machine instruction, then stop and return to the debugger.

It is often useful to do @samp{display/i $pc} when stepping by machine
instructions.  This makes @value{GDBN} automatically display the next
instruction to be executed, each time your program stops.  @xref{Auto
Display,, Automatic Display}.

An argument is a repeat count, as in @code{step}.

@need 750
@kindex nexti
@kindex ni @r{(@code{nexti})}
@item nexti
@itemx nexti @var{arg}
@itemx ni
Execute one machine instruction, but if it is a function call,
proceed until the function returns.

An argument is a repeat count, as in @code{next}.

@end table

@anchor{range stepping}
@cindex range stepping
@cindex target-assisted range stepping
By default, and if available, @value{GDBN} makes use of
target-assisted @dfn{range stepping}.  In other words, whenever you
use a stepping command (e.g., @code{step}, @code{next}), @value{GDBN}
tells the target to step the corresponding range of instruction
addresses instead of issuing multiple single-steps.  This speeds up
line stepping, particularly for remote targets.  Ideally, there should
be no reason you would want to turn range stepping off.  However, it's
possible that a bug in the debug info, a bug in the remote stub (for
remote targets), or even a bug in @value{GDBN} could make line
stepping behave incorrectly when target-assisted range stepping is
enabled.  You can use the following command to turn off range stepping
if necessary:

@table @code
@kindex set range-stepping
@kindex show range-stepping
@item set range-stepping
@itemx show range-stepping
Control whether range stepping is enabled.

If @code{on}, and the target supports it, @value{GDBN} tells the
target to step a range of addresses itself, instead of issuing
multiple single-steps.  If @code{off}, @value{GDBN} always issues
single-steps, even if range stepping is supported by the target.  The
default is @code{on}.

@end table

@node Skipping Over Functions and Files
@section Skipping Over Functions and Files
@cindex skipping over functions and files

The program you are debugging may contain some functions which are
uninteresting to debug.  The @code{skip} command lets you tell @value{GDBN} to
skip a function, all functions in a file or a particular function in
a particular file when stepping.

For example, consider the following C function:

@smallexample
101     int func()
102     @{
103         foo(boring());
104         bar(boring());
105     @}
@end smallexample

@noindent
Suppose you wish to step into the functions @code{foo} and @code{bar}, but you
are not interested in stepping through @code{boring}.  If you run @code{step}
at line 103, you'll enter @code{boring()}, but if you run @code{next}, you'll
step over both @code{foo} and @code{boring}!

One solution is to @code{step} into @code{boring} and use the @code{finish}
command to immediately exit it.  But this can become tedious if @code{boring}
is called from many places.

A more flexible solution is to execute @kbd{skip boring}.  This instructs
@value{GDBN} never to step into @code{boring}.  Now when you execute
@code{step} at line 103, you'll step over @code{boring} and directly into
@code{foo}.

Functions may be skipped by providing either a function name, linespec
(@pxref{Specify Location}), regular expression that matches the function's
name, file name or a @code{glob}-style pattern that matches the file name.

On Posix systems the form of the regular expression is
``Extended Regular Expressions''.  See for example @samp{man 7 regex}
on @sc{gnu}/Linux systems.  On non-Posix systems the form of the regular
expression is whatever is provided by the @code{regcomp} function of
the underlying system.
See for example @samp{man 7 glob} on @sc{gnu}/Linux systems for a
description of @code{glob}-style patterns.

@table @code
@kindex skip
@item skip @r{[}@var{options}@r{]}
The basic form of the @code{skip} command takes zero or more options
that specify what to skip.
The @var{options} argument is any useful combination of the following:

@table @code
@item -file @var{file}
@itemx -fi @var{file}
Functions in @var{file} will be skipped over when stepping.

@item -gfile @var{file-glob-pattern}
@itemx -gfi @var{file-glob-pattern}
@cindex skipping over files via glob-style patterns
Functions in files matching @var{file-glob-pattern} will be skipped
over when stepping.

@smallexample
(gdb) skip -gfi utils/*.c
@end smallexample

@item -function @var{linespec}
@itemx -fu @var{linespec}
Functions named by @var{linespec} or the function containing the line
named by @var{linespec} will be skipped over when stepping.
@xref{Specify Location}.

@item -rfunction @var{regexp}
@itemx -rfu @var{regexp}
@cindex skipping over functions via regular expressions
Functions whose name matches @var{regexp} will be skipped over when stepping.

This form is useful for complex function names.
For example, there is generally no need to step into C@t{++} @code{std::string}
constructors or destructors.  Plus with C@t{++} templates it can be hard to
write out the full name of the function, and often it doesn't matter what
the template arguments are.  Specifying the function to be skipped as a
regular expression makes this easier.

@smallexample
(gdb) skip -rfu ^std::(allocator|basic_string)<.*>::~?\1 *\(
@end smallexample

If you want to skip every templated C@t{++} constructor and destructor
in the @code{std} namespace you can do:

@smallexample
(gdb) skip -rfu ^std::([a-zA-z0-9_]+)<.*>::~?\1 *\(
@end smallexample
@end table

If no options are specified, the function you're currently debugging
will be skipped.

@kindex skip function
@item skip function @r{[}@var{linespec}@r{]}
After running this command, the function named by @var{linespec} or the
function containing the line named by @var{linespec} will be skipped over when
stepping.  @xref{Specify Location}.

If you do not specify @var{linespec}, the function you're currently debugging
will be skipped.

(If you have a function called @code{file} that you want to skip, use
@kbd{skip function file}.)

@kindex skip file
@item skip file @r{[}@var{filename}@r{]}
After running this command, any function whose source lives in @var{filename}
will be skipped over when stepping.

@smallexample
(gdb) skip file boring.c
File boring.c will be skipped when stepping.
@end smallexample

If you do not specify @var{filename}, functions whose source lives in the file
you're currently debugging will be skipped.
@end table

Skips can be listed, deleted, disabled, and enabled, much like breakpoints.
These are the commands for managing your list of skips:

@table @code
@kindex info skip
@item info skip @r{[}@var{range}@r{]}
Print details about the specified skip(s).  If @var{range} is not specified,
print a table with details about all functions and files marked for skipping.
@code{info skip} prints the following information about each skip:

@table @emph
@item Identifier
A number identifying this skip.
@item Enabled or Disabled
Enabled skips are marked with @samp{y}.
Disabled skips are marked with @samp{n}.
@item Glob
If the file name is a @samp{glob} pattern this is @samp{y}.
Otherwise it is @samp{n}.
@item File
The name or @samp{glob} pattern of the file to be skipped.
If no file is specified this is @samp{<none>}.
@item RE
If the function name is a @samp{regular expression} this is @samp{y}.
Otherwise it is @samp{n}.
@item Function
The name or regular expression of the function to skip.
If no function is specified this is @samp{<none>}.
@end table

@kindex skip delete
@item skip delete @r{[}@var{range}@r{]}
Delete the specified skip(s).  If @var{range} is not specified, delete all
skips.

@kindex skip enable
@item skip enable @r{[}@var{range}@r{]}
Enable the specified skip(s).  If @var{range} is not specified, enable all
skips.

@kindex skip disable
@item skip disable @r{[}@var{range}@r{]}
Disable the specified skip(s).  If @var{range} is not specified, disable all
skips.

@kindex set debug skip
@item set debug skip @r{[}on|off@r{]}
Set whether to print the debug output about skipping files and functions.

@kindex show debug skip
@item show debug skip
Show whether the debug output about skipping files and functions is printed.

@end table

@node Signals
@section Signals
@cindex signals

A signal is an asynchronous event that can happen in a program.  The
operating system defines the possible kinds of signals, and gives each
kind a name and a number.  For example, in Unix @code{SIGINT} is the
signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
@code{SIGSEGV} is the signal a program gets from referencing a place in
memory far away from all the areas in use; @code{SIGALRM} occurs when
the alarm clock timer goes off (which happens only if your program has
requested an alarm).

@cindex fatal signals
Some signals, including @code{SIGALRM}, are a normal part of the
functioning of your program.  Others, such as @code{SIGSEGV}, indicate
errors; these signals are @dfn{fatal} (they kill your program immediately) if the
program has not specified in advance some other way to handle the signal.
@code{SIGINT} does not indicate an error in your program, but it is normally
fatal so it can carry out the purpose of the interrupt: to kill the program.

@value{GDBN} has the ability to detect any occurrence of a signal in your
program.  You can tell @value{GDBN} in advance what to do for each kind of
signal.

@cindex handling signals
Normally, @value{GDBN} is set up to let the non-erroneous signals like
@code{SIGALRM} be silently passed to your program
(so as not to interfere with their role in the program's functioning)
but to stop your program immediately whenever an error signal happens.
You can change these settings with the @code{handle} command.

@table @code
@kindex info signals
@kindex info handle
@item info signals
@itemx info handle
Print a table of all the kinds of signals and how @value{GDBN} has been told to
handle each one.  You can use this to see the signal numbers of all
the defined types of signals.

@item info signals @var{sig}
Similar, but print information only about the specified signal number.

@code{info handle} is an alias for @code{info signals}.

@item catch signal @r{[}@var{signal}@dots{} @r{|} @samp{all}@r{]}
Set a catchpoint for the indicated signals.  @xref{Set Catchpoints},
for details about this command.

@kindex handle
@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
Change the way @value{GDBN} handles signal @var{signal}.  The @var{signal}
can be the number of a signal or its name (with or without the
@samp{SIG} at the beginning); a list of signal numbers of the form
@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
known signals.  Optional arguments @var{keywords}, described below,
say what change to make.
@end table

@c @group
The keywords allowed by the @code{handle} command can be abbreviated.
Their full names are:

@table @code
@item nostop
@value{GDBN} should not stop your program when this signal happens.  It may
still print a message telling you that the signal has come in.

@item stop
@value{GDBN} should stop your program when this signal happens.  This implies
the @code{print} keyword as well.

@item print
@value{GDBN} should print a message when this signal happens.

@item noprint
@value{GDBN} should not mention the occurrence of the signal at all.  This
implies the @code{nostop} keyword as well.

@item pass
@itemx noignore
@value{GDBN} should allow your program to see this signal; your program
can handle the signal, or else it may terminate if the signal is fatal
and not handled.  @code{pass} and @code{noignore} are synonyms.

@item nopass
@itemx ignore
@value{GDBN} should not allow your program to see this signal.
@code{nopass} and @code{ignore} are synonyms.
@end table
@c @end group

When a signal stops your program, the signal is not visible to the
program until you
continue.  Your program sees the signal then, if @code{pass} is in
effect for the signal in question @emph{at that time}.  In other words,
after @value{GDBN} reports a signal, you can use the @code{handle}
command with @code{pass} or @code{nopass} to control whether your
program sees that signal when you continue.

The default is set to @code{nostop}, @code{noprint}, @code{pass} for
non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
erroneous signals.

You can also use the @code{signal} command to prevent your program from
seeing a signal, or cause it to see a signal it normally would not see,
or to give it any signal at any time.  For example, if your program stopped
due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more
execution; but your program would probably terminate immediately as
a result of the fatal signal once it saw the signal.  To prevent this,
you can continue with @samp{signal 0}.  @xref{Signaling, ,Giving your
Program a Signal}.

@cindex stepping and signal handlers
@anchor{stepping and signal handlers}

@value{GDBN} optimizes for stepping the mainline code.  If a signal
that has @code{handle nostop} and @code{handle pass} set arrives while
a stepping command (e.g., @code{stepi}, @code{step}, @code{next}) is
in progress, @value{GDBN} lets the signal handler run and then resumes
stepping the mainline code once the signal handler returns.  In other
words, @value{GDBN} steps over the signal handler.  This prevents
signals that you've specified as not interesting (with @code{handle
nostop}) from changing the focus of debugging unexpectedly.  Note that
the signal handler itself may still hit a breakpoint, stop for another
signal that has @code{handle stop} in effect, or for any other event
that normally results in stopping the stepping command sooner.  Also
note that @value{GDBN} still informs you that the program received a
signal if @code{handle print} is set.

@anchor{stepping into signal handlers}

If you set @code{handle pass} for a signal, and your program sets up a
handler for it, then issuing a stepping command, such as @code{step}
or @code{stepi}, when your program is stopped due to the signal will
step @emph{into} the signal handler (if the target supports that).

Likewise, if you use the @code{queue-signal} command to queue a signal
to be delivered to the current thread when execution of the thread
resumes (@pxref{Signaling, ,Giving your Program a Signal}), then a
stepping command will step into the signal handler.

Here's an example, using @code{stepi} to step to the first instruction
of @code{SIGUSR1}'s handler:

@smallexample
(@value{GDBP}) handle SIGUSR1
Signal        Stop      Print   Pass to program Description
SIGUSR1       Yes       Yes     Yes             User defined signal 1
(@value{GDBP}) c
Continuing.

Program received signal SIGUSR1, User defined signal 1.
main () sigusr1.c:28
28        p = 0;
(@value{GDBP}) si
sigusr1_handler () at sigusr1.c:9
9       @{
@end smallexample

The same, but using @code{queue-signal} instead of waiting for the
program to receive the signal first:

@smallexample
(@value{GDBP}) n
28        p = 0;
(@value{GDBP}) queue-signal SIGUSR1
(@value{GDBP}) si
sigusr1_handler () at sigusr1.c:9
9       @{
(@value{GDBP})
@end smallexample

@cindex extra signal information
@anchor{extra signal information}

On some targets, @value{GDBN} can inspect extra signal information
associated with the intercepted signal, before it is actually
delivered to the program being debugged.  This information is exported
by the convenience variable @code{$_siginfo}, and consists of data
that is passed by the kernel to the signal handler at the time of the
receipt of a signal.  The data type of the information itself is
target dependent.  You can see the data type using the @code{ptype
$_siginfo} command.  On Unix systems, it typically corresponds to the
standard @code{siginfo_t} type, as defined in the @file{signal.h}
system header.

Here's an example, on a @sc{gnu}/Linux system, printing the stray
referenced address that raised a segmentation fault.

@smallexample
@group
(@value{GDBP}) continue
Program received signal SIGSEGV, Segmentation fault.
0x0000000000400766 in main ()
69        *(int *)p = 0;
(@value{GDBP}) ptype $_siginfo
type = struct @{
    int si_signo;
    int si_errno;
    int si_code;
    union @{
        int _pad[28];
        struct @{...@} _kill;
        struct @{...@} _timer;
        struct @{...@} _rt;
        struct @{...@} _sigchld;
        struct @{...@} _sigfault;
        struct @{...@} _sigpoll;
    @} _sifields;
@}
(@value{GDBP}) ptype $_siginfo._sifields._sigfault
type = struct @{
    void *si_addr;
@}
(@value{GDBP}) p $_siginfo._sifields._sigfault.si_addr
$1 = (void *) 0x7ffff7ff7000
@end group
@end smallexample

Depending on target support, @code{$_siginfo} may also be writable.

@cindex Intel MPX boundary violations
@cindex boundary violations, Intel MPX
On some targets, a @code{SIGSEGV} can be caused by a boundary
violation, i.e., accessing an address outside of the allowed range.
In those cases @value{GDBN} may displays additional information,
depending on how @value{GDBN} has been told to handle the signal.
With @code{handle stop SIGSEGV}, @value{GDBN} displays the violation
kind: "Upper" or "Lower", the memory address accessed and the
bounds, while with @code{handle nostop SIGSEGV} no additional
information is displayed.

The usual output of a segfault is:
@smallexample
Program received signal SIGSEGV, Segmentation fault
0x0000000000400d7c in upper () at i386-mpx-sigsegv.c:68
68        value = *(p + len);
@end smallexample

While a bound violation is presented as:
@smallexample
Program received signal SIGSEGV, Segmentation fault
Upper bound violation while accessing address 0x7fffffffc3b3
Bounds: [lower = 0x7fffffffc390, upper = 0x7fffffffc3a3]
0x0000000000400d7c in upper () at i386-mpx-sigsegv.c:68
68        value = *(p + len);
@end smallexample

@node Thread Stops
@section Stopping and Starting Multi-thread Programs

@cindex stopped threads
@cindex threads, stopped

@cindex continuing threads
@cindex threads, continuing

@value{GDBN} supports debugging programs with multiple threads
(@pxref{Threads,, Debugging Programs with Multiple Threads}).  There
are two modes of controlling execution of your program within the
debugger.  In the default mode, referred to as @dfn{all-stop mode},
when any thread in your program stops (for example, at a breakpoint 
or while being stepped), all other threads in the program are also stopped by 
@value{GDBN}.  On some targets, @value{GDBN} also supports 
@dfn{non-stop mode}, in which other threads can continue to run freely while
you examine the stopped thread in the debugger.

@menu
* All-Stop Mode::		All threads stop when GDB takes control
* Non-Stop Mode::		Other threads continue to execute
* Background Execution::	Running your program asynchronously
* Thread-Specific Breakpoints::	Controlling breakpoints
* Interrupted System Calls::	GDB may interfere with system calls
* Observer Mode::               GDB does not alter program behavior
@end menu

@node All-Stop Mode
@subsection All-Stop Mode

@cindex all-stop mode

In all-stop mode, whenever your program stops under @value{GDBN} for any reason,
@emph{all} threads of execution stop, not just the current thread.  This
allows you to examine the overall state of the program, including
switching between threads, without worrying that things may change
underfoot.

Conversely, whenever you restart the program, @emph{all} threads start
executing.  @emph{This is true even when single-stepping} with commands
like @code{step} or @code{next}.

In particular, @value{GDBN} cannot single-step all threads in lockstep.
Since thread scheduling is up to your debugging target's operating
system (not controlled by @value{GDBN}), other threads may
execute more than one statement while the current thread completes a
single step.  Moreover, in general other threads stop in the middle of a
statement, rather than at a clean statement boundary, when the program
stops.

You might even find your program stopped in another thread after
continuing or even single-stepping.  This happens whenever some other
thread runs into a breakpoint, a signal, or an exception before the
first thread completes whatever you requested.

@cindex automatic thread selection
@cindex switching threads automatically
@cindex threads, automatic switching
Whenever @value{GDBN} stops your program, due to a breakpoint or a
signal, it automatically selects the thread where that breakpoint or
signal happened.  @value{GDBN} alerts you to the context switch with a
message such as @samp{[Switching to Thread @var{n}]} to identify the
thread.  

On some OSes, you can modify @value{GDBN}'s default behavior by
locking the OS scheduler to allow only a single thread to run.

@table @code
@item set scheduler-locking @var{mode}
@cindex scheduler locking mode
@cindex lock scheduler
Set the scheduler locking mode.  It applies to normal execution,
record mode, and replay mode.  If it is @code{off}, then there is no
locking and any thread may run at any time.  If @code{on}, then only
the current thread may run when the inferior is resumed.  The
@code{step} mode optimizes for single-stepping; it prevents other
threads from preempting the current thread while you are stepping, so
that the focus of debugging does not change unexpectedly.  Other
threads never get a chance to run when you step, and they are
completely free to run when you use commands like @samp{continue},
@samp{until}, or @samp{finish}.  However, unless another thread hits a
breakpoint during its timeslice, @value{GDBN} does not change the
current thread away from the thread that you are debugging.  The
@code{replay} mode behaves like @code{off} in record mode and like
@code{on} in replay mode.

@item show scheduler-locking
Display the current scheduler locking mode.
@end table

@cindex resume threads of multiple processes simultaneously
By default, when you issue one of the execution commands such as
@code{continue}, @code{next} or @code{step}, @value{GDBN} allows only
threads of the current inferior to run.  For example, if @value{GDBN}
is attached to two inferiors, each with two threads, the
@code{continue} command resumes only the two threads of the current
inferior.  This is useful, for example, when you debug a program that
forks and you want to hold the parent stopped (so that, for instance,
it doesn't run to exit), while you debug the child.  In other
situations, you may not be interested in inspecting the current state
of any of the processes @value{GDBN} is attached to, and you may want
to resume them all until some breakpoint is hit.  In the latter case,
you can instruct @value{GDBN} to allow all threads of all the
inferiors to run with the @w{@code{set schedule-multiple}} command.

@table @code
@kindex set schedule-multiple
@item set schedule-multiple
Set the mode for allowing threads of multiple processes to be resumed
when an execution command is issued.  When @code{on}, all threads of
all processes are allowed to run.  When @code{off}, only the threads
of the current process are resumed.  The default is @code{off}.  The
@code{scheduler-locking} mode takes precedence when set to @code{on},
or while you are stepping and set to @code{step}.

@item show schedule-multiple
Display the current mode for resuming the execution of threads of
multiple processes.
@end table

@node Non-Stop Mode
@subsection Non-Stop Mode

@cindex non-stop mode

@c This section is really only a place-holder, and needs to be expanded
@c with more details.

For some multi-threaded targets, @value{GDBN} supports an optional
mode of operation in which you can examine stopped program threads in
the debugger while other threads continue to execute freely.  This
minimizes intrusion when debugging live systems, such as programs
where some threads have real-time constraints or must continue to
respond to external events.  This is referred to as @dfn{non-stop} mode.

In non-stop mode, when a thread stops to report a debugging event,
@emph{only} that thread is stopped; @value{GDBN} does not stop other
threads as well, in contrast to the all-stop mode behavior.  Additionally,
execution commands such as @code{continue} and @code{step} apply by default
only to the current thread in non-stop mode, rather than all threads as
in all-stop mode.  This allows you to control threads explicitly in
ways that are not possible in all-stop mode --- for example, stepping
one thread while allowing others to run freely, stepping
one thread while holding all others stopped, or stepping several threads
independently and simultaneously.

To enter non-stop mode, use this sequence of commands before you run
or attach to your program:

@smallexample
# If using the CLI, pagination breaks non-stop.
set pagination off

# Finally, turn it on!
set non-stop on
@end smallexample

You can use these commands to manipulate the non-stop mode setting:

@table @code
@kindex set non-stop
@item set non-stop on
Enable selection of non-stop mode.
@item set non-stop off
Disable selection of non-stop mode.
@kindex show non-stop
@item show non-stop
Show the current non-stop enablement setting.
@end table

Note these commands only reflect whether non-stop mode is enabled,
not whether the currently-executing program is being run in non-stop mode.
In particular, the @code{set non-stop} preference is only consulted when
@value{GDBN} starts or connects to the target program, and it is generally
not possible to switch modes once debugging has started.  Furthermore,
since not all targets support non-stop mode, even when you have enabled
non-stop mode, @value{GDBN} may still fall back to all-stop operation by
default.

In non-stop mode, all execution commands apply only to the current thread
by default.  That is, @code{continue} only continues one thread.
To continue all threads, issue @code{continue -a} or @code{c -a}.

You can use @value{GDBN}'s background execution commands
(@pxref{Background Execution}) to run some threads in the background
while you continue to examine or step others from @value{GDBN}.
The MI execution commands (@pxref{GDB/MI Program Execution}) are
always executed asynchronously in non-stop mode.

Suspending execution is done with the @code{interrupt} command when
running in the background, or @kbd{Ctrl-c} during foreground execution.
In all-stop mode, this stops the whole process;
but in non-stop mode the interrupt applies only to the current thread.
To stop the whole program, use @code{interrupt -a}.

Other execution commands do not currently support the @code{-a} option.

In non-stop mode, when a thread stops, @value{GDBN} doesn't automatically make
that thread current, as it does in all-stop mode.  This is because the
thread stop notifications are asynchronous with respect to @value{GDBN}'s
command interpreter, and it would be confusing if @value{GDBN} unexpectedly
changed to a different thread just as you entered a command to operate on the
previously current thread.

@node Background Execution
@subsection Background Execution

@cindex foreground execution
@cindex background execution
@cindex asynchronous execution
@cindex execution, foreground, background and asynchronous

@value{GDBN}'s execution commands have two variants:  the normal
foreground (synchronous) behavior, and a background
(asynchronous) behavior.  In foreground execution, @value{GDBN} waits for
the program to report that some thread has stopped before prompting for
another command.  In background execution, @value{GDBN} immediately gives
a command prompt so that you can issue other commands while your program runs.

If the target doesn't support async mode, @value{GDBN} issues an error
message if you attempt to use the background execution commands.

@cindex @code{&}, background execution of commands
To specify background execution, add a @code{&} to the command.  For example,
the background form of the @code{continue} command is @code{continue&}, or
just @code{c&}.  The execution commands that accept background execution
are:

@table @code
@kindex run&
@item run
@xref{Starting, , Starting your Program}.

@item attach
@kindex attach&
@xref{Attach, , Debugging an Already-running Process}.

@item step
@kindex step&
@xref{Continuing and Stepping, step}.

@item stepi
@kindex stepi&
@xref{Continuing and Stepping, stepi}.

@item next
@kindex next&
@xref{Continuing and Stepping, next}.

@item nexti
@kindex nexti&
@xref{Continuing and Stepping, nexti}.

@item continue
@kindex continue&
@xref{Continuing and Stepping, continue}.

@item finish
@kindex finish&
@xref{Continuing and Stepping, finish}.

@item until
@kindex until&
@xref{Continuing and Stepping, until}.

@end table

Background execution is especially useful in conjunction with non-stop
mode for debugging programs with multiple threads; see @ref{Non-Stop Mode}.
However, you can also use these commands in the normal all-stop mode with
the restriction that you cannot issue another execution command until the
previous one finishes.  Examples of commands that are valid in all-stop
mode while the program is running include @code{help} and @code{info break}.

You can interrupt your program while it is running in the background by
using the @code{interrupt} command.

@table @code
@kindex interrupt
@item interrupt
@itemx interrupt -a

Suspend execution of the running program.  In all-stop mode,
@code{interrupt} stops the whole process, but in non-stop mode, it stops
only the current thread.  To stop the whole program in non-stop mode,
use @code{interrupt -a}.
@end table

@node Thread-Specific Breakpoints
@subsection Thread-Specific Breakpoints

When your program has multiple threads (@pxref{Threads,, Debugging
Programs with Multiple Threads}), you can choose whether to set
breakpoints on all threads, or on a particular thread.

@table @code
@cindex breakpoints and threads
@cindex thread breakpoints
@kindex break @dots{} thread @var{thread-id}
@item break @var{location} thread @var{thread-id}
@itemx break @var{location} thread @var{thread-id} if @dots{}
@var{location} specifies source lines; there are several ways of
writing them (@pxref{Specify Location}), but the effect is always to
specify some source line.

Use the qualifier @samp{thread @var{thread-id}} with a breakpoint command
to specify that you only want @value{GDBN} to stop the program when a
particular thread reaches this breakpoint.  The @var{thread-id} specifier
is one of the thread identifiers assigned by @value{GDBN}, shown
in the first column of the @samp{info threads} display.

If you do not specify @samp{thread @var{thread-id}} when you set a
breakpoint, the breakpoint applies to @emph{all} threads of your
program.

You can use the @code{thread} qualifier on conditional breakpoints as
well; in this case, place @samp{thread @var{thread-id}} before or
after the breakpoint condition, like this:

@smallexample
(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
@end smallexample

@end table

Thread-specific breakpoints are automatically deleted when
@value{GDBN} detects the corresponding thread is no longer in the
thread list.  For example:

@smallexample
(@value{GDBP}) c
Thread-specific breakpoint 3 deleted - thread 28 no longer in the thread list.
@end smallexample

There are several ways for a thread to disappear, such as a regular
thread exit, but also when you detach from the process with the
@code{detach} command (@pxref{Attach, ,Debugging an Already-running
Process}), or if @value{GDBN} loses the remote connection
(@pxref{Remote Debugging}), etc.  Note that with some targets,
@value{GDBN} is only able to detect a thread has exited when the user
explictly asks for the thread list with the @code{info threads}
command.

@node Interrupted System Calls
@subsection Interrupted System Calls 

@cindex thread breakpoints and system calls
@cindex system calls and thread breakpoints
@cindex premature return from system calls
There is an unfortunate side effect when using @value{GDBN} to debug
multi-threaded programs.  If one thread stops for a
breakpoint, or for some other reason, and another thread is blocked in a
system call, then the system call may return prematurely.  This is a
consequence of the interaction between multiple threads and the signals
that @value{GDBN} uses to implement breakpoints and other events that
stop execution.

To handle this problem, your program should check the return value of
each system call and react appropriately.  This is good programming
style anyways.

For example, do not write code like this:

@smallexample
  sleep (10);
@end smallexample

The call to @code{sleep} will return early if a different thread stops
at a breakpoint or for some other reason.

Instead, write this:

@smallexample
  int unslept = 10;
  while (unslept > 0)
    unslept = sleep (unslept);
@end smallexample

A system call is allowed to return early, so the system is still
conforming to its specification.  But @value{GDBN} does cause your
multi-threaded program to behave differently than it would without
@value{GDBN}.

Also, @value{GDBN} uses internal breakpoints in the thread library to
monitor certain events such as thread creation and thread destruction.
When such an event happens, a system call in another thread may return
prematurely, even though your program does not appear to stop.

@node Observer Mode
@subsection Observer Mode

If you want to build on non-stop mode and observe program behavior
without any chance of disruption by @value{GDBN}, you can set
variables to disable all of the debugger's attempts to modify state,
whether by writing memory, inserting breakpoints, etc.  These operate
at a low level, intercepting operations from all commands.

When all of these are set to @code{off}, then @value{GDBN} is said to
be @dfn{observer mode}.  As a convenience, the variable
@code{observer} can be set to disable these, plus enable non-stop
mode.

Note that @value{GDBN} will not prevent you from making nonsensical
combinations of these settings. For instance, if you have enabled
@code{may-insert-breakpoints} but disabled @code{may-write-memory},
then breakpoints that work by writing trap instructions into the code
stream will still not be able to be placed.

@table @code

@kindex observer
@item set observer on
@itemx set observer off
When set to @code{on}, this disables all the permission variables
below (except for @code{insert-fast-tracepoints}), plus enables
non-stop debugging.  Setting this to @code{off} switches back to
normal debugging, though remaining in non-stop mode.

@item show observer
Show whether observer mode is on or off.

@kindex may-write-registers
@item set may-write-registers on
@itemx set may-write-registers off
This controls whether @value{GDBN} will attempt to alter the values of
registers, such as with assignment expressions in @code{print}, or the
@code{jump} command.  It defaults to @code{on}.

@item show may-write-registers
Show the current permission to write registers.

@kindex may-write-memory
@item set may-write-memory on
@itemx set may-write-memory off
This controls whether @value{GDBN} will attempt to alter the contents
of memory, such as with assignment expressions in @code{print}.  It
defaults to @code{on}.

@item show may-write-memory
Show the current permission to write memory.

@kindex may-insert-breakpoints
@item set may-insert-breakpoints on
@itemx set may-insert-breakpoints off
This controls whether @value{GDBN} will attempt to insert breakpoints.
This affects all breakpoints, including internal breakpoints defined
by @value{GDBN}.  It defaults to @code{on}.

@item show may-insert-breakpoints
Show the current permission to insert breakpoints.

@kindex may-insert-tracepoints
@item set may-insert-tracepoints on
@itemx set may-insert-tracepoints off
This controls whether @value{GDBN} will attempt to insert (regular)
tracepoints at the beginning of a tracing experiment.  It affects only
non-fast tracepoints, fast tracepoints being under the control of
@code{may-insert-fast-tracepoints}.  It defaults to @code{on}.

@item show may-insert-tracepoints
Show the current permission to insert tracepoints.

@kindex may-insert-fast-tracepoints
@item set may-insert-fast-tracepoints on
@itemx set may-insert-fast-tracepoints off
This controls whether @value{GDBN} will attempt to insert fast
tracepoints at the beginning of a tracing experiment.  It affects only
fast tracepoints, regular (non-fast) tracepoints being under the
control of @code{may-insert-tracepoints}.  It defaults to @code{on}.

@item show may-insert-fast-tracepoints
Show the current permission to insert fast tracepoints.

@kindex may-interrupt
@item set may-interrupt on
@itemx set may-interrupt off
This controls whether @value{GDBN} will attempt to interrupt or stop
program execution.  When this variable is @code{off}, the
@code{interrupt} command will have no effect, nor will
@kbd{Ctrl-c}. It defaults to @code{on}.

@item show may-interrupt
Show the current permission to interrupt or stop the program.

@end table

@node Reverse Execution
@chapter Running programs backward
@cindex reverse execution
@cindex running programs backward

When you are debugging a program, it is not unusual to realize that
you have gone too far, and some event of interest has already happened.
If the target environment supports it, @value{GDBN} can allow you to
``rewind'' the program by running it backward.

A target environment that supports reverse execution should be able
to ``undo'' the changes in machine state that have taken place as the
program was executing normally.  Variables, registers etc.@: should
revert to their previous values.  Obviously this requires a great
deal of sophistication on the part of the target environment; not
all target environments can support reverse execution.

When a program is executed in reverse, the instructions that
have most recently been executed are ``un-executed'', in reverse
order.  The program counter runs backward, following the previous
thread of execution in reverse.  As each instruction is ``un-executed'',
the values of memory and/or registers that were changed by that
instruction are reverted to their previous states.  After executing
a piece of source code in reverse, all side effects of that code
should be ``undone'', and all variables should be returned to their
prior values@footnote{
Note that some side effects are easier to undo than others.  For instance,
memory and registers are relatively easy, but device I/O is hard.  Some
targets may be able undo things like device I/O, and some may not.

The contract between @value{GDBN} and the reverse executing target
requires only that the target do something reasonable when
@value{GDBN} tells it to execute backwards, and then report the 
results back to @value{GDBN}.  Whatever the target reports back to
@value{GDBN}, @value{GDBN} will report back to the user.  @value{GDBN}
assumes that the memory and registers that the target reports are in a
consistent state, but @value{GDBN} accepts whatever it is given.
}.

On some platforms, @value{GDBN} has built-in support for reverse
execution, activated with the @code{record} or @code{record btrace}
commands.  @xref{Process Record and Replay}.  Some remote targets,
typically full system emulators, support reverse execution directly
without requiring any special command.

If you are debugging in a target environment that supports
reverse execution, @value{GDBN} provides the following commands.

@table @code
@kindex reverse-continue
@kindex rc @r{(@code{reverse-continue})}
@item reverse-continue @r{[}@var{ignore-count}@r{]}
@itemx rc @r{[}@var{ignore-count}@r{]}
Beginning at the point where your program last stopped, start executing
in reverse.  Reverse execution will stop for breakpoints and synchronous
exceptions (signals), just like normal execution.  Behavior of
asynchronous signals depends on the target environment.

@kindex reverse-step
@kindex rs @r{(@code{step})}
@item reverse-step @r{[}@var{count}@r{]}
Run the program backward until control reaches the start of a
different source line; then stop it, and return control to @value{GDBN}.

Like the @code{step} command, @code{reverse-step} will only stop
at the beginning of a source line.  It ``un-executes'' the previously
executed source line.  If the previous source line included calls to
debuggable functions, @code{reverse-step} will step (backward) into
the called function, stopping at the beginning of the @emph{last}
statement in the called function (typically a return statement).

Also, as with the @code{step} command, if non-debuggable functions are
called, @code{reverse-step} will run thru them backward without stopping.

@kindex reverse-stepi
@kindex rsi @r{(@code{reverse-stepi})}
@item reverse-stepi @r{[}@var{count}@r{]}
Reverse-execute one machine instruction.  Note that the instruction
to be reverse-executed is @emph{not} the one pointed to by the program
counter, but the instruction executed prior to that one.  For instance,
if the last instruction was a jump, @code{reverse-stepi} will take you
back from the destination of the jump to the jump instruction itself.

@kindex reverse-next
@kindex rn @r{(@code{reverse-next})}
@item reverse-next @r{[}@var{count}@r{]}
Run backward to the beginning of the previous line executed in
the current (innermost) stack frame.  If the line contains function
calls, they will be ``un-executed'' without stopping.  Starting from
the first line of a function, @code{reverse-next} will take you back
to the caller of that function, @emph{before} the function was called,
just as the normal @code{next} command would take you from the last 
line of a function back to its return to its caller
@footnote{Unless the code is too heavily optimized.}.

@kindex reverse-nexti
@kindex rni @r{(@code{reverse-nexti})}
@item reverse-nexti @r{[}@var{count}@r{]}
Like @code{nexti}, @code{reverse-nexti} executes a single instruction
in reverse, except that called functions are ``un-executed'' atomically.
That is, if the previously executed instruction was a return from
another function, @code{reverse-nexti} will continue to execute
in reverse until the call to that function (from the current stack
frame) is reached.

@kindex reverse-finish
@item reverse-finish
Just as the @code{finish} command takes you to the point where the
current function returns, @code{reverse-finish} takes you to the point
where it was called.  Instead of ending up at the end of the current
function invocation, you end up at the beginning.

@kindex set exec-direction
@item set exec-direction
Set the direction of target execution.
@item set exec-direction reverse
@cindex execute forward or backward in time
@value{GDBN} will perform all execution commands in reverse, until the
exec-direction mode is changed to ``forward''.  Affected commands include
@code{step, stepi, next, nexti, continue, and finish}.  The @code{return}
command cannot be used in reverse mode.
@item set exec-direction forward
@value{GDBN} will perform all execution commands in the normal fashion.
This is the default.
@end table


@node Process Record and Replay
@chapter Recording Inferior's Execution and Replaying It
@cindex process record and replay
@cindex recording inferior's execution and replaying it

On some platforms, @value{GDBN} provides a special @dfn{process record
and replay} target that can record a log of the process execution, and
replay it later with both forward and reverse execution commands.

@cindex replay mode
When this target is in use, if the execution log includes the record
for the next instruction, @value{GDBN} will debug in @dfn{replay
mode}.  In the replay mode, the inferior does not really execute code
instructions.  Instead, all the events that normally happen during
code execution are taken from the execution log.  While code is not
really executed in replay mode, the values of registers (including the
program counter register) and the memory of the inferior are still
changed as they normally would.  Their contents are taken from the
execution log.

@cindex record mode
If the record for the next instruction is not in the execution log,
@value{GDBN} will debug in @dfn{record mode}.  In this mode, the
inferior executes normally, and @value{GDBN} records the execution log
for future replay.

The process record and replay target supports reverse execution
(@pxref{Reverse Execution}), even if the platform on which the
inferior runs does not.  However, the reverse execution is limited in
this case by the range of the instructions recorded in the execution
log.  In other words, reverse execution on platforms that don't
support it directly can only be done in the replay mode.

When debugging in the reverse direction, @value{GDBN} will work in
replay mode as long as the execution log includes the record for the
previous instruction; otherwise, it will work in record mode, if the
platform supports reverse execution, or stop if not.

Currently, process record and replay is supported on ARM, Aarch64,
Moxie, PowerPC, PowerPC64, S/390, and x86 (i386/amd64) running
GNU/Linux.  Process record and replay can be used both when native
debugging, and when remote debugging via @code{gdbserver}.

For architecture environments that support process record and replay,
@value{GDBN} provides the following commands:

@table @code
@kindex target record
@kindex target record-full
@kindex target record-btrace
@kindex record
@kindex record full
@kindex record btrace
@kindex record btrace bts
@kindex record btrace pt
@kindex record bts
@kindex record pt
@kindex rec
@kindex rec full
@kindex rec btrace
@kindex rec btrace bts
@kindex rec btrace pt
@kindex rec bts
@kindex rec pt
@item record @var{method}
This command starts the process record and replay target.  The
recording method can be specified as parameter.  Without a parameter
the command uses the @code{full} recording method.  The following
recording methods are available:

@table @code
@item full
Full record/replay recording using @value{GDBN}'s software record and
replay implementation.  This method allows replaying and reverse
execution.

@item btrace @var{format}
Hardware-supported instruction recording, supported on Intel
processors.  This method does not record data.  Further, the data is
collected in a ring buffer so old data will be overwritten when the
buffer is full.  It allows limited reverse execution.  Variables and
registers are not available during reverse execution.  In remote
debugging, recording continues on disconnect.  Recorded data can be
inspected after reconnecting.  The recording may be stopped using
@code{record stop}.

The recording format can be specified as parameter.  Without a parameter
the command chooses the recording format.  The following recording
formats are available:

@table @code
@item bts
@cindex branch trace store
Use the @dfn{Branch Trace Store} (@acronym{BTS}) recording format.  In
this format, the processor stores a from/to record for each executed
branch in the btrace ring buffer.

@item pt
@cindex Intel Processor Trace
Use the @dfn{Intel Processor Trace} recording format.  In this
format, the processor stores the execution trace in a compressed form
that is afterwards decoded by @value{GDBN}.

The trace can be recorded with very low overhead.  The compressed
trace format also allows small trace buffers to already contain a big
number of instructions compared to @acronym{BTS}.

Decoding the recorded execution trace, on the other hand, is more
expensive than decoding @acronym{BTS} trace.  This is mostly due to the
increased number of instructions to process.  You should increase the
buffer-size with care.
@end table

Not all recording formats may be available on all processors.
@end table

The process record and replay target can only debug a process that is
already running.  Therefore, you need first to start the process with
the @kbd{run} or @kbd{start} commands, and then start the recording
with the @kbd{record @var{method}} command.

@cindex displaced stepping, and process record and replay
Displaced stepping (@pxref{Maintenance Commands,, displaced stepping})
will be automatically disabled when process record and replay target
is started.  That's because the process record and replay target
doesn't support displaced stepping.

@cindex non-stop mode, and process record and replay
@cindex asynchronous execution, and process record and replay
If the inferior is in the non-stop mode (@pxref{Non-Stop Mode}) or in
the asynchronous execution mode (@pxref{Background Execution}), not
all recording methods are available.  The @code{full} recording method
does not support these two modes.

@kindex record stop
@kindex rec s
@item record stop
Stop the process record and replay target.  When process record and
replay target stops, the entire execution log will be deleted and the
inferior will either be terminated, or will remain in its final state.

When you stop the process record and replay target in record mode (at
the end of the execution log), the inferior will be stopped at the
next instruction that would have been recorded.  In other words, if
you record for a while and then stop recording, the inferior process
will be left in the same state as if the recording never happened.

On the other hand, if the process record and replay target is stopped
while in replay mode (that is, not at the end of the execution log,
but at some earlier point), the inferior process will become ``live''
at that earlier state, and it will then be possible to continue the
usual ``live'' debugging of the process from that state.

When the inferior process exits, or @value{GDBN} detaches from it,
process record and replay target will automatically stop itself.

@kindex record goto
@item record goto
Go to a specific location in the execution log.  There are several
ways to specify the location to go to:

@table @code
@item record goto begin
@itemx record goto start
Go to the beginning of the execution log.

@item record goto end
Go to the end of the execution log.

@item record goto @var{n}
Go to instruction number @var{n} in the execution log.
@end table

@kindex record save
@item record save @var{filename}
Save the execution log to a file @file{@var{filename}}.
Default filename is @file{gdb_record.@var{process_id}}, where
@var{process_id} is the process ID of the inferior.

This command may not be available for all recording methods.

@kindex record restore
@item record restore @var{filename}
Restore the execution log from a file @file{@var{filename}}.
File must have been created with @code{record save}.

@kindex set record full
@item set record full insn-number-max @var{limit}
@itemx set record full insn-number-max unlimited
Set the limit of instructions to be recorded for the @code{full}
recording method.  Default value is 200000.

If @var{limit} is a positive number, then @value{GDBN} will start
deleting instructions from the log once the number of the record
instructions becomes greater than @var{limit}.  For every new recorded
instruction, @value{GDBN} will delete the earliest recorded
instruction to keep the number of recorded instructions at the limit.
(Since deleting recorded instructions loses information, @value{GDBN}
lets you control what happens when the limit is reached, by means of
the @code{stop-at-limit} option, described below.)

If @var{limit} is @code{unlimited} or zero, @value{GDBN} will never
delete recorded instructions from the execution log.  The number of
recorded instructions is limited only by the available memory.

@kindex show record full
@item show record full insn-number-max
Show the limit of instructions to be recorded with the @code{full}
recording method.

@item set record full stop-at-limit
Control the behavior of the  @code{full} recording method when the
number of recorded instructions reaches the limit.  If ON (the
default), @value{GDBN} will stop when the limit is reached for the
first time and ask you whether you want to stop the inferior or
continue running it and recording the execution log.  If you decide
to continue recording, each new recorded instruction will cause the
oldest one to be deleted.

If this option is OFF, @value{GDBN} will automatically delete the
oldest record to make room for each new one, without asking.

@item show record full stop-at-limit
Show the current setting of @code{stop-at-limit}.

@item set record full memory-query
Control the behavior when @value{GDBN} is unable to record memory
changes caused by an instruction for the @code{full} recording method.
If ON, @value{GDBN} will query whether to stop the inferior in that
case.

If this option is OFF (the default), @value{GDBN} will automatically
ignore the effect of such instructions on memory.  Later, when
@value{GDBN} replays this execution log, it will mark the log of this
instruction as not accessible, and it will not affect the replay
results.

@item show record full memory-query
Show the current setting of @code{memory-query}.

@kindex set record btrace
The @code{btrace} record target does not trace data.  As a
convenience, when replaying, @value{GDBN} reads read-only memory off
the live program directly, assuming that the addresses of the
read-only areas don't change.  This for example makes it possible to
disassemble code while replaying, but not to print variables.
In some cases, being able to inspect variables might be useful.
You can use the following command for that:

@item set record btrace replay-memory-access
Control the behavior of the @code{btrace} recording method when
accessing memory during replay.  If @code{read-only} (the default),
@value{GDBN} will only allow accesses to read-only memory.
If @code{read-write}, @value{GDBN} will allow accesses to read-only
and to read-write memory.  Beware that the accessed memory corresponds
to the live target and not necessarily to the current replay
position.

@item set record btrace cpu @var{identifier}
Set the processor to be used for enabling workarounds for processor
errata when decoding the trace.

Processor errata are defects in processor operation, caused by its
design or manufacture.  They can cause a trace not to match the
specification.  This, in turn, may cause trace decode to fail.
@value{GDBN} can detect erroneous trace packets and correct them, thus
avoiding the decoding failures.  These corrections are known as
@dfn{errata workarounds}, and are enabled based on the processor on
which the trace was recorded.

By default, @value{GDBN} attempts to detect the processor
automatically, and apply the necessary workarounds for it.  However,
you may need to specify the processor if @value{GDBN} does not yet
support it.  This command allows you to do that, and also allows to
disable the workarounds.

The argument @var{identifier} identifies the @sc{cpu} and is of the
form: @code{@var{vendor}:@var{processor identifier}}.  In addition,
there are two special identifiers, @code{none} and @code{auto}
(default).

The following vendor identifiers and corresponding processor
identifiers are currently supported:

@multitable @columnfractions .1 .9

@item @code{intel}
@tab @var{family}/@var{model}[/@var{stepping}]

@end multitable

On GNU/Linux systems, the processor @var{family}, @var{model}, and
@var{stepping} can be obtained from @code{/proc/cpuinfo}.

If @var{identifier} is @code{auto}, enable errata workarounds for the
processor on which the trace was recorded.  If @var{identifier} is
@code{none}, errata workarounds are disabled.

For example, when using an old @value{GDBN} on a new system, decode
may fail because @value{GDBN} does not support the new processor.  It
often suffices to specify an older processor that @value{GDBN}
supports.

@smallexample
(gdb) info record
Active record target: record-btrace
Recording format: Intel Processor Trace.
Buffer size: 16kB.
Failed to configure the Intel Processor Trace decoder: unknown cpu.
(gdb) set record btrace cpu intel:6/158
(gdb) info record
Active record target: record-btrace
Recording format: Intel Processor Trace.
Buffer size: 16kB.
Recorded 84872 instructions in 3189 functions (0 gaps) for thread 1 (...).
@end smallexample

@kindex show record btrace
@item show record btrace replay-memory-access
Show the current setting of @code{replay-memory-access}.

@item show record btrace cpu
Show the processor to be used for enabling trace decode errata
workarounds.

@kindex set record btrace bts
@item set record btrace bts buffer-size @var{size}
@itemx set record btrace bts buffer-size unlimited
Set the requested ring buffer size for branch tracing in @acronym{BTS}
format.  Default is 64KB.

If @var{size} is a positive number, then @value{GDBN} will try to
allocate a buffer of at least @var{size} bytes for each new thread
that uses the btrace recording method and the @acronym{BTS} format.
The actually obtained buffer size may differ from the requested
@var{size}.  Use the @code{info record} command to see the actual
buffer size for each thread that uses the btrace recording method and
the @acronym{BTS} format.

If @var{limit} is @code{unlimited} or zero, @value{GDBN} will try to
allocate a buffer of 4MB.

Bigger buffers mean longer traces.  On the other hand, @value{GDBN} will
also need longer to process the branch trace data before it can be used.

@item show record btrace bts buffer-size @var{size}
Show the current setting of the requested ring buffer size for branch
tracing in @acronym{BTS} format.

@kindex set record btrace pt
@item set record btrace pt buffer-size @var{size}
@itemx set record btrace pt buffer-size unlimited
Set the requested ring buffer size for branch tracing in Intel
Processor Trace format.  Default is 16KB.

If @var{size} is a positive number, then @value{GDBN} will try to
allocate a buffer of at least @var{size} bytes for each new thread
that uses the btrace recording method and the Intel Processor Trace
format.  The actually obtained buffer size may differ from the
requested @var{size}.  Use the @code{info record} command to see the
actual buffer size for each thread.

If @var{limit} is @code{unlimited} or zero, @value{GDBN} will try to
allocate a buffer of 4MB.

Bigger buffers mean longer traces.  On the other hand, @value{GDBN} will
also need longer to process the branch trace data before it can be used.

@item show record btrace pt buffer-size @var{size}
Show the current setting of the requested ring buffer size for branch
tracing in Intel Processor Trace format.

@kindex info record
@item info record
Show various statistics about the recording depending on the recording
method:

@table @code
@item full
For the @code{full} recording method, it shows the state of process
record and its in-memory execution log buffer, including:

@itemize @bullet
@item
Whether in record mode or replay mode.
@item
Lowest recorded instruction number (counting from when the current execution log started recording instructions).
@item
Highest recorded instruction number.
@item
Current instruction about to be replayed (if in replay mode).
@item
Number of instructions contained in the execution log.
@item
Maximum number of instructions that may be contained in the execution log.
@end itemize

@item btrace
For the @code{btrace} recording method, it shows:

@itemize @bullet
@item
Recording format.
@item
Number of instructions that have been recorded.
@item
Number of blocks of sequential control-flow formed by the recorded
instructions.
@item
Whether in record mode or replay mode.
@end itemize

For the @code{bts} recording format, it also shows:
@itemize @bullet
@item
Size of the perf ring buffer.
@end itemize

For the @code{pt} recording format, it also shows:
@itemize @bullet
@item
Size of the perf ring buffer.
@end itemize
@end table

@kindex record delete
@kindex rec del
@item record delete
When record target runs in replay mode (``in the past''), delete the
subsequent execution log and begin to record a new execution log starting
from the current address.  This means you will abandon the previously
recorded ``future'' and begin recording a new ``future''.

@kindex record instruction-history
@kindex rec instruction-history
@item record instruction-history
Disassembles instructions from the recorded execution log.  By
default, ten instructions are disassembled.  This can be changed using
the @code{set record instruction-history-size} command.  Instructions
are printed in execution order.

It can also print mixed source+disassembly if you specify the the
@code{/m} or @code{/s} modifier, and print the raw instructions in hex
as well as in symbolic form by specifying the @code{/r} modifier.

The current position marker is printed for the instruction at the
current program counter value.  This instruction can appear multiple
times in the trace and the current position marker will be printed
every time.  To omit the current position marker, specify the
@code{/p} modifier.

To better align the printed instructions when the trace contains
instructions from more than one function, the function name may be
omitted by specifying the @code{/f} modifier.

Speculatively executed instructions are prefixed with @samp{?}.  This
feature is not available for all recording formats.

There are several ways to specify what part of the execution log to
disassemble:

@table @code
@item record instruction-history @var{insn}
Disassembles ten instructions starting from instruction number
@var{insn}.

@item record instruction-history @var{insn}, +/-@var{n}
Disassembles @var{n} instructions around instruction number
@var{insn}.  If @var{n} is preceded with @code{+}, disassembles
@var{n} instructions after instruction number @var{insn}.  If
@var{n} is preceded with @code{-}, disassembles @var{n}
instructions before instruction number @var{insn}.

@item record instruction-history
Disassembles ten more instructions after the last disassembly.

@item record instruction-history -
Disassembles ten more instructions before the last disassembly.

@item record instruction-history @var{begin}, @var{end}
Disassembles instructions beginning with instruction number
@var{begin} until instruction number @var{end}.  The instruction
number @var{end} is included.
@end table

This command may not be available for all recording methods.

@kindex set record
@item set record instruction-history-size @var{size}
@itemx set record instruction-history-size unlimited
Define how many instructions to disassemble in the @code{record
instruction-history} command.  The default value is 10.
A @var{size} of @code{unlimited} means unlimited instructions.

@kindex show record
@item show record instruction-history-size
Show how many instructions to disassemble in the @code{record
instruction-history} command.

@kindex record function-call-history
@kindex rec function-call-history
@item record function-call-history
Prints the execution history at function granularity. It prints one
line for each sequence of instructions that belong to the same
function giving the name of that function, the source lines
for this instruction sequence (if the @code{/l} modifier is
specified), and the instructions numbers that form the sequence (if
the @code{/i} modifier is specified).  The function names are indented
to reflect the call stack depth if the @code{/c} modifier is
specified.  The @code{/l}, @code{/i}, and @code{/c} modifiers can be
given together.

@smallexample
(@value{GDBP}) @b{list 1, 10}
1   void foo (void)
2   @{
3   @}
4
5   void bar (void)
6   @{
7     ...
8     foo ();
9     ...
10  @}
(@value{GDBP}) @b{record function-call-history /ilc}
1  bar     inst 1,4     at foo.c:6,8
2    foo   inst 5,10    at foo.c:2,3
3  bar     inst 11,13   at foo.c:9,10
@end smallexample

By default, ten lines are printed.  This can be changed using the
@code{set record function-call-history-size} command.  Functions are
printed in execution order.  There are several ways to specify what
to print:

@table @code
@item record function-call-history @var{func}
Prints ten functions starting from function number @var{func}.

@item record function-call-history @var{func}, +/-@var{n}
Prints @var{n} functions around function number @var{func}.  If
@var{n} is preceded with @code{+}, prints @var{n} functions after
function number @var{func}.  If @var{n} is preceded with @code{-},
prints @var{n} functions before function number @var{func}.

@item record function-call-history
Prints ten more functions after the last ten-line print.

@item record function-call-history -
Prints ten more functions before the last ten-line print.

@item record function-call-history @var{begin}, @var{end}
Prints functions beginning with function number @var{begin} until
function number @var{end}.  The function number @var{end} is included.
@end table

This command may not be available for all recording methods.

@item set record function-call-history-size @var{size}
@itemx set record function-call-history-size unlimited
Define how many lines to print in the
@code{record function-call-history} command.  The default value is 10.
A size of @code{unlimited} means unlimited lines.

@item show record function-call-history-size
Show how many lines to print in the
@code{record function-call-history} command.
@end table


@node Stack
@chapter Examining the Stack

When your program has stopped, the first thing you need to know is where it
stopped and how it got there.

@cindex call stack
Each time your program performs a function call, information about the call
is generated.
That information includes the location of the call in your program,
the arguments of the call,
and the local variables of the function being called.
The information is saved in a block of data called a @dfn{stack frame}.
The stack frames are allocated in a region of memory called the @dfn{call
stack}.

When your program stops, the @value{GDBN} commands for examining the
stack allow you to see all of this information.

@cindex selected frame
One of the stack frames is @dfn{selected} by @value{GDBN} and many
@value{GDBN} commands refer implicitly to the selected frame.  In
particular, whenever you ask @value{GDBN} for the value of a variable in
your program, the value is found in the selected frame.  There are
special @value{GDBN} commands to select whichever frame you are
interested in.  @xref{Selection, ,Selecting a Frame}.

When your program stops, @value{GDBN} automatically selects the
currently executing frame and describes it briefly, similar to the
@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).

@menu
* Frames::                      Stack frames
* Backtrace::                   Backtraces
* Selection::                   Selecting a frame
* Frame Info::                  Information on a frame
* Frame Apply::                 Applying a command to several frames
* Frame Filter Management::     Managing frame filters

@end menu

@node Frames
@section Stack Frames

@cindex frame, definition
@cindex stack frame
The call stack is divided up into contiguous pieces called @dfn{stack
frames}, or @dfn{frames} for short; each frame is the data associated
with one call to one function.  The frame contains the arguments given
to the function, the function's local variables, and the address at
which the function is executing.

@cindex initial frame
@cindex outermost frame
@cindex innermost frame
When your program is started, the stack has only one frame, that of the
function @code{main}.  This is called the @dfn{initial} frame or the
@dfn{outermost} frame.  Each time a function is called, a new frame is
made.  Each time a function returns, the frame for that function invocation
is eliminated.  If a function is recursive, there can be many frames for
the same function.  The frame for the function in which execution is
actually occurring is called the @dfn{innermost} frame.  This is the most
recently created of all the stack frames that still exist.

@cindex frame pointer
Inside your program, stack frames are identified by their addresses.  A
stack frame consists of many bytes, each of which has its own address; each
kind of computer has a convention for choosing one byte whose
address serves as the address of the frame.  Usually this address is kept
in a register called the @dfn{frame pointer register}
(@pxref{Registers, $fp}) while execution is going on in that frame.

@cindex frame level
@cindex frame number
@value{GDBN} labels each existing stack frame with a @dfn{level}, a
number that is zero for the innermost frame, one for the frame that
called it, and so on upward.  These level numbers give you a way of
designating stack frames in @value{GDBN} commands.  The terms
@dfn{frame number} and @dfn{frame level} can be used interchangeably to
describe this number.

@c The -fomit-frame-pointer below perennially causes hbox overflow
@c underflow problems.
@cindex frameless execution
Some compilers provide a way to compile functions so that they operate
without stack frames.  (For example, the @value{NGCC} option
@smallexample
@samp{-fomit-frame-pointer}
@end smallexample
generates functions without a frame.)
This is occasionally done with heavily used library functions to save
the frame setup time.  @value{GDBN} has limited facilities for dealing
with these function invocations.  If the innermost function invocation
has no stack frame, @value{GDBN} nevertheless regards it as though
it had a separate frame, which is numbered zero as usual, allowing
correct tracing of the function call chain.  However, @value{GDBN} has
no provision for frameless functions elsewhere in the stack.

@node Backtrace
@section Backtraces

@cindex traceback
@cindex call stack traces
A backtrace is a summary of how your program got where it is.  It shows one
line per frame, for many frames, starting with the currently executing
frame (frame zero), followed by its caller (frame one), and on up the
stack.

@anchor{backtrace-command}
@kindex backtrace
@kindex bt @r{(@code{backtrace})}
To print a backtrace of the entire stack, use the @code{backtrace}
command, or its alias @code{bt}.  This command will print one line per
frame for frames in the stack.  By default, all stack frames are
printed.  You can stop the backtrace at any time by typing the system
interrupt character, normally @kbd{Ctrl-c}.

@table @code
@item backtrace [@var{option}]@dots{} [@var{qualifier}]@dots{} [@var{count}]
@itemx bt [@var{option}]@dots{} [@var{qualifier}]@dots{} [@var{count}]
Print the backtrace of the entire stack.

The optional @var{count} can be one of the following:

@table @code
@item @var{n}
@itemx @var{n}
Print only the innermost @var{n} frames, where @var{n} is a positive
number.

@item -@var{n}
@itemx -@var{n}
Print only the outermost @var{n} frames, where @var{n} is a positive
number.
@end table

Options:

@table @code
@item -full
Print the values of the local variables also.  This can be combined
with the optional @var{count} to limit the number of frames shown.

@item -no-filters
Do not run Python frame filters on this backtrace.  @xref{Frame
Filter API}, for more information.  Additionally use @ref{disable
frame-filter all} to turn off all frame filters.  This is only
relevant when @value{GDBN} has been configured with @code{Python}
support.

@item -hide
A Python frame filter might decide to ``elide'' some frames.  Normally
such elided frames are still printed, but they are indented relative
to the filtered frames that cause them to be elided.  The @code{-hide}
option causes elided frames to not be printed at all.
@end table

The @code{backtrace} command also supports a number of options that
allow overriding relevant global print settings as set by @code{set
backtrace} and @code{set print} subcommands:

@table @code
@item -past-main [@code{on}|@code{off}]
Set whether backtraces should continue past @code{main}.  Related setting:
@ref{set backtrace past-main}.

@item -past-entry [@code{on}|@code{off}]
Set whether backtraces should continue past the entry point of a program.
Related setting: @ref{set backtrace past-entry}.

@item -entry-values @code{no}|@code{only}|@code{preferred}|@code{if-needed}|@code{both}|@code{compact}|@code{default}
Set printing of function arguments at function entry.
Related setting: @ref{set print entry-values}.

@item -frame-arguments @code{all}|@code{scalars}|@code{none}
Set printing of non-scalar frame arguments.
Related setting: @ref{set print frame-arguments}.

@item -raw-frame-arguments [@code{on}|@code{off}]
Set whether to print frame arguments in raw form.
Related setting: @ref{set print raw-frame-arguments}.

@item -frame-info @code{auto}|@code{source-line}|@code{location}|@code{source-and-location}|@code{location-and-address}|@code{short-location}
Set printing of frame information.
Related setting: @ref{set print frame-info}.
@end table

The optional @var{qualifier} is maintained for backward compatibility.
It can be one of the following:

@table @code
@item full
Equivalent to the @code{-full} option.

@item no-filters
Equivalent to the @code{-no-filters} option.

@item hide
Equivalent to the @code{-hide} option.
@end table

@end table

@kindex where
@kindex info stack
The names @code{where} and @code{info stack} (abbreviated @code{info s})
are additional aliases for @code{backtrace}.

@cindex multiple threads, backtrace
In a multi-threaded program, @value{GDBN} by default shows the
backtrace only for the current thread.  To display the backtrace for
several or all of the threads, use the command @code{thread apply}
(@pxref{Threads, thread apply}).  For example, if you type @kbd{thread
apply all backtrace}, @value{GDBN} will display the backtrace for all
the threads; this is handy when you debug a core dump of a
multi-threaded program.

Each line in the backtrace shows the frame number and the function name.
The program counter value is also shown---unless you use @code{set
print address off}.  The backtrace also shows the source file name and
line number, as well as the arguments to the function.  The program
counter value is omitted if it is at the beginning of the code for that
line number.

Here is an example of a backtrace.  It was made with the command
@samp{bt 3}, so it shows the innermost three frames.

@smallexample
@group
#0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
    at builtin.c:993
#1  0x6e38 in expand_macro (sym=0x2b600, data=...) at macro.c:242
#2  0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
    at macro.c:71
(More stack frames follow...)
@end group
@end smallexample

@noindent
The display for frame zero does not begin with a program counter
value, indicating that your program has stopped at the beginning of the
code for line @code{993} of @code{builtin.c}.

@noindent
The value of parameter @code{data} in frame 1 has been replaced by
@code{@dots{}}.  By default, @value{GDBN} prints the value of a parameter
only if it is a scalar (integer, pointer, enumeration, etc).  See command
@kbd{set print frame-arguments} in @ref{Print Settings} for more details
on how to configure the way function parameter values are printed.
The command @kbd{set print frame-info} (@pxref{Print Settings}) controls
what frame information is printed.

@cindex optimized out, in backtrace
@cindex function call arguments, optimized out
If your program was compiled with optimizations, some compilers will
optimize away arguments passed to functions if those arguments are
never used after the call.  Such optimizations generate code that
passes arguments through registers, but doesn't store those arguments
in the stack frame.  @value{GDBN} has no way of displaying such
arguments in stack frames other than the innermost one.  Here's what
such a backtrace might look like:

@smallexample
@group
#0  m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
    at builtin.c:993
#1  0x6e38 in expand_macro (sym=<optimized out>) at macro.c:242
#2  0x6840 in expand_token (obs=0x0, t=<optimized out>, td=0xf7fffb08)
    at macro.c:71
(More stack frames follow...)
@end group
@end smallexample

@noindent
The values of arguments that were not saved in their stack frames are
shown as @samp{<optimized out>}.

If you need to display the values of such optimized-out arguments,
either deduce that from other variables whose values depend on the one
you are interested in, or recompile without optimizations.

@cindex backtrace beyond @code{main} function
@cindex program entry point
@cindex startup code, and backtrace
Most programs have a standard user entry point---a place where system
libraries and startup code transition into user code.  For C this is
@code{main}@footnote{
Note that embedded programs (the so-called ``free-standing''
environment) are not required to have a @code{main} function as the
entry point.  They could even have multiple entry points.}.
When @value{GDBN} finds the entry function in a backtrace
it will terminate the backtrace, to avoid tracing into highly
system-specific (and generally uninteresting) code.

If you need to examine the startup code, or limit the number of levels
in a backtrace, you can change this behavior:

@table @code
@item set backtrace past-main
@itemx set backtrace past-main on
@anchor{set backtrace past-main}
@kindex set backtrace
Backtraces will continue past the user entry point.

@item set backtrace past-main off
Backtraces will stop when they encounter the user entry point.  This is the
default.

@item show backtrace past-main
@kindex show backtrace
Display the current user entry point backtrace policy.

@item set backtrace past-entry
@itemx set backtrace past-entry on
@anchor{set backtrace past-entry}
Backtraces will continue past the internal entry point of an application.
This entry point is encoded by the linker when the application is built,
and is likely before the user entry point @code{main} (or equivalent) is called.

@item set backtrace past-entry off
Backtraces will stop when they encounter the internal entry point of an
application.  This is the default.

@item show backtrace past-entry
Display the current internal entry point backtrace policy.

@item set backtrace limit @var{n}
@itemx set backtrace limit 0
@itemx set backtrace limit unlimited
@anchor{set backtrace limit}
@cindex backtrace limit
Limit the backtrace to @var{n} levels.  A value of @code{unlimited}
or zero means unlimited levels.

@item show backtrace limit
Display the current limit on backtrace levels.
@end table

You can control how file names are displayed.

@table @code
@item set filename-display
@itemx set filename-display relative
@cindex filename-display
Display file names relative to the compilation directory.  This is the default.

@item set filename-display basename
Display only basename of a filename.

@item set filename-display absolute
Display an absolute filename.

@item show filename-display
Show the current way to display filenames.
@end table

@node Selection
@section Selecting a Frame

Most commands for examining the stack and other data in your program work on
whichever stack frame is selected at the moment.  Here are the commands for
selecting a stack frame; all of them finish by printing a brief description
of the stack frame just selected.

@table @code
@kindex frame@r{, selecting}
@kindex f @r{(@code{frame})}
@item frame @r{[} @var{frame-selection-spec} @r{]}
@item f @r{[} @var{frame-selection-spec} @r{]}
The @command{frame} command allows different stack frames to be
selected.  The @var{frame-selection-spec} can be any of the following:

@table @code
@kindex frame level
@item @var{num}
@item level @var{num}
Select frame level @var{num}.  Recall that frame zero is the innermost
(currently executing) frame, frame one is the frame that called the
innermost one, and so on.  The highest level frame is usually the one
for @code{main}.

As this is the most common method of navigating the frame stack, the
string @command{level} can be omitted.  For example, the following two
commands are equivalent:

@smallexample
(@value{GDBP}) frame 3
(@value{GDBP}) frame level 3
@end smallexample

@kindex frame address
@item address @var{stack-address}
Select the frame with stack address @var{stack-address}.  The
@var{stack-address} for a frame can be seen in the output of
@command{info frame}, for example:

@smallexample
(gdb) info frame
Stack level 1, frame at 0x7fffffffda30:
 rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5
 tail call frame, caller of frame at 0x7fffffffda30
 source language c++.
 Arglist at unknown address.
 Locals at unknown address, Previous frame's sp is 0x7fffffffda30
@end smallexample

The @var{stack-address} for this frame is @code{0x7fffffffda30} as
indicated by the line:

@smallexample
Stack level 1, frame at 0x7fffffffda30:
@end smallexample

@kindex frame function
@item function @var{function-name}
Select the stack frame for function @var{function-name}.  If there are
multiple stack frames for function @var{function-name} then the inner
most stack frame is selected.

@kindex frame view
@item view @var{stack-address} @r{[} @var{pc-addr} @r{]}
View a frame that is not part of @value{GDBN}'s backtrace.  The frame
viewed has stack address @var{stack-addr}, and optionally, a program
counter address of @var{pc-addr}.

This is useful mainly if the chaining of stack frames has been
damaged by a bug, making it impossible for @value{GDBN} to assign
numbers properly to all frames.  In addition, this can be useful
when your program has multiple stacks and switches between them.

When viewing a frame outside the current backtrace using
@command{frame view} then you can always return to the original
stack using one of the previous stack frame selection instructions,
for example @command{frame level 0}.

@end table

@kindex up
@item up @var{n}
Move @var{n} frames up the stack; @var{n} defaults to 1.  For positive
numbers @var{n}, this advances toward the outermost frame, to higher
frame numbers, to frames that have existed longer.

@kindex down
@kindex do @r{(@code{down})}
@item down @var{n}
Move @var{n} frames down the stack; @var{n} defaults to 1.  For
positive numbers @var{n}, this advances toward the innermost frame, to
lower frame numbers, to frames that were created more recently.
You may abbreviate @code{down} as @code{do}.
@end table

All of these commands end by printing two lines of output describing the
frame.  The first line shows the frame number, the function name, the
arguments, and the source file and line number of execution in that
frame.  The second line shows the text of that source line.

@need 1000
For example:

@smallexample
@group
(@value{GDBP}) up
#1  0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
    at env.c:10
10              read_input_file (argv[i]);
@end group
@end smallexample

After such a printout, the @code{list} command with no arguments
prints ten lines centered on the point of execution in the frame.
You can also edit the program at the point of execution with your favorite
editing program by typing @code{edit}.
@xref{List, ,Printing Source Lines},
for details.

@table @code
@kindex select-frame
@item select-frame @r{[} @var{frame-selection-spec} @r{]}
The @code{select-frame} command is a variant of @code{frame} that does
not display the new frame after selecting it.  This command is
intended primarily for use in @value{GDBN} command scripts, where the
output might be unnecessary and distracting.  The
@var{frame-selection-spec} is as for the @command{frame} command
described in @ref{Selection, ,Selecting a Frame}.

@kindex down-silently
@kindex up-silently
@item up-silently @var{n}
@itemx down-silently @var{n}
These two commands are variants of @code{up} and @code{down},
respectively; they differ in that they do their work silently, without
causing display of the new frame.  They are intended primarily for use
in @value{GDBN} command scripts, where the output might be unnecessary and
distracting.
@end table

@node Frame Info
@section Information About a Frame

There are several other commands to print information about the selected
stack frame.

@table @code
@item frame
@itemx f
When used without any argument, this command does not change which
frame is selected, but prints a brief description of the currently
selected stack frame.  It can be abbreviated @code{f}.  With an
argument, this command is used to select a stack frame.
@xref{Selection, ,Selecting a Frame}.

@kindex info frame
@kindex info f @r{(@code{info frame})}
@item info frame
@itemx info f
This command prints a verbose description of the selected stack frame,
including:

@itemize @bullet
@item
the address of the frame
@item
the address of the next frame down (called by this frame)
@item
the address of the next frame up (caller of this frame)
@item
the language in which the source code corresponding to this frame is written
@item
the address of the frame's arguments
@item
the address of the frame's local variables
@item
the program counter saved in it (the address of execution in the caller frame)
@item
which registers were saved in the frame
@end itemize

@noindent The verbose description is useful when
something has gone wrong that has made the stack format fail to fit
the usual conventions.

@item info frame @r{[} @var{frame-selection-spec} @r{]}
@itemx info f @r{[} @var{frame-selection-spec} @r{]}
Print a verbose description of the frame selected by
@var{frame-selection-spec}.  The @var{frame-selection-spec} is the
same as for the @command{frame} command (@pxref{Selection, ,Selecting
a Frame}).  The selected frame remains unchanged by this command.

@kindex info args
@item info args [-q]
Print the arguments of the selected frame, each on a separate line.

The optional flag @samp{-q}, which stands for @samp{quiet}, disables
printing header information and messages explaining why no argument
have been printed.

@item info args [-q] [-t @var{type_regexp}] [@var{regexp}]
Like @kbd{info args}, but only print the arguments selected
with the provided regexp(s).

If @var{regexp} is provided, print only the arguments whose names
match the regular expression @var{regexp}.

If @var{type_regexp} is provided, print only the arguments whose
types, as printed by the @code{whatis} command, match
the regular expression @var{type_regexp}.
If @var{type_regexp} contains space(s), it should be enclosed in
quote characters.  If needed, use backslash to escape the meaning
of special characters or quotes.

If both @var{regexp} and @var{type_regexp} are provided, an argument
is printed only if its name matches @var{regexp} and its type matches
@var{type_regexp}.

@item info locals [-q]
@kindex info locals
Print the local variables of the selected frame, each on a separate
line.  These are all variables (declared either static or automatic)
accessible at the point of execution of the selected frame.

The optional flag @samp{-q}, which stands for @samp{quiet}, disables
printing header information and messages explaining why no local variables
have been printed.

@item info locals [-q] [-t @var{type_regexp}] [@var{regexp}]
Like @kbd{info locals}, but only print the local variables selected
with the provided regexp(s).

If @var{regexp} is provided, print only the local variables whose names
match the regular expression @var{regexp}.

If @var{type_regexp} is provided, print only the local variables whose
types, as printed by the @code{whatis} command, match
the regular expression @var{type_regexp}.
If @var{type_regexp} contains space(s), it should be enclosed in
quote characters.  If needed, use backslash to escape the meaning
of special characters or quotes.

If both @var{regexp} and @var{type_regexp} are provided, a local variable
is printed only if its name matches @var{regexp} and its type matches
@var{type_regexp}.

The command @kbd{info locals -q -t @var{type_regexp}} can usefully be
combined with the commands @kbd{frame apply} and @kbd{thread apply}.
For example, your program might use Resource Acquisition Is
Initialization types (RAII) such as @code{lock_something_t}: each
local variable of type @code{lock_something_t} automatically places a
lock that is destroyed when the variable goes out of scope.  You can
then list all acquired locks in your program by doing
@smallexample
thread apply all -s frame apply all -s info locals -q -t lock_something_t
@end smallexample
@noindent
or the equivalent shorter form
@smallexample
tfaas i lo -q -t lock_something_t
@end smallexample

@end table

@node Frame Apply
@section Applying a Command to Several Frames.
@anchor{frame apply}
@kindex frame apply
@cindex apply command to several frames
@table @code
@item frame apply [all | @var{count} | @var{-count} | level @var{level}@dots{}] [@var{option}]@dots{} @var{command}
The @code{frame apply} command allows you to apply the named
@var{command} to one or more frames.

@table @code
@item @code{all}
Specify @code{all} to apply @var{command} to all frames.

@item @var{count}
Use @var{count} to apply @var{command} to the innermost @var{count}
frames, where @var{count} is a positive number.

@item @var{-count}
Use @var{-count} to apply @var{command} to the outermost @var{count}
frames, where @var{count} is a positive number.

@item @code{level}
Use @code{level} to apply @var{command} to the set of frames identified
by the @var{level} list.  @var{level} is a frame level or a range of frame
levels as @var{level1}-@var{level2}.  The frame level is the number shown
in the first field of the @samp{backtrace} command output.
E.g., @samp{2-4 6-8 3} indicates to apply @var{command} for the frames
at levels 2, 3, 4, 6, 7, 8, and then again on frame at level 3.

@end table

Note that the frames on which @code{frame apply} applies a command are
also influenced by the @code{set backtrace} settings such as @code{set
backtrace past-main} and @code{set backtrace limit N}.
@xref{Backtrace,,Backtraces}.

The @code{frame apply} command also supports a number of options that
allow overriding relevant @code{set backtrace} settings:

@table @code
@item -past-main [@code{on}|@code{off}]
Whether backtraces should continue past @code{main}.
Related setting: @ref{set backtrace past-main}.

@item -past-entry [@code{on}|@code{off}]
Whether backtraces should continue past the entry point of a program.
Related setting: @ref{set backtrace past-entry}.
@end table

By default, @value{GDBN} displays some frame information before the
output produced by @var{command}, and an error raised during the
execution of a @var{command} will abort @code{frame apply}.  The
following options can be used to fine-tune these behaviors:

@table @code
@item -c
The flag @code{-c}, which stands for @samp{continue}, causes any
errors in @var{command} to be displayed, and the execution of
@code{frame apply} then continues.
@item -s
The flag @code{-s}, which stands for @samp{silent}, causes any errors
or empty output produced by a @var{command} to be silently ignored.
That is, the execution continues, but the frame information and errors
are not printed.
@item -q
The flag @code{-q} (@samp{quiet}) disables printing the frame
information.
@end table

The following example shows how the flags @code{-c} and @code{-s} are
working when applying the command @code{p j} to all frames, where
variable @code{j} can only be successfully printed in the outermost
@code{#1 main} frame.

@smallexample
@group
(gdb) frame apply all p j
#0  some_function (i=5) at fun.c:4
No symbol "j" in current context.
(gdb) frame apply all -c p j
#0  some_function (i=5) at fun.c:4
No symbol "j" in current context.
#1  0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11
$1 = 5
(gdb) frame apply all -s p j
#1  0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11
$2 = 5
(gdb)
@end group
@end smallexample

By default, @samp{frame apply}, prints the frame location
information before the command output:

@smallexample
@group
(gdb) frame apply all p $sp
#0  some_function (i=5) at fun.c:4
$4 = (void *) 0xffffd1e0
#1  0x565555fb in main (argc=1, argv=0xffffd2c4) at fun.c:11
$5 = (void *) 0xffffd1f0
(gdb)
@end group
@end smallexample

If the flag @code{-q} is given, no frame information is printed:
@smallexample
@group
(gdb) frame apply all -q p $sp
$12 = (void *) 0xffffd1e0
$13 = (void *) 0xffffd1f0
(gdb)
@end group
@end smallexample

@end table

@table @code

@kindex faas
@cindex apply a command to all frames (ignoring errors and empty output)
@item faas @var{command}
Shortcut for @code{frame apply all -s @var{command}}.
Applies @var{command} on all frames, ignoring errors and empty output.

It can for example be used to print a local variable or a function
argument without knowing the frame where this variable or argument
is, using:
@smallexample
(@value{GDBP}) faas p some_local_var_i_do_not_remember_where_it_is
@end smallexample

The @code{faas} command accepts the same options as the @code{frame
apply} command.  @xref{frame apply}.

Note that the command @code{tfaas @var{command}} applies @var{command}
on all frames of all threads.  See @xref{Threads,,Threads}.
@end table


@node Frame Filter Management
@section Management of Frame Filters.
@cindex managing frame filters

Frame filters are Python based utilities to manage and decorate the
output of frames.  @xref{Frame Filter API}, for further information.

Managing frame filters is performed by several commands available
within @value{GDBN}, detailed here.

@table @code
@kindex info frame-filter
@item info frame-filter
Print a list of installed frame filters from all dictionaries, showing
their name, priority and enabled status.

@kindex disable frame-filter
@anchor{disable frame-filter all}
@item disable frame-filter @var{filter-dictionary} @var{filter-name}
Disable a frame filter in the dictionary matching
@var{filter-dictionary} and @var{filter-name}.  The
@var{filter-dictionary} may be @code{all}, @code{global},
@code{progspace}, or the name of the object file where the frame filter
dictionary resides.  When @code{all} is specified, all frame filters
across all dictionaries are disabled.  The @var{filter-name} is the name
of the frame filter and is used when @code{all} is not the option for
@var{filter-dictionary}.  A disabled frame-filter is not deleted, it
may be enabled again later.

@kindex enable frame-filter
@item enable frame-filter @var{filter-dictionary} @var{filter-name}
Enable a frame filter in the dictionary matching
@var{filter-dictionary} and @var{filter-name}.  The
@var{filter-dictionary} may be @code{all}, @code{global},
@code{progspace} or the name of the object file where the frame filter
dictionary resides.  When @code{all} is specified, all frame filters across
all dictionaries are enabled.  The @var{filter-name} is the name of the frame
filter and is used when @code{all} is not the option for
@var{filter-dictionary}.

Example:

@smallexample
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      No       PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       Yes      BuildProgramFilter

(gdb) disable frame-filter /build/test BuildProgramFilter
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      No       PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter

(gdb) enable frame-filter global PrimaryFunctionFilter
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      Yes      PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter
@end smallexample

@kindex set frame-filter priority
@item set frame-filter priority @var{filter-dictionary} @var{filter-name} @var{priority}
Set the @var{priority} of a frame filter in the dictionary matching
@var{filter-dictionary}, and the frame filter name matching
@var{filter-name}.  The @var{filter-dictionary} may be @code{global},
@code{progspace} or the name of the object file where the frame filter
dictionary resides.  The @var{priority} is an integer.

@kindex show frame-filter priority
@item show frame-filter priority @var{filter-dictionary} @var{filter-name}
Show the @var{priority} of a frame filter in the dictionary matching
@var{filter-dictionary}, and the frame filter name matching
@var{filter-name}.  The @var{filter-dictionary} may be @code{global},
@code{progspace} or the name of the object file where the frame filter
dictionary resides.

Example:

@smallexample
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      Yes      PrimaryFunctionFilter
  100       Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter

(gdb) set frame-filter priority global Reverse 50
(gdb) info frame-filter

global frame-filters:
  Priority  Enabled  Name
  1000      Yes      PrimaryFunctionFilter
  50        Yes      Reverse

progspace /build/test frame-filters:
  Priority  Enabled  Name
  100       Yes      ProgspaceFilter

objfile /build/test frame-filters:
  Priority  Enabled  Name
  999       No       BuildProgramFilter
@end smallexample
@end table

@node Source
@chapter Examining Source Files

@value{GDBN} can print parts of your program's source, since the debugging
information recorded in the program tells @value{GDBN} what source files were
used to build it.  When your program stops, @value{GDBN} spontaneously prints
the line where it stopped.  Likewise, when you select a stack frame
(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
execution in that frame has stopped.  You can print other portions of
source files by explicit command.

If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
@value{GDBN} under @sc{gnu} Emacs}.

@menu
* List::                        Printing source lines
* Specify Location::            How to specify code locations
* Edit::                        Editing source files
* Search::                      Searching source files
* Source Path::                 Specifying source directories
* Machine Code::                Source and machine code
@end menu

@node List
@section Printing Source Lines

@kindex list
@kindex l @r{(@code{list})}
To print lines from a source file, use the @code{list} command
(abbreviated @code{l}).  By default, ten lines are printed.
There are several ways to specify what part of the file you want to
print; see @ref{Specify Location}, for the full list.

Here are the forms of the @code{list} command most commonly used:

@table @code
@item list @var{linenum}
Print lines centered around line number @var{linenum} in the
current source file.

@item list @var{function}
Print lines centered around the beginning of function
@var{function}.

@item list
Print more lines.  If the last lines printed were printed with a
@code{list} command, this prints lines following the last lines
printed; however, if the last line printed was a solitary line printed
as part of displaying a stack frame (@pxref{Stack, ,Examining the
Stack}), this prints lines centered around that line.

@item list -
Print lines just before the lines last printed.
@end table

@cindex @code{list}, how many lines to display
By default, @value{GDBN} prints ten source lines with any of these forms of
the @code{list} command.  You can change this using @code{set listsize}:

@table @code
@kindex set listsize
@item set listsize @var{count}
@itemx set listsize unlimited
Make the @code{list} command display @var{count} source lines (unless
the @code{list} argument explicitly specifies some other number).
Setting @var{count} to @code{unlimited} or 0 means there's no limit.

@kindex show listsize
@item show listsize
Display the number of lines that @code{list} prints.
@end table

Repeating a @code{list} command with @key{RET} discards the argument,
so it is equivalent to typing just @code{list}.  This is more useful
than listing the same lines again.  An exception is made for an
argument of @samp{-}; that argument is preserved in repetition so that
each repetition moves up in the source file.

In general, the @code{list} command expects you to supply zero, one or two
@dfn{locations}.  Locations specify source lines; there are several ways
of writing them (@pxref{Specify Location}), but the effect is always
to specify some source line.

Here is a complete description of the possible arguments for @code{list}:

@table @code
@item list @var{location}
Print lines centered around the line specified by @var{location}.

@item list @var{first},@var{last}
Print lines from @var{first} to @var{last}.  Both arguments are
locations.  When a @code{list} command has two locations, and the
source file of the second location is omitted, this refers to
the same source file as the first location.

@item list ,@var{last}
Print lines ending with @var{last}.

@item list @var{first},
Print lines starting with @var{first}.

@item list +
Print lines just after the lines last printed.

@item list -
Print lines just before the lines last printed.

@item list
As described in the preceding table.
@end table

@node Specify Location
@section Specifying a Location
@cindex specifying location
@cindex location
@cindex source location

@menu
* Linespec Locations::                Linespec locations
* Explicit Locations::                Explicit locations
* Address Locations::                 Address locations
@end menu

Several @value{GDBN} commands accept arguments that specify a location
of your program's code.  Since @value{GDBN} is a source-level
debugger, a location usually specifies some line in the source code.
Locations may be specified using three different formats:
linespec locations, explicit locations, or address locations.

@node Linespec Locations
@subsection Linespec Locations
@cindex linespec locations

A @dfn{linespec} is a colon-separated list of source location parameters such
as file name, function name, etc.  Here are all the different ways of
specifying a linespec:

@table @code
@item @var{linenum}
Specifies the line number @var{linenum} of the current source file.

@item -@var{offset}
@itemx +@var{offset}
Specifies the line @var{offset} lines before or after the @dfn{current
line}.  For the @code{list} command, the current line is the last one
printed; for the breakpoint commands, this is the line at which
execution stopped in the currently selected @dfn{stack frame}
(@pxref{Frames, ,Frames}, for a description of stack frames.)  When
used as the second of the two linespecs in a @code{list} command,
this specifies the line @var{offset} lines up or down from the first
linespec.

@item @var{filename}:@var{linenum}
Specifies the line @var{linenum} in the source file @var{filename}.
If @var{filename} is a relative file name, then it will match any
source file name with the same trailing components.  For example, if
@var{filename} is @samp{gcc/expr.c}, then it will match source file
name of @file{/build/trunk/gcc/expr.c}, but not
@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.

@item @var{function}
Specifies the line that begins the body of the function @var{function}.
For example, in C, this is the line with the open brace.

By default, in C@t{++} and Ada, @var{function} is interpreted as
specifying all functions named @var{function} in all scopes.  For
C@t{++}, this means in all namespaces and classes.  For Ada, this
means in all packages.

For example, assuming a program with C@t{++} symbols named
@code{A::B::func} and @code{B::func}, both commands @w{@kbd{break
func}} and @w{@kbd{break B::func}} set a breakpoint on both symbols.

Commands that accept a linespec let you override this with the
@code{-qualified} option.  For example, @w{@kbd{break -qualified
func}} sets a breakpoint on a free-function named @code{func} ignoring
any C@t{++} class methods and namespace functions called @code{func}.

@xref{Explicit Locations}.

@item @var{function}:@var{label}
Specifies the line where @var{label} appears in @var{function}.

@item @var{filename}:@var{function}
Specifies the line that begins the body of the function @var{function}
in the file @var{filename}.  You only need the file name with a
function name to avoid ambiguity when there are identically named
functions in different source files.

@item @var{label}
Specifies the line at which the label named @var{label} appears
in the function corresponding to the currently selected stack frame.
If there is no current selected stack frame (for instance, if the inferior
is not running), then @value{GDBN} will not search for a label.

@cindex breakpoint at static probe point
@item -pstap|-probe-stap @r{[}@var{objfile}:@r{[}@var{provider}:@r{]}@r{]}@var{name}
The @sc{gnu}/Linux tool @code{SystemTap} provides a way for
applications to embed static probes.  @xref{Static Probe Points}, for more
information on finding and using static probes.  This form of linespec
specifies the location of such a static probe.

If @var{objfile} is given, only probes coming from that shared library
or executable matching @var{objfile} as a regular expression are considered.
If @var{provider} is given, then only probes from that provider are considered.
If several probes match the spec, @value{GDBN} will insert a breakpoint at
each one of those probes.
@end table

@node Explicit Locations
@subsection Explicit Locations
@cindex explicit locations

@dfn{Explicit locations} allow the user to directly specify the source
location's parameters using option-value pairs.

Explicit locations are useful when several functions, labels, or
file names have the same name (base name for files) in the program's
sources.  In these cases, explicit locations point to the source
line you meant more accurately and unambiguously.  Also, using
explicit locations might be faster in large programs.

For example, the linespec @samp{foo:bar} may refer to a function @code{bar}
defined in the file named @file{foo} or the label @code{bar} in a function
named @code{foo}.  @value{GDBN} must search either the file system or
the symbol table to know.

The list of valid explicit location options is summarized in the
following table:

@table @code
@item -source @var{filename}
The value specifies the source file name.  To differentiate between
files with the same base name, prepend as many directories as is necessary
to uniquely identify the desired file, e.g., @file{foo/bar/baz.c}.  Otherwise
@value{GDBN} will use the first file it finds with the given base
name.   This option requires the use of either @code{-function} or @code{-line}.

@item -function @var{function}
The value specifies the name of a function.  Operations
on function locations unmodified by other options (such as @code{-label}
or @code{-line}) refer to the line that begins the body of the function.
In C, for example, this is the line with the open brace.

By default, in C@t{++} and Ada, @var{function} is interpreted as
specifying all functions named @var{function} in all scopes.  For
C@t{++}, this means in all namespaces and classes.  For Ada, this
means in all packages.

For example, assuming a program with C@t{++} symbols named
@code{A::B::func} and @code{B::func}, both commands @w{@kbd{break
-function func}} and @w{@kbd{break -function B::func}} set a
breakpoint on both symbols.

You can use the @kbd{-qualified} flag to override this (see below).

@item -qualified

This flag makes @value{GDBN} interpret a function name specified with
@kbd{-function} as a complete fully-qualified name.

For example, assuming a C@t{++} program with symbols named
@code{A::B::func} and @code{B::func}, the @w{@kbd{break -qualified
-function B::func}} command sets a breakpoint on @code{B::func}, only.

(Note: the @kbd{-qualified} option can precede a linespec as well
(@pxref{Linespec Locations}), so the particular example above could be
simplified as @w{@kbd{break -qualified B::func}}.)

@item -label @var{label}
The value specifies the name of a label.  When the function
name is not specified, the label is searched in the function of the currently
selected stack frame.

@item -line @var{number}
The value specifies a line offset for the location.  The offset may either
be absolute (@code{-line 3}) or relative (@code{-line +3}), depending on
the command.  When specified without any other options, the line offset is
relative to the current line.
@end table

Explicit location options may be abbreviated by omitting any non-unique
trailing characters from the option name, e.g., @w{@kbd{break -s main.c -li 3}}.

@node Address Locations
@subsection Address Locations
@cindex address locations

@dfn{Address locations} indicate a specific program address.  They have
the generalized form *@var{address}.

For line-oriented commands, such as @code{list} and @code{edit}, this
specifies a source line that contains @var{address}.  For @code{break} and
other breakpoint-oriented commands, this can be used to set breakpoints in
parts of your program which do not have debugging information or
source files.

Here @var{address} may be any expression valid in the current working
language (@pxref{Languages, working language}) that specifies a code
address.  In addition, as a convenience, @value{GDBN} extends the
semantics of expressions used in locations to cover several situations
that frequently occur during debugging.  Here are the various forms
of @var{address}:

@table @code
@item @var{expression}
Any expression valid in the current working language.

@item @var{funcaddr}
An address of a function or procedure derived from its name.  In C,
C@t{++}, Objective-C, Fortran, minimal, and assembly, this is
simply the function's name @var{function} (and actually a special case
of a valid expression).  In Pascal and Modula-2, this is
@code{&@var{function}}.  In Ada, this is @code{@var{function}'Address}
(although the Pascal form also works).

This form specifies the address of the function's first instruction,
before the stack frame and arguments have been set up.

@item '@var{filename}':@var{funcaddr}
Like @var{funcaddr} above, but also specifies the name of the source
file explicitly.  This is useful if the name of the function does not
specify the function unambiguously, e.g., if there are several
functions with identical names in different source files.
@end table

@node Edit
@section Editing Source Files
@cindex editing source files

@kindex edit
@kindex e @r{(@code{edit})}
To edit the lines in a source file, use the @code{edit} command.
The editing program of your choice
is invoked with the current line set to
the active line in the program.
Alternatively, there are several ways to specify what part of the file you
want to print if you want to see other parts of the program:

@table @code
@item edit @var{location}
Edit the source file specified by @code{location}.  Editing starts at
that @var{location}, e.g., at the specified source line of the
specified file.  @xref{Specify Location}, for all the possible forms
of the @var{location} argument; here are the forms of the @code{edit}
command most commonly used:

@table @code
@item edit @var{number}
Edit the current source file with @var{number} as the active line number.

@item edit @var{function}
Edit the file containing @var{function} at the beginning of its definition.
@end table

@end table

@subsection Choosing your Editor
You can customize @value{GDBN} to use any editor you want
@footnote{
The only restriction is that your editor (say @code{ex}), recognizes the
following command-line syntax:
@smallexample
ex +@var{number} file
@end smallexample
The optional numeric value +@var{number} specifies the number of the line in
the file where to start editing.}.
By default, it is @file{@value{EDITOR}}, but you can change this
by setting the environment variable @code{EDITOR} before using
@value{GDBN}.  For example, to configure @value{GDBN} to use the
@code{vi} editor, you could use these commands with the @code{sh} shell:
@smallexample
EDITOR=/usr/bin/vi
export EDITOR
gdb @dots{}
@end smallexample
or in the @code{csh} shell,
@smallexample
setenv EDITOR /usr/bin/vi
gdb @dots{}
@end smallexample

@node Search
@section Searching Source Files
@cindex searching source files

There are two commands for searching through the current source file for a
regular expression.

@table @code
@kindex search
@kindex forward-search
@kindex fo @r{(@code{forward-search})}
@item forward-search @var{regexp}
@itemx search @var{regexp}
The command @samp{forward-search @var{regexp}} checks each line,
starting with the one following the last line listed, for a match for
@var{regexp}.  It lists the line that is found.  You can use the
synonym @samp{search @var{regexp}} or abbreviate the command name as
@code{fo}.

@kindex reverse-search
@item reverse-search @var{regexp}
The command @samp{reverse-search @var{regexp}} checks each line, starting
with the one before the last line listed and going backward, for a match
for @var{regexp}.  It lists the line that is found.  You can abbreviate
this command as @code{rev}.
@end table

@node Source Path
@section Specifying Source Directories

@cindex source path
@cindex directories for source files
Executable programs sometimes do not record the directories of the source
files from which they were compiled, just the names.  Even when they do,
the directories could be moved between the compilation and your debugging
session.  @value{GDBN} has a list of directories to search for source files;
this is called the @dfn{source path}.  Each time @value{GDBN} wants a source file,
it tries all the directories in the list, in the order they are present
in the list, until it finds a file with the desired name.

For example, suppose an executable references the file
@file{/usr/src/foo-1.0/lib/foo.c}, does not record a compilation
directory, and the @dfn{source path} is @file{/mnt/cross}.
@value{GDBN} would look for the source file in the following
locations:

@enumerate

@item @file{/usr/src/foo-1.0/lib/foo.c}
@item @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c}
@item @file{/mnt/cross/foo.c}

@end enumerate

If the source file is not present at any of the above locations then
an error is printed.  @value{GDBN} does not look up the parts of the
source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
Likewise, the subdirectories of the source path are not searched: if
the source path is @file{/mnt/cross}, and the binary refers to
@file{foo.c}, @value{GDBN} would not find it under
@file{/mnt/cross/usr/src/foo-1.0/lib}.

Plain file names, relative file names with leading directories, file
names containing dots, etc.@: are all treated as described above,
except that non-absolute file names are not looked up literally.  If
the @dfn{source path} is @file{/mnt/cross}, the source file is
recorded as @file{../lib/foo.c}, and no compilation directory is
recorded, then @value{GDBN} will search in the following locations:

@enumerate

@item @file{/mnt/cross/../lib/foo.c}
@item @file{/mnt/cross/foo.c}

@end enumerate

@kindex cdir
@kindex cwd
@vindex $cdir@r{, convenience variable}
@vindex $cwd@r{, convenience variable}
@cindex compilation directory
@cindex current directory
@cindex working directory
@cindex directory, current
@cindex directory, compilation
The @dfn{source path} will always include two special entries
@samp{$cdir} and @samp{$cwd}, these refer to the compilation directory
(if one is recorded) and the current working directory respectively.

@samp{$cdir} causes @value{GDBN} to search within the compilation
directory, if one is recorded in the debug information.  If no
compilation directory is recorded in the debug information then
@samp{$cdir} is ignored.

@samp{$cwd} is not the same as @samp{.}---the former tracks the
current working directory as it changes during your @value{GDBN}
session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.

If a compilation directory is recorded in the debug information, and
@value{GDBN} has not found the source file after the first search
using @dfn{source path}, then @value{GDBN} will combine the
compilation directory and the filename, and then search for the source
file again using the @dfn{source path}.

For example, if the executable records the source file as
@file{/usr/src/foo-1.0/lib/foo.c}, the compilation directory is
recorded as @file{/project/build}, and the @dfn{source path} is
@file{/mnt/cross:$cdir:$cwd} while the current working directory of
the @value{GDBN} session is @file{/home/user}, then @value{GDBN} will
search for the source file in the following locations:

@enumerate

@item @file{/usr/src/foo-1.0/lib/foo.c}
@item @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c}
@item @file{/project/build/usr/src/foo-1.0/lib/foo.c}
@item @file{/home/user/usr/src/foo-1.0/lib/foo.c}
@item @file{/mnt/cross/project/build/usr/src/foo-1.0/lib/foo.c}
@item @file{/project/build/project/build/usr/src/foo-1.0/lib/foo.c}
@item @file{/home/user/project/build/usr/src/foo-1.0/lib/foo.c}
@item @file{/mnt/cross/foo.c}
@item @file{/project/build/foo.c}
@item @file{/home/user/foo.c}

@end enumerate

If the file name in the previous example had been recorded in the
executable as a relative path rather than an absolute path, then the
first look up would not have occurred, but all of the remaining steps
would be similar.

When searching for source files on MS-DOS and MS-Windows, where
absolute paths start with a drive letter (e.g.
@file{C:/project/foo.c}), @value{GDBN} will remove the drive letter
from the file name before appending it to a search directory from
@dfn{source path}; for instance if the executable references the
source file @file{C:/project/foo.c} and @dfn{source path} is set to
@file{D:/mnt/cross}, then @value{GDBN} will search in the following
locations for the source file:

@enumerate

@item @file{C:/project/foo.c}
@item @file{D:/mnt/cross/project/foo.c}
@item @file{D:/mnt/cross/foo.c}

@end enumerate

Note that the executable search path is @emph{not} used to locate the
source files.

Whenever you reset or rearrange the source path, @value{GDBN} clears out
any information it has cached about where source files are found and where
each line is in the file.

@kindex directory
@kindex dir
When you start @value{GDBN}, its source path includes only @samp{$cdir}
and @samp{$cwd}, in that order.
To add other directories, use the @code{directory} command.

The search path is used to find both program source files and @value{GDBN}
script files (read using the @samp{-command} option and @samp{source} command).

In addition to the source path, @value{GDBN} provides a set of commands
that manage a list of source path substitution rules.  A @dfn{substitution
rule} specifies how to rewrite source directories stored in the program's
debug information in case the sources were moved to a different
directory between compilation and debugging.  A rule is made of
two strings, the first specifying what needs to be rewritten in
the path, and the second specifying how it should be rewritten.
In @ref{set substitute-path}, we name these two parts @var{from} and
@var{to} respectively.  @value{GDBN} does a simple string replacement
of @var{from} with @var{to} at the start of the directory part of the
source file name, and uses that result instead of the original file
name to look up the sources.

Using the previous example, suppose the @file{foo-1.0} tree has been
moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
@value{GDBN} to replace @file{/usr/src} in all source path names with
@file{/mnt/cross}.  The first lookup will then be
@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
of @file{/usr/src/foo-1.0/lib/foo.c}.  To define a source path
substitution rule, use the @code{set substitute-path} command
(@pxref{set substitute-path}).

To avoid unexpected substitution results, a rule is applied only if the
@var{from} part of the directory name ends at a directory separator.
For instance, a rule substituting  @file{/usr/source} into
@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
not to @file{/usr/sourceware/foo-2.0}.  And because the substitution
is applied only at the beginning of the directory name, this rule will
not be applied to @file{/root/usr/source/baz.c} either.

In many cases, you can achieve the same result using the @code{directory}
command.  However, @code{set substitute-path} can be more efficient in
the case where the sources are organized in a complex tree with multiple
subdirectories.  With the @code{directory} command, you need to add each
subdirectory of your project.  If you moved the entire tree while
preserving its internal organization, then @code{set substitute-path}
allows you to direct the debugger to all the sources with one single
command.

@code{set substitute-path} is also more than just a shortcut command.
The source path is only used if the file at the original location no
longer exists.  On the other hand, @code{set substitute-path} modifies
the debugger behavior to look at the rewritten location instead.  So, if
for any reason a source file that is not relevant to your executable is
located at the original location, a substitution rule is the only
method available to point @value{GDBN} at the new location.

@cindex @samp{--with-relocated-sources}
@cindex default source path substitution
You can configure a default source path substitution rule by
configuring @value{GDBN} with the
@samp{--with-relocated-sources=@var{dir}} option.  The @var{dir}
should be the name of a directory under @value{GDBN}'s configured
prefix (set with @samp{--prefix} or @samp{--exec-prefix}), and
directory names in debug information under @var{dir} will be adjusted
automatically if the installed @value{GDBN} is moved to a new
location.  This is useful if @value{GDBN}, libraries or executables
with debug information and corresponding source code are being moved
together.

@table @code
@item directory @var{dirname} @dots{}
@item dir @var{dirname} @dots{}
Add directory @var{dirname} to the front of the source path.  Several
directory names may be given to this command, separated by @samp{:}
(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
part of absolute file names) or
whitespace.  You may specify a directory that is already in the source
path; this moves it forward, so @value{GDBN} searches it sooner.

The special strings @samp{$cdir} (to refer to the compilation
directory, if one is recorded), and @samp{$cwd} (to refer to the
current working directory) can also be included in the list of
directories @var{dirname}.  Though these will already be in the source
path they will be moved forward in the list so @value{GDBN} searches
them sooner.

@item directory
Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems).  This requires confirmation.

@c RET-repeat for @code{directory} is explicitly disabled, but since
@c repeating it would be a no-op we do not say that.  (thanks to RMS)

@item set directories @var{path-list}
@kindex set directories
Set the source path to @var{path-list}.
@samp{$cdir:$cwd} are added if missing.

@item show directories
@kindex show directories
Print the source path: show which directories it contains.

@anchor{set substitute-path}
@item set substitute-path @var{from} @var{to}
@kindex set substitute-path
Define a source path substitution rule, and add it at the end of the
current list of existing substitution rules.  If a rule with the same
@var{from} was already defined, then the old rule is also deleted.

For example, if the file @file{/foo/bar/baz.c} was moved to
@file{/mnt/cross/baz.c}, then the command

@smallexample
(@value{GDBP}) set substitute-path /foo/bar /mnt/cross
@end smallexample

@noindent
will tell @value{GDBN} to replace @samp{/foo/bar} with
@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
@file{baz.c} even though it was moved.

In the case when more than one substitution rule have been defined,
the rules are evaluated one by one in the order where they have been
defined.  The first one matching, if any, is selected to perform
the substitution.

For instance, if we had entered the following commands:

@smallexample
(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
(@value{GDBP}) set substitute-path /usr/src /mnt/src
@end smallexample

@noindent
@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
@file{/mnt/include/defs.h} by using the first rule.  However, it would
use the second rule to rewrite @file{/usr/src/lib/foo.c} into
@file{/mnt/src/lib/foo.c}.


@item unset substitute-path [path]
@kindex unset substitute-path
If a path is specified, search the current list of substitution rules
for a rule that would rewrite that path.  Delete that rule if found.
A warning is emitted by the debugger if no rule could be found.

If no path is specified, then all substitution rules are deleted.

@item show substitute-path [path]
@kindex show substitute-path
If a path is specified, then print the source path substitution rule
which would rewrite that path, if any.

If no path is specified, then print all existing source path substitution
rules.

@end table

If your source path is cluttered with directories that are no longer of
interest, @value{GDBN} may sometimes cause confusion by finding the wrong
versions of source.  You can correct the situation as follows:

@enumerate
@item
Use @code{directory} with no argument to reset the source path to its default value.

@item
Use @code{directory} with suitable arguments to reinstall the
directories you want in the source path.  You can add all the
directories in one command.
@end enumerate

@node Machine Code
@section Source and Machine Code
@cindex source line and its code address

You can use the command @code{info line} to map source lines to program
addresses (and vice versa), and the command @code{disassemble} to display
a range of addresses as machine instructions.  You can use the command
@code{set disassemble-next-line} to set whether to disassemble next
source line when execution stops.  When run under @sc{gnu} Emacs
mode, the @code{info line} command causes the arrow to point to the
line specified.  Also, @code{info line} prints addresses in symbolic form as
well as hex.

@table @code
@kindex info line
@item info line
@itemx info line @var{location}
Print the starting and ending addresses of the compiled code for
source line @var{location}.  You can specify source lines in any of
the ways documented in @ref{Specify Location}.  With no @var{location}
information about the current source line is printed.
@end table

For example, we can use @code{info line} to discover the location of
the object code for the first line of function
@code{m4_changequote}:

@smallexample
(@value{GDBP}) info line m4_changequote
Line 895 of "builtin.c" starts at pc 0x634c <m4_changequote> and \
        ends at 0x6350 <m4_changequote+4>.
@end smallexample

@noindent
@cindex code address and its source line
We can also inquire (using @code{*@var{addr}} as the form for
@var{location}) what source line covers a particular address:
@smallexample
(@value{GDBP}) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 <m4_changequote+152> and \
        ends at 0x6404 <m4_changequote+184>.
@end smallexample

@cindex @code{$_} and @code{info line}
@cindex @code{x} command, default address
@kindex x@r{(examine), and} info line
After @code{info line}, the default address for the @code{x} command
is changed to the starting address of the line, so that @samp{x/i} is
sufficient to begin examining the machine code (@pxref{Memory,
,Examining Memory}).  Also, this address is saved as the value of the
convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
Variables}).

@cindex info line, repeated calls
After @code{info line}, using @code{info line} again without
specifying a location will display information about the next source
line.

@table @code
@kindex disassemble
@cindex assembly instructions
@cindex instructions, assembly
@cindex machine instructions
@cindex listing machine instructions
@item disassemble
@itemx disassemble /m
@itemx disassemble /s
@itemx disassemble /r
This specialized command dumps a range of memory as machine
instructions.  It can also print mixed source+disassembly by specifying
the @code{/m} or @code{/s} modifier and print the raw instructions in hex
as well as in symbolic form by specifying the @code{/r} modifier.
The default memory range is the function surrounding the
program counter of the selected frame.  A single argument to this
command is a program counter value; @value{GDBN} dumps the function
surrounding this value.  When two arguments are given, they should
be separated by a comma, possibly surrounded by whitespace.  The
arguments specify a range of addresses to dump, in one of two forms:

@table @code
@item @var{start},@var{end}
the addresses from @var{start} (inclusive) to @var{end} (exclusive)
@item @var{start},+@var{length}
the addresses from @var{start} (inclusive) to
@code{@var{start}+@var{length}} (exclusive).
@end table

@noindent
When 2 arguments are specified, the name of the function is also
printed (since there could be several functions in the given range).

The argument(s) can be any expression yielding a numeric value, such as
@samp{0x32c4}, @samp{&main+10} or @samp{$pc - 8}.

If the range of memory being disassembled contains current program counter,
the instruction at that location is shown with a @code{=>} marker.
@end table

The following example shows the disassembly of a range of addresses of
HP PA-RISC 2.0 code:

@smallexample
(@value{GDBP}) disas 0x32c4, 0x32e4
Dump of assembler code from 0x32c4 to 0x32e4:
   0x32c4 <main+204>:      addil 0,dp
   0x32c8 <main+208>:      ldw 0x22c(sr0,r1),r26
   0x32cc <main+212>:      ldil 0x3000,r31
   0x32d0 <main+216>:      ble 0x3f8(sr4,r31)
   0x32d4 <main+220>:      ldo 0(r31),rp
   0x32d8 <main+224>:      addil -0x800,dp
   0x32dc <main+228>:      ldo 0x588(r1),r26
   0x32e0 <main+232>:      ldil 0x3000,r31
End of assembler dump.
@end smallexample

Here is an example showing mixed source+assembly for Intel x86
with @code{/m} or @code{/s}, when the program is stopped just after
function prologue in a non-optimized function with no inline code.

@smallexample
(@value{GDBP}) disas /m main
Dump of assembler code for function main:
5       @{
   0x08048330 <+0>:    push   %ebp
   0x08048331 <+1>:    mov    %esp,%ebp
   0x08048333 <+3>:    sub    $0x8,%esp
   0x08048336 <+6>:    and    $0xfffffff0,%esp
   0x08048339 <+9>:    sub    $0x10,%esp

6         printf ("Hello.\n");
=> 0x0804833c <+12>:   movl   $0x8048440,(%esp)
   0x08048343 <+19>:   call   0x8048284 <puts@@plt>

7         return 0;
8       @}
   0x08048348 <+24>:   mov    $0x0,%eax
   0x0804834d <+29>:   leave
   0x0804834e <+30>:   ret

End of assembler dump.
@end smallexample

The @code{/m} option is deprecated as its output is not useful when
there is either inlined code or re-ordered code.
The @code{/s} option is the preferred choice.
Here is an example for AMD x86-64 showing the difference between
@code{/m} output and @code{/s} output.
This example has one inline function defined in a header file,
and the code is compiled with @samp{-O2} optimization.
Note how the @code{/m} output is missing the disassembly of
several instructions that are present in the @code{/s} output.

@file{foo.h}:

@smallexample
int
foo (int a)
@{
  if (a < 0)
    return a * 2;
  if (a == 0)
    return 1;
  return a + 10;
@}
@end smallexample

@file{foo.c}:

@smallexample
#include "foo.h"
volatile int x, y;
int
main ()
@{
  x = foo (y);
  return 0;
@}
@end smallexample

@smallexample
(@value{GDBP}) disas /m main
Dump of assembler code for function main:
5	@{

6	  x = foo (y);
   0x0000000000400400 <+0>:	mov    0x200c2e(%rip),%eax # 0x601034 <y>
   0x0000000000400417 <+23>:	mov    %eax,0x200c13(%rip) # 0x601030 <x>

7	  return 0;
8	@}
   0x000000000040041d <+29>:	xor    %eax,%eax
   0x000000000040041f <+31>:	retq
   0x0000000000400420 <+32>:	add    %eax,%eax
   0x0000000000400422 <+34>:	jmp    0x400417 <main+23>

End of assembler dump.
(@value{GDBP}) disas /s main
Dump of assembler code for function main:
foo.c:
5	@{
6	  x = foo (y);
   0x0000000000400400 <+0>:	mov    0x200c2e(%rip),%eax # 0x601034 <y>

foo.h:
4	  if (a < 0)
   0x0000000000400406 <+6>:	test   %eax,%eax
   0x0000000000400408 <+8>:	js     0x400420 <main+32>

6	  if (a == 0)
7	    return 1;
8	  return a + 10;
   0x000000000040040a <+10>:	lea    0xa(%rax),%edx
   0x000000000040040d <+13>:	test   %eax,%eax
   0x000000000040040f <+15>:	mov    $0x1,%eax
   0x0000000000400414 <+20>:	cmovne %edx,%eax

foo.c:
6	  x = foo (y);
   0x0000000000400417 <+23>:	mov    %eax,0x200c13(%rip) # 0x601030 <x>

7	  return 0;
8	@}
   0x000000000040041d <+29>:	xor    %eax,%eax
   0x000000000040041f <+31>:	retq

foo.h:
5	    return a * 2;
   0x0000000000400420 <+32>:	add    %eax,%eax
   0x0000000000400422 <+34>:	jmp    0x400417 <main+23>
End of assembler dump.
@end smallexample

Here is another example showing raw instructions in hex for AMD x86-64,

@smallexample
(gdb) disas /r 0x400281,+10
Dump of assembler code from 0x400281 to 0x40028b:
   0x0000000000400281:  38 36  cmp    %dh,(%rsi)
   0x0000000000400283:  2d 36 34 2e 73 sub    $0x732e3436,%eax
   0x0000000000400288:  6f     outsl  %ds:(%rsi),(%dx)
   0x0000000000400289:  2e 32 00       xor    %cs:(%rax),%al
End of assembler dump.
@end smallexample

Addresses cannot be specified as a location (@pxref{Specify Location}).
So, for example, if you want to disassemble function @code{bar}
in file @file{foo.c}, you must type @samp{disassemble 'foo.c'::bar}
and not @samp{disassemble foo.c:bar}.

Some architectures have more than one commonly-used set of instruction
mnemonics or other syntax.

For programs that were dynamically linked and use shared libraries,
instructions that call functions or branch to locations in the shared
libraries might show a seemingly bogus location---it's actually a
location of the relocation table.  On some architectures, @value{GDBN}
might be able to resolve these to actual function names.

@table @code
@kindex set disassembler-options
@cindex disassembler options
@item set disassembler-options @var{option1}[,@var{option2}@dots{}]
This command controls the passing of target specific information to
the disassembler.  For a list of valid options, please refer to the
@code{-M}/@code{--disassembler-options} section of the @samp{objdump}
manual and/or the output of @kbd{objdump --help}
(@pxref{objdump,,objdump,binutils,The GNU Binary Utilities}).
The default value is the empty string.

If it is necessary to specify more than one disassembler option, then
multiple options can be placed together into a comma separated list.
Currently this command is only supported on targets ARM, MIPS, PowerPC
and S/390.

@kindex show disassembler-options
@item show disassembler-options
Show the current setting of the disassembler options.
@end table

@table @code
@kindex set disassembly-flavor
@cindex Intel disassembly flavor
@cindex AT&T disassembly flavor
@item set disassembly-flavor @var{instruction-set}
Select the instruction set to use when disassembling the
program via the @code{disassemble} or @code{x/i} commands.

Currently this command is only defined for the Intel x86 family.  You
can set @var{instruction-set} to either @code{intel} or @code{att}.
The default is @code{att}, the AT&T flavor used by default by Unix
assemblers for x86-based targets.

@kindex show disassembly-flavor
@item show disassembly-flavor
Show the current setting of the disassembly flavor.
@end table

@table @code
@kindex set disassemble-next-line
@kindex show disassemble-next-line
@item set disassemble-next-line
@itemx show disassemble-next-line
Control whether or not @value{GDBN} will disassemble the next source
line or instruction when execution stops.  If ON, @value{GDBN} will
display disassembly of the next source line when execution of the
program being debugged stops.  This is @emph{in addition} to
displaying the source line itself, which @value{GDBN} always does if
possible.  If the next source line cannot be displayed for some reason
(e.g., if @value{GDBN} cannot find the source file, or there's no line
info in the debug info), @value{GDBN} will display disassembly of the
next @emph{instruction} instead of showing the next source line.  If
AUTO, @value{GDBN} will display disassembly of next instruction only
if the source line cannot be displayed.  This setting causes
@value{GDBN} to display some feedback when you step through a function
with no line info or whose source file is unavailable.  The default is
OFF, which means never display the disassembly of the next line or
instruction.
@end table


@node Data
@chapter Examining Data

@cindex printing data
@cindex examining data
@kindex print
@kindex inspect
The usual way to examine data in your program is with the @code{print}
command (abbreviated @code{p}), or its synonym @code{inspect}.  It
evaluates and prints the value of an expression of the language your
program is written in (@pxref{Languages, ,Using @value{GDBN} with
Different Languages}).  It may also print the expression using a
Python-based pretty-printer (@pxref{Pretty Printing}).

@table @code
@item print [[@var{options}] --] @var{expr}
@itemx print [[@var{options}] --] /@var{f} @var{expr}
@var{expr} is an expression (in the source language).  By default the
value of @var{expr} is printed in a format appropriate to its data type;
you can choose a different format by specifying @samp{/@var{f}}, where
@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
Formats}.

@anchor{print options}
The @code{print} command supports a number of options that allow
overriding relevant global print settings as set by @code{set print}
subcommands:

@table @code
@item -address [@code{on}|@code{off}]
Set printing of addresses.
Related setting: @ref{set print address}.

@item -array [@code{on}|@code{off}]
Pretty formatting of arrays.
Related setting: @ref{set print array}.

@item -array-indexes [@code{on}|@code{off}]
Set printing of array indexes.
Related setting: @ref{set print array-indexes}.

@item -elements @var{number-of-elements}|@code{unlimited}
Set limit on string chars or array elements to print.  The value
@code{unlimited} causes there to be no limit.  Related setting:
@ref{set print elements}.

@item -max-depth @var{depth}|@code{unlimited}
Set the threshold after which nested structures are replaced with
ellipsis.  Related setting: @ref{set print max-depth}.

@item -null-stop [@code{on}|@code{off}]
Set printing of char arrays to stop at first null char.  Related
setting: @ref{set print null-stop}.

@item -object [@code{on}|@code{off}]
Set printing C@t{++} virtual function tables.  Related setting:
@ref{set print object}.

@item -pretty [@code{on}|@code{off}]
Set pretty formatting of structures.  Related setting: @ref{set print
pretty}.

@item -raw-values [@code{on}|@code{off}]
Set whether to print values in raw form, bypassing any
pretty-printers for that value.  Related setting: @ref{set print
raw-values}.

@item -repeats @var{number-of-repeats}|@code{unlimited}
Set threshold for repeated print elements.  @code{unlimited} causes
all elements to be individually printed.  Related setting: @ref{set
print repeats}.

@item -static-members [@code{on}|@code{off}]
Set printing C@t{++} static members.  Related setting: @ref{set print
static-members}.

@item -symbol [@code{on}|@code{off}]
Set printing of symbol names when printing pointers.  Related setting:
@ref{set print symbol}.

@item -union [@code{on}|@code{off}]
Set printing of unions interior to structures.  Related setting:
@ref{set print union}.

@item -vtbl [@code{on}|@code{off}]
Set printing of C++ virtual function tables.  Related setting:
@ref{set print vtbl}.
@end table

Because the @code{print} command accepts arbitrary expressions which
may look like options (including abbreviations), if you specify any
command option, then you must use a double dash (@code{--}) to mark
the end of option processing.

For example, this prints the value of the @code{-p} expression:

@smallexample
(@value{GDBP}) print -p
@end smallexample

While this repeats the last value in the value history (see below)
with the @code{-pretty} option in effect:

@smallexample
(@value{GDBP}) print -p --
@end smallexample

Here is an example including both on option and an expression:

@smallexample
@group
(@value{GDBP}) print -pretty -- *myptr
$1 = @{
  next = 0x0,
  flags = @{
    sweet = 1,
    sour = 1
  @},
  meat = 0x54 "Pork"
@}
@end group
@end smallexample

@item print [@var{options}]
@itemx print [@var{options}] /@var{f}
@cindex reprint the last value
If you omit @var{expr}, @value{GDBN} displays the last value again (from the
@dfn{value history}; @pxref{Value History, ,Value History}).  This allows you to
conveniently inspect the same value in an alternative format.
@end table

A more low-level way of examining data is with the @code{x} command.
It examines data in memory at a specified address and prints it in a
specified format.  @xref{Memory, ,Examining Memory}.

If you are interested in information about types, or about how the
fields of a struct or a class are declared, use the @code{ptype @var{exp}}
command rather than @code{print}.  @xref{Symbols, ,Examining the Symbol
Table}.

@cindex exploring hierarchical data structures
@kindex explore
Another way of examining values of expressions and type information is
through the Python extension command @code{explore} (available only if
the @value{GDBN} build is configured with @code{--with-python}).  It
offers an interactive way to start at the highest level (or, the most
abstract level) of the data type of an expression (or, the data type
itself) and explore all the way down to leaf scalar values/fields
embedded in the higher level data types.

@table @code
@item explore @var{arg}
@var{arg} is either an expression (in the source language), or a type
visible in the current context of the program being debugged.
@end table

The working of the @code{explore} command can be illustrated with an
example.  If a data type @code{struct ComplexStruct} is defined in your
C program as

@smallexample
struct SimpleStruct
@{
  int i;
  double d;
@};

struct ComplexStruct
@{
  struct SimpleStruct *ss_p;
  int arr[10];
@};
@end smallexample

@noindent
followed by variable declarations as

@smallexample
struct SimpleStruct ss = @{ 10, 1.11 @};
struct ComplexStruct cs = @{ &ss, @{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 @} @};
@end smallexample

@noindent
then, the value of the variable @code{cs} can be explored using the
@code{explore} command as follows.

@smallexample
(gdb) explore cs
The value of `cs' is a struct/class of type `struct ComplexStruct' with
the following fields:

  ss_p = <Enter 0 to explore this field of type `struct SimpleStruct *'>
   arr = <Enter 1 to explore this field of type `int [10]'>

Enter the field number of choice:
@end smallexample

@noindent
Since the fields of @code{cs} are not scalar values, you are being
prompted to chose the field you want to explore.  Let's say you choose
the field @code{ss_p} by entering @code{0}.  Then, since this field is a
pointer, you will be asked if it is pointing to a single value.  From
the declaration of @code{cs} above, it is indeed pointing to a single
value, hence you enter @code{y}.  If you enter @code{n}, then you will
be asked if it were pointing to an array of values, in which case this
field will be explored as if it were an array.

@smallexample
`cs.ss_p' is a pointer to a value of type `struct SimpleStruct'
Continue exploring it as a pointer to a single value [y/n]: y
The value of `*(cs.ss_p)' is a struct/class of type `struct
SimpleStruct' with the following fields:

  i = 10 .. (Value of type `int')
  d = 1.1100000000000001 .. (Value of type `double')

Press enter to return to parent value:
@end smallexample

@noindent
If the field @code{arr} of @code{cs} was chosen for exploration by
entering @code{1} earlier, then since it is as array, you will be
prompted to enter the index of the element in the array that you want
to explore.

@smallexample
`cs.arr' is an array of `int'.
Enter the index of the element you want to explore in `cs.arr': 5

`(cs.arr)[5]' is a scalar value of type `int'.

(cs.arr)[5] = 4

Press enter to return to parent value: 
@end smallexample

In general, at any stage of exploration, you can go deeper towards the
leaf values by responding to the prompts appropriately, or hit the
return key to return to the enclosing data structure (the @i{higher}
level data structure).

Similar to exploring values, you can use the @code{explore} command to
explore types.  Instead of specifying a value (which is typically a
variable name or an expression valid in the current context of the
program being debugged), you specify a type name.  If you consider the
same example as above, your can explore the type
@code{struct ComplexStruct} by passing the argument
@code{struct ComplexStruct} to the @code{explore} command.

@smallexample
(gdb) explore struct ComplexStruct
@end smallexample

@noindent
By responding to the prompts appropriately in the subsequent interactive
session, you can explore the type @code{struct ComplexStruct} in a
manner similar to how the value @code{cs} was explored in the above
example.

The @code{explore} command also has two sub-commands,
@code{explore value} and @code{explore type}. The former sub-command is
a way to explicitly specify that value exploration of the argument is
being invoked, while the latter is a way to explicitly specify that type
exploration of the argument is being invoked.

@table @code
@item explore value @var{expr}
@cindex explore value
This sub-command of @code{explore} explores the value of the
expression @var{expr} (if @var{expr} is an expression valid in the
current context of the program being debugged).  The behavior of this
command is identical to that of the behavior of the @code{explore}
command being passed the argument @var{expr}.

@item explore type @var{arg}
@cindex explore type
This sub-command of @code{explore} explores the type of @var{arg} (if
@var{arg} is a type visible in the current context of program being
debugged), or the type of the value/expression @var{arg} (if @var{arg}
is an expression valid in the current context of the program being
debugged).  If @var{arg} is a type, then the behavior of this command is
identical to that of the @code{explore} command being passed the
argument @var{arg}.  If @var{arg} is an expression, then the behavior of
this command will be identical to that of the @code{explore} command
being passed the type of @var{arg} as the argument.
@end table

@menu
* Expressions::                 Expressions
* Ambiguous Expressions::       Ambiguous Expressions
* Variables::                   Program variables
* Arrays::                      Artificial arrays
* Output Formats::              Output formats
* Memory::                      Examining memory
* Auto Display::                Automatic display
* Print Settings::              Print settings
* Pretty Printing::             Python pretty printing
* Value History::               Value history
* Convenience Vars::            Convenience variables
* Convenience Funs::            Convenience functions
* Registers::                   Registers
* Floating Point Hardware::     Floating point hardware
* Vector Unit::                 Vector Unit
* OS Information::              Auxiliary data provided by operating system
* Memory Region Attributes::    Memory region attributes
* Dump/Restore Files::          Copy between memory and a file
* Core File Generation::        Cause a program dump its core
* Character Sets::              Debugging programs that use a different
                                character set than GDB does
* Caching Target Data::         Data caching for targets
* Searching Memory::            Searching memory for a sequence of bytes
* Value Sizes::                 Managing memory allocated for values
@end menu

@node Expressions
@section Expressions

@cindex expressions
@code{print} and many other @value{GDBN} commands accept an expression and
compute its value.  Any kind of constant, variable or operator defined
by the programming language you are using is valid in an expression in
@value{GDBN}.  This includes conditional expressions, function calls,
casts, and string constants.  It also includes preprocessor macros, if
you compiled your program to include this information; see
@ref{Compilation}.

@cindex arrays in expressions
@value{GDBN} supports array constants in expressions input by
the user.  The syntax is @{@var{element}, @var{element}@dots{}@}.  For example,
you can use the command @code{print @{1, 2, 3@}} to create an array
of three integers.  If you pass an array to a function or assign it
to a program variable, @value{GDBN} copies the array to memory that
is @code{malloc}ed in the target program.

Because C is so widespread, most of the expressions shown in examples in
this manual are in C.  @xref{Languages, , Using @value{GDBN} with Different
Languages}, for information on how to use expressions in other
languages.

In this section, we discuss operators that you can use in @value{GDBN}
expressions regardless of your programming language.

@cindex casts, in expressions
Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer in order to examine a structure
at that address in memory.
@c FIXME: casts supported---Mod2 true?

@value{GDBN} supports these operators, in addition to those common
to programming languages:

@table @code
@item @@
@samp{@@} is a binary operator for treating parts of memory as arrays.
@xref{Arrays, ,Artificial Arrays}, for more information.

@item ::
@samp{::} allows you to specify a variable in terms of the file or
function where it is defined.  @xref{Variables, ,Program Variables}.

@cindex @{@var{type}@}
@cindex type casting memory
@cindex memory, viewing as typed object
@cindex casts, to view memory
@item @{@var{type}@} @var{addr}
Refers to an object of type @var{type} stored at address @var{addr} in
memory.  The address @var{addr} may be any expression whose value is
an integer or pointer (but parentheses are required around binary
operators, just as in a cast).  This construct is allowed regardless
of what kind of data is normally supposed to reside at @var{addr}.
@end table

@node Ambiguous Expressions
@section Ambiguous Expressions
@cindex ambiguous expressions

Expressions can sometimes contain some ambiguous elements.  For instance,
some programming languages (notably Ada, C@t{++} and Objective-C) permit
a single function name to be defined several times, for application in
different contexts.  This is called @dfn{overloading}.  Another example
involving Ada is generics.  A @dfn{generic package} is similar to C@t{++}
templates and is typically instantiated several times, resulting in
the same function name being defined in different contexts.

In some cases and depending on the language, it is possible to adjust
the expression to remove the ambiguity.  For instance in C@t{++}, you
can specify the signature of the function you want to break on, as in
@kbd{break @var{function}(@var{types})}.  In Ada, using the fully
qualified name of your function often makes the expression unambiguous
as well.

When an ambiguity that needs to be resolved is detected, the debugger
has the capability to display a menu of numbered choices for each
possibility, and then waits for the selection with the prompt @samp{>}.
The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
aborts the current command.  If the command in which the expression was
used allows more than one choice to be selected, the next option in the
menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
choices.

For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol @code{String::after}.
We choose three particular definitions of that function name:

@c FIXME! This is likely to change to show arg type lists, at least
@smallexample
@group
(@value{GDBP}) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
 breakpoints.
(@value{GDBP})
@end group
@end smallexample

@table @code
@kindex set multiple-symbols
@item set multiple-symbols @var{mode}
@cindex multiple-symbols menu

This option allows you to adjust the debugger behavior when an expression
is ambiguous.

By default, @var{mode} is set to @code{all}.  If the command with which
the expression is used allows more than one choice, then @value{GDBN}
automatically selects all possible choices.  For instance, inserting
a breakpoint on a function using an ambiguous name results in a breakpoint
inserted on each possible match.  However, if a unique choice must be made,
then @value{GDBN} uses the menu to help you disambiguate the expression.
For instance, printing the address of an overloaded function will result
in the use of the menu.

When @var{mode} is set to @code{ask}, the debugger always uses the menu
when an ambiguity is detected.

Finally, when @var{mode} is set to @code{cancel}, the debugger reports
an error due to the ambiguity and the command is aborted.

@kindex show multiple-symbols
@item show multiple-symbols
Show the current value of the @code{multiple-symbols} setting.
@end table

@node Variables
@section Program Variables

The most common kind of expression to use is the name of a variable
in your program.

Variables in expressions are understood in the selected stack frame
(@pxref{Selection, ,Selecting a Frame}); they must be either:

@itemize @bullet
@item
global (or file-static)
@end itemize

@noindent or

@itemize @bullet
@item
visible according to the scope rules of the
programming language from the point of execution in that frame
@end itemize

@noindent This means that in the function

@smallexample
foo (a)
     int a;
@{
  bar (a);
  @{
    int b = test ();
    bar (b);
  @}
@}
@end smallexample

@noindent
you can examine and use the variable @code{a} whenever your program is
executing within the function @code{foo}, but you can only use or
examine the variable @code{b} while your program is executing inside
the block where @code{b} is declared.

@cindex variable name conflict
There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is not
in this file.  But it is possible to have more than one such variable or
function with the same name (in different source files).  If that
happens, referring to that name has unpredictable effects.  If you wish,
you can specify a static variable in a particular function or file by
using the colon-colon (@code{::}) notation:

@cindex colon-colon, context for variables/functions
@ifnotinfo
@c info cannot cope with a :: index entry, but why deprive hard copy readers?
@cindex @code{::}, context for variables/functions
@end ifnotinfo
@smallexample
@var{file}::@var{variable}
@var{function}::@var{variable}
@end smallexample

@noindent
Here @var{file} or @var{function} is the name of the context for the
static @var{variable}.  In the case of file names, you can use quotes to
make sure @value{GDBN} parses the file name as a single word---for example,
to print a global value of @code{x} defined in @file{f2.c}:

@smallexample
(@value{GDBP}) p 'f2.c'::x
@end smallexample

The @code{::} notation is normally used for referring to
static variables, since you typically disambiguate uses of local variables
in functions by selecting the appropriate frame and using the
simple name of the variable.  However, you may also use this notation
to refer to local variables in frames enclosing the selected frame:

@smallexample
void
foo (int a)
@{
  if (a < 10)
    bar (a);
  else
    process (a);    /* Stop here */
@}

int
bar (int a)
@{
  foo (a + 5);
@}
@end smallexample

@noindent
For example, if there is a breakpoint at the commented line,
here is what you might see
when the program stops after executing the call @code{bar(0)}:

@smallexample
(@value{GDBP}) p a
$1 = 10
(@value{GDBP}) p bar::a
$2 = 5
(@value{GDBP}) up 2
#2  0x080483d0 in foo (a=5) at foobar.c:12
(@value{GDBP}) p a
$3 = 5
(@value{GDBP}) p bar::a
$4 = 0
@end smallexample

@cindex C@t{++} scope resolution
These uses of @samp{::} are very rarely in conflict with the very
similar use of the same notation in C@t{++}.  When they are in
conflict, the C@t{++} meaning takes precedence; however, this can be
overridden by quoting the file or function name with single quotes.

For example, suppose the program is stopped in a method of a class
that has a field named @code{includefile}, and there is also an
include file named @file{includefile} that defines a variable,
@code{some_global}.

@smallexample
(@value{GDBP}) p includefile
$1 = 23
(@value{GDBP}) p includefile::some_global
A syntax error in expression, near `'.
(@value{GDBP}) p 'includefile'::some_global
$2 = 27
@end smallexample

@cindex wrong values
@cindex variable values, wrong
@cindex function entry/exit, wrong values of variables
@cindex optimized code, wrong values of variables
@quotation
@emph{Warning:} Occasionally, a local variable may appear to have the
wrong value at certain points in a function---just after entry to a new
scope, and just before exit.
@end quotation
You may see this problem when you are stepping by machine instructions.
This is because, on most machines, it takes more than one instruction to
set up a stack frame (including local variable definitions); if you are
stepping by machine instructions, variables may appear to have the wrong
values until the stack frame is completely built.  On exit, it usually
also takes more than one machine instruction to destroy a stack frame;
after you begin stepping through that group of instructions, local
variable definitions may be gone.

This may also happen when the compiler does significant optimizations.
To be sure of always seeing accurate values, turn off all optimization
when compiling.

@cindex ``No symbol "foo" in current context''
Another possible effect of compiler optimizations is to optimize
unused variables out of existence, or assign variables to registers (as
opposed to memory addresses).  Depending on the support for such cases
offered by the debug info format used by the compiler, @value{GDBN}
might not be able to display values for such local variables.  If that
happens, @value{GDBN} will print a message like this:

@smallexample
No symbol "foo" in current context.
@end smallexample

To solve such problems, either recompile without optimizations, or use a
different debug info format, if the compiler supports several such
formats.  @xref{Compilation}, for more information on choosing compiler
options.  @xref{C, ,C and C@t{++}}, for more information about debug
info formats that are best suited to C@t{++} programs.

If you ask to print an object whose contents are unknown to
@value{GDBN}, e.g., because its data type is not completely specified
by the debug information, @value{GDBN} will say @samp{<incomplete
type>}.  @xref{Symbols, incomplete type}, for more about this.

@cindex no debug info variables
If you try to examine or use the value of a (global) variable for
which @value{GDBN} has no type information, e.g., because the program
includes no debug information, @value{GDBN} displays an error message.
@xref{Symbols, unknown type}, for more about unknown types.  If you
cast the variable to its declared type, @value{GDBN} gets the
variable's value using the cast-to type as the variable's type.  For
example, in a C program:

@smallexample
  (@value{GDBP}) p var
  'var' has unknown type; cast it to its declared type
  (@value{GDBP}) p (float) var
  $1 = 3.14
@end smallexample

If you append @kbd{@@entry} string to a function parameter name you get its
value at the time the function got called.  If the value is not available an
error message is printed.  Entry values are available only with some compilers.
Entry values are normally also printed at the function parameter list according
to @ref{set print entry-values}.

@smallexample
Breakpoint 1, d (i=30) at gdb.base/entry-value.c:29
29	  i++;
(gdb) next
30	  e (i);
(gdb) print i
$1 = 31
(gdb) print i@@entry
$2 = 30
@end smallexample

Strings are identified as arrays of @code{char} values without specified
signedness.  Arrays of either @code{signed char} or @code{unsigned char} get
printed as arrays of 1 byte sized integers.  @code{-fsigned-char} or
@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
defines literal string type @code{"char"} as @code{char} without a sign.
For program code

@smallexample
char var0[] = "A";
signed char var1[] = "A";
@end smallexample

You get during debugging
@smallexample
(gdb) print var0
$1 = "A"
(gdb) print var1
$2 = @{65 'A', 0 '\0'@}
@end smallexample

@node Arrays
@section Artificial Arrays

@cindex artificial array
@cindex arrays
@kindex @@@r{, referencing memory as an array}
It is often useful to print out several successive objects of the
same type in memory; a section of an array, or an array of
dynamically determined size for which only a pointer exists in the
program.

You can do this by referring to a contiguous span of memory as an
@dfn{artificial array}, using the binary operator @samp{@@}.  The left
operand of @samp{@@} should be the first element of the desired array
and be an individual object.  The right operand should be the desired length
of the array.  The result is an array value whose elements are all of
the type of the left argument.  The first element is actually the left
argument; the second element comes from bytes of memory immediately
following those that hold the first element, and so on.  Here is an
example.  If a program says

@smallexample
int *array = (int *) malloc (len * sizeof (int));
@end smallexample

@noindent
you can print the contents of @code{array} with

@smallexample
p *array@@len
@end smallexample

The left operand of @samp{@@} must reside in memory.  Array values made
with @samp{@@} in this way behave just like other arrays in terms of
subscripting, and are coerced to pointers when used in expressions.
Artificial arrays most often appear in expressions via the value history
(@pxref{Value History, ,Value History}), after printing one out.

Another way to create an artificial array is to use a cast.
This re-interprets a value as if it were an array.
The value need not be in memory:
@smallexample
(@value{GDBP}) p/x (short[2])0x12345678
$1 = @{0x1234, 0x5678@}
@end smallexample

As a convenience, if you leave the array length out (as in
@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
@smallexample
(@value{GDBP}) p/x (short[])0x12345678
$2 = @{0x1234, 0x5678@}
@end smallexample

Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent---for example, if you are interested in the values
of pointers in an array.  One useful work-around in this situation is
to use a convenience variable (@pxref{Convenience Vars, ,Convenience
Variables}) as a counter in an expression that prints the first
interesting value, and then repeat that expression via @key{RET}.  For
instance, suppose you have an array @code{dtab} of pointers to
structures, and you are interested in the values of a field @code{fv}
in each structure.  Here is an example of what you might type:

@smallexample
set $i = 0
p dtab[$i++]->fv
@key{RET}
@key{RET}
@dots{}
@end smallexample

@node Output Formats
@section Output Formats

@cindex formatted output
@cindex output formats
By default, @value{GDBN} prints a value according to its data type.  Sometimes
this is not what you want.  For example, you might want to print a number
in hex, or a pointer in decimal.  Or you might want to view data in memory
at a certain address as a character string or as an instruction.  To do
these things, specify an @dfn{output format} when you print a value.

The simplest use of output formats is to say how to print a value
already computed.  This is done by starting the arguments of the
@code{print} command with a slash and a format letter.  The format
letters supported are:

@table @code
@item x
Regard the bits of the value as an integer, and print the integer in
hexadecimal.

@item d
Print as integer in signed decimal.

@item u
Print as integer in unsigned decimal.

@item o
Print as integer in octal.

@item t
Print as integer in binary.  The letter @samp{t} stands for ``two''.
@footnote{@samp{b} cannot be used because these format letters are also
used with the @code{x} command, where @samp{b} stands for ``byte'';
see @ref{Memory,,Examining Memory}.}

@item a
@cindex unknown address, locating
@cindex locate address
Print as an address, both absolute in hexadecimal and as an offset from
the nearest preceding symbol.  You can use this format used to discover
where (in what function) an unknown address is located:

@smallexample
(@value{GDBP}) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>
@end smallexample

@noindent
The command @code{info symbol 0x54320} yields similar results.
@xref{Symbols, info symbol}.

@item c
Regard as an integer and print it as a character constant.  This
prints both the numerical value and its character representation.  The
character representation is replaced with the octal escape @samp{\nnn}
for characters outside the 7-bit @sc{ascii} range.

Without this format, @value{GDBN} displays @code{char},
@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
constants.  Single-byte members of vectors are displayed as integer
data.

@item f
Regard the bits of the value as a floating point number and print
using typical floating point syntax.

@item s
@cindex printing strings
@cindex printing byte arrays
Regard as a string, if possible.  With this format, pointers to single-byte
data are displayed as null-terminated strings and arrays of single-byte data
are displayed as fixed-length strings.  Other values are displayed in their
natural types.

Without this format, @value{GDBN} displays pointers to and arrays of
@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
strings.  Single-byte members of a vector are displayed as an integer
array.

@item z
Like @samp{x} formatting, the value is treated as an integer and
printed as hexadecimal, but leading zeros are printed to pad the value
to the size of the integer type.

@item r
@cindex raw printing
Print using the @samp{raw} formatting.  By default, @value{GDBN} will
use a Python-based pretty-printer, if one is available (@pxref{Pretty
Printing}).  This typically results in a higher-level display of the
value's contents.  The @samp{r} format bypasses any Python
pretty-printer which might exist.
@end table

For example, to print the program counter in hex (@pxref{Registers}), type

@smallexample
p/x $pc
@end smallexample

@noindent
Note that no space is required before the slash; this is because command
names in @value{GDBN} cannot contain a slash.

To reprint the last value in the value history with a different format,
you can use the @code{print} command with just a format and no
expression.  For example, @samp{p/x} reprints the last value in hex.

@node Memory
@section Examining Memory

You can use the command @code{x} (for ``examine'') to examine memory in
any of several formats, independently of your program's data types.

@cindex examining memory
@table @code
@kindex x @r{(examine memory)}
@item x/@var{nfu} @var{addr}
@itemx x @var{addr}
@itemx x
Use the @code{x} command to examine memory.
@end table

@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
much memory to display and how to format it; @var{addr} is an
expression giving the address where you want to start displaying memory.
If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
Several commands set convenient defaults for @var{addr}.

@table @r
@item @var{n}, the repeat count
The repeat count is a decimal integer; the default is 1.  It specifies
how much memory (counting by units @var{u}) to display.  If a negative
number is specified, memory is examined backward from @var{addr}.
@c This really is **decimal**; unaffected by 'set radix' as of GDB
@c 4.1.2.

@item @var{f}, the display format
The display format is one of the formats used by @code{print}
(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
The default is @samp{x} (hexadecimal) initially.  The default changes
each time you use either @code{x} or @code{print}.

@item @var{u}, the unit size
The unit size is any of

@table @code
@item b
Bytes.
@item h
Halfwords (two bytes).
@item w
Words (four bytes).  This is the initial default.
@item g
Giant words (eight bytes).
@end table

Each time you specify a unit size with @code{x}, that size becomes the
default unit the next time you use @code{x}.  For the @samp{i} format,
the unit size is ignored and is normally not written.  For the @samp{s} format,
the unit size defaults to @samp{b}, unless it is explicitly given.
Use @kbd{x /hs} to display 16-bit char strings and @kbd{x /ws} to display
32-bit strings.  The next use of @kbd{x /s} will again display 8-bit strings.
Note that the results depend on the programming language of the
current compilation unit.  If the language is C, the @samp{s}
modifier will use the UTF-16 encoding while @samp{w} will use
UTF-32.  The encoding is set by the programming language and cannot
be altered.

@item @var{addr}, starting display address
@var{addr} is the address where you want @value{GDBN} to begin displaying
memory.  The expression need not have a pointer value (though it may);
it is always interpreted as an integer address of a byte of memory.
@xref{Expressions, ,Expressions}, for more information on expressions.  The default for
@var{addr} is usually just after the last address examined---but several
other commands also set the default address: @code{info breakpoints} (to
the address of the last breakpoint listed), @code{info line} (to the
starting address of a line), and @code{print} (if you use it to display
a value from memory).
@end table

For example, @samp{x/3uh 0x54320} is a request to display three halfwords
(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
starting at address @code{0x54320}.  @samp{x/4xw $sp} prints the four
words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).

You can also specify a negative repeat count to examine memory backward
from the given address.  For example, @samp{x/-3uh 0x54320} prints three
halfwords (@code{h}) at @code{0x54314}, @code{0x54328}, and @code{0x5431c}.

Since the letters indicating unit sizes are all distinct from the
letters specifying output formats, you do not have to remember whether
unit size or format comes first; either order works.  The output
specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
(However, the count @var{n} must come first; @samp{wx4} does not work.)

Even though the unit size @var{u} is ignored for the formats @samp{s}
and @samp{i}, you might still want to use a count @var{n}; for example,
@samp{3i} specifies that you want to see three machine instructions,
including any operands.  For convenience, especially when used with
the @code{display} command, the @samp{i} format also prints branch delay
slot instructions, if any, beyond the count specified, which immediately
follow the last instruction that is within the count.  The command
@code{disassemble} gives an alternative way of inspecting machine
instructions; see @ref{Machine Code,,Source and Machine Code}.

If a negative repeat count is specified for the formats @samp{s} or @samp{i},
the command displays null-terminated strings or instructions before the given
address as many as the absolute value of the given number.  For the @samp{i}
format, we use line number information in the debug info to accurately locate
instruction boundaries while disassembling backward.  If line info is not
available, the command stops examining memory with an error message.

All the defaults for the arguments to @code{x} are designed to make it
easy to continue scanning memory with minimal specifications each time
you use @code{x}.  For example, after you have inspected three machine
instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
with just @samp{x/7}.  If you use @key{RET} to repeat the @code{x} command,
the repeat count @var{n} is used again; the other arguments default as
for successive uses of @code{x}.

When examining machine instructions, the instruction at current program
counter is shown with a @code{=>} marker. For example:

@smallexample
(@value{GDBP}) x/5i $pc-6
   0x804837f <main+11>: mov    %esp,%ebp
   0x8048381 <main+13>: push   %ecx
   0x8048382 <main+14>: sub    $0x4,%esp
=> 0x8048385 <main+17>: movl   $0x8048460,(%esp)
   0x804838c <main+24>: call   0x80482d4 <puts@@plt>
@end smallexample

@cindex @code{$_}, @code{$__}, and value history
The addresses and contents printed by the @code{x} command are not saved
in the value history because there is often too much of them and they
would get in the way.  Instead, @value{GDBN} makes these values available for
subsequent use in expressions as values of the convenience variables
@code{$_} and @code{$__}.  After an @code{x} command, the last address
examined is available for use in expressions in the convenience variable
@code{$_}.  The contents of that address, as examined, are available in
the convenience variable @code{$__}.

If the @code{x} command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of output.

@anchor{addressable memory unit}
@cindex addressable memory unit
Most targets have an addressable memory unit size of 8 bits.  This means
that to each memory address are associated 8 bits of data.  Some
targets, however, have other addressable memory unit sizes.
Within @value{GDBN} and this document, the term
@dfn{addressable memory unit} (or @dfn{memory unit} for short) is used
when explicitly referring to a chunk of data of that size.  The word
@dfn{byte} is used to refer to a chunk of data of 8 bits, regardless of
the addressable memory unit size of the target.  For most systems,
addressable memory unit is a synonym of byte.

@cindex remote memory comparison
@cindex target memory comparison
@cindex verify remote memory image
@cindex verify target memory image
When you are debugging a program running on a remote target machine
(@pxref{Remote Debugging}), you may wish to verify the program's image
in the remote machine's memory against the executable file you
downloaded to the target.  Or, on any target, you may want to check
whether the program has corrupted its own read-only sections.  The
@code{compare-sections} command is provided for such situations.

@table @code
@kindex compare-sections
@item compare-sections @r{[}@var{section-name}@r{|}@code{-r}@r{]}
Compare the data of a loadable section @var{section-name} in the
executable file of the program being debugged with the same section in
the target machine's memory, and report any mismatches.  With no
arguments, compares all loadable sections.  With an argument of
@code{-r}, compares all loadable read-only sections.

Note: for remote targets, this command can be accelerated if the
target supports computing the CRC checksum of a block of memory
(@pxref{qCRC packet}).
@end table

@node Auto Display
@section Automatic Display
@cindex automatic display
@cindex display of expressions

If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the @dfn{automatic
display list} so that @value{GDBN} prints its value each time your program stops.
Each expression added to the list is given a number to identify it;
to remove an expression from the list, you specify that number.
The automatic display looks like this:

@smallexample
2: foo = 38
3: bar[5] = (struct hack *) 0x3804
@end smallexample

@noindent
This display shows item numbers, expressions and their current values.  As with
displays you request manually using @code{x} or @code{print}, you can
specify the output format you prefer; in fact, @code{display} decides
whether to use @code{print} or @code{x} depending your format
specification---it uses @code{x} if you specify either the @samp{i}
or @samp{s} format, or a unit size; otherwise it uses @code{print}.

@table @code
@kindex display
@item display @var{expr}
Add the expression @var{expr} to the list of expressions to display
each time your program stops.  @xref{Expressions, ,Expressions}.

@code{display} does not repeat if you press @key{RET} again after using it.

@item display/@var{fmt} @var{expr}
For @var{fmt} specifying only a display format and not a size or
count, add the expression @var{expr} to the auto-display list but
arrange to display it each time in the specified format @var{fmt}.
@xref{Output Formats,,Output Formats}.

@item display/@var{fmt} @var{addr}
For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
number of units, add the expression @var{addr} as a memory address to
be examined each time your program stops.  Examining means in effect
doing @samp{x/@var{fmt} @var{addr}}.  @xref{Memory, ,Examining Memory}.
@end table

For example, @samp{display/i $pc} can be helpful, to see the machine
instruction about to be executed each time execution stops (@samp{$pc}
is a common name for the program counter; @pxref{Registers, ,Registers}).

@table @code
@kindex delete display
@kindex undisplay
@item undisplay @var{dnums}@dots{}
@itemx delete display @var{dnums}@dots{}
Remove items from the list of expressions to display.  Specify the
numbers of the displays that you want affected with the command
argument @var{dnums}.  It can be a single display number, one of the
numbers shown in the first field of the @samp{info display} display;
or it could be a range of display numbers, as in @code{2-4}.

@code{undisplay} does not repeat if you press @key{RET} after using it.
(Otherwise you would just get the error @samp{No display number @dots{}}.)

@kindex disable display
@item disable display @var{dnums}@dots{}
Disable the display of item numbers @var{dnums}.  A disabled display
item is not printed automatically, but is not forgotten.  It may be
enabled again later.  Specify the numbers of the displays that you
want affected with the command argument @var{dnums}.  It can be a
single display number, one of the numbers shown in the first field of
the @samp{info display} display; or it could be a range of display
numbers, as in @code{2-4}.

@kindex enable display
@item enable display @var{dnums}@dots{}
Enable display of item numbers @var{dnums}.  It becomes effective once
again in auto display of its expression, until you specify otherwise.
Specify the numbers of the displays that you want affected with the
command argument @var{dnums}.  It can be a single display number, one
of the numbers shown in the first field of the @samp{info display}
display; or it could be a range of display numbers, as in @code{2-4}.

@item display
Display the current values of the expressions on the list, just as is
done when your program stops.

@kindex info display
@item info display
Print the list of expressions previously set up to display
automatically, each one with its item number, but without showing the
values.  This includes disabled expressions, which are marked as such.
It also includes expressions which would not be displayed right now
because they refer to automatic variables not currently available.
@end table

@cindex display disabled out of scope
If a display expression refers to local variables, then it does not make
sense outside the lexical context for which it was set up.  Such an
expression is disabled when execution enters a context where one of its
variables is not defined.  For example, if you give the command
@code{display last_char} while inside a function with an argument
@code{last_char}, @value{GDBN} displays this argument while your program
continues to stop inside that function.  When it stops elsewhere---where
there is no variable @code{last_char}---the display is disabled
automatically.  The next time your program stops where @code{last_char}
is meaningful, you can enable the display expression once again.

@node Print Settings
@section Print Settings

@cindex format options
@cindex print settings
@value{GDBN} provides the following ways to control how arrays, structures,
and symbols are printed.

@noindent
These settings are useful for debugging programs in any language:

@table @code
@kindex set print
@anchor{set print address}
@item set print address
@itemx set print address on
@cindex print/don't print memory addresses
@value{GDBN} prints memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and so forth,
even when it also displays the contents of those addresses.  The default
is @code{on}.  For example, this is what a stack frame display looks like with
@code{set print address on}:

@smallexample
@group
(@value{GDBP}) f
#0  set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
    at input.c:530
530         if (lquote != def_lquote)
@end group
@end smallexample

@item set print address off
Do not print addresses when displaying their contents.  For example,
this is the same stack frame displayed with @code{set print address off}:

@smallexample
@group
(@value{GDBP}) set print addr off
(@value{GDBP}) f
#0  set_quotes (lq="<<", rq=">>") at input.c:530
530         if (lquote != def_lquote)
@end group
@end smallexample

You can use @samp{set print address off} to eliminate all machine
dependent displays from the @value{GDBN} interface.  For example, with
@code{print address off}, you should get the same text for backtraces on
all machines---whether or not they involve pointer arguments.

@kindex show print
@item show print address
Show whether or not addresses are to be printed.
@end table

When @value{GDBN} prints a symbolic address, it normally prints the
closest earlier symbol plus an offset.  If that symbol does not uniquely
identify the address (for example, it is a name whose scope is a single
source file), you may need to clarify.  One way to do this is with
@code{info line}, for example @samp{info line *0x4537}.  Alternately,
you can set @value{GDBN} to print the source file and line number when
it prints a symbolic address:

@table @code
@item set print symbol-filename on
@cindex source file and line of a symbol
@cindex symbol, source file and line
Tell @value{GDBN} to print the source file name and line number of a
symbol in the symbolic form of an address.

@item set print symbol-filename off
Do not print source file name and line number of a symbol.  This is the
default.

@item show print symbol-filename
Show whether or not @value{GDBN} will print the source file name and
line number of a symbol in the symbolic form of an address.
@end table

Another situation where it is helpful to show symbol filenames and line
numbers is when disassembling code; @value{GDBN} shows you the line
number and source file that corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being
printed is reasonably close to the closest earlier symbol:

@table @code
@item set print max-symbolic-offset @var{max-offset}
@itemx set print max-symbolic-offset unlimited
@cindex maximum value for offset of closest symbol
Tell @value{GDBN} to only display the symbolic form of an address if the
offset between the closest earlier symbol and the address is less than
@var{max-offset}.  The default is @code{unlimited}, which tells @value{GDBN}
to always print the symbolic form of an address if any symbol precedes
it.  Zero is equivalent to @code{unlimited}.

@item show print max-symbolic-offset
Ask how large the maximum offset is that @value{GDBN} prints in a
symbolic address.
@end table

@cindex wild pointer, interpreting
@cindex pointer, finding referent
If you have a pointer and you are not sure where it points, try
@samp{set print symbol-filename on}.  Then you can determine the name
and source file location of the variable where it points, using
@samp{p/a @var{pointer}}.  This interprets the address in symbolic form.
For example, here @value{GDBN} shows that a variable @code{ptt} points
at another variable @code{t}, defined in @file{hi2.c}:

@smallexample
(@value{GDBP}) set print symbol-filename on
(@value{GDBP}) p/a ptt
$4 = 0xe008 <t in hi2.c>
@end smallexample

@quotation
@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
does not show the symbol name and filename of the referent, even with
the appropriate @code{set print} options turned on.
@end quotation

You can also enable @samp{/a}-like formatting all the time using
@samp{set print symbol on}:

@anchor{set print symbol}
@table @code
@item set print symbol on
Tell @value{GDBN} to print the symbol corresponding to an address, if
one exists.

@item set print symbol off
Tell @value{GDBN} not to print the symbol corresponding to an
address.  In this mode, @value{GDBN} will still print the symbol
corresponding to pointers to functions.  This is the default.

@item show print symbol
Show whether @value{GDBN} will display the symbol corresponding to an
address.
@end table

Other settings control how different kinds of objects are printed:

@table @code
@anchor{set print array}
@item set print array
@itemx set print array on
@cindex pretty print arrays
Pretty print arrays.  This format is more convenient to read,
but uses more space.  The default is off.

@item set print array off
Return to compressed format for arrays.

@item show print array
Show whether compressed or pretty format is selected for displaying
arrays.

@cindex print array indexes
@anchor{set print array-indexes}
@item set print array-indexes
@itemx set print array-indexes on
Print the index of each element when displaying arrays.  May be more
convenient to locate a given element in the array or quickly find the
index of a given element in that printed array.  The default is off.

@item set print array-indexes off
Stop printing element indexes when displaying arrays.

@item show print array-indexes
Show whether the index of each element is printed when displaying
arrays.

@anchor{set print elements}
@item set print elements @var{number-of-elements}
@itemx set print elements unlimited
@cindex number of array elements to print
@cindex limit on number of printed array elements
Set a limit on how many elements of an array @value{GDBN} will print.
If @value{GDBN} is printing a large array, it stops printing after it has
printed the number of elements set by the @code{set print elements} command.
This limit also applies to the display of strings.
When @value{GDBN} starts, this limit is set to 200.
Setting @var{number-of-elements} to @code{unlimited} or zero means
that the number of elements to print is unlimited.

@item show print elements
Display the number of elements of a large array that @value{GDBN} will print.
If the number is 0, then the printing is unlimited.

@anchor{set print frame-arguments}
@item set print frame-arguments @var{value}
@kindex set print frame-arguments
@cindex printing frame argument values
@cindex print all frame argument values
@cindex print frame argument values for scalars only
@cindex do not print frame arguments
This command allows to control how the values of arguments are printed
when the debugger prints a frame (@pxref{Frames}).  The possible
values are:

@table @code
@item all
The values of all arguments are printed.

@item scalars
Print the value of an argument only if it is a scalar.  The value of more
complex arguments such as arrays, structures, unions, etc, is replaced
by @code{@dots{}}.  This is the default.  Here is an example where
only scalar arguments are shown:

@smallexample
#1  0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
  at frame-args.c:23
@end smallexample

@item none
None of the argument values are printed.  Instead, the value of each argument
is replaced by @code{@dots{}}.  In this case, the example above now becomes:

@smallexample
#1  0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
  at frame-args.c:23
@end smallexample

@item presence
Only the presence of arguments is indicated by @code{@dots{}}.
The @code{@dots{}} are not printed for function without any arguments.
None of the argument names and values are printed.
In this case, the example above now becomes:

@smallexample
#1  0x08048361 in call_me (@dots{}) at frame-args.c:23
@end smallexample

@end table

By default, only scalar arguments are printed.  This command can be used
to configure the debugger to print the value of all arguments, regardless
of their type.  However, it is often advantageous to not print the value
of more complex parameters.  For instance, it reduces the amount of
information printed in each frame, making the backtrace more readable.
Also, it improves performance when displaying Ada frames, because
the computation of large arguments can sometimes be CPU-intensive,
especially in large applications.  Setting @code{print frame-arguments}
to @code{scalars} (the default), @code{none} or @code{presence} avoids
this computation, thus speeding up the display of each Ada frame.

@item show print frame-arguments
Show how the value of arguments should be displayed when printing a frame.

@anchor{set print raw-frame-arguments}
@item set print raw-frame-arguments on
Print frame arguments in raw, non pretty-printed, form.

@item set print raw-frame-arguments off
Print frame arguments in pretty-printed form, if there is a pretty-printer
for the value (@pxref{Pretty Printing}),
otherwise print the value in raw form.
This is the default.

@item show print raw-frame-arguments
Show whether to print frame arguments in raw form.

@anchor{set print entry-values}
@item set print entry-values @var{value}
@kindex set print entry-values
Set printing of frame argument values at function entry.  In some cases
@value{GDBN} can determine the value of function argument which was passed by
the function caller, even if the value was modified inside the called function
and therefore is different.  With optimized code, the current value could be
unavailable, but the entry value may still be known.

The default value is @code{default} (see below for its description).  Older
@value{GDBN} behaved as with the setting @code{no}.  Compilers not supporting
this feature will behave in the @code{default} setting the same way as with the
@code{no} setting.

This functionality is currently supported only by DWARF 2 debugging format and
the compiler has to produce @samp{DW_TAG_call_site} tags.  With
@value{NGCC}, you need to specify @option{-O -g} during compilation, to get
this information.

The @var{value} parameter can be one of the following:

@table @code
@item no
Print only actual parameter values, never print values from function entry
point.
@smallexample
#0  equal (val=5)
#0  different (val=6)
#0  lost (val=<optimized out>)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample

@item only
Print only parameter values from function entry point.  The actual parameter
values are never printed.
@smallexample
#0  equal (val@@entry=5)
#0  different (val@@entry=5)
#0  lost (val@@entry=5)
#0  born (val@@entry=<optimized out>)
#0  invalid (val@@entry=<optimized out>)
@end smallexample

@item preferred
Print only parameter values from function entry point.  If value from function
entry point is not known while the actual value is known, print the actual
value for such parameter.
@smallexample
#0  equal (val@@entry=5)
#0  different (val@@entry=5)
#0  lost (val@@entry=5)
#0  born (val=10)
#0  invalid (val@@entry=<optimized out>)
@end smallexample

@item if-needed
Print actual parameter values.  If actual parameter value is not known while
value from function entry point is known, print the entry point value for such
parameter.
@smallexample
#0  equal (val=5)
#0  different (val=6)
#0  lost (val@@entry=5)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample

@item both
Always print both the actual parameter value and its value from function entry
point, even if values of one or both are not available due to compiler
optimizations.
@smallexample
#0  equal (val=5, val@@entry=5)
#0  different (val=6, val@@entry=5)
#0  lost (val=<optimized out>, val@@entry=5)
#0  born (val=10, val@@entry=<optimized out>)
#0  invalid (val=<optimized out>, val@@entry=<optimized out>)
@end smallexample

@item compact
Print the actual parameter value if it is known and also its value from
function entry point if it is known.  If neither is known, print for the actual
value @code{<optimized out>}.  If not in MI mode (@pxref{GDB/MI}) and if both
values are known and identical, print the shortened
@code{param=param@@entry=VALUE} notation.
@smallexample
#0  equal (val=val@@entry=5)
#0  different (val=6, val@@entry=5)
#0  lost (val@@entry=5)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample

@item default
Always print the actual parameter value.  Print also its value from function
entry point, but only if it is known.  If not in MI mode (@pxref{GDB/MI}) and
if both values are known and identical, print the shortened
@code{param=param@@entry=VALUE} notation.
@smallexample
#0  equal (val=val@@entry=5)
#0  different (val=6, val@@entry=5)
#0  lost (val=<optimized out>, val@@entry=5)
#0  born (val=10)
#0  invalid (val=<optimized out>)
@end smallexample
@end table

For analysis messages on possible failures of frame argument values at function
entry resolution see @ref{set debug entry-values}.

@item show print entry-values
Show the method being used for printing of frame argument values at function
entry.

@anchor{set print frame-info}
@item set print frame-info @var{value}
@kindex set print frame-info
@cindex printing frame information
@cindex frame information, printing
This command allows to control the information printed when
the debugger prints a frame.  See @ref{Frames}, @ref{Backtrace},
for a general explanation about frames and frame information.
Note that some other settings (such as @code{set print frame-arguments}
and @code{set print address}) are also influencing if and how some frame
information is displayed.  In particular, the frame program counter is never
printed if @code{set print address} is off.

The possible values for @code{set print frame-info} are:
@table @code
@item short-location
Print the frame level, the program counter (if not at the
beginning of the location source line), the function, the function
arguments.
@item location
Same as @code{short-location} but also print the source file and source line
number.
@item location-and-address
Same as @code{location} but print the program counter even if located at the
beginning of the location source line.
@item source-line
Print the program counter (if not at the beginning of the location
source line), the line number and the source line.
@item source-and-location
Print what @code{location} and @code{source-line} are printing.
@item auto
The information printed for a frame is decided automatically
by the @value{GDBN} command that prints a frame.
For example, @code{frame} prints the information printed by
@code{source-and-location} while @code{stepi} will switch between
@code{source-line} and @code{source-and-location} depending on the program
counter.
The default value is @code{auto}.
@end table

@anchor{set print repeats}
@item set print repeats @var{number-of-repeats}
@itemx set print repeats unlimited
@cindex repeated array elements
Set the threshold for suppressing display of repeated array
elements.  When the number of consecutive identical elements of an
array exceeds the threshold, @value{GDBN} prints the string
@code{"<repeats @var{n} times>"}, where @var{n} is the number of
identical repetitions, instead of displaying the identical elements
themselves.  Setting the threshold to @code{unlimited} or zero will
cause all elements to be individually printed.  The default threshold
is 10.

@item show print repeats
Display the current threshold for printing repeated identical
elements.

@anchor{set print max-depth}
@item set print max-depth @var{depth}
@item set print max-depth unlimited
@cindex printing nested structures
Set the threshold after which nested structures are replaced with
ellipsis, this can make visualising deeply nested structures easier.

For example, given this C code

@smallexample
typedef struct s1 @{ int a; @} s1;
typedef struct s2 @{ s1 b; @} s2;
typedef struct s3 @{ s2 c; @} s3;
typedef struct s4 @{ s3 d; @} s4;

s4 var = @{ @{ @{ @{ 3 @} @} @} @};
@end smallexample

The following table shows how different values of @var{depth} will
effect how @code{var} is printed by @value{GDBN}:

@multitable @columnfractions .3 .7
@headitem @var{depth} setting @tab Result of @samp{p var}
@item unlimited
@tab @code{$1 = @{d = @{c = @{b = @{a = 3@}@}@}@}}
@item @code{0}
@tab @code{$1 = @{...@}}
@item @code{1}
@tab @code{$1 = @{d = @{...@}@}}
@item @code{2}
@tab @code{$1 = @{d = @{c = @{...@}@}@}}
@item @code{3}
@tab @code{$1 = @{d = @{c = @{b = @{...@}@}@}@}}
@item @code{4}
@tab @code{$1 = @{d = @{c = @{b = @{a = 3@}@}@}@}}
@end multitable

To see the contents of structures that have been hidden the user can
either increase the print max-depth, or they can print the elements of
the structure that are visible, for example

@smallexample
(gdb) set print max-depth 2
(gdb) p var
$1 = @{d = @{c = @{...@}@}@}
(gdb) p var.d
$2 = @{c = @{b = @{...@}@}@}
(gdb) p var.d.c
$3 = @{b = @{a = 3@}@}
@end smallexample

The pattern used to replace nested structures varies based on
language, for most languages @code{@{...@}} is used, but Fortran uses
@code{(...)}.

@item show print max-depth
Display the current threshold after which nested structures are
replaces with ellipsis.

@anchor{set print null-stop}
@item set print null-stop
@cindex @sc{null} elements in arrays
Cause @value{GDBN} to stop printing the characters of an array when the first
@sc{null} is encountered.  This is useful when large arrays actually
contain only short strings.
The default is off.

@item show print null-stop
Show whether @value{GDBN} stops printing an array on the first
@sc{null} character.

@anchor{set print pretty}
@item set print pretty on
@cindex print structures in indented form
@cindex indentation in structure display
Cause @value{GDBN} to print structures in an indented format with one member
per line, like this:

@smallexample
@group
$1 = @{
  next = 0x0,
  flags = @{
    sweet = 1,
    sour = 1
  @},
  meat = 0x54 "Pork"
@}
@end group
@end smallexample

@item set print pretty off
Cause @value{GDBN} to print structures in a compact format, like this:

@smallexample
@group
$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
meat = 0x54 "Pork"@}
@end group
@end smallexample

@noindent
This is the default format.

@item show print pretty
Show which format @value{GDBN} is using to print structures.

@anchor{set print raw-values}
@item set print raw-values on
Print values in raw form, without applying the pretty
printers for the value.

@item set print raw-values off
Print values in pretty-printed form, if there is a pretty-printer
for the value (@pxref{Pretty Printing}),
otherwise print the value in raw form.

The default setting is ``off''.

@item show print raw-values
Show whether to print values in raw form.

@item set print sevenbit-strings on
@cindex eight-bit characters in strings
@cindex octal escapes in strings
Print using only seven-bit characters; if this option is set,
@value{GDBN} displays any eight-bit characters (in strings or
character values) using the notation @code{\}@var{nnn}.  This setting is
best if you are working in English (@sc{ascii}) and you use the
high-order bit of characters as a marker or ``meta'' bit.

@item set print sevenbit-strings off
Print full eight-bit characters.  This allows the use of more
international character sets, and is the default.

@item show print sevenbit-strings
Show whether or not @value{GDBN} is printing only seven-bit characters.

@anchor{set print union}
@item set print union on
@cindex unions in structures, printing
Tell @value{GDBN} to print unions which are contained in structures
and other unions.  This is the default setting.

@item set print union off
Tell @value{GDBN} not to print unions which are contained in
structures and other unions.  @value{GDBN} will print @code{"@{...@}"}
instead.

@item show print union
Ask @value{GDBN} whether or not it will print unions which are contained in
structures and other unions.

For example, given the declarations

@smallexample
typedef enum @{Tree, Bug@} Species;
typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
typedef enum @{Caterpillar, Cocoon, Butterfly@}
              Bug_forms;

struct thing @{
  Species it;
  union @{
    Tree_forms tree;
    Bug_forms bug;
  @} form;
@};

struct thing foo = @{Tree, @{Acorn@}@};
@end smallexample

@noindent
with @code{set print union on} in effect @samp{p foo} would print

@smallexample
$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
@end smallexample

@noindent
and with @code{set print union off} in effect it would print

@smallexample
$1 = @{it = Tree, form = @{...@}@}
@end smallexample

@noindent
@code{set print union} affects programs written in C-like languages
and in Pascal.
@end table

@need 1000
@noindent
These settings are of interest when debugging C@t{++} programs:

@table @code
@cindex demangling C@t{++} names
@item set print demangle
@itemx set print demangle on
Print C@t{++} names in their source form rather than in the encoded
(``mangled'') form passed to the assembler and linker for type-safe
linkage.  The default is on.

@item show print demangle
Show whether C@t{++} names are printed in mangled or demangled form.

@item set print asm-demangle
@itemx set print asm-demangle on
Print C@t{++} names in their source form rather than their mangled form, even
in assembler code printouts such as instruction disassemblies.
The default is off.

@item show print asm-demangle
Show whether C@t{++} names in assembly listings are printed in mangled
or demangled form.

@cindex C@t{++} symbol decoding style
@cindex symbol decoding style, C@t{++}
@kindex set demangle-style
@item set demangle-style @var{style}
Choose among several encoding schemes used by different compilers to represent
C@t{++} names.  If you omit @var{style}, you will see a list of possible
formats.  The default value is @var{auto}, which lets @value{GDBN} choose a
decoding style by inspecting your program.

@item show demangle-style
Display the encoding style currently in use for decoding C@t{++} symbols.

@anchor{set print object}
@item set print object
@itemx set print object on
@cindex derived type of an object, printing
@cindex display derived types
When displaying a pointer to an object, identify the @emph{actual}
(derived) type of the object rather than the @emph{declared} type, using
the virtual function table.  Note that the virtual function table is
required---this feature can only work for objects that have run-time
type identification; a single virtual method in the object's declared
type is sufficient.  Note that this setting is also taken into account when
working with variable objects via MI (@pxref{GDB/MI}).

@item set print object off
Display only the declared type of objects, without reference to the
virtual function table.  This is the default setting.

@item show print object
Show whether actual, or declared, object types are displayed.

@anchor{set print static-members}
@item set print static-members
@itemx set print static-members on
@cindex static members of C@t{++} objects
Print static members when displaying a C@t{++} object.  The default is on.

@item set print static-members off
Do not print static members when displaying a C@t{++} object.

@item show print static-members
Show whether C@t{++} static members are printed or not.

@item set print pascal_static-members
@itemx set print pascal_static-members on
@cindex static members of Pascal objects
@cindex Pascal objects, static members display
Print static members when displaying a Pascal object.  The default is on.

@item set print pascal_static-members off
Do not print static members when displaying a Pascal object.

@item show print pascal_static-members
Show whether Pascal static members are printed or not.

@c These don't work with HP ANSI C++ yet.
@anchor{set print vtbl}
@item set print vtbl
@itemx set print vtbl on
@cindex pretty print C@t{++} virtual function tables
@cindex virtual functions (C@t{++}) display
@cindex VTBL display
Pretty print C@t{++} virtual function tables.  The default is off.
(The @code{vtbl} commands do not work on programs compiled with the HP
ANSI C@t{++} compiler (@code{aCC}).)

@item set print vtbl off
Do not pretty print C@t{++} virtual function tables.

@item show print vtbl
Show whether C@t{++} virtual function tables are pretty printed, or not.
@end table

@node Pretty Printing
@section Pretty Printing

@value{GDBN} provides a mechanism to allow pretty-printing of values using
Python code.  It greatly simplifies the display of complex objects.  This
mechanism works for both MI and the CLI.

@menu
* Pretty-Printer Introduction::  Introduction to pretty-printers
* Pretty-Printer Example::       An example pretty-printer
* Pretty-Printer Commands::      Pretty-printer commands
@end menu

@node Pretty-Printer Introduction
@subsection Pretty-Printer Introduction

When @value{GDBN} prints a value, it first sees if there is a pretty-printer
registered for the value.  If there is then @value{GDBN} invokes the
pretty-printer to print the value.  Otherwise the value is printed normally.

Pretty-printers are normally named.  This makes them easy to manage.
The @samp{info pretty-printer} command will list all the installed
pretty-printers with their names.
If a pretty-printer can handle multiple data types, then its
@dfn{subprinters} are the printers for the individual data types.
Each such subprinter has its own name.
The format of the name is @var{printer-name};@var{subprinter-name}.

Pretty-printers are installed by @dfn{registering} them with @value{GDBN}.
Typically they are automatically loaded and registered when the corresponding
debug information is loaded, thus making them available without having to
do anything special.

There are three places where a pretty-printer can be registered.

@itemize @bullet
@item
Pretty-printers registered globally are available when debugging
all inferiors.

@item
Pretty-printers registered with a program space are available only
when debugging that program.
@xref{Progspaces In Python}, for more details on program spaces in Python.

@item
Pretty-printers registered with an objfile are loaded and unloaded
with the corresponding objfile (e.g., shared library).
@xref{Objfiles In Python}, for more details on objfiles in Python.
@end itemize

@xref{Selecting Pretty-Printers}, for further information on how 
pretty-printers are selected,

@xref{Writing a Pretty-Printer}, for implementing pretty printers
for new types.

@node Pretty-Printer Example
@subsection Pretty-Printer Example

Here is how a C@t{++} @code{std::string} looks without a pretty-printer:

@smallexample
(@value{GDBP}) print s
$1 = @{
  static npos = 4294967295, 
  _M_dataplus = @{
    <std::allocator<char>> = @{
      <__gnu_cxx::new_allocator<char>> = @{
        <No data fields>@}, <No data fields>
      @},
    members of std::basic_string<char, std::char_traits<char>,
      std::allocator<char> >::_Alloc_hider:
    _M_p = 0x804a014 "abcd"
  @}
@}
@end smallexample

With a pretty-printer for @code{std::string} only the contents are printed:

@smallexample
(@value{GDBP}) print s
$2 = "abcd"
@end smallexample

@node Pretty-Printer Commands
@subsection Pretty-Printer Commands
@cindex pretty-printer commands

@table @code
@kindex info pretty-printer
@item info pretty-printer [@var{object-regexp} [@var{name-regexp}]]
Print the list of installed pretty-printers.
This includes disabled pretty-printers, which are marked as such.

@var{object-regexp} is a regular expression matching the objects
whose pretty-printers to list.
Objects can be @code{global}, the program space's file
(@pxref{Progspaces In Python}),
and the object files within that program space (@pxref{Objfiles In Python}).
@xref{Selecting Pretty-Printers}, for details on how @value{GDBN}
looks up a printer from these three objects.

@var{name-regexp} is a regular expression matching the name of the printers
to list.

@kindex disable pretty-printer
@item disable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
Disable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
A disabled pretty-printer is not forgotten, it may be enabled again later.

@kindex enable pretty-printer
@item enable pretty-printer [@var{object-regexp} [@var{name-regexp}]]
Enable pretty-printers matching @var{object-regexp} and @var{name-regexp}.
@end table

Example:

Suppose we have three pretty-printers installed: one from library1.so
named @code{foo} that prints objects of type @code{foo}, and
another from library2.so named @code{bar} that prints two types of objects,
@code{bar1} and @code{bar2}.

@smallexample
(gdb) info pretty-printer
library1.so:
  foo
library2.so:
  bar
    bar1
    bar2
(gdb) info pretty-printer library2
library2.so:
  bar
    bar1
    bar2
(gdb) disable pretty-printer library1
1 printer disabled
2 of 3 printers enabled
(gdb) info pretty-printer
library1.so:
  foo [disabled]
library2.so:
  bar
    bar1
    bar2
(gdb) disable pretty-printer library2 bar;bar1
1 printer disabled
1 of 3 printers enabled
(gdb) info pretty-printer library2
library1.so:
  foo [disabled]
library2.so:
  bar
    bar1 [disabled]
    bar2
(gdb) disable pretty-printer library2 bar
1 printer disabled
0 of 3 printers enabled
(gdb) info pretty-printer library2
library1.so:
  foo [disabled]
library2.so:
  bar [disabled]
    bar1 [disabled]
    bar2
@end smallexample

Note that for @code{bar} the entire printer can be disabled,
as can each individual subprinter.

Printing values and frame arguments is done by default using
the enabled pretty printers.

The print option @code{-raw-values} and @value{GDBN} setting
@code{set print raw-values} (@pxref{set print raw-values}) can be
used to print values without applying the enabled pretty printers.

Similarly, the backtrace option @code{-raw-frame-arguments} and
@value{GDBN} setting @code{set print raw-frame-arguments}
(@pxref{set print raw-frame-arguments}) can be used to ignore the
enabled pretty printers when printing frame argument values.

@node Value History
@section Value History

@cindex value history
@cindex history of values printed by @value{GDBN}
Values printed by the @code{print} command are saved in the @value{GDBN}
@dfn{value history}.  This allows you to refer to them in other expressions.
Values are kept until the symbol table is re-read or discarded
(for example with the @code{file} or @code{symbol-file} commands).
When the symbol table changes, the value history is discarded,
since the values may contain pointers back to the types defined in the
symbol table.

@cindex @code{$}
@cindex @code{$$}
@cindex history number
The values printed are given @dfn{history numbers} by which you can
refer to them.  These are successive integers starting with one.
@code{print} shows you the history number assigned to a value by
printing @samp{$@var{num} = } before the value; here @var{num} is the
history number.

To refer to any previous value, use @samp{$} followed by the value's
history number.  The way @code{print} labels its output is designed to
remind you of this.  Just @code{$} refers to the most recent value in
the history, and @code{$$} refers to the value before that.
@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
is the value just prior to @code{$$}, @code{$$1} is equivalent to
@code{$$}, and @code{$$0} is equivalent to @code{$}.

For example, suppose you have just printed a pointer to a structure and
want to see the contents of the structure.  It suffices to type

@smallexample
p *$
@end smallexample

If you have a chain of structures where the component @code{next} points
to the next one, you can print the contents of the next one with this:

@smallexample
p *$.next
@end smallexample

@noindent
You can print successive links in the chain by repeating this
command---which you can do by just typing @key{RET}.

Note that the history records values, not expressions.  If the value of
@code{x} is 4 and you type these commands:

@smallexample
print x
set x=5
@end smallexample

@noindent
then the value recorded in the value history by the @code{print} command
remains 4 even though the value of @code{x} has changed.

@table @code
@kindex show values
@item show values
Print the last ten values in the value history, with their item numbers.
This is like @samp{p@ $$9} repeated ten times, except that @code{show
values} does not change the history.

@item show values @var{n}
Print ten history values centered on history item number @var{n}.

@item show values +
Print ten history values just after the values last printed.  If no more
values are available, @code{show values +} produces no display.
@end table

Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
same effect as @samp{show values +}.

@node Convenience Vars
@section Convenience Variables

@cindex convenience variables
@cindex user-defined variables
@value{GDBN} provides @dfn{convenience variables} that you can use within
@value{GDBN} to hold on to a value and refer to it later.  These variables
exist entirely within @value{GDBN}; they are not part of your program, and
setting a convenience variable has no direct effect on further execution
of your program.  That is why you can use them freely.

Convenience variables are prefixed with @samp{$}.  Any name preceded by
@samp{$} can be used for a convenience variable, unless it is one of
the predefined machine-specific register names (@pxref{Registers, ,Registers}).
(Value history references, in contrast, are @emph{numbers} preceded
by @samp{$}.  @xref{Value History, ,Value History}.)

You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program.
For example:

@smallexample
set $foo = *object_ptr
@end smallexample

@noindent
would save in @code{$foo} the value contained in the object pointed to by
@code{object_ptr}.

Using a convenience variable for the first time creates it, but its
value is @code{void} until you assign a new value.  You can alter the
value with another assignment at any time.

Convenience variables have no fixed types.  You can assign a convenience
variable any type of value, including structures and arrays, even if
that variable already has a value of a different type.  The convenience
variable, when used as an expression, has the type of its current value.

@table @code
@kindex show convenience
@cindex show all user variables and functions
@item show convenience
Print a list of convenience variables used so far, and their values,
as well as a list of the convenience functions.
Abbreviated @code{show conv}.

@kindex init-if-undefined
@cindex convenience variables, initializing
@item init-if-undefined $@var{variable} = @var{expression}
Set a convenience variable if it has not already been set.  This is useful
for user-defined commands that keep some state.  It is similar, in concept,
to using local static variables with initializers in C (except that
convenience variables are global).  It can also be used to allow users to
override default values used in a command script.

If the variable is already defined then the expression is not evaluated so
any side-effects do not occur.
@end table

One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced.  For example, to print
a field from successive elements of an array of structures:

@smallexample
set $i = 0
print bar[$i++]->contents
@end smallexample

@noindent
Repeat that command by typing @key{RET}.

Some convenience variables are created automatically by @value{GDBN} and given
values likely to be useful.

@table @code
@vindex $_@r{, convenience variable}
@item $_
The variable @code{$_} is automatically set by the @code{x} command to
the last address examined (@pxref{Memory, ,Examining Memory}).  Other
commands which provide a default address for @code{x} to examine also
set @code{$_} to that address; these commands include @code{info line}
and @code{info breakpoint}.  The type of @code{$_} is @code{void *}
except when set by the @code{x} command, in which case it is a pointer
to the type of @code{$__}.

@vindex $__@r{, convenience variable}
@item $__
The variable @code{$__} is automatically set by the @code{x} command
to the value found in the last address examined.  Its type is chosen
to match the format in which the data was printed.

@item $_exitcode
@vindex $_exitcode@r{, convenience variable}
When the program being debugged terminates normally, @value{GDBN}
automatically sets this variable to the exit code of the program, and
resets @code{$_exitsignal} to @code{void}.

@item $_exitsignal
@vindex $_exitsignal@r{, convenience variable}
When the program being debugged dies due to an uncaught signal,
@value{GDBN} automatically sets this variable to that signal's number,
and resets @code{$_exitcode} to @code{void}.

To distinguish between whether the program being debugged has exited
(i.e., @code{$_exitcode} is not @code{void}) or signalled (i.e.,
@code{$_exitsignal} is not @code{void}), the convenience function
@code{$_isvoid} can be used (@pxref{Convenience Funs,, Convenience
Functions}).  For example, considering the following source code:

@smallexample
#include <signal.h>

int
main (int argc, char *argv[])
@{
  raise (SIGALRM);
  return 0;
@}
@end smallexample

A valid way of telling whether the program being debugged has exited
or signalled would be:

@smallexample
(@value{GDBP}) define has_exited_or_signalled
Type commands for definition of ``has_exited_or_signalled''.
End with a line saying just ``end''.
>if $_isvoid ($_exitsignal)
 >echo The program has exited\n
 >else
 >echo The program has signalled\n
 >end
>end
(@value{GDBP}) run
Starting program:

Program terminated with signal SIGALRM, Alarm clock.
The program no longer exists.
(@value{GDBP}) has_exited_or_signalled
The program has signalled
@end smallexample

As can be seen, @value{GDBN} correctly informs that the program being
debugged has signalled, since it calls @code{raise} and raises a
@code{SIGALRM} signal.  If the program being debugged had not called
@code{raise}, then @value{GDBN} would report a normal exit:

@smallexample
(@value{GDBP}) has_exited_or_signalled
The program has exited
@end smallexample

@item $_exception
The variable @code{$_exception} is set to the exception object being
thrown at an exception-related catchpoint.  @xref{Set Catchpoints}.

@item $_ada_exception
The variable @code{$_ada_exception} is set to the address of the
exception being caught or thrown at an Ada exception-related
catchpoint.  @xref{Set Catchpoints}.

@item $_probe_argc
@itemx $_probe_arg0@dots{}$_probe_arg11
Arguments to a static probe.  @xref{Static Probe Points}.

@item $_sdata
@vindex $_sdata@r{, inspect, convenience variable}
The variable @code{$_sdata} contains extra collected static tracepoint
data.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.  Note that
@code{$_sdata} could be empty, if not inspecting a trace buffer, or
if extra static tracepoint data has not been collected.

@item $_siginfo
@vindex $_siginfo@r{, convenience variable}
The variable @code{$_siginfo} contains extra signal information
(@pxref{extra signal information}).  Note that @code{$_siginfo}
could be empty, if the application has not yet received any signals.
For example, it will be empty before you execute the @code{run} command.

@item $_tlb
@vindex $_tlb@r{, convenience variable}
The variable @code{$_tlb} is automatically set when debugging
applications running on MS-Windows in native mode or connected to
gdbserver that supports the @code{qGetTIBAddr} request.
@xref{General Query Packets}.
This variable contains the address of the thread information block.

@item $_inferior
The number of the current inferior.  @xref{Inferiors Connections and
Programs, ,Debugging Multiple Inferiors Connections and Programs}.

@item $_thread
The thread number of the current thread.  @xref{thread numbers}.

@item $_gthread
The global number of the current thread.  @xref{global thread numbers}.

@item $_gdb_major
@itemx $_gdb_minor
@vindex $_gdb_major@r{, convenience variable}
@vindex $_gdb_minor@r{, convenience variable}
The major and minor version numbers of the running @value{GDBN}.
Development snapshots and pretest versions have their minor version
incremented by one; thus, @value{GDBN} pretest 9.11.90 will produce
the value 12 for @code{$_gdb_minor}.  These variables allow you to
write scripts that work with different versions of @value{GDBN}
without errors caused by features unavailable in some of those
versions.

@item $_shell_exitcode
@itemx $_shell_exitsignal
@vindex $_shell_exitcode@r{, convenience variable}
@vindex $_shell_exitsignal@r{, convenience variable}
@cindex shell command, exit code
@cindex shell command, exit signal
@cindex exit status of shell commands
@value{GDBN} commands such as @code{shell} and @code{|} are launching
shell commands.  When a launched command terminates, @value{GDBN}
automatically maintains the variables @code{$_shell_exitcode}
and @code{$_shell_exitsignal} according to the exit status of the last
launched command.  These variables are set and used similarly to
the variables @code{$_exitcode} and @code{$_exitsignal}.

@end table

@node Convenience Funs
@section Convenience Functions

@cindex convenience functions
@value{GDBN} also supplies some @dfn{convenience functions}.  These
have a syntax similar to convenience variables.  A convenience
function can be used in an expression just like an ordinary function;
however, a convenience function is implemented internally to
@value{GDBN}.

These functions do not require @value{GDBN} to be configured with
@code{Python} support, which means that they are always available.

@table @code

@item $_isvoid (@var{expr})
@findex $_isvoid@r{, convenience function}
Return one if the expression @var{expr} is @code{void}.  Otherwise it
returns zero.

A @code{void} expression is an expression where the type of the result
is @code{void}.  For example, you can examine a convenience variable
(see @ref{Convenience Vars,, Convenience Variables}) to check whether
it is @code{void}:

@smallexample
(@value{GDBP}) print $_exitcode
$1 = void
(@value{GDBP}) print $_isvoid ($_exitcode)
$2 = 1
(@value{GDBP}) run
Starting program: ./a.out
[Inferior 1 (process 29572) exited normally]
(@value{GDBP}) print $_exitcode
$3 = 0
(@value{GDBP}) print $_isvoid ($_exitcode)
$4 = 0
@end smallexample

In the example above, we used @code{$_isvoid} to check whether
@code{$_exitcode} is @code{void} before and after the execution of the
program being debugged.  Before the execution there is no exit code to
be examined, therefore @code{$_exitcode} is @code{void}.  After the
execution the program being debugged returned zero, therefore
@code{$_exitcode} is zero, which means that it is not @code{void}
anymore.

The @code{void} expression can also be a call of a function from the
program being debugged.  For example, given the following function:

@smallexample
void
foo (void)
@{
@}
@end smallexample

The result of calling it inside @value{GDBN} is @code{void}:

@smallexample
(@value{GDBP}) print foo ()
$1 = void
(@value{GDBP}) print $_isvoid (foo ())
$2 = 1
(@value{GDBP}) set $v = foo ()
(@value{GDBP}) print $v
$3 = void
(@value{GDBP}) print $_isvoid ($v)
$4 = 1
@end smallexample

@item $_gdb_setting_str (@var{setting})
@findex $_gdb_setting_str@r{, convenience function}
Return the value of the @value{GDBN} @var{setting} as a string.
@var{setting} is any setting that can be used in a @code{set} or
@code{show} command (@pxref{Controlling GDB}).

@smallexample
(@value{GDBP}) show print frame-arguments
Printing of non-scalar frame arguments is "scalars".
(@value{GDBP}) p $_gdb_setting_str("print frame-arguments")
$1 = "scalars"
(@value{GDBP}) p $_gdb_setting_str("height")
$2 = "30"
(@value{GDBP})
@end smallexample

@item $_gdb_setting (@var{setting})
@findex $_gdb_setting@r{, convenience function}
Return the value of the @value{GDBN} @var{setting}.
The type of the returned value depends on the setting.

The value type for boolean and auto boolean settings is @code{int}.
The boolean values @code{off} and @code{on} are converted to
the integer values @code{0} and @code{1}.  The value @code{auto} is
converted to the value @code{-1}.

The value type for integer settings is either @code{unsigned int}
or @code{int}, depending on the setting.

Some integer settings accept an @code{unlimited} value.
Depending on the setting, the @code{set} command also accepts
the value @code{0} or the value @code{@minus{}1} as a synonym for
@code{unlimited}.
For example, @code{set height unlimited} is equivalent to
@code{set height 0}.

Some other settings that accept the @code{unlimited} value
use the value @code{0} to literally mean zero.
For example, @code{set history size 0} indicates to not
record any @value{GDBN} commands in the command history.
For such settings, @code{@minus{}1} is the synonym
for @code{unlimited}.

See the documentation of the corresponding @code{set} command for
the numerical value equivalent to @code{unlimited}.

The @code{$_gdb_setting} function converts the unlimited value
to a @code{0} or a @code{@minus{}1} value according to what the
@code{set} command uses.

@smallexample
@group
(@value{GDBP}) p $_gdb_setting_str("height")
$1 = "30"
(@value{GDBP}) p $_gdb_setting("height")
$2 = 30
(@value{GDBP}) set height unlimited
(@value{GDBP}) p $_gdb_setting_str("height")
$3 = "unlimited"
(@value{GDBP}) p $_gdb_setting("height")
$4 = 0
@end group
@group
(@value{GDBP}) p $_gdb_setting_str("history size")
$5 = "unlimited"
(@value{GDBP}) p $_gdb_setting("history size")
$6 = -1
(@value{GDBP}) p $_gdb_setting_str("disassemble-next-line")
$7 = "auto"
(@value{GDBP}) p $_gdb_setting("disassemble-next-line")
$8 = -1
(@value{GDBP})
@end group
@end smallexample

Other setting types (enum, filename, optional filename, string, string noescape)
are returned as string values.


@item $_gdb_maint_setting_str (@var{setting})
@findex $_gdb_maint_setting_str@r{, convenience function}
Like the @code{$_gdb_setting_str} function, but works with
@code{maintenance set} variables.

@item $_gdb_maint_setting (@var{setting})
@findex $_gdb_maint_setting@r{, convenience function}
Like the @code{$_gdb_setting} function, but works with
@code{maintenance set} variables.

@end table

The following functions require @value{GDBN} to be configured with
@code{Python} support.

@table @code

@item $_memeq(@var{buf1}, @var{buf2}, @var{length})
@findex $_memeq@r{, convenience function}
Returns one if the @var{length} bytes at the addresses given by
@var{buf1} and @var{buf2} are equal.
Otherwise it returns zero.

@item $_regex(@var{str}, @var{regex})
@findex $_regex@r{, convenience function}
Returns one if the string @var{str} matches the regular expression
@var{regex}.  Otherwise it returns zero.
The syntax of the regular expression is that specified by @code{Python}'s
regular expression support.

@item $_streq(@var{str1}, @var{str2})
@findex $_streq@r{, convenience function}
Returns one if the strings @var{str1} and @var{str2} are equal.
Otherwise it returns zero.

@item $_strlen(@var{str})
@findex $_strlen@r{, convenience function}
Returns the length of string @var{str}.

@item $_caller_is(@var{name}@r{[}, @var{number_of_frames}@r{]})
@findex $_caller_is@r{, convenience function}
Returns one if the calling function's name is equal to @var{name}.
Otherwise it returns zero.

If the optional argument @var{number_of_frames} is provided,
it is the number of frames up in the stack to look.
The default is 1.

Example:

@smallexample
(gdb) backtrace
#0  bottom_func ()
    at testsuite/gdb.python/py-caller-is.c:21
#1  0x00000000004005a0 in middle_func ()
    at testsuite/gdb.python/py-caller-is.c:27
#2  0x00000000004005ab in top_func ()
    at testsuite/gdb.python/py-caller-is.c:33
#3  0x00000000004005b6 in main ()
    at testsuite/gdb.python/py-caller-is.c:39
(gdb) print $_caller_is ("middle_func")
$1 = 1
(gdb) print $_caller_is ("top_func", 2)
$1 = 1
@end smallexample

@item $_caller_matches(@var{regexp}@r{[}, @var{number_of_frames}@r{]})
@findex $_caller_matches@r{, convenience function}
Returns one if the calling function's name matches the regular expression
@var{regexp}.  Otherwise it returns zero.

If the optional argument @var{number_of_frames} is provided,
it is the number of frames up in the stack to look.
The default is 1.

@item $_any_caller_is(@var{name}@r{[}, @var{number_of_frames}@r{]})
@findex $_any_caller_is@r{, convenience function}
Returns one if any calling function's name is equal to @var{name}.
Otherwise it returns zero.

If the optional argument @var{number_of_frames} is provided,
it is the number of frames up in the stack to look.
The default is 1.

This function differs from @code{$_caller_is} in that this function
checks all stack frames from the immediate caller to the frame specified
by @var{number_of_frames}, whereas @code{$_caller_is} only checks the
frame specified by @var{number_of_frames}.

@item $_any_caller_matches(@var{regexp}@r{[}, @var{number_of_frames}@r{]})
@findex $_any_caller_matches@r{, convenience function}
Returns one if any calling function's name matches the regular expression
@var{regexp}.  Otherwise it returns zero.

If the optional argument @var{number_of_frames} is provided,
it is the number of frames up in the stack to look.
The default is 1.

This function differs from @code{$_caller_matches} in that this function
checks all stack frames from the immediate caller to the frame specified
by @var{number_of_frames}, whereas @code{$_caller_matches} only checks the
frame specified by @var{number_of_frames}.

@item $_as_string(@var{value})
@findex $_as_string@r{, convenience function}
Return the string representation of @var{value}.

This function is useful to obtain the textual label (enumerator) of an
enumeration value.  For example, assuming the variable @var{node} is of
an enumerated type:

@smallexample
(gdb) printf "Visiting node of type %s\n", $_as_string(node)
Visiting node of type NODE_INTEGER
@end smallexample

@item $_cimag(@var{value})
@itemx $_creal(@var{value})
@findex $_cimag@r{, convenience function}
@findex $_creal@r{, convenience function}
Return the imaginary (@code{$_cimag}) or real (@code{$_creal}) part of
the complex number @var{value}.

The type of the imaginary or real part depends on the type of the
complex number, e.g., using @code{$_cimag} on a @code{float complex}
will return an imaginary part of type @code{float}.

@end table

@value{GDBN} provides the ability to list and get help on
convenience functions.

@table @code
@item help function
@kindex help function
@cindex show all convenience functions
Print a list of all convenience functions.
@end table

@node Registers
@section Registers

@cindex registers
You can refer to machine register contents, in expressions, as variables
with names starting with @samp{$}.  The names of registers are different
for each machine; use @code{info registers} to see the names used on
your machine.

@table @code
@kindex info registers
@item info registers
Print the names and values of all registers except floating-point
and vector registers (in the selected stack frame).

@kindex info all-registers
@cindex floating point registers
@item info all-registers
Print the names and values of all registers, including floating-point
and vector registers (in the selected stack frame).

@item info registers @var{reggroup} @dots{}
Print the name and value of the registers in each of the specified
@var{reggroup}s.  The @var{reggroup} can be any of those returned by
@code{maint print reggroups} (@pxref{Maintenance Commands}).

@item info registers @var{regname} @dots{}
Print the @dfn{relativized} value of each specified register @var{regname}.
As discussed in detail below, register values are normally relative to
the selected stack frame.  The @var{regname} may be any register name valid on
the machine you are using, with or without the initial @samp{$}.
@end table

@anchor{standard registers}
@cindex stack pointer register
@cindex program counter register
@cindex process status register
@cindex frame pointer register
@cindex standard registers
@value{GDBN} has four ``standard'' register names that are available (in
expressions) on most machines---whenever they do not conflict with an
architecture's canonical mnemonics for registers.  The register names
@code{$pc} and @code{$sp} are used for the program counter register and
the stack pointer.  @code{$fp} is used for a register that contains a
pointer to the current stack frame, and @code{$ps} is used for a
register that contains the processor status.  For example,
you could print the program counter in hex with

@smallexample
p/x $pc
@end smallexample

@noindent
or print the instruction to be executed next with

@smallexample
x/i $pc
@end smallexample

@noindent
or add four to the stack pointer@footnote{This is a way of removing
one word from the stack, on machines where stacks grow downward in
memory (most machines, nowadays).  This assumes that the innermost
stack frame is selected; setting @code{$sp} is not allowed when other
stack frames are selected.  To pop entire frames off the stack,
regardless of machine architecture, use @code{return};
see @ref{Returning, ,Returning from a Function}.} with

@smallexample
set $sp += 4
@end smallexample

Whenever possible, these four standard register names are available on
your machine even though the machine has different canonical mnemonics,
so long as there is no conflict.  The @code{info registers} command
shows the canonical names.  For example, on the SPARC, @code{info
registers} displays the processor status register as @code{$psr} but you
can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
is an alias for the @sc{eflags} register.

@value{GDBN} always considers the contents of an ordinary register as an
integer when the register is examined in this way.  Some machines have
special registers which can hold nothing but floating point; these
registers are considered to have floating point values.  There is no way
to refer to the contents of an ordinary register as floating point value
(although you can @emph{print} it as a floating point value with
@samp{print/f $@var{regname}}).

Some registers have distinct ``raw'' and ``virtual'' data formats.  This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees.  For example, the registers of the 68881 floating point
coprocessor are always saved in ``extended'' (raw) format, but all C
programs expect to work with ``double'' (virtual) format.  In such
cases, @value{GDBN} normally works with the virtual format only (the format
that makes sense for your program), but the @code{info registers} command
prints the data in both formats.

@cindex SSE registers (x86)
@cindex MMX registers (x86)
Some machines have special registers whose contents can be interpreted
in several different ways.  For example, modern x86-based machines
have SSE and MMX registers that can hold several values packed
together in several different formats.  @value{GDBN} refers to such
registers in @code{struct} notation:

@smallexample
(@value{GDBP}) print $xmm1
$1 = @{
  v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
  v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
  v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
  v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
  v4_int32 = @{0, 20657912, 11, 13@},
  v2_int64 = @{88725056443645952, 55834574859@},
  uint128 = 0x0000000d0000000b013b36f800000000
@}
@end smallexample

@noindent
To set values of such registers, you need to tell @value{GDBN} which
view of the register you wish to change, as if you were assigning
value to a @code{struct} member:

@smallexample
 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
@end smallexample

Normally, register values are relative to the selected stack frame
(@pxref{Selection, ,Selecting a Frame}).  This means that you get the
value that the register would contain if all stack frames farther in
were exited and their saved registers restored.  In order to see the
true contents of hardware registers, you must select the innermost
frame (with @samp{frame 0}).

@cindex caller-saved registers
@cindex call-clobbered registers
@cindex volatile registers
@cindex <not saved> values
Usually ABIs reserve some registers as not needed to be saved by the
callee (a.k.a.: ``caller-saved'', ``call-clobbered'' or ``volatile''
registers).  It may therefore not be possible for @value{GDBN} to know
the value a register had before the call (in other words, in the outer
frame), if the register value has since been changed by the callee.
@value{GDBN} tries to deduce where the inner frame saved
(``callee-saved'') registers, from the debug info, unwind info, or the
machine code generated by your compiler.  If some register is not
saved, and @value{GDBN} knows the register is ``caller-saved'' (via
its own knowledge of the ABI, or because the debug/unwind info
explicitly says the register's value is undefined), @value{GDBN}
displays @w{@samp{<not saved>}} as the register's value.  With targets
that @value{GDBN} has no knowledge of the register saving convention,
if a register was not saved by the callee, then its value and location
in the outer frame are assumed to be the same of the inner frame.
This is usually harmless, because if the register is call-clobbered,
the caller either does not care what is in the register after the
call, or has code to restore the value that it does care about.  Note,
however, that if you change such a register in the outer frame, you
may also be affecting the inner frame.  Also, the more ``outer'' the
frame is you're looking at, the more likely a call-clobbered
register's value is to be wrong, in the sense that it doesn't actually
represent the value the register had just before the call.

@node Floating Point Hardware
@section Floating Point Hardware
@cindex floating point

Depending on the configuration, @value{GDBN} may be able to give
you more information about the status of the floating point hardware.

@table @code
@kindex info float
@item info float
Display hardware-dependent information about the floating
point unit.  The exact contents and layout vary depending on the
floating point chip.  Currently, @samp{info float} is supported on
the ARM and x86 machines.
@end table

@node Vector Unit
@section Vector Unit
@cindex vector unit

Depending on the configuration, @value{GDBN} may be able to give you
more information about the status of the vector unit.

@table @code
@kindex info vector
@item info vector
Display information about the vector unit.  The exact contents and
layout vary depending on the hardware.
@end table

@node OS Information
@section Operating System Auxiliary Information
@cindex OS information

@value{GDBN} provides interfaces to useful OS facilities that can help
you debug your program.

@cindex auxiliary vector
@cindex vector, auxiliary
Some operating systems supply an @dfn{auxiliary vector} to programs at
startup.  This is akin to the arguments and environment that you
specify for a program, but contains a system-dependent variety of
binary values that tell system libraries important details about the
hardware, operating system, and process.  Each value's purpose is
identified by an integer tag; the meanings are well-known but system-specific.
Depending on the configuration and operating system facilities,
@value{GDBN} may be able to show you this information.  For remote
targets, this functionality may further depend on the remote stub's
support of the @samp{qXfer:auxv:read} packet, see
@ref{qXfer auxiliary vector read}.

@table @code
@kindex info auxv
@item info auxv
Display the auxiliary vector of the inferior, which can be either a
live process or a core dump file.  @value{GDBN} prints each tag value
numerically, and also shows names and text descriptions for recognized
tags.  Some values in the vector are numbers, some bit masks, and some
pointers to strings or other data.  @value{GDBN} displays each value in the
most appropriate form for a recognized tag, and in hexadecimal for
an unrecognized tag.
@end table

On some targets, @value{GDBN} can access operating system-specific
information and show it to you.  The types of information available
will differ depending on the type of operating system running on the
target.  The mechanism used to fetch the data is described in
@ref{Operating System Information}.  For remote targets, this
functionality depends on the remote stub's support of the
@samp{qXfer:osdata:read} packet, see @ref{qXfer osdata read}.

@table @code
@kindex info os
@item info os @var{infotype}

Display OS information of the requested type.

On @sc{gnu}/Linux, the following values of @var{infotype} are valid:

@anchor{linux info os infotypes}
@table @code
@kindex info os cpus
@item cpus
Display the list of all CPUs/cores. For each CPU/core, @value{GDBN} prints
the available fields from /proc/cpuinfo. For each supported architecture
different fields are available. Two common entries are processor which gives
CPU number and bogomips; a system constant that is calculated during
kernel initialization.

@kindex info os files
@item files
Display the list of open file descriptors on the target.  For each
file descriptor, @value{GDBN} prints the identifier of the process
owning the descriptor, the command of the owning process, the value
of the descriptor, and the target of the descriptor.

@kindex info os modules
@item modules
Display the list of all loaded kernel modules on the target.  For each
module, @value{GDBN} prints the module name, the size of the module in
bytes, the number of times the module is used, the dependencies of the
module, the status of the module, and the address of the loaded module
in memory.

@kindex info os msg
@item msg
Display the list of all System V message queues on the target.  For each
message queue, @value{GDBN} prints the message queue key, the message
queue identifier, the access permissions, the current number of bytes
on the queue, the current number of messages on the queue, the processes
that last sent and received a message on the queue, the user and group
of the owner and creator of the message queue, the times at which a
message was last sent and received on the queue, and the time at which
the message queue was last changed.

@kindex info os processes
@item processes
Display the list of processes on the target.  For each process,
@value{GDBN} prints the process identifier, the name of the user, the
command corresponding to the process, and the list of processor cores
that the process is currently running on.  (To understand what these
properties mean, for this and the following info types, please consult
the general @sc{gnu}/Linux documentation.)

@kindex info os procgroups
@item procgroups
Display the list of process groups on the target.  For each process,
@value{GDBN} prints the identifier of the process group that it belongs
to, the command corresponding to the process group leader, the process
identifier, and the command line of the process.  The list is sorted
first by the process group identifier, then by the process identifier,
so that processes belonging to the same process group are grouped together
and the process group leader is listed first.

@kindex info os semaphores
@item semaphores
Display the list of all System V semaphore sets on the target.  For each
semaphore set, @value{GDBN} prints the semaphore set key, the semaphore
set identifier, the access permissions, the number of semaphores in the
set, the user and group of the owner and creator of the semaphore set,
and the times at which the semaphore set was operated upon and changed.

@kindex info os shm
@item shm
Display the list of all System V shared-memory regions on the target.
For each shared-memory region, @value{GDBN} prints the region key,
the shared-memory identifier, the access permissions, the size of the
region, the process that created the region, the process that last
attached to or detached from the region, the current number of live
attaches to the region, and the times at which the region was last
attached to, detach from, and changed.

@kindex info os sockets
@item sockets
Display the list of Internet-domain sockets on the target.  For each
socket, @value{GDBN} prints the address and port of the local and
remote endpoints, the current state of the connection, the creator of
the socket, the IP address family of the socket, and the type of the
connection.

@kindex info os threads
@item threads
Display the list of threads running on the target.  For each thread,
@value{GDBN} prints the identifier of the process that the thread
belongs to, the command of the process, the thread identifier, and the
processor core that it is currently running on.  The main thread of a
process is not listed.
@end table

@item info os
If @var{infotype} is omitted, then list the possible values for
@var{infotype} and the kind of OS information available for each
@var{infotype}.  If the target does not return a list of possible
types, this command will report an error.
@end table

@node Memory Region Attributes
@section Memory Region Attributes
@cindex memory region attributes

@dfn{Memory region attributes} allow you to describe special handling
required by regions of your target's memory.  @value{GDBN} uses
attributes to determine whether to allow certain types of memory
accesses; whether to use specific width accesses; and whether to cache
target memory.  By default the description of memory regions is
fetched from the target (if the current target supports this), but the
user can override the fetched regions.

Defined memory regions can be individually enabled and disabled.  When a
memory region is disabled, @value{GDBN} uses the default attributes when
accessing memory in that region.  Similarly, if no memory regions have
been defined, @value{GDBN} uses the default attributes when accessing
all memory.

When a memory region is defined, it is given a number to identify it;
to enable, disable, or remove a memory region, you specify that number.

@table @code
@kindex mem
@item mem @var{lower} @var{upper} @var{attributes}@dots{}
Define a memory region bounded by @var{lower} and @var{upper} with
attributes @var{attributes}@dots{}, and add it to the list of regions
monitored by @value{GDBN}.  Note that @var{upper} == 0 is a special
case: it is treated as the target's maximum memory address.
(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)

@item mem auto
Discard any user changes to the memory regions and use target-supplied
regions, if available, or no regions if the target does not support.

@kindex delete mem
@item delete mem @var{nums}@dots{}
Remove memory regions @var{nums}@dots{} from the list of regions
monitored by @value{GDBN}.

@kindex disable mem
@item disable mem @var{nums}@dots{}
Disable monitoring of memory regions @var{nums}@dots{}.
A disabled memory region is not forgotten.
It may be enabled again later.

@kindex enable mem
@item enable mem @var{nums}@dots{}
Enable monitoring of memory regions @var{nums}@dots{}.

@kindex info mem
@item info mem
Print a table of all defined memory regions, with the following columns
for each region:

@table @emph
@item Memory Region Number
@item Enabled or Disabled.
Enabled memory regions are marked with @samp{y}.
Disabled memory regions are marked with @samp{n}.

@item Lo Address
The address defining the inclusive lower bound of the memory region.

@item Hi Address
The address defining the exclusive upper bound of the memory region.

@item Attributes
The list of attributes set for this memory region.
@end table
@end table


@subsection Attributes

@subsubsection Memory Access Mode
The access mode attributes set whether @value{GDBN} may make read or
write accesses to a memory region.

While these attributes prevent @value{GDBN} from performing invalid
memory accesses, they do nothing to prevent the target system, I/O DMA,
etc.@: from accessing memory.

@table @code
@item ro
Memory is read only.
@item wo
Memory is write only.
@item rw
Memory is read/write.  This is the default.
@end table

@subsubsection Memory Access Size
The access size attribute tells @value{GDBN} to use specific sized
accesses in the memory region.  Often memory mapped device registers
require specific sized accesses.  If no access size attribute is
specified, @value{GDBN} may use accesses of any size.

@table @code
@item 8
Use 8 bit memory accesses.
@item 16
Use 16 bit memory accesses.
@item 32
Use 32 bit memory accesses.
@item 64
Use 64 bit memory accesses.
@end table

@c @subsubsection Hardware/Software Breakpoints
@c The hardware/software breakpoint attributes set whether @value{GDBN}
@c will use hardware or software breakpoints for the internal breakpoints
@c used by the step, next, finish, until, etc. commands.
@c
@c @table @code
@c @item hwbreak
@c Always use hardware breakpoints
@c @item swbreak (default)
@c @end table

@subsubsection Data Cache
The data cache attributes set whether @value{GDBN} will cache target
memory.  While this generally improves performance by reducing debug
protocol overhead, it can lead to incorrect results because @value{GDBN}
does not know about volatile variables or memory mapped device
registers.

@table @code
@item cache
Enable @value{GDBN} to cache target memory.
@item nocache
Disable @value{GDBN} from caching target memory.  This is the default.
@end table

@subsection Memory Access Checking
@value{GDBN} can be instructed to refuse accesses to memory that is
not explicitly described.  This can be useful if accessing such
regions has undesired effects for a specific target, or to provide
better error checking.  The following commands control this behaviour.

@table @code
@kindex set mem inaccessible-by-default
@item set mem inaccessible-by-default [on|off]
If @code{on} is specified, make  @value{GDBN} treat memory not
explicitly described by the memory ranges as non-existent and refuse accesses
to such memory.  The checks are only performed if there's at least one
memory range defined.  If @code{off} is specified, make @value{GDBN}
treat the memory not explicitly described by the memory ranges as RAM.
The default value is @code{on}.
@kindex show mem inaccessible-by-default
@item show mem inaccessible-by-default
Show the current handling of accesses to unknown memory.
@end table


@c @subsubsection Memory Write Verification
@c The memory write verification attributes set whether @value{GDBN}
@c will re-reads data after each write to verify the write was successful.
@c
@c @table @code
@c @item verify
@c @item noverify (default)
@c @end table

@node Dump/Restore Files
@section Copy Between Memory and a File
@cindex dump/restore files
@cindex append data to a file
@cindex dump data to a file
@cindex restore data from a file

You can use the commands @code{dump}, @code{append}, and
@code{restore} to copy data between target memory and a file.  The
@code{dump} and @code{append} commands write data to a file, and the
@code{restore} command reads data from a file back into the inferior's
memory.  Files may be in binary, Motorola S-record, Intel hex,
Tektronix Hex, or Verilog Hex format; however, @value{GDBN} can only
append to binary files, and cannot read from Verilog Hex files.

@table @code

@kindex dump
@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
Dump the contents of memory from @var{start_addr} to @var{end_addr},
or the value of @var{expr}, to @var{filename} in the given format.

The @var{format} parameter may be any one of:
@table @code
@item binary
Raw binary form.
@item ihex
Intel hex format.
@item srec
Motorola S-record format.
@item tekhex
Tektronix Hex format.
@item verilog
Verilog Hex format.
@end table

@value{GDBN} uses the same definitions of these formats as the
@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}.  If
@var{format} is omitted, @value{GDBN} dumps the data in raw binary
form.

@kindex append
@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
Append the contents of memory from @var{start_addr} to @var{end_addr},
or the value of @var{expr}, to the file @var{filename}, in raw binary form.
(@value{GDBN} can only append data to files in raw binary form.)

@kindex restore
@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
Restore the contents of file @var{filename} into memory.  The
@code{restore} command can automatically recognize any known @sc{bfd}
file format, except for raw binary.  To restore a raw binary file you
must specify the optional keyword @code{binary} after the filename.

If @var{bias} is non-zero, its value will be added to the addresses
contained in the file.  Binary files always start at address zero, so
they will be restored at address @var{bias}.  Other bfd files have
a built-in location; they will be restored at offset @var{bias}
from that location.

If @var{start} and/or @var{end} are non-zero, then only data between
file offset @var{start} and file offset @var{end} will be restored.
These offsets are relative to the addresses in the file, before
the @var{bias} argument is applied.

@end table

@node Core File Generation
@section How to Produce a Core File from Your Program
@cindex dump core from inferior

A @dfn{core file} or @dfn{core dump} is a file that records the memory
image of a running process and its process status (register values
etc.).  Its primary use is post-mortem debugging of a program that
crashed while it ran outside a debugger.  A program that crashes
automatically produces a core file, unless this feature is disabled by
the user.  @xref{Files}, for information on invoking @value{GDBN} in
the post-mortem debugging mode.

Occasionally, you may wish to produce a core file of the program you
are debugging in order to preserve a snapshot of its state.
@value{GDBN} has a special command for that.

@table @code
@kindex gcore
@kindex generate-core-file
@item generate-core-file [@var{file}]
@itemx gcore [@var{file}]
Produce a core dump of the inferior process.  The optional argument
@var{file} specifies the file name where to put the core dump.  If not
specified, the file name defaults to @file{core.@var{pid}}, where
@var{pid} is the inferior process ID.

Note that this command is implemented only for some systems (as of
this writing, @sc{gnu}/Linux, FreeBSD, Solaris, and S390).

On @sc{gnu}/Linux, this command can take into account the value of the
file @file{/proc/@var{pid}/coredump_filter} when generating the core
dump (@pxref{set use-coredump-filter}), and by default honors the
@code{VM_DONTDUMP} flag for mappings where it is present in the file
@file{/proc/@var{pid}/smaps} (@pxref{set dump-excluded-mappings}).

@kindex set use-coredump-filter
@anchor{set use-coredump-filter}
@item set use-coredump-filter on
@itemx set use-coredump-filter off
Enable or disable the use of the file
@file{/proc/@var{pid}/coredump_filter} when generating core dump
files.  This file is used by the Linux kernel to decide what types of
memory mappings will be dumped or ignored when generating a core dump
file.  @var{pid} is the process ID of a currently running process.

To make use of this feature, you have to write in the
@file{/proc/@var{pid}/coredump_filter} file a value, in hexadecimal,
which is a bit mask representing the memory mapping types.  If a bit
is set in the bit mask, then the memory mappings of the corresponding
types will be dumped; otherwise, they will be ignored.  This
configuration is inherited by child processes.  For more information
about the bits that can be set in the
@file{/proc/@var{pid}/coredump_filter} file, please refer to the
manpage of @code{core(5)}.

By default, this option is @code{on}.  If this option is turned
@code{off}, @value{GDBN} does not read the @file{coredump_filter} file
and instead uses the same default value as the Linux kernel in order
to decide which pages will be dumped in the core dump file.  This
value is currently @code{0x33}, which means that bits @code{0}
(anonymous private mappings), @code{1} (anonymous shared mappings),
@code{4} (ELF headers) and @code{5} (private huge pages) are active.
This will cause these memory mappings to be dumped automatically.

@kindex set dump-excluded-mappings
@anchor{set dump-excluded-mappings}
@item set dump-excluded-mappings on
@itemx set dump-excluded-mappings off
If @code{on} is specified, @value{GDBN} will dump memory mappings
marked with the @code{VM_DONTDUMP} flag.  This flag is represented in
the file @file{/proc/@var{pid}/smaps} with the acronym @code{dd}.

The default value is @code{off}.
@end table

@node Character Sets
@section Character Sets
@cindex character sets
@cindex charset
@cindex translating between character sets
@cindex host character set
@cindex target character set

If the program you are debugging uses a different character set to
represent characters and strings than the one @value{GDBN} uses itself,
@value{GDBN} can automatically translate between the character sets for
you.  The character set @value{GDBN} uses we call the @dfn{host
character set}; the one the inferior program uses we call the
@dfn{target character set}.

For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
remote protocol (@pxref{Remote Debugging}) to debug a program
running on an IBM mainframe, which uses the @sc{ebcdic} character set,
then the host character set is Latin-1, and the target character set is
@sc{ebcdic}.  If you give @value{GDBN} the command @code{set
target-charset EBCDIC-US}, then @value{GDBN} translates between
@sc{ebcdic} and Latin 1 as you print character or string values, or use
character and string literals in expressions.

@value{GDBN} has no way to automatically recognize which character set
the inferior program uses; you must tell it, using the @code{set
target-charset} command, described below.

Here are the commands for controlling @value{GDBN}'s character set
support:

@table @code
@item set target-charset @var{charset}
@kindex set target-charset
Set the current target character set to @var{charset}.  To display the
list of supported target character sets, type
@kbd{@w{set target-charset @key{TAB}@key{TAB}}}.

@item set host-charset @var{charset}
@kindex set host-charset
Set the current host character set to @var{charset}.

By default, @value{GDBN} uses a host character set appropriate to the
system it is running on; you can override that default using the
@code{set host-charset} command.  On some systems, @value{GDBN} cannot
automatically determine the appropriate host character set.  In this
case, @value{GDBN} uses @samp{UTF-8}.

@value{GDBN} can only use certain character sets as its host character
set.  If you type @kbd{@w{set host-charset @key{TAB}@key{TAB}}},
@value{GDBN} will list the host character sets it supports.

@item set charset @var{charset}
@kindex set charset
Set the current host and target character sets to @var{charset}.  As
above, if you type @kbd{@w{set charset @key{TAB}@key{TAB}}},
@value{GDBN} will list the names of the character sets that can be used
for both host and target.

@item show charset
@kindex show charset
Show the names of the current host and target character sets.

@item show host-charset
@kindex show host-charset
Show the name of the current host character set.

@item show target-charset
@kindex show target-charset
Show the name of the current target character set.

@item set target-wide-charset @var{charset}
@kindex set target-wide-charset
Set the current target's wide character set to @var{charset}.  This is
the character set used by the target's @code{wchar_t} type.  To
display the list of supported wide character sets, type
@kbd{@w{set target-wide-charset @key{TAB}@key{TAB}}}.

@item show target-wide-charset
@kindex show target-wide-charset
Show the name of the current target's wide character set.
@end table

Here is an example of @value{GDBN}'s character set support in action.
Assume that the following source code has been placed in the file
@file{charset-test.c}:

@smallexample
#include <stdio.h>

char ascii_hello[]
  = @{72, 101, 108, 108, 111, 44, 32, 119,
     111, 114, 108, 100, 33, 10, 0@};
char ibm1047_hello[]
  = @{200, 133, 147, 147, 150, 107, 64, 166,
     150, 153, 147, 132, 90, 37, 0@};

main ()
@{
  printf ("Hello, world!\n");
@}
@end smallexample

In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
containing the string @samp{Hello, world!} followed by a newline,
encoded in the @sc{ascii} and @sc{ibm1047} character sets.

We compile the program, and invoke the debugger on it:

@smallexample
$ gcc -g charset-test.c -o charset-test
$ gdb -nw charset-test
GNU gdb 2001-12-19-cvs
Copyright 2001 Free Software Foundation, Inc.
@dots{}
(@value{GDBP})
@end smallexample

We can use the @code{show charset} command to see what character sets
@value{GDBN} is currently using to interpret and display characters and
strings:

@smallexample
(@value{GDBP}) show charset
The current host and target character set is `ISO-8859-1'.
(@value{GDBP})
@end smallexample

For the sake of printing this manual, let's use @sc{ascii} as our
initial character set:
@smallexample
(@value{GDBP}) set charset ASCII
(@value{GDBP}) show charset
The current host and target character set is `ASCII'.
(@value{GDBP})
@end smallexample

Let's assume that @sc{ascii} is indeed the correct character set for our
host system --- in other words, let's assume that if @value{GDBN} prints
characters using the @sc{ascii} character set, our terminal will display
them properly.  Since our current target character set is also
@sc{ascii}, the contents of @code{ascii_hello} print legibly:

@smallexample
(@value{GDBP}) print ascii_hello
$1 = 0x401698 "Hello, world!\n"
(@value{GDBP}) print ascii_hello[0]
$2 = 72 'H'
(@value{GDBP})
@end smallexample

@value{GDBN} uses the target character set for character and string
literals you use in expressions:

@smallexample
(@value{GDBP}) print '+'
$3 = 43 '+'
(@value{GDBP})
@end smallexample

The @sc{ascii} character set uses the number 43 to encode the @samp{+}
character.

@value{GDBN} relies on the user to tell it which character set the
target program uses.  If we print @code{ibm1047_hello} while our target
character set is still @sc{ascii}, we get jibberish:

@smallexample
(@value{GDBP}) print ibm1047_hello
$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
(@value{GDBP}) print ibm1047_hello[0]
$5 = 200 '\310'
(@value{GDBP})
@end smallexample

If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
@value{GDBN} tells us the character sets it supports:

@smallexample
(@value{GDBP}) set target-charset
ASCII       EBCDIC-US   IBM1047     ISO-8859-1
(@value{GDBP}) set target-charset
@end smallexample

We can select @sc{ibm1047} as our target character set, and examine the
program's strings again.  Now the @sc{ascii} string is wrong, but
@value{GDBN} translates the contents of @code{ibm1047_hello} from the
target character set, @sc{ibm1047}, to the host character set,
@sc{ascii}, and they display correctly:

@smallexample
(@value{GDBP}) set target-charset IBM1047
(@value{GDBP}) show charset
The current host character set is `ASCII'.
The current target character set is `IBM1047'.
(@value{GDBP}) print ascii_hello
$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
(@value{GDBP}) print ascii_hello[0]
$7 = 72 '\110'
(@value{GDBP}) print ibm1047_hello
$8 = 0x4016a8 "Hello, world!\n"
(@value{GDBP}) print ibm1047_hello[0]
$9 = 200 'H'
(@value{GDBP})
@end smallexample

As above, @value{GDBN} uses the target character set for character and
string literals you use in expressions:

@smallexample
(@value{GDBP}) print '+'
$10 = 78 '+'
(@value{GDBP})
@end smallexample

The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
character.

@node Caching Target Data
@section Caching Data of Targets
@cindex caching data of targets

@value{GDBN} caches data exchanged between the debugger and a target.
Each cache is associated with the address space of the inferior.
@xref{Inferiors Connections and Programs}, about inferior and address space.
Such caching generally improves performance in remote debugging
(@pxref{Remote Debugging}), because it reduces the overhead of the
remote protocol by bundling memory reads and writes into large chunks.
Unfortunately, simply caching everything would lead to incorrect results,
since @value{GDBN} does not necessarily know anything about volatile
values, memory-mapped I/O addresses, etc.  Furthermore, in non-stop mode
(@pxref{Non-Stop Mode}) memory can be changed @emph{while} a gdb command
is executing.
Therefore, by default, @value{GDBN} only caches data
known to be on the stack@footnote{In non-stop mode, it is moderately
rare for a running thread to modify the stack of a stopped thread
in a way that would interfere with a backtrace, and caching of
stack reads provides a significant speed up of remote backtraces.} or
in the code segment.
Other regions of memory can be explicitly marked as
cacheable; @pxref{Memory Region Attributes}.

@table @code
@kindex set remotecache
@item set remotecache on
@itemx set remotecache off
This option no longer does anything; it exists for compatibility
with old scripts.

@kindex show remotecache
@item show remotecache
Show the current state of the obsolete remotecache flag.

@kindex set stack-cache
@item set stack-cache on
@itemx set stack-cache off
Enable or disable caching of stack accesses.  When @code{on}, use
caching.  By default, this option is @code{on}.

@kindex show stack-cache
@item show stack-cache
Show the current state of data caching for memory accesses.

@kindex set code-cache
@item set code-cache on
@itemx set code-cache off
Enable or disable caching of code segment accesses.  When @code{on},
use caching.  By default, this option is @code{on}.  This improves
performance of disassembly in remote debugging.

@kindex show code-cache
@item show code-cache
Show the current state of target memory cache for code segment
accesses.

@kindex info dcache
@item info dcache @r{[}line@r{]}
Print the information about the performance of data cache of the
current inferior's address space.  The information displayed
includes the dcache width and depth, and for each cache line, its
number, address, and how many times it was referenced.  This
command is useful for debugging the data cache operation.

If a line number is specified, the contents of that line will be
printed in hex.

@item set dcache size @var{size}
@cindex dcache size
@kindex set dcache size
Set maximum number of entries in dcache (dcache depth above).

@item set dcache line-size @var{line-size}
@cindex dcache line-size
@kindex set dcache line-size
Set number of bytes each dcache entry caches (dcache width above).
Must be a power of 2.

@item show dcache size
@kindex show dcache size
Show maximum number of dcache entries.  @xref{Caching Target Data, info dcache}.

@item show dcache line-size
@kindex show dcache line-size
Show default size of dcache lines.

@end table

@node Searching Memory
@section Search Memory
@cindex searching memory

Memory can be searched for a particular sequence of bytes with the
@code{find} command.

@table @code
@kindex find
@item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
@itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
etc.  The search begins at address @var{start_addr} and continues for either
@var{len} bytes or through to @var{end_addr} inclusive.
@end table

@var{s} and @var{n} are optional parameters.
They may be specified in either order, apart or together.

@table @r
@item @var{s}, search query size
The size of each search query value.

@table @code
@item b
bytes
@item h
halfwords (two bytes)
@item w
words (four bytes)
@item g
giant words (eight bytes)
@end table

All values are interpreted in the current language.
This means, for example, that if the current source language is C/C@t{++}
then searching for the string ``hello'' includes the trailing '\0'.
The null terminator can be removed from searching by using casts,
e.g.: @samp{@{char[5]@}"hello"}.

If the value size is not specified, it is taken from the
value's type in the current language.
This is useful when one wants to specify the search
pattern as a mixture of types.
Note that this means, for example, that in the case of C-like languages
a search for an untyped 0x42 will search for @samp{(int) 0x42}
which is typically four bytes.

@item @var{n}, maximum number of finds
The maximum number of matches to print.  The default is to print all finds.
@end table

You can use strings as search values.  Quote them with double-quotes
 (@code{"}).
The string value is copied into the search pattern byte by byte,
regardless of the endianness of the target and the size specification.

The address of each match found is printed as well as a count of the
number of matches found.

The address of the last value found is stored in convenience variable
@samp{$_}.
A count of the number of matches is stored in @samp{$numfound}.

For example, if stopped at the @code{printf} in this function:

@smallexample
void
hello ()
@{
  static char hello[] = "hello-hello";
  static struct @{ char c; short s; int i; @}
    __attribute__ ((packed)) mixed
    = @{ 'c', 0x1234, 0x87654321 @};
  printf ("%s\n", hello);
@}
@end smallexample

@noindent
you get during debugging:

@smallexample
(gdb) find &hello[0], +sizeof(hello), "hello"
0x804956d <hello.1620+6>
1 pattern found
(gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
0x8049567 <hello.1620>
0x804956d <hello.1620+6>
2 patterns found.
(gdb) find &hello[0], +sizeof(hello), @{char[5]@}"hello"
0x8049567 <hello.1620>
0x804956d <hello.1620+6>
2 patterns found.
(gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
0x8049567 <hello.1620>
1 pattern found
(gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
0x8049560 <mixed.1625>
1 pattern found
(gdb) print $numfound
$1 = 1
(gdb) print $_
$2 = (void *) 0x8049560
@end smallexample

@node Value Sizes
@section Value Sizes

Whenever @value{GDBN} prints a value memory will be allocated within
@value{GDBN} to hold the contents of the value.  It is possible in
some languages with dynamic typing systems, that an invalid program
may indicate a value that is incorrectly large, this in turn may cause
@value{GDBN} to try and allocate an overly large amount of memory.

@table @code
@kindex set max-value-size
@item set max-value-size @var{bytes}
@itemx set max-value-size unlimited
Set the maximum size of memory that @value{GDBN} will allocate for the
contents of a value to @var{bytes}, trying to display a value that
requires more memory than that will result in an error.

Setting this variable does not effect values that have already been
allocated within @value{GDBN}, only future allocations.

There's a minimum size that @code{max-value-size} can be set to in
order that @value{GDBN} can still operate correctly, this minimum is
currently 16 bytes.

The limit applies to the results of some subexpressions as well as to
complete expressions.  For example, an expression denoting a simple
integer component, such as @code{x.y.z}, may fail if the size of
@var{x.y} is dynamic and exceeds @var{bytes}.  On the other hand,
@value{GDBN} is sometimes clever; the expression @code{A[i]}, where
@var{A} is an array variable with non-constant size, will generally
succeed regardless of the bounds on @var{A}, as long as the component
size is less than @var{bytes}.

The default value of @code{max-value-size} is currently 64k.

@kindex show max-value-size
@item show max-value-size
Show the maximum size of memory, in bytes, that @value{GDBN} will
allocate for the contents of a value.
@end table

@node Optimized Code
@chapter Debugging Optimized Code
@cindex optimized code, debugging
@cindex debugging optimized code

Almost all compilers support optimization.  With optimization
disabled, the compiler generates assembly code that corresponds
directly to your source code, in a simplistic way.  As the compiler
applies more powerful optimizations, the generated assembly code
diverges from your original source code.  With help from debugging
information generated by the compiler, @value{GDBN} can map from
the running program back to constructs from your original source.

@value{GDBN} is more accurate with optimization disabled.  If you
can recompile without optimization, it is easier to follow the
progress of your program during debugging.  But, there are many cases
where you may need to debug an optimized version.

When you debug a program compiled with @samp{-g -O}, remember that the
optimizer has rearranged your code; the debugger shows you what is
really there.  Do not be too surprised when the execution path does not
exactly match your source file!  An extreme example: if you define a
variable, but never use it, @value{GDBN} never sees that
variable---because the compiler optimizes it out of existence.

Some things do not work as well with @samp{-g -O} as with just
@samp{-g}, particularly on machines with instruction scheduling.  If in
doubt, recompile with @samp{-g} alone, and if this fixes the problem,
please report it to us as a bug (including a test case!).
@xref{Variables}, for more information about debugging optimized code.

@menu
* Inline Functions::            How @value{GDBN} presents inlining
* Tail Call Frames::            @value{GDBN} analysis of jumps to functions
@end menu

@node Inline Functions
@section Inline Functions
@cindex inline functions, debugging

@dfn{Inlining} is an optimization that inserts a copy of the function
body directly at each call site, instead of jumping to a shared
routine.  @value{GDBN} displays inlined functions just like
non-inlined functions.  They appear in backtraces.  You can view their
arguments and local variables, step into them with @code{step}, skip
them with @code{next}, and escape from them with @code{finish}.
You can check whether a function was inlined by using the
@code{info frame} command.

For @value{GDBN} to support inlined functions, the compiler must
record information about inlining in the debug information ---
@value{NGCC} using the @sc{dwarf 2} format does this, and several
other compilers do also.  @value{GDBN} only supports inlined functions
when using @sc{dwarf 2}.  Versions of @value{NGCC} before 4.1
do not emit two required attributes (@samp{DW_AT_call_file} and
@samp{DW_AT_call_line}); @value{GDBN} does not display inlined
function calls with earlier versions of @value{NGCC}.  It instead
displays the arguments and local variables of inlined functions as
local variables in the caller.

The body of an inlined function is directly included at its call site;
unlike a non-inlined function, there are no instructions devoted to
the call.  @value{GDBN} still pretends that the call site and the
start of the inlined function are different instructions.  Stepping to
the call site shows the call site, and then stepping again shows
the first line of the inlined function, even though no additional
instructions are executed.

This makes source-level debugging much clearer; you can see both the
context of the call and then the effect of the call.  Only stepping by
a single instruction using @code{stepi} or @code{nexti} does not do
this; single instruction steps always show the inlined body.

There are some ways that @value{GDBN} does not pretend that inlined
function calls are the same as normal calls:

@itemize @bullet
@item
Setting breakpoints at the call site of an inlined function may not
work, because the call site does not contain any code.  @value{GDBN}
may incorrectly move the breakpoint to the next line of the enclosing
function, after the call.  This limitation will be removed in a future
version of @value{GDBN}; until then, set a breakpoint on an earlier line
or inside the inlined function instead.

@item
@value{GDBN} cannot locate the return value of inlined calls after
using the @code{finish} command.  This is a limitation of compiler-generated
debugging information; after @code{finish}, you can step to the next line
and print a variable where your program stored the return value.

@end itemize

@node Tail Call Frames
@section Tail Call Frames
@cindex tail call frames, debugging

Function @code{B} can call function @code{C} in its very last statement.  In
unoptimized compilation the call of @code{C} is immediately followed by return
instruction at the end of @code{B} code.  Optimizing compiler may replace the
call and return in function @code{B} into one jump to function @code{C}
instead.  Such use of a jump instruction is called @dfn{tail call}.

During execution of function @code{C}, there will be no indication in the
function call stack frames that it was tail-called from @code{B}.  If function
@code{A} regularly calls function @code{B} which tail-calls function @code{C},
then @value{GDBN} will see @code{A} as the caller of @code{C}.  However, in
some cases @value{GDBN} can determine that @code{C} was tail-called from
@code{B}, and it will then create fictitious call frame for that, with the
return address set up as if @code{B} called @code{C} normally.

This functionality is currently supported only by DWARF 2 debugging format and
the compiler has to produce @samp{DW_TAG_call_site} tags.  With
@value{NGCC}, you need to specify @option{-O -g} during compilation, to get
this information.

@kbd{info frame} command (@pxref{Frame Info}) will indicate the tail call frame
kind by text @code{tail call frame} such as in this sample @value{GDBN} output:

@smallexample
(gdb) x/i $pc - 2
   0x40066b <b(int, double)+11>: jmp 0x400640 <c(int, double)>
(gdb) info frame
Stack level 1, frame at 0x7fffffffda30:
 rip = 0x40066d in b (amd64-entry-value.cc:59); saved rip 0x4004c5
 tail call frame, caller of frame at 0x7fffffffda30
 source language c++.
 Arglist at unknown address.
 Locals at unknown address, Previous frame's sp is 0x7fffffffda30
@end smallexample

The detection of all the possible code path executions can find them ambiguous.
There is no execution history stored (possible @ref{Reverse Execution} is never
used for this purpose) and the last known caller could have reached the known
callee by multiple different jump sequences.  In such case @value{GDBN} still
tries to show at least all the unambiguous top tail callers and all the
unambiguous bottom tail calees, if any.

@table @code
@anchor{set debug entry-values}
@item set debug entry-values
@kindex set debug entry-values
When set to on, enables printing of analysis messages for both frame argument
values at function entry and tail calls.  It will show all the possible valid
tail calls code paths it has considered.  It will also print the intersection
of them with the final unambiguous (possibly partial or even empty) code path
result.

@item show debug entry-values
@kindex show debug entry-values
Show the current state of analysis messages printing for both frame argument
values at function entry and tail calls.
@end table

The analysis messages for tail calls can for example show why the virtual tail
call frame for function @code{c} has not been recognized (due to the indirect
reference by variable @code{x}):

@smallexample
static void __attribute__((noinline, noclone)) c (void);
void (*x) (void) = c;
static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
static void __attribute__((noinline, noclone)) c (void) @{ a (); @}
int main (void) @{ x (); return 0; @}

Breakpoint 1, DW_OP_entry_value resolving cannot find
DW_TAG_call_site 0x40039a in main
a () at t.c:3
3	static void __attribute__((noinline, noclone)) a (void) @{ x++; @}
(gdb) bt
#0  a () at t.c:3
#1  0x000000000040039a in main () at t.c:5
@end smallexample

Another possibility is an ambiguous virtual tail call frames resolution:

@smallexample
int i;
static void __attribute__((noinline, noclone)) f (void) @{ i++; @}
static void __attribute__((noinline, noclone)) e (void) @{ f (); @}
static void __attribute__((noinline, noclone)) d (void) @{ f (); @}
static void __attribute__((noinline, noclone)) c (void) @{ d (); @}
static void __attribute__((noinline, noclone)) b (void)
@{ if (i) c (); else e (); @}
static void __attribute__((noinline, noclone)) a (void) @{ b (); @}
int main (void) @{ a (); return 0; @}

tailcall: initial: 0x4004d2(a) 0x4004ce(b) 0x4004b2(c) 0x4004a2(d)
tailcall: compare: 0x4004d2(a) 0x4004cc(b) 0x400492(e)
tailcall: reduced: 0x4004d2(a) |
(gdb) bt
#0  f () at t.c:2
#1  0x00000000004004d2 in a () at t.c:8
#2  0x0000000000400395 in main () at t.c:9
@end smallexample

@set CALLSEQ1A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}c@value{ARROW}d@value{ARROW}f}
@set CALLSEQ2A @code{main@value{ARROW}a@value{ARROW}b@value{ARROW}e@value{ARROW}f}

@c Convert CALLSEQ#A to CALLSEQ#B depending on HAVE_MAKEINFO_CLICK.
@ifset HAVE_MAKEINFO_CLICK
@set ARROW @click{}
@set CALLSEQ1B @clicksequence{@value{CALLSEQ1A}}
@set CALLSEQ2B @clicksequence{@value{CALLSEQ2A}}
@end ifset
@ifclear HAVE_MAKEINFO_CLICK
@set ARROW ->
@set CALLSEQ1B @value{CALLSEQ1A}
@set CALLSEQ2B @value{CALLSEQ2A}
@end ifclear

Frames #0 and #2 are real, #1 is a virtual tail call frame.
The code can have possible execution paths @value{CALLSEQ1B} or
@value{CALLSEQ2B}, @value{GDBN} cannot find which one from the inferior state.

@code{initial:} state shows some random possible calling sequence @value{GDBN}
has found.  It then finds another possible calling sequence - that one is
prefixed by @code{compare:}.  The non-ambiguous intersection of these two is
printed as the @code{reduced:} calling sequence.  That one could have many
further @code{compare:} and @code{reduced:} statements as long as there remain
any non-ambiguous sequence entries.

For the frame of function @code{b} in both cases there are different possible
@code{$pc} values (@code{0x4004cc} or @code{0x4004ce}), therefore this frame is
also ambiguous.  The only non-ambiguous frame is the one for function @code{a},
therefore this one is displayed to the user while the ambiguous frames are
omitted.

There can be also reasons why printing of frame argument values at function
entry may fail:

@smallexample
int v;
static void __attribute__((noinline, noclone)) c (int i) @{ v++; @}
static void __attribute__((noinline, noclone)) a (int i);
static void __attribute__((noinline, noclone)) b (int i) @{ a (i); @}
static void __attribute__((noinline, noclone)) a (int i)
@{ if (i) b (i - 1); else c (0); @}
int main (void) @{ a (5); return 0; @}

(gdb) bt
#0  c (i=i@@entry=0) at t.c:2
#1  0x0000000000400428 in a (DW_OP_entry_value resolving has found
function "a" at 0x400420 can call itself via tail calls
i=<optimized out>) at t.c:6
#2  0x000000000040036e in main () at t.c:7
@end smallexample

@value{GDBN} cannot find out from the inferior state if and how many times did
function @code{a} call itself (via function @code{b}) as these calls would be
tail calls.  Such tail calls would modify the @code{i} variable, therefore
@value{GDBN} cannot be sure the value it knows would be right - @value{GDBN}
prints @code{<optimized out>} instead.

@node Macros
@chapter C Preprocessor Macros

Some languages, such as C and C@t{++}, provide a way to define and invoke
``preprocessor macros'' which expand into strings of tokens.
@value{GDBN} can evaluate expressions containing macro invocations, show
the result of macro expansion, and show a macro's definition, including
where it was defined.

You may need to compile your program specially to provide @value{GDBN}
with information about preprocessor macros.  Most compilers do not
include macros in their debugging information, even when you compile
with the @option{-g} flag.  @xref{Compilation}.

A program may define a macro at one point, remove that definition later,
and then provide a different definition after that.  Thus, at different
points in the program, a macro may have different definitions, or have
no definition at all.  If there is a current stack frame, @value{GDBN}
uses the macros in scope at that frame's source code line.  Otherwise,
@value{GDBN} uses the macros in scope at the current listing location;
see @ref{List}.

Whenever @value{GDBN} evaluates an expression, it always expands any
macro invocations present in the expression.  @value{GDBN} also provides
the following commands for working with macros explicitly.

@table @code

@kindex macro expand
@cindex macro expansion, showing the results of preprocessor
@cindex preprocessor macro expansion, showing the results of
@cindex expanding preprocessor macros
@item macro expand @var{expression}
@itemx macro exp @var{expression}
Show the results of expanding all preprocessor macro invocations in
@var{expression}.  Since @value{GDBN} simply expands macros, but does
not parse the result, @var{expression} need not be a valid expression;
it can be any string of tokens.

@kindex macro exp1
@item macro expand-once @var{expression}
@itemx macro exp1 @var{expression}
@cindex expand macro once
@i{(This command is not yet implemented.)}  Show the results of
expanding those preprocessor macro invocations that appear explicitly in
@var{expression}.  Macro invocations appearing in that expansion are
left unchanged.  This command allows you to see the effect of a
particular macro more clearly, without being confused by further
expansions.  Since @value{GDBN} simply expands macros, but does not
parse the result, @var{expression} need not be a valid expression; it
can be any string of tokens.

@kindex info macro
@cindex macro definition, showing
@cindex definition of a macro, showing
@cindex macros, from debug info
@item info macro [-a|-all] [--] @var{macro}
Show the current definition or all definitions of the named @var{macro},
and describe the source location or compiler command-line where that
definition was established.  The optional double dash is to signify the end of
argument processing and the beginning of @var{macro} for non C-like macros where
the macro may begin with a hyphen.

@kindex info macros
@item info macros @var{location}
Show all macro definitions that are in effect at the location specified
by @var{location},  and describe the source location or compiler
command-line where those definitions were established.

@kindex macro define
@cindex user-defined macros
@cindex defining macros interactively
@cindex macros, user-defined
@item macro define @var{macro} @var{replacement-list}
@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
Introduce a definition for a preprocessor macro named @var{macro},
invocations of which are replaced by the tokens given in
@var{replacement-list}.  The first form of this command defines an
``object-like'' macro, which takes no arguments; the second form
defines a ``function-like'' macro, which takes the arguments given in
@var{arglist}.

A definition introduced by this command is in scope in every
expression evaluated in @value{GDBN}, until it is removed with the
@code{macro undef} command, described below.  The definition overrides
all definitions for @var{macro} present in the program being debugged,
as well as any previous user-supplied definition.

@kindex macro undef
@item macro undef @var{macro}
Remove any user-supplied definition for the macro named @var{macro}.
This command only affects definitions provided with the @code{macro
define} command, described above; it cannot remove definitions present
in the program being debugged.

@kindex macro list
@item macro list
List all the macros defined using the @code{macro define} command.
@end table

@cindex macros, example of debugging with
Here is a transcript showing the above commands in action.  First, we
show our source files:

@smallexample
$ cat sample.c
#include <stdio.h>
#include "sample.h"

#define M 42
#define ADD(x) (M + x)

main ()
@{
#define N 28
  printf ("Hello, world!\n");
#undef N
  printf ("We're so creative.\n");
#define N 1729
  printf ("Goodbye, world!\n");
@}
$ cat sample.h
#define Q <
$
@end smallexample

Now, we compile the program using the @sc{gnu} C compiler,
@value{NGCC}.  We pass the @option{-gdwarf-2}@footnote{This is the
minimum.  Recent versions of @value{NGCC} support @option{-gdwarf-3}
and @option{-gdwarf-4}; we recommend always choosing the most recent
version of DWARF.} @emph{and} @option{-g3} flags to ensure the compiler
includes information about preprocessor macros in the debugging
information.

@smallexample
$ gcc -gdwarf-2 -g3 sample.c -o sample
$
@end smallexample

Now, we start @value{GDBN} on our sample program:

@smallexample
$ gdb -nw sample
GNU gdb 2002-05-06-cvs
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, @dots{}
(@value{GDBP})
@end smallexample

We can expand macros and examine their definitions, even when the
program is not running.  @value{GDBN} uses the current listing position
to decide which macro definitions are in scope:

@smallexample
(@value{GDBP}) list main
3
4       #define M 42
5       #define ADD(x) (M + x)
6
7       main ()
8       @{
9       #define N 28
10        printf ("Hello, world!\n");
11      #undef N
12        printf ("We're so creative.\n");
(@value{GDBP}) info macro ADD
Defined at /home/jimb/gdb/macros/play/sample.c:5
#define ADD(x) (M + x)
(@value{GDBP}) info macro Q
Defined at /home/jimb/gdb/macros/play/sample.h:1
  included at /home/jimb/gdb/macros/play/sample.c:2
#define Q <
(@value{GDBP}) macro expand ADD(1)
expands to: (42 + 1)
(@value{GDBP}) macro expand-once ADD(1)
expands to: once (M + 1)
(@value{GDBP})
@end smallexample

In the example above, note that @code{macro expand-once} expands only
the macro invocation explicit in the original text --- the invocation of
@code{ADD} --- but does not expand the invocation of the macro @code{M},
which was introduced by @code{ADD}.

Once the program is running, @value{GDBN} uses the macro definitions in
force at the source line of the current stack frame:

@smallexample
(@value{GDBP}) break main
Breakpoint 1 at 0x8048370: file sample.c, line 10.
(@value{GDBP}) run
Starting program: /home/jimb/gdb/macros/play/sample

Breakpoint 1, main () at sample.c:10
10        printf ("Hello, world!\n");
(@value{GDBP})
@end smallexample

At line 10, the definition of the macro @code{N} at line 9 is in force:

@smallexample
(@value{GDBP}) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:9
#define N 28
(@value{GDBP}) macro expand N Q M
expands to: 28 < 42
(@value{GDBP}) print N Q M
$1 = 1
(@value{GDBP})
@end smallexample

As we step over directives that remove @code{N}'s definition, and then
give it a new definition, @value{GDBN} finds the definition (or lack
thereof) in force at each point:

@smallexample
(@value{GDBP}) next
Hello, world!
12        printf ("We're so creative.\n");
(@value{GDBP}) info macro N
The symbol `N' has no definition as a C/C++ preprocessor macro
at /home/jimb/gdb/macros/play/sample.c:12
(@value{GDBP}) next
We're so creative.
14        printf ("Goodbye, world!\n");
(@value{GDBP}) info macro N
Defined at /home/jimb/gdb/macros/play/sample.c:13
#define N 1729
(@value{GDBP}) macro expand N Q M
expands to: 1729 < 42
(@value{GDBP}) print N Q M
$2 = 0
(@value{GDBP})
@end smallexample

In addition to source files, macros can be defined on the compilation command
line using the @option{-D@var{name}=@var{value}} syntax.  For macros defined in
such a way, @value{GDBN} displays the location of their definition as line zero
of the source file submitted to the compiler.

@smallexample
(@value{GDBP}) info macro __STDC__
Defined at /home/jimb/gdb/macros/play/sample.c:0
-D__STDC__=1
(@value{GDBP})
@end smallexample


@node Tracepoints
@chapter Tracepoints
@c This chapter is based on the documentation written by Michael
@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.

@cindex tracepoints
In some applications, it is not feasible for the debugger to interrupt
the program's execution long enough for the developer to learn
anything helpful about its behavior.  If the program's correctness
depends on its real-time behavior, delays introduced by a debugger
might cause the program to change its behavior drastically, or perhaps
fail, even when the code itself is correct.  It is useful to be able
to observe the program's behavior without interrupting it.

Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
specify locations in the program, called @dfn{tracepoints}, and
arbitrary expressions to evaluate when those tracepoints are reached.
Later, using the @code{tfind} command, you can examine the values
those expressions had when the program hit the tracepoints.  The
expressions may also denote objects in memory---structures or arrays,
for example---whose values @value{GDBN} should record; while visiting
a particular tracepoint, you may inspect those objects as if they were
in memory at that moment.  However, because @value{GDBN} records these
values without interacting with you, it can do so quickly and
unobtrusively, hopefully not disturbing the program's behavior.

The tracepoint facility is currently available only for remote
targets.  @xref{Targets}.  In addition, your remote target must know
how to collect trace data.  This functionality is implemented in the
remote stub; however, none of the stubs distributed with @value{GDBN}
support tracepoints as of this writing.  The format of the remote
packets used to implement tracepoints are described in @ref{Tracepoint
Packets}.

It is also possible to get trace data from a file, in a manner reminiscent
of corefiles; you specify the filename, and use @code{tfind} to search
through the file.  @xref{Trace Files}, for more details.

This chapter describes the tracepoint commands and features.

@menu
* Set Tracepoints::
* Analyze Collected Data::
* Tracepoint Variables::
* Trace Files::
@end menu

@node Set Tracepoints
@section Commands to Set Tracepoints

Before running such a @dfn{trace experiment}, an arbitrary number of
tracepoints can be set.  A tracepoint is actually a special type of
breakpoint (@pxref{Set Breaks}), so you can manipulate it using
standard breakpoint commands.  For instance, as with breakpoints,
tracepoint numbers are successive integers starting from one, and many
of the commands associated with tracepoints take the tracepoint number
as their argument, to identify which tracepoint to work on.

For each tracepoint, you can specify, in advance, some arbitrary set
of data that you want the target to collect in the trace buffer when
it hits that tracepoint.  The collected data can include registers,
local variables, or global data.  Later, you can use @value{GDBN}
commands to examine the values these data had at the time the
tracepoint was hit.

Tracepoints do not support every breakpoint feature.  Ignore counts on
tracepoints have no effect, and tracepoints cannot run @value{GDBN}
commands when they are hit.  Tracepoints may not be thread-specific
either.

@cindex fast tracepoints
Some targets may support @dfn{fast tracepoints}, which are inserted in
a different way (such as with a jump instead of a trap), that is
faster but possibly restricted in where they may be installed.

@cindex static tracepoints
@cindex markers, static tracepoints
@cindex probing markers, static tracepoints
Regular and fast tracepoints are dynamic tracing facilities, meaning
that they can be used to insert tracepoints at (almost) any location
in the target.  Some targets may also support controlling @dfn{static
tracepoints} from @value{GDBN}.  With static tracing, a set of
instrumentation points, also known as @dfn{markers}, are embedded in
the target program, and can be activated or deactivated by name or
address.  These are usually placed at locations which facilitate
investigating what the target is actually doing.  @value{GDBN}'s
support for static tracing includes being able to list instrumentation
points, and attach them with @value{GDBN} defined high level
tracepoints that expose the whole range of convenience of
@value{GDBN}'s tracepoints support.  Namely, support for collecting
registers values and values of global or local (to the instrumentation
point) variables; tracepoint conditions and trace state variables.
The act of installing a @value{GDBN} static tracepoint on an
instrumentation point, or marker, is referred to as @dfn{probing} a
static tracepoint marker.

@code{gdbserver} supports tracepoints on some target systems.
@xref{Server,,Tracepoints support in @code{gdbserver}}.

This section describes commands to set tracepoints and associated
conditions and actions.

@menu
* Create and Delete Tracepoints::
* Enable and Disable Tracepoints::
* Tracepoint Passcounts::
* Tracepoint Conditions::
* Trace State Variables::
* Tracepoint Actions::
* Listing Tracepoints::
* Listing Static Tracepoint Markers::
* Starting and Stopping Trace Experiments::
* Tracepoint Restrictions::
@end menu

@node Create and Delete Tracepoints
@subsection Create and Delete Tracepoints

@table @code
@cindex set tracepoint
@kindex trace
@item trace @var{location}
The @code{trace} command is very similar to the @code{break} command.
Its argument @var{location} can be any valid location.
@xref{Specify Location}.  The @code{trace} command defines a tracepoint,
which is a point in the target program where the debugger will briefly stop,
collect some data, and then allow the program to continue.  Setting a tracepoint
or changing its actions takes effect immediately if the remote stub
supports the @samp{InstallInTrace} feature (@pxref{install tracepoint
in tracing}).
If remote stub doesn't support the @samp{InstallInTrace} feature, all
these changes don't take effect until the next @code{tstart}
command, and once a trace experiment is running, further changes will
not have any effect until the next trace experiment starts.  In addition,
@value{GDBN} supports @dfn{pending tracepoints}---tracepoints whose
address is not yet resolved.  (This is similar to pending breakpoints.)
Pending tracepoints are not downloaded to the target and not installed
until they are resolved.  The resolution of pending tracepoints requires
@value{GDBN} support---when debugging with the remote target, and
@value{GDBN} disconnects from the remote stub (@pxref{disconnected
tracing}), pending tracepoints can not be resolved (and downloaded to
the remote stub) while @value{GDBN} is disconnected.

Here are some examples of using the @code{trace} command:

@smallexample
(@value{GDBP}) @b{trace foo.c:121}    // a source file and line number

(@value{GDBP}) @b{trace +2}           // 2 lines forward

(@value{GDBP}) @b{trace my_function}  // first source line of function

(@value{GDBP}) @b{trace *my_function} // EXACT start address of function

(@value{GDBP}) @b{trace *0x2117c4}    // an address
@end smallexample

@noindent
You can abbreviate @code{trace} as @code{tr}.

@item trace @var{location} if @var{cond}
Set a tracepoint with condition @var{cond}; evaluate the expression
@var{cond} each time the tracepoint is reached, and collect data only
if the value is nonzero---that is, if @var{cond} evaluates as true.
@xref{Tracepoint Conditions, ,Tracepoint Conditions}, for more
information on tracepoint conditions.

@item ftrace @var{location} [ if @var{cond} ]
@cindex set fast tracepoint
@cindex fast tracepoints, setting
@kindex ftrace
The @code{ftrace} command sets a fast tracepoint.  For targets that
support them, fast tracepoints will use a more efficient but possibly
less general technique to trigger data collection, such as a jump
instruction instead of a trap, or some sort of hardware support.  It
may not be possible to create a fast tracepoint at the desired
location, in which case the command will exit with an explanatory
message.

@value{GDBN} handles arguments to @code{ftrace} exactly as for
@code{trace}.

On 32-bit x86-architecture systems, fast tracepoints normally need to
be placed at an instruction that is 5 bytes or longer, but can be
placed at 4-byte instructions if the low 64K of memory of the target
program is available to install trampolines.  Some Unix-type systems,
such as @sc{gnu}/Linux, exclude low addresses from the program's
address space; but for instance with the Linux kernel it is possible
to let @value{GDBN} use this area by doing a @command{sysctl} command
to set the @code{mmap_min_addr} kernel parameter, as in

@example
sudo sysctl -w vm.mmap_min_addr=32768
@end example

@noindent
which sets the low address to 32K, which leaves plenty of room for
trampolines.  The minimum address should be set to a page boundary.

@item strace @var{location} [ if @var{cond} ]
@cindex set static tracepoint
@cindex static tracepoints, setting
@cindex probe static tracepoint marker
@kindex strace
The @code{strace} command sets a static tracepoint.  For targets that
support it, setting a static tracepoint probes a static
instrumentation point, or marker, found at @var{location}.  It may not
be possible to set a static tracepoint at the desired location, in
which case the command will exit with an explanatory message.

@value{GDBN} handles arguments to @code{strace} exactly as for
@code{trace}, with the addition that the user can also specify
@code{-m @var{marker}} as @var{location}.  This probes the marker
identified by the @var{marker} string identifier.  This identifier
depends on the static tracepoint backend library your program is
using.  You can find all the marker identifiers in the @samp{ID} field
of the @code{info static-tracepoint-markers} command output.
@xref{Listing Static Tracepoint Markers,,Listing Static Tracepoint
Markers}.  For example, in the following small program using the UST
tracing engine:

@smallexample
main ()
@{
  trace_mark(ust, bar33, "str %s", "FOOBAZ");
@}
@end smallexample

@noindent
the marker id is composed of joining the first two arguments to the
@code{trace_mark} call with a slash, which translates to:

@smallexample
(@value{GDBP}) info static-tracepoint-markers
Cnt Enb ID         Address            What
1   n   ust/bar33  0x0000000000400ddc in main at stexample.c:22
         Data: "str %s"
[etc...]
@end smallexample

@noindent
so you may probe the marker above with:

@smallexample
(@value{GDBP}) strace -m ust/bar33
@end smallexample

Static tracepoints accept an extra collect action --- @code{collect
$_sdata}.  This collects arbitrary user data passed in the probe point
call to the tracing library.  In the UST example above, you'll see
that the third argument to @code{trace_mark} is a printf-like format
string.  The user data is then the result of running that formatting
string against the following arguments.  Note that @code{info
static-tracepoint-markers} command output lists that format string in
the @samp{Data:} field.

You can inspect this data when analyzing the trace buffer, by printing
the $_sdata variable like any other variable available to
@value{GDBN}.  @xref{Tracepoint Actions,,Tracepoint Action Lists}.

@vindex $tpnum
@cindex last tracepoint number
@cindex recent tracepoint number
@cindex tracepoint number
The convenience variable @code{$tpnum} records the tracepoint number
of the most recently set tracepoint.

@kindex delete tracepoint
@cindex tracepoint deletion
@item delete tracepoint @r{[}@var{num}@r{]}
Permanently delete one or more tracepoints.  With no argument, the
default is to delete all tracepoints.  Note that the regular
@code{delete} command can remove tracepoints also.

Examples:

@smallexample
(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints

(@value{GDBP}) @b{delete trace}       // remove all tracepoints
@end smallexample

@noindent
You can abbreviate this command as @code{del tr}.
@end table

@node Enable and Disable Tracepoints
@subsection Enable and Disable Tracepoints

These commands are deprecated; they are equivalent to plain @code{disable} and @code{enable}.

@table @code
@kindex disable tracepoint
@item disable tracepoint @r{[}@var{num}@r{]}
Disable tracepoint @var{num}, or all tracepoints if no argument
@var{num} is given.  A disabled tracepoint will have no effect during
a trace experiment, but it is not forgotten.  You can re-enable
a disabled tracepoint using the @code{enable tracepoint} command.
If the command is issued during a trace experiment and the debug target
has support for disabling tracepoints during a trace experiment, then the
change will be effective immediately.  Otherwise, it will be applied to the
next trace experiment.

@kindex enable tracepoint
@item enable tracepoint @r{[}@var{num}@r{]}
Enable tracepoint @var{num}, or all tracepoints.  If this command is
issued during a trace experiment and the debug target supports enabling
tracepoints during a trace experiment, then the enabled tracepoints will
become effective immediately.  Otherwise, they will become effective the
next time a trace experiment is run.
@end table

@node Tracepoint Passcounts
@subsection Tracepoint Passcounts

@table @code
@kindex passcount
@cindex tracepoint pass count
@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
Set the @dfn{passcount} of a tracepoint.  The passcount is a way to
automatically stop a trace experiment.  If a tracepoint's passcount is
@var{n}, then the trace experiment will be automatically stopped on
the @var{n}'th time that tracepoint is hit.  If the tracepoint number
@var{num} is not specified, the @code{passcount} command sets the
passcount of the most recently defined tracepoint.  If no passcount is
given, the trace experiment will run until stopped explicitly by the
user.

Examples:

@smallexample
(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}

(@value{GDBP}) @b{passcount 12}  // Stop on the 12th execution of the
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
(@value{GDBP}) @b{trace foo}
(@value{GDBP}) @b{pass 3}
(@value{GDBP}) @b{trace bar}
(@value{GDBP}) @b{pass 2}
(@value{GDBP}) @b{trace baz}
(@value{GDBP}) @b{pass 1}        // Stop tracing when foo has been
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
@end smallexample
@end table

@node Tracepoint Conditions
@subsection Tracepoint Conditions
@cindex conditional tracepoints
@cindex tracepoint conditions

The simplest sort of tracepoint collects data every time your program
reaches a specified place.  You can also specify a @dfn{condition} for
a tracepoint.  A condition is just a Boolean expression in your
programming language (@pxref{Expressions, ,Expressions}).  A
tracepoint with a condition evaluates the expression each time your
program reaches it, and data collection happens only if the condition
is true.

Tracepoint conditions can be specified when a tracepoint is set, by
using @samp{if} in the arguments to the @code{trace} command.
@xref{Create and Delete Tracepoints, ,Setting Tracepoints}.  They can
also be set or changed at any time with the @code{condition} command,
just as with breakpoints.

Unlike breakpoint conditions, @value{GDBN} does not actually evaluate
the conditional expression itself.  Instead, @value{GDBN} encodes the
expression into an agent expression (@pxref{Agent Expressions})
suitable for execution on the target, independently of @value{GDBN}.
Global variables become raw memory locations, locals become stack
accesses, and so forth.

For instance, suppose you have a function that is usually called
frequently, but should not be called after an error has occurred.  You
could use the following tracepoint command to collect data about calls
of that function that happen while the error code is propagating
through the program; an unconditional tracepoint could end up
collecting thousands of useless trace frames that you would have to
search through.

@smallexample
(@value{GDBP}) @kbd{trace normal_operation if errcode > 0}
@end smallexample

@node Trace State Variables
@subsection Trace State Variables
@cindex trace state variables

A @dfn{trace state variable} is a special type of variable that is
created and managed by target-side code.  The syntax is the same as
that for GDB's convenience variables (a string prefixed with ``$''),
but they are stored on the target.  They must be created explicitly,
using a @code{tvariable} command.  They are always 64-bit signed
integers.

Trace state variables are remembered by @value{GDBN}, and downloaded
to the target along with tracepoint information when the trace
experiment starts.  There are no intrinsic limits on the number of
trace state variables, beyond memory limitations of the target.

@cindex convenience variables, and trace state variables
Although trace state variables are managed by the target, you can use
them in print commands and expressions as if they were convenience
variables; @value{GDBN} will get the current value from the target
while the trace experiment is running.  Trace state variables share
the same namespace as other ``$'' variables, which means that you
cannot have trace state variables with names like @code{$23} or
@code{$pc}, nor can you have a trace state variable and a convenience
variable with the same name.

@table @code

@item tvariable $@var{name} [ = @var{expression} ]
@kindex tvariable
The @code{tvariable} command creates a new trace state variable named
@code{$@var{name}}, and optionally gives it an initial value of
@var{expression}.  The @var{expression} is evaluated when this command is
entered; the result will be converted to an integer if possible,
otherwise @value{GDBN} will report an error. A subsequent
@code{tvariable} command specifying the same name does not create a
variable, but instead assigns the supplied initial value to the
existing variable of that name, overwriting any previous initial
value. The default initial value is 0.

@item info tvariables
@kindex info tvariables
List all the trace state variables along with their initial values.
Their current values may also be displayed, if the trace experiment is
currently running.

@item delete tvariable @r{[} $@var{name} @dots{} @r{]}
@kindex delete tvariable
Delete the given trace state variables, or all of them if no arguments
are specified.

@end table

@node Tracepoint Actions
@subsection Tracepoint Action Lists

@table @code
@kindex actions
@cindex tracepoint actions
@item actions @r{[}@var{num}@r{]}
This command will prompt for a list of actions to be taken when the
tracepoint is hit.  If the tracepoint number @var{num} is not
specified, this command sets the actions for the one that was most
recently defined (so that you can define a tracepoint and then say
@code{actions} without bothering about its number).  You specify the
actions themselves on the following lines, one action at a time, and
terminate the actions list with a line containing just @code{end}.  So
far, the only defined actions are @code{collect}, @code{teval}, and
@code{while-stepping}.

@code{actions} is actually equivalent to @code{commands} (@pxref{Break
Commands, ,Breakpoint Command Lists}), except that only the defined
actions are allowed; any other @value{GDBN} command is rejected.

@cindex remove actions from a tracepoint
To remove all actions from a tracepoint, type @samp{actions @var{num}}
and follow it immediately with @samp{end}.

@smallexample
(@value{GDBP}) @b{collect @var{data}} // collect some data

(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data

(@value{GDBP}) @b{end}              // signals the end of actions.
@end smallexample

In the following example, the action list begins with @code{collect}
commands indicating the things to be collected when the tracepoint is
hit.  Then, in order to single-step and collect additional data
following the tracepoint, a @code{while-stepping} command is used,
followed by the list of things to be collected after each step in a
sequence of single steps.  The @code{while-stepping} command is
terminated by its own separate @code{end} command.  Lastly, the action
list is terminated by an @code{end} command.

@smallexample
(@value{GDBP}) @b{trace foo}
(@value{GDBP}) @b{actions}
Enter actions for tracepoint 1, one per line:
> collect bar,baz
> collect $regs
> while-stepping 12
  > collect $pc, arr[i]
  > end
end
@end smallexample

@kindex collect @r{(tracepoints)}
@item collect@r{[}/@var{mods}@r{]} @var{expr1}, @var{expr2}, @dots{}
Collect values of the given expressions when the tracepoint is hit.
This command accepts a comma-separated list of any valid expressions.
In addition to global, static, or local variables, the following
special arguments are supported:

@table @code
@item $regs
Collect all registers.

@item $args
Collect all function arguments.

@item $locals
Collect all local variables.

@item $_ret
Collect the return address.  This is helpful if you want to see more
of a backtrace.

@emph{Note:} The return address location can not always be reliably
determined up front, and the wrong address / registers may end up
collected instead.  On some architectures the reliability is higher
for tracepoints at function entry, while on others it's the opposite.
When this happens, backtracing will stop because the return address is
found unavailable (unless another collect rule happened to match it).

@item $_probe_argc
Collects the number of arguments from the static probe at which the
tracepoint is located.
@xref{Static Probe Points}.

@item $_probe_arg@var{n}
@var{n} is an integer between 0 and 11.  Collects the @var{n}th argument
from the static probe at which the tracepoint is located.
@xref{Static Probe Points}.

@item $_sdata
@vindex $_sdata@r{, collect}
Collect static tracepoint marker specific data.  Only available for
static tracepoints.  @xref{Tracepoint Actions,,Tracepoint Action
Lists}.  On the UST static tracepoints library backend, an
instrumentation point resembles a @code{printf} function call.  The
tracing library is able to collect user specified data formatted to a
character string using the format provided by the programmer that
instrumented the program.  Other backends have similar mechanisms.
Here's an example of a UST marker call:

@smallexample
 const char master_name[] = "$your_name";
 trace_mark(channel1, marker1, "hello %s", master_name)
@end smallexample

In this case, collecting @code{$_sdata} collects the string
@samp{hello $yourname}.  When analyzing the trace buffer, you can
inspect @samp{$_sdata} like any other variable available to
@value{GDBN}.
@end table

You can give several consecutive @code{collect} commands, each one
with a single argument, or one @code{collect} command with several
arguments separated by commas; the effect is the same.

The optional @var{mods} changes the usual handling of the arguments.
@code{s} requests that pointers to chars be handled as strings, in
particular collecting the contents of the memory being pointed at, up
to the first zero.  The upper bound is by default the value of the
@code{print elements} variable; if @code{s} is followed by a decimal
number, that is the upper bound instead.  So for instance
@samp{collect/s25 mystr} collects as many as 25 characters at
@samp{mystr}.

The command @code{info scope} (@pxref{Symbols, info scope}) is
particularly useful for figuring out what data to collect.

@kindex teval @r{(tracepoints)}
@item teval @var{expr1}, @var{expr2}, @dots{}
Evaluate the given expressions when the tracepoint is hit.  This
command accepts a comma-separated list of expressions.  The results
are discarded, so this is mainly useful for assigning values to trace
state variables (@pxref{Trace State Variables}) without adding those
values to the trace buffer, as would be the case if the @code{collect}
action were used.

@kindex while-stepping @r{(tracepoints)}
@item while-stepping @var{n}
Perform @var{n} single-step instruction traces after the tracepoint,
collecting new data after each step.  The @code{while-stepping}
command is followed by the list of what to collect while stepping
(followed by its own @code{end} command):

@smallexample
> while-stepping 12
  > collect $regs, myglobal
  > end
>
@end smallexample

@noindent
Note that @code{$pc} is not automatically collected by
@code{while-stepping}; you need to explicitly collect that register if
you need it.  You may abbreviate @code{while-stepping} as @code{ws} or
@code{stepping}.

@item set default-collect @var{expr1}, @var{expr2}, @dots{}
@kindex set default-collect
@cindex default collection action
This variable is a list of expressions to collect at each tracepoint
hit.  It is effectively an additional @code{collect} action prepended
to every tracepoint action list.  The expressions are parsed
individually for each tracepoint, so for instance a variable named
@code{xyz} may be interpreted as a global for one tracepoint, and a
local for another, as appropriate to the tracepoint's location.

@item show default-collect
@kindex show default-collect
Show the list of expressions that are collected by default at each
tracepoint hit.

@end table

@node Listing Tracepoints
@subsection Listing Tracepoints

@table @code
@kindex info tracepoints @r{[}@var{n}@dots{}@r{]}
@kindex info tp @r{[}@var{n}@dots{}@r{]}
@cindex information about tracepoints
@item info tracepoints @r{[}@var{num}@dots{}@r{]}
Display information about the tracepoint @var{num}.  If you don't
specify a tracepoint number, displays information about all the
tracepoints defined so far.  The format is similar to that used for
@code{info breakpoints}; in fact, @code{info tracepoints} is the same
command, simply restricting itself to tracepoints.

A tracepoint's listing may include additional information specific to
tracing:

@itemize @bullet
@item
its passcount as given by the @code{passcount @var{n}} command

@item
the state about installed on target of each location
@end itemize

@smallexample
(@value{GDBP}) @b{info trace}
Num     Type           Disp Enb Address    What
1       tracepoint     keep y   0x0804ab57 in foo() at main.cxx:7
        while-stepping 20
          collect globfoo, $regs
        end
        collect globfoo2
        end
        pass count 1200 
2       tracepoint     keep y   <MULTIPLE>
        collect $eip
2.1                         y     0x0804859c in func4 at change-loc.h:35
        installed on target
2.2                         y     0xb7ffc480 in func4 at change-loc.h:35
        installed on target
2.3                         y     <PENDING>  set_tracepoint
3       tracepoint     keep y   0x080485b1 in foo at change-loc.c:29
        not installed on target
(@value{GDBP})
@end smallexample

@noindent
This command can be abbreviated @code{info tp}.
@end table

@node Listing Static Tracepoint Markers
@subsection Listing Static Tracepoint Markers

@table @code
@kindex info static-tracepoint-markers
@cindex information about static tracepoint markers
@item info static-tracepoint-markers
Display information about all static tracepoint markers defined in the
program.

For each marker, the following columns are printed:

@table @emph
@item Count
An incrementing counter, output to help readability.  This is not a
stable identifier.
@item ID
The marker ID, as reported by the target.
@item Enabled or Disabled
Probed markers are tagged with @samp{y}.  @samp{n} identifies marks
that are not enabled.
@item Address
Where the marker is in your program, as a memory address.
@item What
Where the marker is in the source for your program, as a file and line
number.  If the debug information included in the program does not
allow @value{GDBN} to locate the source of the marker, this column
will be left blank.
@end table

@noindent
In addition, the following information may be printed for each marker:

@table @emph
@item Data
User data passed to the tracing library by the marker call.  In the
UST backend, this is the format string passed as argument to the
marker call.
@item Static tracepoints probing the marker
The list of static tracepoints attached to the marker.
@end table

@smallexample
(@value{GDBP}) info static-tracepoint-markers
Cnt ID         Enb Address            What
1   ust/bar2   y   0x0000000000400e1a in main at stexample.c:25
     Data: number1 %d number2 %d
     Probed by static tracepoints: #2
2   ust/bar33  n   0x0000000000400c87 in main at stexample.c:24
     Data: str %s
(@value{GDBP})
@end smallexample
@end table

@node Starting and Stopping Trace Experiments
@subsection Starting and Stopping Trace Experiments

@table @code
@kindex tstart [ @var{notes} ]
@cindex start a new trace experiment
@cindex collected data discarded
@item tstart
This command starts the trace experiment, and begins collecting data.
It has the side effect of discarding all the data collected in the
trace buffer during the previous trace experiment.  If any arguments
are supplied, they are taken as a note and stored with the trace
experiment's state.  The notes may be arbitrary text, and are
especially useful with disconnected tracing in a multi-user context;
the notes can explain what the trace is doing, supply user contact
information, and so forth.

@kindex tstop [ @var{notes} ]
@cindex stop a running trace experiment
@item tstop
This command stops the trace experiment.  If any arguments are
supplied, they are recorded with the experiment as a note.  This is
useful if you are stopping a trace started by someone else, for
instance if the trace is interfering with the system's behavior and
needs to be stopped quickly.

@strong{Note}: a trace experiment and data collection may stop
automatically if any tracepoint's passcount is reached
(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.

@kindex tstatus
@cindex status of trace data collection
@cindex trace experiment, status of
@item tstatus
This command displays the status of the current trace data
collection.
@end table

Here is an example of the commands we described so far:

@smallexample
(@value{GDBP}) @b{trace gdb_c_test}
(@value{GDBP}) @b{actions}
Enter actions for tracepoint #1, one per line.
> collect $regs,$locals,$args
> while-stepping 11
  > collect $regs
  > end
> end
(@value{GDBP}) @b{tstart}
	[time passes @dots{}]
(@value{GDBP}) @b{tstop}
@end smallexample

@anchor{disconnected tracing}
@cindex disconnected tracing
You can choose to continue running the trace experiment even if
@value{GDBN} disconnects from the target, voluntarily or
involuntarily.  For commands such as @code{detach}, the debugger will
ask what you want to do with the trace.  But for unexpected
terminations (@value{GDBN} crash, network outage), it would be
unfortunate to lose hard-won trace data, so the variable
@code{disconnected-tracing} lets you decide whether the trace should
continue running without @value{GDBN}.

@table @code
@item set disconnected-tracing on
@itemx set disconnected-tracing off
@kindex set disconnected-tracing
Choose whether a tracing run should continue to run if @value{GDBN}
has disconnected from the target.  Note that @code{detach} or
@code{quit} will ask you directly what to do about a running trace no
matter what this variable's setting, so the variable is mainly useful
for handling unexpected situations, such as loss of the network.

@item show disconnected-tracing
@kindex show disconnected-tracing
Show the current choice for disconnected tracing.

@end table

When you reconnect to the target, the trace experiment may or may not
still be running; it might have filled the trace buffer in the
meantime, or stopped for one of the other reasons.  If it is running,
it will continue after reconnection.

Upon reconnection, the target will upload information about the
tracepoints in effect.  @value{GDBN} will then compare that
information to the set of tracepoints currently defined, and attempt
to match them up, allowing for the possibility that the numbers may
have changed due to creation and deletion in the meantime.  If one of
the target's tracepoints does not match any in @value{GDBN}, the
debugger will create a new tracepoint, so that you have a number with
which to specify that tracepoint.  This matching-up process is
necessarily heuristic, and it may result in useless tracepoints being
created; you may simply delete them if they are of no use.

@cindex circular trace buffer
If your target agent supports a @dfn{circular trace buffer}, then you
can run a trace experiment indefinitely without filling the trace
buffer; when space runs out, the agent deletes already-collected trace
frames, oldest first, until there is enough room to continue
collecting.  This is especially useful if your tracepoints are being
hit too often, and your trace gets terminated prematurely because the
buffer is full.  To ask for a circular trace buffer, simply set
@samp{circular-trace-buffer} to on.  You can set this at any time,
including during tracing; if the agent can do it, it will change
buffer handling on the fly, otherwise it will not take effect until
the next run.

@table @code
@item set circular-trace-buffer on
@itemx set circular-trace-buffer off
@kindex set circular-trace-buffer
Choose whether a tracing run should use a linear or circular buffer
for trace data.  A linear buffer will not lose any trace data, but may
fill up prematurely, while a circular buffer will discard old trace
data, but it will have always room for the latest tracepoint hits.

@item show circular-trace-buffer
@kindex show circular-trace-buffer
Show the current choice for the trace buffer.  Note that this may not
match the agent's current buffer handling, nor is it guaranteed to
match the setting that might have been in effect during a past run,
for instance if you are looking at frames from a trace file.

@end table

@table @code
@item set trace-buffer-size @var{n}
@itemx set trace-buffer-size unlimited
@kindex set trace-buffer-size
Request that the target use a trace buffer of @var{n} bytes.  Not all
targets will honor the request; they may have a compiled-in size for
the trace buffer, or some other limitation.  Set to a value of
@code{unlimited} or @code{-1} to let the target use whatever size it
likes.  This is also the default.

@item show trace-buffer-size
@kindex show trace-buffer-size
Show the current requested size for the trace buffer.  Note that this
will only match the actual size if the target supports size-setting,
and was able to handle the requested size.  For instance, if the
target can only change buffer size between runs, this variable will
not reflect the change until the next run starts.  Use @code{tstatus}
to get a report of the actual buffer size.
@end table

@table @code
@item set trace-user @var{text}
@kindex set trace-user

@item show trace-user
@kindex show trace-user

@item set trace-notes @var{text}
@kindex set trace-notes
Set the trace run's notes.

@item show trace-notes
@kindex show trace-notes
Show the trace run's notes.

@item set trace-stop-notes @var{text}
@kindex set trace-stop-notes
Set the trace run's stop notes.  The handling of the note is as for
@code{tstop} arguments; the set command is convenient way to fix a
stop note that is mistaken or incomplete.

@item show trace-stop-notes
@kindex show trace-stop-notes
Show the trace run's stop notes.

@end table

@node Tracepoint Restrictions
@subsection Tracepoint Restrictions

@cindex tracepoint restrictions
There are a number of restrictions on the use of tracepoints.  As
described above, tracepoint data gathering occurs on the target
without interaction from @value{GDBN}.  Thus the full capabilities of
the debugger are not available during data gathering, and then at data
examination time, you will be limited by only having what was
collected.  The following items describe some common problems, but it
is not exhaustive, and you may run into additional difficulties not
mentioned here.

@itemize @bullet

@item
Tracepoint expressions are intended to gather objects (lvalues).  Thus
the full flexibility of GDB's expression evaluator is not available.
You cannot call functions, cast objects to aggregate types, access
convenience variables or modify values (except by assignment to trace
state variables).  Some language features may implicitly call
functions (for instance Objective-C fields with accessors), and therefore
cannot be collected either.

@item
Collection of local variables, either individually or in bulk with
@code{$locals} or @code{$args}, during @code{while-stepping} may
behave erratically.  The stepping action may enter a new scope (for
instance by stepping into a function), or the location of the variable
may change (for instance it is loaded into a register).  The
tracepoint data recorded uses the location information for the
variables that is correct for the tracepoint location.  When the
tracepoint is created, it is not possible, in general, to determine
where the steps of a @code{while-stepping} sequence will advance the
program---particularly if a conditional branch is stepped.

@item
Collection of an incompletely-initialized or partially-destroyed object
may result in something that @value{GDBN} cannot display, or displays
in a misleading way.

@item
When @value{GDBN} displays a pointer to character it automatically
dereferences the pointer to also display characters of the string
being pointed to.  However, collecting the pointer during tracing does
not automatically collect the string.  You need to explicitly
dereference the pointer and provide size information if you want to
collect not only the pointer, but the memory pointed to.  For example,
@code{*ptr@@50} can be used to collect the 50 element array pointed to
by @code{ptr}.

@item
It is not possible to collect a complete stack backtrace at a
tracepoint.  Instead, you may collect the registers and a few hundred
bytes from the stack pointer with something like @code{*(unsigned char *)$esp@@300}
(adjust to use the name of the actual stack pointer register on your
target architecture, and the amount of stack you wish to capture).
Then the @code{backtrace} command will show a partial backtrace when
using a trace frame.  The number of stack frames that can be examined
depends on the sizes of the frames in the collected stack.  Note that
if you ask for a block so large that it goes past the bottom of the
stack, the target agent may report an error trying to read from an
invalid address.

@item
If you do not collect registers at a tracepoint, @value{GDBN} can
infer that the value of @code{$pc} must be the same as the address of
the tracepoint and use that when you are looking at a trace frame
for that tracepoint.  However, this cannot work if the tracepoint has
multiple locations (for instance if it was set in a function that was
inlined), or if it has a @code{while-stepping} loop.  In those cases
@value{GDBN} will warn you that it can't infer @code{$pc}, and default
it to zero.

@end itemize

@node Analyze Collected Data
@section Using the Collected Data

After the tracepoint experiment ends, you use @value{GDBN} commands
for examining the trace data.  The basic idea is that each tracepoint
collects a trace @dfn{snapshot} every time it is hit and another
snapshot every time it single-steps.  All these snapshots are
consecutively numbered from zero and go into a buffer, and you can
examine them later.  The way you examine them is to @dfn{focus} on a
specific trace snapshot.  When the remote stub is focused on a trace
snapshot, it will respond to all @value{GDBN} requests for memory and
registers by reading from the buffer which belongs to that snapshot,
rather than from @emph{real} memory or registers of the program being
debugged.  This means that @strong{all} @value{GDBN} commands
(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
behave as if we were currently debugging the program state as it was
when the tracepoint occurred.  Any requests for data that are not in
the buffer will fail.

@menu
* tfind::                       How to select a trace snapshot
* tdump::                       How to display all data for a snapshot
* save tracepoints::            How to save tracepoints for a future run
@end menu

@node tfind
@subsection @code{tfind @var{n}}

@kindex tfind
@cindex select trace snapshot
@cindex find trace snapshot
The basic command for selecting a trace snapshot from the buffer is
@code{tfind @var{n}}, which finds trace snapshot number @var{n},
counting from zero.  If no argument @var{n} is given, the next
snapshot is selected.

Here are the various forms of using the @code{tfind} command.

@table @code
@item tfind start
Find the first snapshot in the buffer.  This is a synonym for
@code{tfind 0} (since 0 is the number of the first snapshot).

@item tfind none
Stop debugging trace snapshots, resume @emph{live} debugging.

@item tfind end
Same as @samp{tfind none}.

@item tfind
No argument means find the next trace snapshot or find the first
one if no trace snapshot is selected.

@item tfind -
Find the previous trace snapshot before the current one.  This permits
retracing earlier steps.

@item tfind tracepoint @var{num}
Find the next snapshot associated with tracepoint @var{num}.  Search
proceeds forward from the last examined trace snapshot.  If no
argument @var{num} is given, it means find the next snapshot collected
for the same tracepoint as the current snapshot.

@item tfind pc @var{addr}
Find the next snapshot associated with the value @var{addr} of the
program counter.  Search proceeds forward from the last examined trace
snapshot.  If no argument @var{addr} is given, it means find the next
snapshot with the same value of PC as the current snapshot.

@item tfind outside @var{addr1}, @var{addr2}
Find the next snapshot whose PC is outside the given range of
addresses (exclusive).

@item tfind range @var{addr1}, @var{addr2}
Find the next snapshot whose PC is between @var{addr1} and
@var{addr2} (inclusive).

@item tfind line @r{[}@var{file}:@r{]}@var{n}
Find the next snapshot associated with the source line @var{n}.  If
the optional argument @var{file} is given, refer to line @var{n} in
that source file.  Search proceeds forward from the last examined
trace snapshot.  If no argument @var{n} is given, it means find the
next line other than the one currently being examined; thus saying
@code{tfind line} repeatedly can appear to have the same effect as
stepping from line to line in a @emph{live} debugging session.
@end table

The default arguments for the @code{tfind} commands are specifically
designed to make it easy to scan through the trace buffer.  For
instance, @code{tfind} with no argument selects the next trace
snapshot, and @code{tfind -} with no argument selects the previous
trace snapshot.  So, by giving one @code{tfind} command, and then
simply hitting @key{RET} repeatedly you can examine all the trace
snapshots in order.  Or, by saying @code{tfind -} and then hitting
@key{RET} repeatedly you can examine the snapshots in reverse order.
The @code{tfind line} command with no argument selects the snapshot
for the next source line executed.  The @code{tfind pc} command with
no argument selects the next snapshot with the same program counter
(PC) as the current frame.  The @code{tfind tracepoint} command with
no argument selects the next trace snapshot collected by the same
tracepoint as the current one.

In addition to letting you scan through the trace buffer manually,
these commands make it easy to construct @value{GDBN} scripts that
scan through the trace buffer and print out whatever collected data
you are interested in.  Thus, if we want to examine the PC, FP, and SP
registers from each trace frame in the buffer, we can say this:

@smallexample
(@value{GDBP}) @b{tfind start}
(@value{GDBP}) @b{while ($trace_frame != -1)}
> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
          $trace_frame, $pc, $sp, $fp
> tfind
> end

Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
@end smallexample

Or, if we want to examine the variable @code{X} at each source line in
the buffer:

@smallexample
(@value{GDBP}) @b{tfind start}
(@value{GDBP}) @b{while ($trace_frame != -1)}
> printf "Frame %d, X == %d\n", $trace_frame, X
> tfind line
> end

Frame 0, X = 1
Frame 7, X = 2
Frame 13, X = 255
@end smallexample

@node tdump
@subsection @code{tdump}
@kindex tdump
@cindex dump all data collected at tracepoint
@cindex tracepoint data, display

This command takes no arguments.  It prints all the data collected at
the current trace snapshot.

@smallexample
(@value{GDBP}) @b{trace 444}
(@value{GDBP}) @b{actions}
Enter actions for tracepoint #2, one per line:
> collect $regs, $locals, $args, gdb_long_test
> end

(@value{GDBP}) @b{tstart}

(@value{GDBP}) @b{tfind line 444}
#0  gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
at gdb_test.c:444
444        printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )

(@value{GDBP}) @b{tdump}
Data collected at tracepoint 2, trace frame 1:
d0             0xc4aa0085       -995491707
d1             0x18     24
d2             0x80     128
d3             0x33     51
d4             0x71aea3d        119204413
d5             0x22     34
d6             0xe0     224
d7             0x380035 3670069
a0             0x19e24a 1696330
a1             0x3000668        50333288
a2             0x100    256
a3             0x322000 3284992
a4             0x3000698        50333336
a5             0x1ad3cc 1758156
fp             0x30bf3c 0x30bf3c
sp             0x30bf34 0x30bf34
ps             0x0      0
pc             0x20b2c8 0x20b2c8
fpcontrol      0x0      0
fpstatus       0x0      0
fpiaddr        0x0      0
p = 0x20e5b4 "gdb-test"
p1 = (void *) 0x11
p2 = (void *) 0x22
p3 = (void *) 0x33
p4 = (void *) 0x44
p5 = (void *) 0x55
p6 = (void *) 0x66
gdb_long_test = 17 '\021'

(@value{GDBP})
@end smallexample

@code{tdump} works by scanning the tracepoint's current collection
actions and printing the value of each expression listed.  So
@code{tdump} can fail, if after a run, you change the tracepoint's
actions to mention variables that were not collected during the run.

Also, for tracepoints with @code{while-stepping} loops, @code{tdump}
uses the collected value of @code{$pc} to distinguish between trace
frames that were collected at the tracepoint hit, and frames that were
collected while stepping.  This allows it to correctly choose whether
to display the basic list of collections, or the collections from the
body of the while-stepping loop.  However, if @code{$pc} was not collected,
then @code{tdump} will always attempt to dump using the basic collection
list, and may fail if a while-stepping frame does not include all the
same data that is collected at the tracepoint hit.
@c This is getting pretty arcane, example would be good.

@node save tracepoints
@subsection @code{save tracepoints @var{filename}}
@kindex save tracepoints
@kindex save-tracepoints
@cindex save tracepoints for future sessions

This command saves all current tracepoint definitions together with
their actions and passcounts, into a file @file{@var{filename}}
suitable for use in a later debugging session.  To read the saved
tracepoint definitions, use the @code{source} command (@pxref{Command
Files}).  The @w{@code{save-tracepoints}} command is a deprecated
alias for @w{@code{save tracepoints}}

@node Tracepoint Variables
@section Convenience Variables for Tracepoints
@cindex tracepoint variables
@cindex convenience variables for tracepoints

@table @code
@vindex $trace_frame
@item (int) $trace_frame
The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
snapshot is selected.

@vindex $tracepoint
@item (int) $tracepoint
The tracepoint for the current trace snapshot.

@vindex $trace_line
@item (int) $trace_line
The line number for the current trace snapshot.

@vindex $trace_file
@item (char []) $trace_file
The source file for the current trace snapshot.

@vindex $trace_func
@item (char []) $trace_func
The name of the function containing @code{$tracepoint}.
@end table

Note: @code{$trace_file} is not suitable for use in @code{printf},
use @code{output} instead.

Here's a simple example of using these convenience variables for
stepping through all the trace snapshots and printing some of their
data.  Note that these are not the same as trace state variables,
which are managed by the target.

@smallexample
(@value{GDBP}) @b{tfind start}

(@value{GDBP}) @b{while $trace_frame != -1}
> output $trace_file
> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
> tfind
> end
@end smallexample

@node Trace Files
@section Using Trace Files
@cindex trace files

In some situations, the target running a trace experiment may no
longer be available; perhaps it crashed, or the hardware was needed
for a different activity.  To handle these cases, you can arrange to
dump the trace data into a file, and later use that file as a source
of trace data, via the @code{target tfile} command.

@table @code

@kindex tsave
@item tsave [ -r ] @var{filename}
@itemx tsave [-ctf] @var{dirname}
Save the trace data to @var{filename}.  By default, this command
assumes that @var{filename} refers to the host filesystem, so if
necessary @value{GDBN} will copy raw trace data up from the target and
then save it.  If the target supports it, you can also supply the
optional argument @code{-r} (``remote'') to direct the target to save
the data directly into @var{filename} in its own filesystem, which may be
more efficient if the trace buffer is very large.  (Note, however, that
@code{target tfile} can only read from files accessible to the host.)
By default, this command will save trace frame in tfile format.
You can supply the optional argument @code{-ctf} to save data in CTF
format.  The @dfn{Common Trace Format} (CTF) is proposed as a trace format
that can be shared by multiple debugging and tracing tools.  Please go to
@indicateurl{http://www.efficios.com/ctf} to get more information.

@kindex target tfile
@kindex tfile
@kindex target ctf
@kindex ctf
@item target tfile @var{filename}
@itemx target ctf @var{dirname}
Use the file named @var{filename} or directory named @var{dirname} as
a source of trace data.  Commands that examine data work as they do with
a live target, but it is not possible to run any new trace experiments.
@code{tstatus} will report the state of the trace run at the moment
the data was saved, as well as the current trace frame you are examining.
Both @var{filename} and @var{dirname} must be on a filesystem accessible to
the host.

@smallexample
(@value{GDBP}) target ctf ctf.ctf
(@value{GDBP}) tfind
Found trace frame 0, tracepoint 2
39            ++a;  /* set tracepoint 1 here */
(@value{GDBP}) tdump
Data collected at tracepoint 2, trace frame 0:
i = 0
a = 0
b = 1 '\001'
c = @{"123", "456", "789", "123", "456", "789"@}
d = @{@{@{a = 1, b = 2@}, @{a = 3, b = 4@}@}, @{@{a = 5, b = 6@}, @{a = 7, b = 8@}@}@}
(@value{GDBP}) p b
$1 = 1
@end smallexample

@end table

@node Overlays
@chapter Debugging Programs That Use Overlays
@cindex overlays

If your program is too large to fit completely in your target system's
memory, you can sometimes use @dfn{overlays} to work around this
problem.  @value{GDBN} provides some support for debugging programs that
use overlays.

@menu
* How Overlays Work::              A general explanation of overlays.
* Overlay Commands::               Managing overlays in @value{GDBN}.
* Automatic Overlay Debugging::    @value{GDBN} can find out which overlays are
                                   mapped by asking the inferior.
* Overlay Sample Program::         A sample program using overlays.
@end menu

@node How Overlays Work
@section How Overlays Work
@cindex mapped overlays
@cindex unmapped overlays
@cindex load address, overlay's
@cindex mapped address
@cindex overlay area

Suppose you have a computer whose instruction address space is only 64
kilobytes long, but which has much more memory which can be accessed by
other means: special instructions, segment registers, or memory
management hardware, for example.  Suppose further that you want to
adapt a program which is larger than 64 kilobytes to run on this system.

One solution is to identify modules of your program which are relatively
independent, and need not call each other directly; call these modules
@dfn{overlays}.  Separate the overlays from the main program, and place
their machine code in the larger memory.  Place your main program in
instruction memory, but leave at least enough space there to hold the
largest overlay as well.

Now, to call a function located in an overlay, you must first copy that
overlay's machine code from the large memory into the space set aside
for it in the instruction memory, and then jump to its entry point
there.

@c NB:  In the below the mapped area's size is greater or equal to the
@c size of all overlays.  This is intentional to remind the developer
@c that overlays don't necessarily need to be the same size.

@smallexample
@group
    Data             Instruction            Larger
Address Space       Address Space        Address Space
+-----------+       +-----------+        +-----------+
|           |       |           |        |           |
+-----------+       +-----------+        +-----------+<-- overlay 1
| program   |       |   main    |   .----| overlay 1 | load address
| variables |       |  program  |   |    +-----------+
| and heap  |       |           |   |    |           |
+-----------+       |           |   |    +-----------+<-- overlay 2
|           |       +-----------+   |    |           | load address
+-----------+       |           |   |  .-| overlay 2 |
                    |           |   |  | |           |
         mapped --->+-----------+   |  | +-----------+
         address    |           |   |  | |           |
                    |  overlay  | <-'  | |           |
                    |   area    |  <---' +-----------+<-- overlay 3
                    |           | <---.  |           | load address
                    +-----------+     `--| overlay 3 |
                    |           |        |           |
                    +-----------+        |           |
                                         +-----------+
                                         |           |
                                         +-----------+

                    @anchor{A code overlay}A code overlay
@end group
@end smallexample

The diagram (@pxref{A code overlay}) shows a system with separate data
and instruction address spaces.  To map an overlay, the program copies
its code from the larger address space to the instruction address space.
Since the overlays shown here all use the same mapped address, only one
may be mapped at a time.  For a system with a single address space for
data and instructions, the diagram would be similar, except that the
program variables and heap would share an address space with the main
program and the overlay area.

An overlay loaded into instruction memory and ready for use is called a
@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
instruction memory.  An overlay not present (or only partially present)
in instruction memory is called @dfn{unmapped}; its @dfn{load address}
is its address in the larger memory.  The mapped address is also called
the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
called the @dfn{load memory address}, or @dfn{LMA}.

Unfortunately, overlays are not a completely transparent way to adapt a
program to limited instruction memory.  They introduce a new set of
global constraints you must keep in mind as you design your program:

@itemize @bullet

@item
Before calling or returning to a function in an overlay, your program
must make sure that overlay is actually mapped.  Otherwise, the call or
return will transfer control to the right address, but in the wrong
overlay, and your program will probably crash.

@item
If the process of mapping an overlay is expensive on your system, you
will need to choose your overlays carefully to minimize their effect on
your program's performance.

@item
The executable file you load onto your system must contain each
overlay's instructions, appearing at the overlay's load address, not its
mapped address.  However, each overlay's instructions must be relocated
and its symbols defined as if the overlay were at its mapped address.
You can use GNU linker scripts to specify different load and relocation
addresses for pieces of your program; see @ref{Overlay Description,,,
ld.info, Using ld: the GNU linker}.

@item
The procedure for loading executable files onto your system must be able
to load their contents into the larger address space as well as the
instruction and data spaces.

@end itemize

The overlay system described above is rather simple, and could be
improved in many ways:

@itemize @bullet

@item
If your system has suitable bank switch registers or memory management
hardware, you could use those facilities to make an overlay's load area
contents simply appear at their mapped address in instruction space.
This would probably be faster than copying the overlay to its mapped
area in the usual way.

@item
If your overlays are small enough, you could set aside more than one
overlay area, and have more than one overlay mapped at a time.

@item
You can use overlays to manage data, as well as instructions.  In
general, data overlays are even less transparent to your design than
code overlays: whereas code overlays only require care when you call or
return to functions, data overlays require care every time you access
the data.  Also, if you change the contents of a data overlay, you
must copy its contents back out to its load address before you can copy a
different data overlay into the same mapped area.

@end itemize


@node Overlay Commands
@section Overlay Commands

To use @value{GDBN}'s overlay support, each overlay in your program must
correspond to a separate section of the executable file.  The section's
virtual memory address and load memory address must be the overlay's
mapped and load addresses.  Identifying overlays with sections allows
@value{GDBN} to determine the appropriate address of a function or
variable, depending on whether the overlay is mapped or not.

@value{GDBN}'s overlay commands all start with the word @code{overlay};
you can abbreviate this as @code{ov} or @code{ovly}.  The commands are:

@table @code
@item overlay off
@kindex overlay
Disable @value{GDBN}'s overlay support.  When overlay support is
disabled, @value{GDBN} assumes that all functions and variables are
always present at their mapped addresses.  By default, @value{GDBN}'s
overlay support is disabled.

@item overlay manual
@cindex manual overlay debugging
Enable @dfn{manual} overlay debugging.  In this mode, @value{GDBN}
relies on you to tell it which overlays are mapped, and which are not,
using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
commands described below.

@item overlay map-overlay @var{overlay}
@itemx overlay map @var{overlay}
@cindex map an overlay
Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
be the name of the object file section containing the overlay.  When an
overlay is mapped, @value{GDBN} assumes it can find the overlay's
functions and variables at their mapped addresses.  @value{GDBN} assumes
that any other overlays whose mapped ranges overlap that of
@var{overlay} are now unmapped.

@item overlay unmap-overlay @var{overlay}
@itemx overlay unmap @var{overlay}
@cindex unmap an overlay
Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
must be the name of the object file section containing the overlay.
When an overlay is unmapped, @value{GDBN} assumes it can find the
overlay's functions and variables at their load addresses.

@item overlay auto
Enable @dfn{automatic} overlay debugging.  In this mode, @value{GDBN}
consults a data structure the overlay manager maintains in the inferior
to see which overlays are mapped.  For details, see @ref{Automatic
Overlay Debugging}.

@item overlay load-target
@itemx overlay load
@cindex reloading the overlay table
Re-read the overlay table from the inferior.  Normally, @value{GDBN}
re-reads the table @value{GDBN} automatically each time the inferior
stops, so this command should only be necessary if you have changed the
overlay mapping yourself using @value{GDBN}.  This command is only
useful when using automatic overlay debugging.

@item overlay list-overlays
@itemx overlay list
@cindex listing mapped overlays
Display a list of the overlays currently mapped, along with their mapped
addresses, load addresses, and sizes.

@end table

Normally, when @value{GDBN} prints a code address, it includes the name
of the function the address falls in:

@smallexample
(@value{GDBP}) print main
$3 = @{int ()@} 0x11a0 <main>
@end smallexample
@noindent
When overlay debugging is enabled, @value{GDBN} recognizes code in
unmapped overlays, and prints the names of unmapped functions with
asterisks around them.  For example, if @code{foo} is a function in an
unmapped overlay, @value{GDBN} prints it this way:

@smallexample
(@value{GDBP}) overlay list
No sections are mapped.
(@value{GDBP}) print foo
$5 = @{int (int)@} 0x100000 <*foo*>
@end smallexample
@noindent
When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
name normally:

@smallexample
(@value{GDBP}) overlay list
Section .ov.foo.text, loaded at 0x100000 - 0x100034,
        mapped at 0x1016 - 0x104a
(@value{GDBP}) print foo
$6 = @{int (int)@} 0x1016 <foo>
@end smallexample

When overlay debugging is enabled, @value{GDBN} can find the correct
address for functions and variables in an overlay, whether or not the
overlay is mapped.  This allows most @value{GDBN} commands, like
@code{break} and @code{disassemble}, to work normally, even on unmapped
code.  However, @value{GDBN}'s breakpoint support has some limitations:

@itemize @bullet
@item
@cindex breakpoints in overlays
@cindex overlays, setting breakpoints in
You can set breakpoints in functions in unmapped overlays, as long as
@value{GDBN} can write to the overlay at its load address.
@item
@value{GDBN} can not set hardware or simulator-based breakpoints in
unmapped overlays.  However, if you set a breakpoint at the end of your
overlay manager (and tell @value{GDBN} which overlays are now mapped, if
you are using manual overlay management), @value{GDBN} will re-set its
breakpoints properly.
@end itemize


@node Automatic Overlay Debugging
@section Automatic Overlay Debugging
@cindex automatic overlay debugging

@value{GDBN} can automatically track which overlays are mapped and which
are not, given some simple co-operation from the overlay manager in the
inferior.  If you enable automatic overlay debugging with the
@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
looks in the inferior's memory for certain variables describing the
current state of the overlays.

Here are the variables your overlay manager must define to support
@value{GDBN}'s automatic overlay debugging:

@table @asis

@item @code{_ovly_table}:
This variable must be an array of the following structures:

@smallexample
struct
@{
  /* The overlay's mapped address.  */
  unsigned long vma;

  /* The size of the overlay, in bytes.  */
  unsigned long size;

  /* The overlay's load address.  */
  unsigned long lma;

  /* Non-zero if the overlay is currently mapped;
     zero otherwise.  */
  unsigned long mapped;
@}
@end smallexample

@item @code{_novlys}:
This variable must be a four-byte signed integer, holding the total
number of elements in @code{_ovly_table}.

@end table

To decide whether a particular overlay is mapped or not, @value{GDBN}
looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
@code{lma} members equal the VMA and LMA of the overlay's section in the
executable file.  When @value{GDBN} finds a matching entry, it consults
the entry's @code{mapped} member to determine whether the overlay is
currently mapped.

In addition, your overlay manager may define a function called
@code{_ovly_debug_event}.  If this function is defined, @value{GDBN}
will silently set a breakpoint there.  If the overlay manager then
calls this function whenever it has changed the overlay table, this
will enable @value{GDBN} to accurately keep track of which overlays
are in program memory, and update any breakpoints that may be set
in overlays.  This will allow breakpoints to work even if the
overlays are kept in ROM or other non-writable memory while they
are not being executed.

@node Overlay Sample Program
@section Overlay Sample Program
@cindex overlay example program

When linking a program which uses overlays, you must place the overlays
at their load addresses, while relocating them to run at their mapped
addresses.  To do this, you must write a linker script (@pxref{Overlay
Description,,, ld.info, Using ld: the GNU linker}).  Unfortunately,
since linker scripts are specific to a particular host system, target
architecture, and target memory layout, this manual cannot provide
portable sample code demonstrating @value{GDBN}'s overlay support.

However, the @value{GDBN} source distribution does contain an overlaid
program, with linker scripts for a few systems, as part of its test
suite.  The program consists of the following files from
@file{gdb/testsuite/gdb.base}:

@table @file
@item overlays.c
The main program file.
@item ovlymgr.c
A simple overlay manager, used by @file{overlays.c}.
@item foo.c
@itemx bar.c
@itemx baz.c
@itemx grbx.c
Overlay modules, loaded and used by @file{overlays.c}.
@item d10v.ld
@itemx m32r.ld
Linker scripts for linking the test program on the @code{d10v-elf}
and @code{m32r-elf} targets.
@end table

You can build the test program using the @code{d10v-elf} GCC
cross-compiler like this:

@smallexample
$ d10v-elf-gcc -g -c overlays.c
$ d10v-elf-gcc -g -c ovlymgr.c
$ d10v-elf-gcc -g -c foo.c
$ d10v-elf-gcc -g -c bar.c
$ d10v-elf-gcc -g -c baz.c
$ d10v-elf-gcc -g -c grbx.c
$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
                  baz.o grbx.o -Wl,-Td10v.ld -o overlays
@end smallexample

The build process is identical for any other architecture, except that
you must substitute the appropriate compiler and linker script for the
target system for @code{d10v-elf-gcc} and @code{d10v.ld}.


@node Languages
@chapter Using @value{GDBN} with Different Languages
@cindex languages

Although programming languages generally have common aspects, they are
rarely expressed in the same manner.  For instance, in ANSI C,
dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
Modula-2, it is accomplished by @code{p^}.  Values can also be
represented (and displayed) differently.  Hex numbers in C appear as
@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.

@cindex working language
Language-specific information is built into @value{GDBN} for some languages,
allowing you to express operations like the above in your program's
native language, and allowing @value{GDBN} to output values in a manner
consistent with the syntax of your program's native language.  The
language you use to build expressions is called the @dfn{working
language}.

@menu
* Setting::                     Switching between source languages
* Show::                        Displaying the language
* Checks::                      Type and range checks
* Supported Languages::         Supported languages
* Unsupported Languages::       Unsupported languages
@end menu

@node Setting
@section Switching Between Source Languages

There are two ways to control the working language---either have @value{GDBN}
set it automatically, or select it manually yourself.  You can use the
@code{set language} command for either purpose.  On startup, @value{GDBN}
defaults to setting the language automatically.  The working language is
used to determine how expressions you type are interpreted, how values
are printed, etc.

In addition to the working language, every source file that
@value{GDBN} knows about has its own working language.  For some object
file formats, the compiler might indicate which language a particular
source file is in.  However, most of the time @value{GDBN} infers the
language from the name of the file.  The language of a source file
controls whether C@t{++} names are demangled---this way @code{backtrace} can
show each frame appropriately for its own language.  There is no way to
set the language of a source file from within @value{GDBN}, but you can
set the language associated with a filename extension.  @xref{Show, ,
Displaying the Language}.

This is most commonly a problem when you use a program, such
as @code{cfront} or @code{f2c}, that generates C but is written in
another language.  In that case, make the
program use @code{#line} directives in its C output; that way
@value{GDBN} will know the correct language of the source code of the original
program, and will display that source code, not the generated C code.

@menu
* Filenames::                   Filename extensions and languages.
* Manually::                    Setting the working language manually
* Automatically::               Having @value{GDBN} infer the source language
@end menu

@node Filenames
@subsection List of Filename Extensions and Languages

If a source file name ends in one of the following extensions, then
@value{GDBN} infers that its language is the one indicated.

@table @file
@item .ada
@itemx .ads
@itemx .adb
@itemx .a
Ada source file.

@item .c
C source file

@item .C
@itemx .cc
@itemx .cp
@itemx .cpp
@itemx .cxx
@itemx .c++
C@t{++} source file

@item .d
D source file

@item .m
Objective-C source file

@item .f
@itemx .F
Fortran source file

@item .mod
Modula-2 source file

@item .s
@itemx .S
Assembler source file.  This actually behaves almost like C, but
@value{GDBN} does not skip over function prologues when stepping.
@end table

In addition, you may set the language associated with a filename
extension.  @xref{Show, , Displaying the Language}.

@node Manually
@subsection Setting the Working Language

If you allow @value{GDBN} to set the language automatically,
expressions are interpreted the same way in your debugging session and
your program.

@kindex set language
If you wish, you may set the language manually.  To do this, issue the
command @samp{set language @var{lang}}, where @var{lang} is the name of
a language, such as
@code{c} or @code{modula-2}.
For a list of the supported languages, type @samp{set language}.

Setting the language manually prevents @value{GDBN} from updating the working
language automatically.  This can lead to confusion if you try
to debug a program when the working language is not the same as the
source language, when an expression is acceptable to both
languages---but means different things.  For instance, if the current
source file were written in C, and @value{GDBN} was parsing Modula-2, a
command such as:

@smallexample
print a = b + c
@end smallexample

@noindent
might not have the effect you intended.  In C, this means to add
@code{b} and @code{c} and place the result in @code{a}.  The result
printed would be the value of @code{a}.  In Modula-2, this means to compare
@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.

@node Automatically
@subsection Having @value{GDBN} Infer the Source Language

To have @value{GDBN} set the working language automatically, use
@samp{set language local} or @samp{set language auto}.  @value{GDBN}
then infers the working language.  That is, when your program stops in a
frame (usually by encountering a breakpoint), @value{GDBN} sets the
working language to the language recorded for the function in that
frame.  If the language for a frame is unknown (that is, if the function
or block corresponding to the frame was defined in a source file that
does not have a recognized extension), the current working language is
not changed, and @value{GDBN} issues a warning.

This may not seem necessary for most programs, which are written
entirely in one source language.  However, program modules and libraries
written in one source language can be used by a main program written in
a different source language.  Using @samp{set language auto} in this
case frees you from having to set the working language manually.

@node Show
@section Displaying the Language

The following commands help you find out which language is the
working language, and also what language source files were written in.

@table @code
@item show language
@anchor{show language}
@kindex show language
Display the current working language.  This is the
language you can use with commands such as @code{print} to
build and compute expressions that may involve variables in your program.

@item info frame
@kindex info frame@r{, show the source language}
Display the source language for this frame.  This language becomes the
working language if you use an identifier from this frame.
@xref{Frame Info, ,Information about a Frame}, to identify the other
information listed here.

@item info source
@kindex info source@r{, show the source language}
Display the source language of this source file.
@xref{Symbols, ,Examining the Symbol Table}, to identify the other
information listed here.
@end table

In unusual circumstances, you may have source files with extensions
not in the standard list.  You can then set the extension associated
with a language explicitly:

@table @code
@item set extension-language @var{ext} @var{language}
@kindex set extension-language
Tell @value{GDBN} that source files with extension @var{ext} are to be
assumed as written in the source language @var{language}.

@item info extensions
@kindex info extensions
List all the filename extensions and the associated languages.
@end table

@node Checks
@section Type and Range Checking

Some languages are designed to guard you against making seemingly common
errors through a series of compile- and run-time checks.  These include
checking the type of arguments to functions and operators and making
sure mathematical overflows are caught at run time.  Checks such as
these help to ensure a program's correctness once it has been compiled
by eliminating type mismatches and providing active checks for range
errors when your program is running.

By default @value{GDBN} checks for these errors according to the
rules of the current source language.  Although @value{GDBN} does not check
the statements in your program, it can check expressions entered directly
into @value{GDBN} for evaluation via the @code{print} command, for example.

@menu
* Type Checking::               An overview of type checking
* Range Checking::              An overview of range checking
@end menu

@cindex type checking
@cindex checks, type
@node Type Checking
@subsection An Overview of Type Checking

Some languages, such as C and C@t{++}, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type,
otherwise an error occurs.  These checks prevent type mismatch
errors from ever causing any run-time problems.  For example,

@smallexample
int klass::my_method(char *b) @{ return  b ? 1 : 2; @}

(@value{GDBP}) print obj.my_method (0)
$1 = 2
@exdent but
(@value{GDBP}) print obj.my_method (0x1234)
Cannot resolve method klass::my_method to any overloaded instance
@end smallexample

The second example fails because in C@t{++} the integer constant
@samp{0x1234} is not type-compatible with the pointer parameter type.

For the expressions you use in @value{GDBN} commands, you can tell
@value{GDBN} to not enforce strict type checking or
to treat any mismatches as errors and abandon the expression;
When type checking is disabled, @value{GDBN} successfully evaluates
expressions like the second example above.

Even if type checking is off, there may be other reasons
related to type that prevent @value{GDBN} from evaluating an expression.
For instance, @value{GDBN} does not know how to add an @code{int} and
a @code{struct foo}.  These particular type errors have nothing to do
with the language in use and usually arise from expressions which make
little sense to evaluate anyway.

@value{GDBN} provides some additional commands for controlling type checking:

@kindex set check type
@kindex show check type
@table @code
@item set check type on
@itemx set check type off
Set strict type checking on or off.  If any type mismatches occur in
evaluating an expression while type checking is on, @value{GDBN} prints a
message and aborts evaluation of the expression.

@item show check type
Show the current setting of type checking and whether @value{GDBN}
is enforcing strict type checking rules.
@end table

@cindex range checking
@cindex checks, range
@node Range Checking
@subsection An Overview of Range Checking

In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks.  Such range
checking is meant to ensure program correctness by making sure
computations do not overflow, or indices on an array element access do
not exceed the bounds of the array.

For expressions you use in @value{GDBN} commands, you can tell
@value{GDBN} to treat range errors in one of three ways: ignore them,
always treat them as errors and abandon the expression, or issue
warnings but evaluate the expression anyway.

A range error can result from numerical overflow, from exceeding an
array index bound, or when you type a constant that is not a member
of any type.  Some languages, however, do not treat overflows as an
error.  In many implementations of C, mathematical overflow causes the
result to ``wrap around'' to lower values---for example, if @var{m} is
the largest integer value, and @var{s} is the smallest, then

@smallexample
@var{m} + 1 @result{} @var{s}
@end smallexample

This, too, is specific to individual languages, and in some cases
specific to individual compilers or machines.  @xref{Supported Languages, ,
Supported Languages}, for further details on specific languages.

@value{GDBN} provides some additional commands for controlling the range checker:

@kindex set check range
@kindex show check range
@table @code
@item set check range auto
Set range checking on or off based on the current working language.
@xref{Supported Languages, ,Supported Languages}, for the default settings for
each language.

@item set check range on
@itemx set check range off
Set range checking on or off, overriding the default setting for the
current working language.  A warning is issued if the setting does not
match the language default.  If a range error occurs and range checking is on,
then a message is printed and evaluation of the expression is aborted.

@item set check range warn
Output messages when the @value{GDBN} range checker detects a range error,
but attempt to evaluate the expression anyway.  Evaluating the
expression may still be impossible for other reasons, such as accessing
memory that the process does not own (a typical example from many Unix
systems).

@item show range
Show the current setting of the range checker, and whether or not it is
being set automatically by @value{GDBN}.
@end table

@node Supported Languages
@section Supported Languages

@value{GDBN} supports C, C@t{++}, D, Go, Objective-C, Fortran,
OpenCL C, Pascal, Rust, assembly, Modula-2, and Ada.
@c This is false ...
Some @value{GDBN} features may be used in expressions regardless of the
language you use: the @value{GDBN} @code{@@} and @code{::} operators,
and the @samp{@{type@}addr} construct (@pxref{Expressions,
,Expressions}) can be used with the constructs of any supported
language.

The following sections detail to what degree each source language is
supported by @value{GDBN}.  These sections are not meant to be language
tutorials or references, but serve only as a reference guide to what the
@value{GDBN} expression parser accepts, and what input and output
formats should look like for different languages.  There are many good
books written on each of these languages; please look to these for a
language reference or tutorial.

@menu
* C::                           C and C@t{++}
* D::                           D
* Go::                          Go
* Objective-C::                 Objective-C
* OpenCL C::                    OpenCL C
* Fortran::                     Fortran
* Pascal::                      Pascal
* Rust::                        Rust
* Modula-2::                    Modula-2
* Ada::                         Ada
@end menu

@node C
@subsection C and C@t{++}

@cindex C and C@t{++}
@cindex expressions in C or C@t{++}

Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
to both languages.  Whenever this is the case, we discuss those languages
together.

@cindex C@t{++}
@cindex @code{g++}, @sc{gnu} C@t{++} compiler
@cindex @sc{gnu} C@t{++}
The C@t{++} debugging facilities are jointly implemented by the C@t{++}
compiler and @value{GDBN}.  Therefore, to debug your C@t{++} code
effectively, you must compile your C@t{++} programs with a supported
C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
compiler (@code{aCC}).

@menu
* C Operators::                 C and C@t{++} operators
* C Constants::                 C and C@t{++} constants
* C Plus Plus Expressions::     C@t{++} expressions
* C Defaults::                  Default settings for C and C@t{++}
* C Checks::                    C and C@t{++} type and range checks
* Debugging C::                 @value{GDBN} and C
* Debugging C Plus Plus::       @value{GDBN} features for C@t{++}
* Decimal Floating Point::      Numbers in Decimal Floating Point format
@end menu

@node C Operators
@subsubsection C and C@t{++} Operators

@cindex C and C@t{++} operators

Operators must be defined on values of specific types.  For instance,
@code{+} is defined on numbers, but not on structures.  Operators are
often defined on groups of types.

For the purposes of C and C@t{++}, the following definitions hold:

@itemize @bullet

@item
@emph{Integral types} include @code{int} with any of its storage-class
specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.

@item
@emph{Floating-point types} include @code{float}, @code{double}, and
@code{long double} (if supported by the target platform).

@item
@emph{Pointer types} include all types defined as @code{(@var{type} *)}.

@item
@emph{Scalar types} include all of the above.

@end itemize

@noindent
The following operators are supported.  They are listed here
in order of increasing precedence:

@table @code
@item ,
The comma or sequencing operator.  Expressions in a comma-separated list
are evaluated from left to right, with the result of the entire
expression being the last expression evaluated.

@item =
Assignment.  The value of an assignment expression is the value
assigned.  Defined on scalar types.

@item @var{op}=
Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
and translated to @w{@code{@var{a} = @var{a op b}}}.
@w{@code{@var{op}=}} and @code{=} have the same precedence.  The operator
@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.

@item ?:
The ternary operator.  @code{@var{a} ? @var{b} : @var{c}} can be thought
of as:  if @var{a} then @var{b} else @var{c}.  The argument @var{a}
should be of an integral type.

@item ||
Logical @sc{or}.  Defined on integral types.

@item &&
Logical @sc{and}.  Defined on integral types.

@item |
Bitwise @sc{or}.  Defined on integral types.

@item ^
Bitwise exclusive-@sc{or}.  Defined on integral types.

@item &
Bitwise @sc{and}.  Defined on integral types.

@item ==@r{, }!=
Equality and inequality.  Defined on scalar types.  The value of these
expressions is 0 for false and non-zero for true.

@item <@r{, }>@r{, }<=@r{, }>=
Less than, greater than, less than or equal, greater than or equal.
Defined on scalar types.  The value of these expressions is 0 for false
and non-zero for true.

@item <<@r{, }>>
left shift, and right shift.  Defined on integral types.

@item @@
The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).

@item +@r{, }-
Addition and subtraction.  Defined on integral types, floating-point types and
pointer types.

@item *@r{, }/@r{, }%
Multiplication, division, and modulus.  Multiplication and division are
defined on integral and floating-point types.  Modulus is defined on
integral types.

@item ++@r{, }--
Increment and decrement.  When appearing before a variable, the
operation is performed before the variable is used in an expression;
when appearing after it, the variable's value is used before the
operation takes place.

@item *
Pointer dereferencing.  Defined on pointer types.  Same precedence as
@code{++}.

@item &
Address operator.  Defined on variables.  Same precedence as @code{++}.

For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
to examine the address
where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
stored.

@item -
Negative.  Defined on integral and floating-point types.  Same
precedence as @code{++}.

@item !
Logical negation.  Defined on integral types.  Same precedence as
@code{++}.

@item ~
Bitwise complement operator.  Defined on integral types.  Same precedence as
@code{++}.


@item .@r{, }->
Structure member, and pointer-to-structure member.  For convenience,
@value{GDBN} regards the two as equivalent, choosing whether to dereference a
pointer based on the stored type information.
Defined on @code{struct} and @code{union} data.

@item .*@r{, }->*
Dereferences of pointers to members.

@item []
Array indexing.  @code{@var{a}[@var{i}]} is defined as
@code{*(@var{a}+@var{i})}.  Same precedence as @code{->}.

@item ()
Function parameter list.  Same precedence as @code{->}.

@item ::
C@t{++} scope resolution operator.  Defined on @code{struct}, @code{union},
and @code{class} types.

@item ::
Doubled colons also represent the @value{GDBN} scope operator
(@pxref{Expressions, ,Expressions}).  Same precedence as @code{::},
above.
@end table

If an operator is redefined in the user code, @value{GDBN} usually
attempts to invoke the redefined version instead of using the operator's
predefined meaning.

@node C Constants
@subsubsection C and C@t{++} Constants

@cindex C and C@t{++} constants

@value{GDBN} allows you to express the constants of C and C@t{++} in the
following ways:

@itemize @bullet
@item
Integer constants are a sequence of digits.  Octal constants are
specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
by a leading @samp{0x} or @samp{0X}.  Constants may also end with a letter
@samp{l}, specifying that the constant should be treated as a
@code{long} value.

@item
Floating point constants are a sequence of digits, followed by a decimal
point, followed by a sequence of digits, and optionally followed by an
exponent.  An exponent is of the form:
@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
sequence of digits.  The @samp{+} is optional for positive exponents.
A floating-point constant may also end with a letter @samp{f} or
@samp{F}, specifying that the constant should be treated as being of
the @code{float} (as opposed to the default @code{double}) type; or with
a letter @samp{l} or @samp{L}, which specifies a @code{long double}
constant.

@item
Enumerated constants consist of enumerated identifiers, or their
integral equivalents.

@item
Character constants are a single character surrounded by single quotes
(@code{'}), or a number---the ordinal value of the corresponding character
(usually its @sc{ascii} value).  Within quotes, the single character may
be represented by a letter or by @dfn{escape sequences}, which are of
the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
of the character's ordinal value; or of the form @samp{\@var{x}}, where
@samp{@var{x}} is a predefined special character---for example,
@samp{\n} for newline.

Wide character constants can be written by prefixing a character
constant with @samp{L}, as in C.  For example, @samp{L'x'} is the wide
form of @samp{x}.  The target wide character set is used when
computing the value of this constant (@pxref{Character Sets}).

@item
String constants are a sequence of character constants surrounded by
double quotes (@code{"}).  Any valid character constant (as described
above) may appear.  Double quotes within the string must be preceded by
a backslash, so for instance @samp{"a\"b'c"} is a string of five
characters.

Wide string constants can be written by prefixing a string constant
with @samp{L}, as in C.  The target wide character set is used when
computing the value of this constant (@pxref{Character Sets}).

@item
Pointer constants are an integral value.  You can also write pointers
to constants using the C operator @samp{&}.

@item
Array constants are comma-separated lists surrounded by braces @samp{@{}
and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
@end itemize

@node C Plus Plus Expressions
@subsubsection C@t{++} Expressions

@cindex expressions in C@t{++}
@value{GDBN} expression handling can interpret most C@t{++} expressions.

@cindex debugging C@t{++} programs
@cindex C@t{++} compilers
@cindex debug formats and C@t{++}
@cindex @value{NGCC} and C@t{++}
@quotation
@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use
the proper compiler and the proper debug format.  Currently,
@value{GDBN} works best when debugging C@t{++} code that is compiled
with the most recent version of @value{NGCC} possible.  The DWARF
debugging format is preferred; @value{NGCC} defaults to this on most
popular platforms.  Other compilers and/or debug formats are likely to
work badly or not at all when using @value{GDBN} to debug C@t{++}
code.  @xref{Compilation}.
@end quotation

@enumerate

@cindex member functions
@item
Member function calls are allowed; you can use expressions like

@smallexample
count = aml->GetOriginal(x, y)
@end smallexample

@vindex this@r{, inside C@t{++} member functions}
@cindex namespace in C@t{++}
@item
While a member function is active (in the selected stack frame), your
expressions have the same namespace available as the member function;
that is, @value{GDBN} allows implicit references to the class instance
pointer @code{this} following the same rules as C@t{++}.  @code{using}
declarations in the current scope are also respected by @value{GDBN}.

@cindex call overloaded functions
@cindex overloaded functions, calling
@cindex type conversions in C@t{++}
@item
You can call overloaded functions; @value{GDBN} resolves the function
call to the right definition, with some restrictions.  @value{GDBN} does not
perform overload resolution involving user-defined type conversions,
calls to constructors, or instantiations of templates that do not exist
in the program.  It also cannot handle ellipsis argument lists or
default arguments.

It does perform integral conversions and promotions, floating-point
promotions, arithmetic conversions, pointer conversions, conversions of
class objects to base classes, and standard conversions such as those of
functions or arrays to pointers; it requires an exact match on the
number of function arguments.

Overload resolution is always performed, unless you have specified
@code{set overload-resolution off}.  @xref{Debugging C Plus Plus,
,@value{GDBN} Features for C@t{++}}.

You must specify @code{set overload-resolution off} in order to use an
explicit function signature to call an overloaded function, as in
@smallexample
p 'foo(char,int)'('x', 13)
@end smallexample

The @value{GDBN} command-completion facility can simplify this;
see @ref{Completion, ,Command Completion}.

@cindex reference declarations
@item
@value{GDBN} understands variables declared as C@t{++} lvalue or rvalue
references; you can use them in expressions just as you do in C@t{++}
source---they are automatically dereferenced.

In the parameter list shown when @value{GDBN} displays a frame, the values of
reference variables are not displayed (unlike other variables); this
avoids clutter, since references are often used for large structures.
The @emph{address} of a reference variable is always shown, unless
you have specified @samp{set print address off}.

@item
@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
expressions can use it just as expressions in your program do.  Since
one scope may be defined in another, you can use @code{::} repeatedly if
necessary, for example in an expression like
@samp{@var{scope1}::@var{scope2}::@var{name}}.  @value{GDBN} also allows
resolving name scope by reference to source files, in both C and C@t{++}
debugging (@pxref{Variables, ,Program Variables}).

@item
@value{GDBN} performs argument-dependent lookup, following the C@t{++}
specification.
@end enumerate

@node C Defaults
@subsubsection C and C@t{++} Defaults

@cindex C and C@t{++} defaults

If you allow @value{GDBN} to set range checking automatically, it
defaults to @code{off} whenever the working language changes to
C or C@t{++}.  This happens regardless of whether you or @value{GDBN}
selects the working language.

If you allow @value{GDBN} to set the language automatically, it
recognizes source files whose names end with @file{.c}, @file{.C}, or
@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
these files, it sets the working language to C or C@t{++}.
@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
for further details.

@node C Checks
@subsubsection C and C@t{++} Type and Range Checks

@cindex C and C@t{++} checks

By default, when @value{GDBN} parses C or C@t{++} expressions, strict type
checking is used.  However, if you turn type checking off, @value{GDBN}
will allow certain non-standard conversions, such as promoting integer
constants to pointers.

Range checking, if turned on, is done on mathematical operations.  Array
indices are not checked, since they are often used to index a pointer
that is not itself an array.

@node Debugging C
@subsubsection @value{GDBN} and C

The @code{set print union} and @code{show print union} commands apply to
the @code{union} type.  When set to @samp{on}, any @code{union} that is
inside a @code{struct} or @code{class} is also printed.  Otherwise, it
appears as @samp{@{...@}}.

The @code{@@} operator aids in the debugging of dynamic arrays, formed
with pointers and a memory allocation function.  @xref{Expressions,
,Expressions}.

@node Debugging C Plus Plus
@subsubsection @value{GDBN} Features for C@t{++}

@cindex commands for C@t{++}

Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
designed specifically for use with C@t{++}.  Here is a summary:

@table @code
@cindex break in overloaded functions
@item @r{breakpoint menus}
When you want a breakpoint in a function whose name is overloaded,
@value{GDBN} has the capability to display a menu of possible breakpoint
locations to help you specify which function definition you want.
@xref{Ambiguous Expressions,,Ambiguous Expressions}.

@cindex overloading in C@t{++}
@item rbreak @var{regex}
Setting breakpoints using regular expressions is helpful for setting
breakpoints on overloaded functions that are not members of any special
classes.
@xref{Set Breaks, ,Setting Breakpoints}.

@cindex C@t{++} exception handling
@item catch throw
@itemx catch rethrow
@itemx catch catch
Debug C@t{++} exception handling using these commands.  @xref{Set
Catchpoints, , Setting Catchpoints}.

@cindex inheritance
@item ptype @var{typename}
Print inheritance relationships as well as other information for type
@var{typename}.
@xref{Symbols, ,Examining the Symbol Table}.

@item info vtbl @var{expression}.
The @code{info vtbl} command can be used to display the virtual
method tables of the object computed by @var{expression}.  This shows
one entry per virtual table; there may be multiple virtual tables when
multiple inheritance is in use.

@cindex C@t{++} demangling
@item demangle @var{name}
Demangle @var{name}.
@xref{Symbols}, for a more complete description of the @code{demangle} command.

@cindex C@t{++} symbol display
@item set print demangle
@itemx show print demangle
@itemx set print asm-demangle
@itemx show print asm-demangle
Control whether C@t{++} symbols display in their source form, both when
displaying code as C@t{++} source and when displaying disassemblies.
@xref{Print Settings, ,Print Settings}.

@item set print object
@itemx show print object
Choose whether to print derived (actual) or declared types of objects.
@xref{Print Settings, ,Print Settings}.

@item set print vtbl
@itemx show print vtbl
Control the format for printing virtual function tables.
@xref{Print Settings, ,Print Settings}.
(The @code{vtbl} commands do not work on programs compiled with the HP
ANSI C@t{++} compiler (@code{aCC}).)

@kindex set overload-resolution
@cindex overloaded functions, overload resolution
@item set overload-resolution on
Enable overload resolution for C@t{++} expression evaluation.  The default
is on.  For overloaded functions, @value{GDBN} evaluates the arguments
and searches for a function whose signature matches the argument types,
using the standard C@t{++} conversion rules (see @ref{C Plus Plus
Expressions, ,C@t{++} Expressions}, for details).
If it cannot find a match, it emits a message.

@item set overload-resolution off
Disable overload resolution for C@t{++} expression evaluation.  For
overloaded functions that are not class member functions, @value{GDBN}
chooses the first function of the specified name that it finds in the
symbol table, whether or not its arguments are of the correct type.  For
overloaded functions that are class member functions, @value{GDBN}
searches for a function whose signature @emph{exactly} matches the
argument types.

@kindex show overload-resolution
@item show overload-resolution
Show the current setting of overload resolution.

@item @r{Overloaded symbol names}
You can specify a particular definition of an overloaded symbol, using
the same notation that is used to declare such symbols in C@t{++}: type
@code{@var{symbol}(@var{types})} rather than just @var{symbol}.  You can
also use the @value{GDBN} command-line word completion facilities to list the
available choices, or to finish the type list for you.
@xref{Completion,, Command Completion}, for details on how to do this.

@item @r{Breakpoints in functions with ABI tags}

The GNU C@t{++} compiler introduced the notion of ABI ``tags'', which
correspond to changes in the ABI of a type, function, or variable that
would not otherwise be reflected in a mangled name.  See
@url{https://developers.redhat.com/blog/2015/02/05/gcc5-and-the-c11-abi/}
for more detail.

The ABI tags are visible in C@t{++} demangled names.  For example, a
function that returns a std::string:

@smallexample
std::string function(int);
@end smallexample

@noindent
when compiled for the C++11 ABI is marked with the @code{cxx11} ABI
tag, and @value{GDBN} displays the symbol like this:

@smallexample
function[abi:cxx11](int)
@end smallexample

You can set a breakpoint on such functions simply as if they had no
tag.  For example:

@smallexample
(gdb) b function(int)
Breakpoint 2 at 0x40060d: file main.cc, line 10.
(gdb) info breakpoints
Num     Type           Disp Enb Address    What
1       breakpoint     keep y   0x0040060d in function[abi:cxx11](int)
                                           at main.cc:10
@end smallexample

On the rare occasion you need to disambiguate between different ABI
tags, you can do so by simply including the ABI tag in the function
name, like:

@smallexample
(@value{GDBP}) b ambiguous[abi:other_tag](int)
@end smallexample
@end table

@node Decimal Floating Point
@subsubsection Decimal Floating Point format
@cindex decimal floating point format

@value{GDBN} can examine, set and perform computations with numbers in
decimal floating point format, which in the C language correspond to the
@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
specified by the extension to support decimal floating-point arithmetic.

There are two encodings in use, depending on the architecture: BID (Binary
Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
PowerPC and S/390.  @value{GDBN} will use the appropriate encoding for the
configured target.

Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
to manipulate decimal floating point numbers, it is not possible to convert
(using a cast, for example) integers wider than 32-bit to decimal float.

In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
point computations, error checking in decimal float operations ignores
underflow, overflow and divide by zero exceptions.

In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
to inspect @code{_Decimal128} values stored in floating point registers.
See @ref{PowerPC,,PowerPC} for more details.

@node D
@subsection D

@cindex D
@value{GDBN} can be used to debug programs written in D and compiled with
GDC, LDC or DMD compilers. Currently @value{GDBN} supports only one D
specific feature --- dynamic arrays.

@node Go
@subsection Go

@cindex Go (programming language)
@value{GDBN} can be used to debug programs written in Go and compiled with
@file{gccgo} or @file{6g} compilers.

Here is a summary of the Go-specific features and restrictions:

@table @code
@cindex current Go package
@item The current Go package
The name of the current package does not need to be specified when
specifying global variables and functions.

For example, given the program:

@example
package main
var myglob = "Shall we?"
func main () @{
  // ...
@}
@end example

When stopped inside @code{main} either of these work:

@example
(gdb) p myglob
(gdb) p main.myglob
@end example

@cindex builtin Go types
@item Builtin Go types
The @code{string} type is recognized by @value{GDBN} and is printed
as a string.

@cindex builtin Go functions
@item Builtin Go functions
The @value{GDBN} expression parser recognizes the @code{unsafe.Sizeof}
function and handles it internally.

@cindex restrictions on Go expressions
@item Restrictions on Go expressions
All Go operators are supported except @code{&^}.
The Go @code{_} ``blank identifier'' is not supported.
Automatic dereferencing of pointers is not supported.
@end table

@node Objective-C
@subsection Objective-C

@cindex Objective-C
This section provides information about some commands and command
options that are useful for debugging Objective-C code.  See also
@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
few more commands specific to Objective-C support.

@menu
* Method Names in Commands::
* The Print Command with Objective-C::
@end menu

@node Method Names in Commands
@subsubsection Method Names in Commands

The following commands have been extended to accept Objective-C method
names as line specifications:

@kindex clear@r{, and Objective-C}
@kindex break@r{, and Objective-C}
@kindex info line@r{, and Objective-C}
@kindex jump@r{, and Objective-C}
@kindex list@r{, and Objective-C}
@itemize
@item @code{clear}
@item @code{break}
@item @code{info line}
@item @code{jump}
@item @code{list}
@end itemize

A fully qualified Objective-C method name is specified as

@smallexample
-[@var{Class} @var{methodName}]
@end smallexample

where the minus sign is used to indicate an instance method and a
plus sign (not shown) is used to indicate a class method.  The class
name @var{Class} and method name @var{methodName} are enclosed in
brackets, similar to the way messages are specified in Objective-C
source code.  For example, to set a breakpoint at the @code{create}
instance method of class @code{Fruit} in the program currently being
debugged, enter:

@smallexample
break -[Fruit create]
@end smallexample

To list ten program lines around the @code{initialize} class method,
enter:

@smallexample
list +[NSText initialize]
@end smallexample

In the current version of @value{GDBN}, the plus or minus sign is
required.  In future versions of @value{GDBN}, the plus or minus
sign will be optional, but you can use it to narrow the search.  It
is also possible to specify just a method name:

@smallexample
break create
@end smallexample

You must specify the complete method name, including any colons.  If
your program's source files contain more than one @code{create} method,
you'll be presented with a numbered list of classes that implement that
method.  Indicate your choice by number, or type @samp{0} to exit if
none apply.

As another example, to clear a breakpoint established at the
@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:

@smallexample
clear -[NSWindow makeKeyAndOrderFront:]
@end smallexample

@node The Print Command with Objective-C
@subsubsection The Print Command With Objective-C
@cindex Objective-C, print objects
@kindex print-object
@kindex po @r{(@code{print-object})}

The print command has also been extended to accept methods.  For example:

@smallexample
print -[@var{object} hash]
@end smallexample

@cindex print an Objective-C object description
@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
@noindent
will tell @value{GDBN} to send the @code{hash} message to @var{object}
and print the result.  Also, an additional command has been added,
@code{print-object} or @code{po} for short, which is meant to print
the description of an object.  However, this command may only work
with certain Objective-C libraries that have a particular hook
function, @code{_NSPrintForDebugger}, defined.

@node OpenCL C
@subsection OpenCL C

@cindex OpenCL C
This section provides information about @value{GDBN}s OpenCL C support.

@menu
* OpenCL C Datatypes::
* OpenCL C Expressions::
* OpenCL C Operators::
@end menu

@node OpenCL C Datatypes
@subsubsection OpenCL C Datatypes

@cindex OpenCL C Datatypes
@value{GDBN} supports the builtin scalar and vector datatypes specified
by OpenCL 1.1.  In addition the half- and double-precision floating point
data types of the @code{cl_khr_fp16} and @code{cl_khr_fp64} OpenCL
extensions are also known to @value{GDBN}.

@node OpenCL C Expressions
@subsubsection OpenCL C Expressions

@cindex OpenCL C Expressions
@value{GDBN} supports accesses to vector components including the access as
lvalue where possible.  Since OpenCL C is based on C99 most C expressions
supported by @value{GDBN} can be used as well.

@node OpenCL C Operators
@subsubsection OpenCL C Operators

@cindex OpenCL C Operators
@value{GDBN} supports the operators specified by OpenCL 1.1 for scalar and
vector data types.

@node Fortran
@subsection Fortran
@cindex Fortran-specific support in @value{GDBN}

@value{GDBN} can be used to debug programs written in Fortran, but it
currently supports only the features of Fortran 77 language.

@cindex trailing underscore, in Fortran symbols
Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
among them) append an underscore to the names of variables and
functions.  When you debug programs compiled by those compilers, you
will need to refer to variables and functions with a trailing
underscore.

@menu
* Fortran Operators::           Fortran operators and expressions
* Fortran Defaults::            Default settings for Fortran
* Special Fortran Commands::    Special @value{GDBN} commands for Fortran
@end menu

@node Fortran Operators
@subsubsection Fortran Operators and Expressions

@cindex Fortran operators and expressions

Operators must be defined on values of specific types.  For instance,
@code{+} is defined on numbers, but not on characters or other non-
arithmetic types.  Operators are often defined on groups of types.

@table @code
@item **
The exponentiation operator.  It raises the first operand to the power
of the second one.

@item :
The range operator.  Normally used in the form of array(low:high) to
represent a section of array.

@item %
The access component operator.  Normally used to access elements in derived
types.  Also suitable for unions.  As unions aren't part of regular Fortran,
this can only happen when accessing a register that uses a gdbarch-defined
union type.
@item ::
The scope operator.  Normally used to access variables in modules or
to set breakpoints on subroutines nested in modules or in other
subroutines (internal subroutines).
@end table

@node Fortran Defaults
@subsubsection Fortran Defaults

@cindex Fortran Defaults

Fortran symbols are usually case-insensitive, so @value{GDBN} by
default uses case-insensitive matches for Fortran symbols.  You can
change that with the @samp{set case-insensitive} command, see
@ref{Symbols}, for the details.

@node Special Fortran Commands
@subsubsection Special Fortran Commands

@cindex Special Fortran commands

@value{GDBN} has some commands to support Fortran-specific features,
such as displaying common blocks.

@table @code
@cindex @code{COMMON} blocks, Fortran
@kindex info common
@item info common @r{[}@var{common-name}@r{]}
This command prints the values contained in the Fortran @code{COMMON}
block whose name is @var{common-name}.  With no argument, the names of
all @code{COMMON} blocks visible at the current program location are
printed.
@end table

@node Pascal
@subsection Pascal

@cindex Pascal support in @value{GDBN}, limitations
Debugging Pascal programs which use sets, subranges, file variables, or
nested functions does not currently work.  @value{GDBN} does not support
entering expressions, printing values, or similar features using Pascal
syntax.

The Pascal-specific command @code{set print pascal_static-members}
controls whether static members of Pascal objects are displayed.
@xref{Print Settings, pascal_static-members}.

@node Rust
@subsection Rust

@value{GDBN} supports the @url{https://www.rust-lang.org/, Rust
Programming Language}.  Type- and value-printing, and expression
parsing, are reasonably complete.  However, there are a few
peculiarities and holes to be aware of.

@itemize @bullet
@item
Linespecs (@pxref{Specify Location}) are never relative to the current
crate.  Instead, they act as if there were a global namespace of
crates, somewhat similar to the way @code{extern crate} behaves.

That is, if @value{GDBN} is stopped at a breakpoint in a function in
crate @samp{A}, module @samp{B}, then @code{break B::f} will attempt
to set a breakpoint in a function named @samp{f} in a crate named
@samp{B}.

As a consequence of this approach, linespecs also cannot refer to
items using @samp{self::} or @samp{super::}.

@item
Because @value{GDBN} implements Rust name-lookup semantics in
expressions, it will sometimes prepend the current crate to a name.
For example, if @value{GDBN} is stopped at a breakpoint in the crate
@samp{K}, then @code{print ::x::y} will try to find the symbol
@samp{K::x::y}.

However, since it is useful to be able to refer to other crates when
debugging, @value{GDBN} provides the @code{extern} extension to
circumvent this.  To use the extension, just put @code{extern} before
a path expression to refer to the otherwise unavailable ``global''
scope.

In the above example, if you wanted to refer to the symbol @samp{y} in
the crate @samp{x}, you would use @code{print extern x::y}.

@item
The Rust expression evaluator does not support ``statement-like''
expressions such as @code{if} or @code{match}, or lambda expressions.

@item
Tuple expressions are not implemented.

@item
The Rust expression evaluator does not currently implement the
@code{Drop} trait.  Objects that may be created by the evaluator will
never be destroyed.

@item
@value{GDBN} does not implement type inference for generics.  In order
to call generic functions or otherwise refer to generic items, you
will have to specify the type parameters manually.

@item
@value{GDBN} currently uses the C@t{++} demangler for Rust.  In most
cases this does not cause any problems.  However, in an expression
context, completing a generic function name will give syntactically
invalid results.  This happens because Rust requires the @samp{::}
operator between the function name and its generic arguments.  For
example, @value{GDBN} might provide a completion like
@code{crate::f<u32>}, where the parser would require
@code{crate::f::<u32>}.

@item
As of this writing, the Rust compiler (version 1.8) has a few holes in
the debugging information it generates.  These holes prevent certain
features from being implemented by @value{GDBN}:
@itemize @bullet

@item
Method calls cannot be made via traits.

@item
Operator overloading is not implemented.

@item
When debugging in a monomorphized function, you cannot use the generic
type names.

@item
The type @code{Self} is not available.

@item
@code{use} statements are not available, so some names may not be
available in the crate.
@end itemize
@end itemize

@node Modula-2
@subsection Modula-2

@cindex Modula-2, @value{GDBN} support

The extensions made to @value{GDBN} to support Modula-2 only support
output from the @sc{gnu} Modula-2 compiler (which is currently being
developed).  Other Modula-2 compilers are not currently supported, and
attempting to debug executables produced by them is most likely
to give an error as @value{GDBN} reads in the executable's symbol
table.

@cindex expressions in Modula-2
@menu
* M2 Operators::                Built-in operators
* Built-In Func/Proc::          Built-in functions and procedures
* M2 Constants::                Modula-2 constants
* M2 Types::                    Modula-2 types
* M2 Defaults::                 Default settings for Modula-2
* Deviations::                  Deviations from standard Modula-2
* M2 Checks::                   Modula-2 type and range checks
* M2 Scope::                    The scope operators @code{::} and @code{.}
* GDB/M2::                      @value{GDBN} and Modula-2
@end menu

@node M2 Operators
@subsubsection Operators
@cindex Modula-2 operators

Operators must be defined on values of specific types.  For instance,
@code{+} is defined on numbers, but not on structures.  Operators are
often defined on groups of types.  For the purposes of Modula-2, the
following definitions hold:

@itemize @bullet

@item
@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
their subranges.

@item
@emph{Character types} consist of @code{CHAR} and its subranges.

@item
@emph{Floating-point types} consist of @code{REAL}.

@item
@emph{Pointer types} consist of anything declared as @code{POINTER TO
@var{type}}.

@item
@emph{Scalar types} consist of all of the above.

@item
@emph{Set types} consist of @code{SET} and @code{BITSET} types.

@item
@emph{Boolean types} consist of @code{BOOLEAN}.
@end itemize

@noindent
The following operators are supported, and appear in order of
increasing precedence:

@table @code
@item ,
Function argument or array index separator.

@item :=
Assignment.  The value of @var{var} @code{:=} @var{value} is
@var{value}.

@item <@r{, }>
Less than, greater than on integral, floating-point, or enumerated
types.

@item <=@r{, }>=
Less than or equal to, greater than or equal to
on integral, floating-point and enumerated types, or set inclusion on
set types.  Same precedence as @code{<}.

@item =@r{, }<>@r{, }#
Equality and two ways of expressing inequality, valid on scalar types.
Same precedence as @code{<}.  In @value{GDBN} scripts, only @code{<>} is
available for inequality, since @code{#} conflicts with the script
comment character.

@item IN
Set membership.  Defined on set types and the types of their members.
Same precedence as @code{<}.

@item OR
Boolean disjunction.  Defined on boolean types.

@item AND@r{, }&
Boolean conjunction.  Defined on boolean types.

@item @@
The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).

@item +@r{, }-
Addition and subtraction on integral and floating-point types, or union
and difference on set types.

@item *
Multiplication on integral and floating-point types, or set intersection
on set types.

@item /
Division on floating-point types, or symmetric set difference on set
types.  Same precedence as @code{*}.

@item DIV@r{, }MOD
Integer division and remainder.  Defined on integral types.  Same
precedence as @code{*}.

@item -
Negative.  Defined on @code{INTEGER} and @code{REAL} data.

@item ^
Pointer dereferencing.  Defined on pointer types.

@item NOT
Boolean negation.  Defined on boolean types.  Same precedence as
@code{^}.

@item .
@code{RECORD} field selector.  Defined on @code{RECORD} data.  Same
precedence as @code{^}.

@item []
Array indexing.  Defined on @code{ARRAY} data.  Same precedence as @code{^}.

@item ()
Procedure argument list.  Defined on @code{PROCEDURE} objects.  Same precedence
as @code{^}.

@item ::@r{, }.
@value{GDBN} and Modula-2 scope operators.
@end table

@quotation
@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
treats the use of the operator @code{IN}, or the use of operators
@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
@code{<=}, and @code{>=} on sets as an error.
@end quotation


@node Built-In Func/Proc
@subsubsection Built-in Functions and Procedures
@cindex Modula-2 built-ins

Modula-2 also makes available several built-in procedures and functions.
In describing these, the following metavariables are used:

@table @var

@item a
represents an @code{ARRAY} variable.

@item c
represents a @code{CHAR} constant or variable.

@item i
represents a variable or constant of integral type.

@item m
represents an identifier that belongs to a set.  Generally used in the
same function with the metavariable @var{s}.  The type of @var{s} should
be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).

@item n
represents a variable or constant of integral or floating-point type.

@item r
represents a variable or constant of floating-point type.

@item t
represents a type.

@item v
represents a variable.

@item x
represents a variable or constant of one of many types.  See the
explanation of the function for details.
@end table

All Modula-2 built-in procedures also return a result, described below.

@table @code
@item ABS(@var{n})
Returns the absolute value of @var{n}.

@item CAP(@var{c})
If @var{c} is a lower case letter, it returns its upper case
equivalent, otherwise it returns its argument.

@item CHR(@var{i})
Returns the character whose ordinal value is @var{i}.

@item DEC(@var{v})
Decrements the value in the variable @var{v} by one.  Returns the new value.

@item DEC(@var{v},@var{i})
Decrements the value in the variable @var{v} by @var{i}.  Returns the
new value.

@item EXCL(@var{m},@var{s})
Removes the element @var{m} from the set @var{s}.  Returns the new
set.

@item FLOAT(@var{i})
Returns the floating point equivalent of the integer @var{i}.

@item HIGH(@var{a})
Returns the index of the last member of @var{a}.

@item INC(@var{v})
Increments the value in the variable @var{v} by one.  Returns the new value.

@item INC(@var{v},@var{i})
Increments the value in the variable @var{v} by @var{i}.  Returns the
new value.

@item INCL(@var{m},@var{s})
Adds the element @var{m} to the set @var{s} if it is not already
there.  Returns the new set.

@item MAX(@var{t})
Returns the maximum value of the type @var{t}.

@item MIN(@var{t})
Returns the minimum value of the type @var{t}.

@item ODD(@var{i})
Returns boolean TRUE if @var{i} is an odd number.

@item ORD(@var{x})
Returns the ordinal value of its argument.  For example, the ordinal
value of a character is its @sc{ascii} value (on machines supporting
the @sc{ascii} character set).  The argument @var{x} must be of an
ordered type, which include integral, character and enumerated types.

@item SIZE(@var{x})
Returns the size of its argument.  The argument @var{x} can be a
variable or a type.

@item TRUNC(@var{r})
Returns the integral part of @var{r}.

@item TSIZE(@var{x})
Returns the size of its argument.  The argument @var{x} can be a
variable or a type.

@item VAL(@var{t},@var{i})
Returns the member of the type @var{t} whose ordinal value is @var{i}.
@end table

@quotation
@emph{Warning:}  Sets and their operations are not yet supported, so
@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
an error.
@end quotation

@cindex Modula-2 constants
@node M2 Constants
@subsubsection Constants

@value{GDBN} allows you to express the constants of Modula-2 in the following
ways:

@itemize @bullet

@item
Integer constants are simply a sequence of digits.  When used in an
expression, a constant is interpreted to be type-compatible with the
rest of the expression.  Hexadecimal integers are specified by a
trailing @samp{H}, and octal integers by a trailing @samp{B}.

@item
Floating point constants appear as a sequence of digits, followed by a
decimal point and another sequence of digits.  An optional exponent can
then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent.  All of the
digits of the floating point constant must be valid decimal (base 10)
digits.

@item
Character constants consist of a single character enclosed by a pair of
like quotes, either single (@code{'}) or double (@code{"}).  They may
also be expressed by their ordinal value (their @sc{ascii} value, usually)
followed by a @samp{C}.

@item
String constants consist of a sequence of characters enclosed by a
pair of like quotes, either single (@code{'}) or double (@code{"}).
Escape sequences in the style of C are also allowed.  @xref{C
Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
sequences.

@item
Enumerated constants consist of an enumerated identifier.

@item
Boolean constants consist of the identifiers @code{TRUE} and
@code{FALSE}.

@item
Pointer constants consist of integral values only.

@item
Set constants are not yet supported.
@end itemize

@node M2 Types
@subsubsection Modula-2 Types
@cindex Modula-2 types

Currently @value{GDBN} can print the following data types in Modula-2
syntax: array types, record types, set types, pointer types, procedure
types, enumerated types, subrange types and base types.  You can also
print the contents of variables declared using these type.
This section gives a number of simple source code examples together with
sample @value{GDBN} sessions.

The first example contains the following section of code:

@smallexample
VAR
   s: SET OF CHAR ;
   r: [20..40] ;
@end smallexample

@noindent
and you can request @value{GDBN} to interrogate the type and value of
@code{r} and @code{s}.

@smallexample
(@value{GDBP}) print s
@{'A'..'C', 'Z'@}
(@value{GDBP}) ptype s
SET OF CHAR
(@value{GDBP}) print r
21
(@value{GDBP}) ptype r
[20..40]
@end smallexample

@noindent
Likewise if your source code declares @code{s} as:

@smallexample
VAR
   s: SET ['A'..'Z'] ;
@end smallexample

@noindent
then you may query the type of @code{s} by:

@smallexample
(@value{GDBP}) ptype s
type = SET ['A'..'Z']
@end smallexample

@noindent
Note that at present you cannot interactively manipulate set
expressions using the debugger.

The following example shows how you might declare an array in Modula-2
and how you can interact with @value{GDBN} to print its type and contents:

@smallexample
VAR
   s: ARRAY [-10..10] OF CHAR ;
@end smallexample

@smallexample
(@value{GDBP}) ptype s
ARRAY [-10..10] OF CHAR
@end smallexample

Note that the array handling is not yet complete and although the type
is printed correctly, expression handling still assumes that all
arrays have a lower bound of zero and not @code{-10} as in the example
above.

Here are some more type related Modula-2 examples:

@smallexample
TYPE
   colour = (blue, red, yellow, green) ;
   t = [blue..yellow] ;
VAR
   s: t ;
BEGIN
   s := blue ;
@end smallexample

@noindent
The @value{GDBN} interaction shows how you can query the data type
and value of a variable.

@smallexample
(@value{GDBP}) print s
$1 = blue
(@value{GDBP}) ptype t
type = [blue..yellow]
@end smallexample

@noindent
In this example a Modula-2 array is declared and its contents
displayed.  Observe that the contents are written in the same way as
their @code{C} counterparts.

@smallexample
VAR
   s: ARRAY [1..5] OF CARDINAL ;
BEGIN
   s[1] := 1 ;
@end smallexample

@smallexample
(@value{GDBP}) print s
$1 = @{1, 0, 0, 0, 0@}
(@value{GDBP}) ptype s
type = ARRAY [1..5] OF CARDINAL
@end smallexample

The Modula-2 language interface to @value{GDBN} also understands
pointer types as shown in this example:

@smallexample
VAR
   s: POINTER TO ARRAY [1..5] OF CARDINAL ;
BEGIN
   NEW(s) ;
   s^[1] := 1 ;
@end smallexample

@noindent
and you can request that @value{GDBN} describes the type of @code{s}.

@smallexample
(@value{GDBP}) ptype s
type = POINTER TO ARRAY [1..5] OF CARDINAL
@end smallexample

@value{GDBN} handles compound types as we can see in this example.
Here we combine array types, record types, pointer types and subrange
types:

@smallexample
TYPE
   foo = RECORD
            f1: CARDINAL ;
            f2: CHAR ;
            f3: myarray ;
         END ;

   myarray = ARRAY myrange OF CARDINAL ;
   myrange = [-2..2] ;
VAR
   s: POINTER TO ARRAY myrange OF foo ;
@end smallexample

@noindent
and you can ask @value{GDBN} to describe the type of @code{s} as shown
below.

@smallexample
(@value{GDBP}) ptype s
type = POINTER TO ARRAY [-2..2] OF foo = RECORD
    f1 : CARDINAL;
    f2 : CHAR;
    f3 : ARRAY [-2..2] OF CARDINAL;
END 
@end smallexample

@node M2 Defaults
@subsubsection Modula-2 Defaults
@cindex Modula-2 defaults

If type and range checking are set automatically by @value{GDBN}, they
both default to @code{on} whenever the working language changes to
Modula-2.  This happens regardless of whether you or @value{GDBN}
selected the working language.

If you allow @value{GDBN} to set the language automatically, then entering
code compiled from a file whose name ends with @file{.mod} sets the
working language to Modula-2.  @xref{Automatically, ,Having @value{GDBN}
Infer the Source Language}, for further details.

@node Deviations
@subsubsection Deviations from Standard Modula-2
@cindex Modula-2, deviations from

A few changes have been made to make Modula-2 programs easier to debug.
This is done primarily via loosening its type strictness:

@itemize @bullet
@item
Unlike in standard Modula-2, pointer constants can be formed by
integers.  This allows you to modify pointer variables during
debugging.  (In standard Modula-2, the actual address contained in a
pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or expression that
returned a pointer.)

@item
C escape sequences can be used in strings and characters to represent
non-printable characters.  @value{GDBN} prints out strings with these
escape sequences embedded.  Single non-printable characters are
printed using the @samp{CHR(@var{nnn})} format.

@item
The assignment operator (@code{:=}) returns the value of its right-hand
argument.

@item
All built-in procedures both modify @emph{and} return their argument.
@end itemize

@node M2 Checks
@subsubsection Modula-2 Type and Range Checks
@cindex Modula-2 checks

@quotation
@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
range checking.
@end quotation
@c FIXME remove warning when type/range checks added

@value{GDBN} considers two Modula-2 variables type equivalent if:

@itemize @bullet
@item
They are of types that have been declared equivalent via a @code{TYPE
@var{t1} = @var{t2}} statement

@item
They have been declared on the same line.  (Note:  This is true of the
@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
@end itemize

As long as type checking is enabled, any attempt to combine variables
whose types are not equivalent is an error.

Range checking is done on all mathematical operations, assignment, array
index bounds, and all built-in functions and procedures.

@node M2 Scope
@subsubsection The Scope Operators @code{::} and @code{.}
@cindex scope
@cindex @code{.}, Modula-2 scope operator
@cindex colon, doubled as scope operator
@ifinfo
@vindex colon-colon@r{, in Modula-2}
@c Info cannot handle :: but TeX can.
@end ifinfo
@ifnotinfo
@vindex ::@r{, in Modula-2}
@end ifnotinfo

There are a few subtle differences between the Modula-2 scope operator
(@code{.}) and the @value{GDBN} scope operator (@code{::}).  The two have
similar syntax:

@smallexample

@var{module} . @var{id}
@var{scope} :: @var{id}
@end smallexample

@noindent
where @var{scope} is the name of a module or a procedure,
@var{module} the name of a module, and @var{id} is any declared
identifier within your program, except another module.

Using the @code{::} operator makes @value{GDBN} search the scope
specified by @var{scope} for the identifier @var{id}.  If it is not
found in the specified scope, then @value{GDBN} searches all scopes
enclosing the one specified by @var{scope}.

Using the @code{.} operator makes @value{GDBN} search the current scope for
the identifier specified by @var{id} that was imported from the
definition module specified by @var{module}.  With this operator, it is
an error if the identifier @var{id} was not imported from definition
module @var{module}, or if @var{id} is not an identifier in
@var{module}.

@node GDB/M2
@subsubsection @value{GDBN} and Modula-2

Some @value{GDBN} commands have little use when debugging Modula-2 programs.
Five subcommands of @code{set print} and @code{show print} apply
specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
@samp{asm-demangle}, @samp{object}, and @samp{union}.  The first four
apply to C@t{++}, and the last to the C @code{union} type, which has no direct
analogue in Modula-2.

The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
with any language, is not useful with Modula-2.  Its
intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
created in Modula-2 as they can in C or C@t{++}.  However, because an
address can be specified by an integral constant, the construct
@samp{@{@var{type}@}@var{adrexp}} is still useful.

@cindex @code{#} in Modula-2
In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
interpreted as the beginning of a comment.  Use @code{<>} instead.

@node Ada
@subsection Ada
@cindex Ada

The extensions made to @value{GDBN} for Ada only support
output from the @sc{gnu} Ada (GNAT) compiler.
Other Ada compilers are not currently supported, and
attempting to debug executables produced by them is most likely
to be difficult.


@cindex expressions in Ada
@menu
* Ada Mode Intro::              General remarks on the Ada syntax 
                                   and semantics supported by Ada mode 
                                   in @value{GDBN}.
* Omissions from Ada::          Restrictions on the Ada expression syntax.
* Additions to Ada::            Extensions of the Ada expression syntax.
* Overloading support for Ada:: Support for expressions involving overloaded
                                   subprograms.
* Stopping Before Main Program:: Debugging the program during elaboration.
* Ada Exceptions::              Ada Exceptions
* Ada Tasks::                   Listing and setting breakpoints in tasks.
* Ada Tasks and Core Files::    Tasking Support when Debugging Core Files
* Ravenscar Profile::           Tasking Support when using the Ravenscar
                                   Profile
* Ada Settings::                New settable GDB parameters for Ada.
* Ada Glitches::                Known peculiarities of Ada mode.
@end menu

@node Ada Mode Intro
@subsubsection Introduction
@cindex Ada mode, general

The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression 
syntax, with some extensions.
The philosophy behind the design of this subset is 

@itemize @bullet
@item
That @value{GDBN} should provide basic literals and access to operations for 
arithmetic, dereferencing, field selection, indexing, and subprogram calls, 
leaving more sophisticated computations to subprograms written into the
program (which therefore may be called from @value{GDBN}).

@item 
That type safety and strict adherence to Ada language restrictions
are not particularly important to the @value{GDBN} user.

@item 
That brevity is important to the @value{GDBN} user.
@end itemize

Thus, for brevity, the debugger acts as if all names declared in
user-written packages are directly visible, even if they are not visible
according to Ada rules, thus making it unnecessary to fully qualify most
names with their packages, regardless of context.  Where this causes
ambiguity, @value{GDBN} asks the user's intent.

The debugger will start in Ada mode if it detects an Ada main program. 
As for other languages, it will enter Ada mode when stopped in a program that
was translated from an Ada source file.

While in Ada mode, you may use `@t{--}' for comments.  This is useful 
mostly for documenting command files.  The standard @value{GDBN} comment 
(@samp{#}) still works at the beginning of a line in Ada mode, but not in the 
middle (to allow based literals).

@node Omissions from Ada
@subsubsection Omissions from Ada
@cindex Ada, omissions from

Here are the notable omissions from the subset:

@itemize @bullet
@item
Only a subset of the attributes are supported:

@itemize @minus
@item
@t{'First}, @t{'Last}, and @t{'Length}
 on array objects (not on types and subtypes).

@item
@t{'Min} and @t{'Max}.  

@item 
@t{'Pos} and @t{'Val}. 

@item
@t{'Tag}.

@item
@t{'Range} on array objects (not subtypes), but only as the right
operand of the membership (@code{in}) operator.

@item 
@t{'Access}, @t{'Unchecked_Access}, and 
@t{'Unrestricted_Access} (a GNAT extension).

@item
@t{'Address}.
@end itemize

@item
The names in
@code{Characters.Latin_1} are not available and
concatenation is not implemented.  Thus, escape characters in strings are 
not currently available.

@item
Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
equality of representations.  They will generally work correctly
for strings and arrays whose elements have integer or enumeration types.
They may not work correctly for arrays whose element
types have user-defined equality, for arrays of real values 
(in particular, IEEE-conformant floating point, because of negative
zeroes and NaNs), and for arrays whose elements contain unused bits with
indeterminate values.  

@item
The other component-by-component array operations (@code{and}, @code{or}, 
@code{xor}, @code{not}, and relational tests other than equality)
are not implemented. 

@item 
@cindex array aggregates (Ada)
@cindex record aggregates (Ada)
@cindex aggregates (Ada) 
There is limited support for array and record aggregates.  They are
permitted only on the right sides of assignments, as in these examples:

@smallexample
(@value{GDBP}) set An_Array := (1, 2, 3, 4, 5, 6)
(@value{GDBP}) set An_Array := (1, others => 0)
(@value{GDBP}) set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
(@value{GDBP}) set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
(@value{GDBP}) set A_Record := (1, "Peter", True);
(@value{GDBP}) set A_Record := (Name => "Peter", Id => 1, Alive => True)
@end smallexample

Changing a
discriminant's value by assigning an aggregate has an
undefined effect if that discriminant is used within the record.
However, you can first modify discriminants by directly assigning to
them (which normally would not be allowed in Ada), and then performing an
aggregate assignment.  For example, given a variable @code{A_Rec} 
declared to have a type such as:

@smallexample
type Rec (Len : Small_Integer := 0) is record
    Id : Integer;
    Vals : IntArray (1 .. Len);
end record;
@end smallexample

you can assign a value with a different size of @code{Vals} with two
assignments:

@smallexample
(@value{GDBP}) set A_Rec.Len := 4
(@value{GDBP}) set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
@end smallexample

As this example also illustrates, @value{GDBN} is very loose about the usual
rules concerning aggregates.  You may leave out some of the
components of an array or record aggregate (such as the @code{Len} 
component in the assignment to @code{A_Rec} above); they will retain their
original values upon assignment.  You may freely use dynamic values as
indices in component associations.  You may even use overlapping or
redundant component associations, although which component values are
assigned in such cases is not defined.

@item
Calls to dispatching subprograms are not implemented.

@item
The overloading algorithm is much more limited (i.e., less selective)
than that of real Ada.  It makes only limited use of the context in
which a subexpression appears to resolve its meaning, and it is much
looser in its rules for allowing type matches.  As a result, some
function calls will be ambiguous, and the user will be asked to choose
the proper resolution.

@item
The @code{new} operator is not implemented.

@item
Entry calls are not implemented.

@item 
Aside from printing, arithmetic operations on the native VAX floating-point 
formats are not supported.

@item
It is not possible to slice a packed array.

@item
The names @code{True} and @code{False}, when not part of a qualified name, 
are interpreted as if implicitly prefixed by @code{Standard}, regardless of 
context.
Should your program
redefine these names in a package or procedure (at best a dubious practice),
you will have to use fully qualified names to access their new definitions.
@end itemize

@node Additions to Ada
@subsubsection Additions to Ada
@cindex Ada, deviations from 

As it does for other languages, @value{GDBN} makes certain generic
extensions to Ada (@pxref{Expressions}):

@itemize @bullet
@item
If the expression @var{E} is a variable residing in memory (typically
a local variable or array element) and @var{N} is a positive integer,
then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
@var{N}-1 adjacent variables following it in memory as an array.  In
Ada, this operator is generally not necessary, since its prime use is
in displaying parts of an array, and slicing will usually do this in
Ada.  However, there are occasional uses when debugging programs in
which certain debugging information has been optimized away.

@item
@code{@var{B}::@var{var}} means ``the variable named @var{var} that
appears in function or file @var{B}.''  When @var{B} is a file name,
you must typically surround it in single quotes.

@item 
The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
@var{type} that appears at address @var{addr}.''

@item
A name starting with @samp{$} is a convenience variable 
(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
@end itemize

In addition, @value{GDBN} provides a few other shortcuts and outright
additions specific to Ada:

@itemize @bullet
@item 
The assignment statement is allowed as an expression, returning
its right-hand operand as its value.  Thus, you may enter

@smallexample
(@value{GDBP}) set x := y + 3
(@value{GDBP}) print A(tmp := y + 1)
@end smallexample

@item 
The semicolon is allowed as an ``operator,''  returning as its value 
the value of its right-hand operand.
This allows, for example,
complex conditional breaks:

@smallexample
(@value{GDBP}) break f
(@value{GDBP}) condition 1 (report(i); k += 1; A(k) > 100)
@end smallexample

@item 
Rather than use catenation and symbolic character names to introduce special 
characters into strings, one may instead use a special bracket notation, 
which is also used to print strings.  A sequence of characters of the form 
@samp{["@var{XX}"]} within a string or character literal denotes the 
(single) character whose numeric encoding is @var{XX} in hexadecimal.  The
sequence of characters @samp{["""]} also denotes a single quotation mark 
in strings.   For example,
@smallexample
   "One line.["0a"]Next line.["0a"]"
@end smallexample
@noindent
contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
after each period.

@item
The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
@t{'Max} is optional (and is ignored in any case).  For example, it is valid
to write

@smallexample
(@value{GDBP}) print 'max(x, y)
@end smallexample

@item
When printing arrays, @value{GDBN} uses positional notation when the 
array has a lower bound of 1, and uses a modified named notation otherwise.
For example, a one-dimensional array of three integers with a lower bound
of 3 might print as

@smallexample
(3 => 10, 17, 1)
@end smallexample

@noindent
That is, in contrast to valid Ada, only the first component has a @code{=>} 
clause.

@item
You may abbreviate attributes in expressions with any unique,
multi-character subsequence of 
their names (an exact match gets preference).
For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
in place of  @t{a'length}.

@item
@cindex quoting Ada internal identifiers
Since Ada is case-insensitive, the debugger normally maps identifiers you type 
to lower case.  The GNAT compiler uses upper-case characters for 
some of its internal identifiers, which are normally of no interest to users.
For the rare occasions when you actually have to look at them,
enclose them in angle brackets to avoid the lower-case mapping. 
For example,
@smallexample
(@value{GDBP}) print <JMPBUF_SAVE>[0]
@end smallexample

@item
Printing an object of class-wide type or dereferencing an 
access-to-class-wide value will display all the components of the object's
specific type (as indicated by its run-time tag).  Likewise, component
selection on such a value will operate on the specific type of the
object.

@end itemize

@node Overloading support for Ada
@subsubsection Overloading support for Ada
@cindex overloading, Ada

The debugger supports limited overloading.  Given a subprogram call in which
the function symbol has multiple definitions, it will use the number of
actual parameters and some information about their types to attempt to narrow
the set of definitions.  It also makes very limited use of context, preferring
procedures to functions in the context of the @code{call} command, and
functions to procedures elsewhere.

If, after narrowing, the set of matching definitions still contains more than
one definition, @value{GDBN} will display a menu to query which one it should
use, for instance:

@smallexample
(@value{GDBP}) print f(1)
Multiple matches for f
[0] cancel
[1] foo.f (integer) return boolean at foo.adb:23
[2] foo.f (foo.new_integer) return boolean at foo.adb:28
> 
@end smallexample

In this case, just select one menu entry either to cancel expression evaluation
(type @kbd{0} and press @key{RET}) or to continue evaluation with a specific
instance (type the corresponding number and press @key{RET}).

Here are a couple of commands to customize @value{GDBN}'s behavior in this
case:

@table @code

@kindex set ada print-signatures
@item set ada print-signatures
Control whether parameter types and return types are displayed in overloads
selection menus.  It is @code{on} by default.
@xref{Overloading support for Ada}.

@kindex show ada print-signatures
@item show ada print-signatures
Show the current setting for displaying parameter types and return types in
overloads selection menu.
@xref{Overloading support for Ada}.

@end table

@node Stopping Before Main Program
@subsubsection Stopping at the Very Beginning

@cindex breakpointing Ada elaboration code
It is sometimes necessary to debug the program during elaboration, and
before reaching the main procedure.
As defined in the Ada Reference
Manual, the elaboration code is invoked from a procedure called
@code{adainit}.  To run your program up to the beginning of
elaboration, simply use the following two commands:
@code{tbreak adainit} and @code{run}.

@node Ada Exceptions
@subsubsection Ada Exceptions

A command is provided to list all Ada exceptions:

@table @code
@kindex info exceptions
@item info exceptions
@itemx info exceptions @var{regexp}
The @code{info exceptions} command allows you to list all Ada exceptions
defined within the program being debugged, as well as their addresses.
With a regular expression, @var{regexp}, as argument, only those exceptions
whose names match @var{regexp} are listed.
@end table

Below is a small example, showing how the command can be used, first
without argument, and next with a regular expression passed as an
argument.

@smallexample
(@value{GDBP}) info exceptions
All defined Ada exceptions:
constraint_error: 0x613da0
program_error: 0x613d20
storage_error: 0x613ce0
tasking_error: 0x613ca0
const.aint_global_e: 0x613b00
(@value{GDBP}) info exceptions const.aint
All Ada exceptions matching regular expression "const.aint":
constraint_error: 0x613da0
const.aint_global_e: 0x613b00
@end smallexample

It is also possible to ask @value{GDBN} to stop your program's execution
when an exception is raised.  For more details, see @ref{Set Catchpoints}.

@node Ada Tasks
@subsubsection Extensions for Ada Tasks
@cindex Ada, tasking

Support for Ada tasks is analogous to that for threads (@pxref{Threads}).
@value{GDBN} provides the following task-related commands:

@table @code
@kindex info tasks
@item info tasks
This command shows a list of current Ada tasks, as in the following example:


@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                 Name
   1   8088000   0   15 Child Activation Wait main_task
   2   80a4000   1   15 Accept Statement      b
   3   809a800   1   15 Child Activation Wait a
*  4   80ae800   3   15 Runnable              c

@end smallexample

@noindent
In this listing, the asterisk before the last task indicates it to be the
task currently being inspected.

@table @asis
@item ID
Represents @value{GDBN}'s internal task number.

@item TID
The Ada task ID.

@item P-ID
The parent's task ID (@value{GDBN}'s internal task number).

@item Pri
The base priority of the task.

@item State
Current state of the task.

@table @code
@item Unactivated
The task has been created but has not been activated.  It cannot be
executing.

@item Runnable
The task is not blocked for any reason known to Ada.  (It may be waiting
for a mutex, though.) It is conceptually "executing" in normal mode.

@item Terminated
The task is terminated, in the sense of ARM 9.3 (5).  Any dependents
that were waiting on terminate alternatives have been awakened and have
terminated themselves.

@item Child Activation Wait
The task is waiting for created tasks to complete activation.

@item Accept Statement
The task is waiting on an accept or selective wait statement.

@item Waiting on entry call
The task is waiting on an entry call.

@item Async Select Wait
The task is waiting to start the abortable part of an asynchronous
select statement.

@item Delay Sleep
The task is waiting on a select statement with only a delay
alternative open.

@item Child Termination Wait
The task is sleeping having completed a master within itself, and is
waiting for the tasks dependent on that master to become terminated or
waiting on a terminate Phase.

@item Wait Child in Term Alt
The task is sleeping waiting for tasks on terminate alternatives to
finish terminating.

@item Accepting RV with @var{taskno}
The task is accepting a rendez-vous with the task @var{taskno}.
@end table

@item Name
Name of the task in the program.

@end table

@kindex info task @var{taskno}
@item info task @var{taskno}
This command shows detailed informations on the specified task, as in
the following example:
@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                  Name
   1   8077880    0  15 Child Activation Wait  main_task
*  2   807c468    1  15 Runnable               task_1
(@value{GDBP}) info task 2
Ada Task: 0x807c468
Name: "task_1"
Thread: 0
LWP: 0x1fac
Parent: 1 ("main_task")
Base Priority: 15
State: Runnable
@end smallexample

@item task
@kindex task@r{ (Ada)}
@cindex current Ada task ID
This command prints the ID and name of the current task.

@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                  Name
   1   8077870    0  15 Child Activation Wait  main_task
*  2   807c458    1  15 Runnable               some_task
(@value{GDBP}) task
[Current task is 2 "some_task"]
@end smallexample

@item task @var{taskno}
@cindex Ada task switching
This command is like the @code{thread @var{thread-id}}
command (@pxref{Threads}).  It switches the context of debugging
from the current task to the given task.

@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                  Name
   1   8077870    0  15 Child Activation Wait  main_task
*  2   807c458    1  15 Runnable               some_task
(@value{GDBP}) task 1
[Switching to task 1 "main_task"]
#0  0x8067726 in pthread_cond_wait ()
(@value{GDBP}) bt
#0  0x8067726 in pthread_cond_wait ()
#1  0x8056714 in system.os_interface.pthread_cond_wait ()
#2  0x805cb63 in system.task_primitives.operations.sleep ()
#3  0x806153e in system.tasking.stages.activate_tasks ()
#4  0x804aacc in un () at un.adb:5
@end smallexample

@item break @var{location} task @var{taskno}
@itemx break @var{location} task @var{taskno} if @dots{}
@cindex breakpoints and tasks, in Ada
@cindex task breakpoints, in Ada
@kindex break @dots{} task @var{taskno}@r{ (Ada)}
These commands are like the @code{break @dots{} thread @dots{}}
command (@pxref{Thread Stops}).  The
@var{location} argument specifies source lines, as described
in @ref{Specify Location}.

Use the qualifier @samp{task @var{taskno}} with a breakpoint command
to specify that you only want @value{GDBN} to stop the program when a
particular Ada task reaches this breakpoint.  The @var{taskno} is one of the
numeric task identifiers assigned by @value{GDBN}, shown in the first
column of the @samp{info tasks} display.

If you do not specify @samp{task @var{taskno}} when you set a
breakpoint, the breakpoint applies to @emph{all} tasks of your
program.

You can use the @code{task} qualifier on conditional breakpoints as
well; in this case, place @samp{task @var{taskno}} before the
breakpoint condition (before the @code{if}).

For example,

@smallexample
@iftex
@leftskip=0.5cm
@end iftex
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                 Name
   1 140022020   0   15 Child Activation Wait main_task
   2 140045060   1   15 Accept/Select Wait    t2
   3 140044840   1   15 Runnable              t1
*  4 140056040   1   15 Runnable              t3
(@value{GDBP}) b 15 task 2
Breakpoint 5 at 0x120044cb0: file test_task_debug.adb, line 15.
(@value{GDBP}) cont
Continuing.
task # 1 running
task # 2 running

Breakpoint 5, test_task_debug () at test_task_debug.adb:15
15               flush;
(@value{GDBP}) info tasks
  ID       TID P-ID Pri State                 Name
   1 140022020   0   15 Child Activation Wait main_task
*  2 140045060   1   15 Runnable              t2
   3 140044840   1   15 Runnable              t1
   4 140056040   1   15 Delay Sleep           t3
@end smallexample
@end table

@node Ada Tasks and Core Files
@subsubsection Tasking Support when Debugging Core Files
@cindex Ada tasking and core file debugging

When inspecting a core file, as opposed to debugging a live program,
tasking support may be limited or even unavailable, depending on
the platform being used.
For instance, on x86-linux, the list of tasks is available, but task
switching is not supported.

On certain platforms, the debugger needs to perform some
memory writes in order to provide Ada tasking support.  When inspecting
a core file, this means that the core file must be opened with read-write
privileges, using the command @samp{"set write on"} (@pxref{Patching}).
Under these circumstances, you should make a backup copy of the core
file before inspecting it with @value{GDBN}.

@node Ravenscar Profile
@subsubsection Tasking Support when using the Ravenscar Profile
@cindex Ravenscar Profile

The @dfn{Ravenscar Profile} is a subset of the Ada tasking features,
specifically designed for systems with safety-critical real-time
requirements.

@table @code
@kindex set ravenscar task-switching on
@cindex task switching with program using Ravenscar Profile
@item set ravenscar task-switching on
Allows task switching when debugging a program that uses the Ravenscar
Profile.  This is the default.

@kindex set ravenscar task-switching off
@item set ravenscar task-switching off
Turn off task switching when debugging a program that uses the Ravenscar
Profile.  This is mostly intended to disable the code that adds support
for the Ravenscar Profile, in case a bug in either @value{GDBN} or in
the Ravenscar runtime is preventing @value{GDBN} from working properly.
To be effective, this command should be run before the program is started.

@kindex show ravenscar task-switching
@item show ravenscar task-switching
Show whether it is possible to switch from task to task in a program
using the Ravenscar Profile.

@end table

@node Ada Settings
@subsubsection Ada Settings
@cindex Ada settings

@table @code
@kindex set varsize-limit
@item set varsize-limit @var{size}
Prevent @value{GDBN} from attempting to evaluate objects whose size
is above the given limit (@var{size}) when those sizes are computed
from run-time quantities.  This is typically the case when the object
has a variable size, such as an array whose bounds are not known at
compile time for example.  Setting @var{size} to @code{unlimited}
removes the size limitation.  By default, the limit is about 65KB.

The purpose of having such a limit is to prevent @value{GDBN} from
trying to grab enormous chunks of virtual memory when asked to evaluate
a quantity whose bounds have been corrupted or have not yet been fully
initialized.  The limit applies to the results of some subexpressions
as well as to complete expressions.  For example, an expression denoting
a simple integer component, such as @code{x.y.z}, may fail if the size of
@code{x.y} is variable and exceeds @code{size}.  On the other hand,
@value{GDBN} is sometimes clever; the expression @code{A(i)}, where
@code{A} is an array variable with non-constant size, will generally
succeed regardless of the bounds on @code{A}, as long as the component
size is less than @var{size}.

@kindex show varsize-limit
@item show varsize-limit
Show the limit on types whose size is determined by run-time quantities.
@end table

@node Ada Glitches
@subsubsection Known Peculiarities of Ada Mode
@cindex Ada, problems

Besides the omissions listed previously (@pxref{Omissions from Ada}),
we know of several problems with and limitations of Ada mode in
@value{GDBN},
some of which will be fixed with planned future releases of the debugger 
and the GNU Ada compiler.

@itemize @bullet
@item 
Static constants that the compiler chooses not to materialize as objects in 
storage are invisible to the debugger.

@item
Named parameter associations in function argument lists are ignored (the
argument lists are treated as positional).

@item
Many useful library packages are currently invisible to the debugger.

@item
Fixed-point arithmetic, conversions, input, and output is carried out using 
floating-point arithmetic, and may give results that only approximate those on 
the host machine.

@item
The GNAT compiler never generates the prefix @code{Standard} for any of 
the standard symbols defined by the Ada language.  @value{GDBN} knows about 
this: it will strip the prefix from names when you use it, and will never
look for a name you have so qualified among local symbols, nor match against
symbols in other packages or subprograms.  If you have 
defined entities anywhere in your program other than parameters and 
local variables whose simple names match names in @code{Standard}, 
GNAT's lack of qualification here can cause confusion.  When this happens,
you can usually resolve the confusion 
by qualifying the problematic names with package
@code{Standard} explicitly.  
@end itemize

Older versions of the compiler sometimes generate erroneous debugging
information, resulting in the debugger incorrectly printing the value
of affected entities.  In some cases, the debugger is able to work
around an issue automatically. In other cases, the debugger is able
to work around the issue, but the work-around has to be specifically
enabled.

@kindex set ada trust-PAD-over-XVS
@kindex show ada trust-PAD-over-XVS
@table @code

@item set ada trust-PAD-over-XVS on
Configure GDB to strictly follow the GNAT encoding when computing the
value of Ada entities, particularly when @code{PAD} and @code{PAD___XVS}
types are involved (see @code{ada/exp_dbug.ads} in the GCC sources for
a complete description of the encoding used by the GNAT compiler).
This is the default.

@item set ada trust-PAD-over-XVS off
This is related to the encoding using by the GNAT compiler.  If @value{GDBN}
sometimes prints the wrong value for certain entities, changing @code{ada
trust-PAD-over-XVS} to @code{off} activates a work-around which may fix
the issue.  It is always safe to set @code{ada trust-PAD-over-XVS} to
@code{off}, but this incurs a slight performance penalty, so it is
recommended to leave this setting to @code{on} unless necessary.

@end table

@cindex GNAT descriptive types
@cindex GNAT encoding
Internally, the debugger also relies on the compiler following a number
of conventions known as the @samp{GNAT Encoding}, all documented in
@file{gcc/ada/exp_dbug.ads} in the GCC sources. This encoding describes
how the debugging information should be generated for certain types.
In particular, this convention makes use of @dfn{descriptive types},
which are artificial types generated purely to help the debugger.

These encodings were defined at a time when the debugging information
format used was not powerful enough to describe some of the more complex
types available in Ada.  Since DWARF allows us to express nearly all
Ada features, the long-term goal is to slowly replace these descriptive
types by their pure DWARF equivalent.  To facilitate that transition,
a new maintenance option is available to force the debugger to ignore
those descriptive types.  It allows the user to quickly evaluate how
well @value{GDBN} works without them.

@table @code

@kindex maint ada set ignore-descriptive-types
@item maintenance ada set ignore-descriptive-types [on|off]
Control whether the debugger should ignore descriptive types.
The default is not to ignore descriptives types (@code{off}).

@kindex maint ada show ignore-descriptive-types
@item maintenance ada show ignore-descriptive-types
Show if descriptive types are ignored by @value{GDBN}.

@end table

@node Unsupported Languages
@section Unsupported Languages

@cindex unsupported languages
@cindex minimal language
In addition to the other fully-supported programming languages,
@value{GDBN} also provides a pseudo-language, called @code{minimal}.
It does not represent a real programming language, but provides a set
of capabilities close to what the C or assembly languages provide.
This should allow most simple operations to be performed while debugging
an application that uses a language currently not supported by @value{GDBN}.

If the language is set to @code{auto}, @value{GDBN} will automatically
select this language if the current frame corresponds to an unsupported
language.

@node Symbols
@chapter Examining the Symbol Table

The commands described in this chapter allow you to inquire about the
symbols (names of variables, functions and types) defined in your
program.  This information is inherent in the text of your program and
does not change as your program executes.  @value{GDBN} finds it in your
program's symbol table, in the file indicated when you started @value{GDBN}
(@pxref{File Options, ,Choosing Files}), or by one of the
file-management commands (@pxref{Files, ,Commands to Specify Files}).

@cindex symbol names
@cindex names of symbols
@cindex quoting names
@anchor{quoting names}
Occasionally, you may need to refer to symbols that contain unusual
characters, which @value{GDBN} ordinarily treats as word delimiters.  The
most frequent case is in referring to static variables in other
source files (@pxref{Variables,,Program Variables}).  File names
are recorded in object files as debugging symbols, but @value{GDBN} would
ordinarily parse a typical file name, like @file{foo.c}, as the three words
@samp{foo} @samp{.} @samp{c}.  To allow @value{GDBN} to recognize
@samp{foo.c} as a single symbol, enclose it in single quotes; for example,

@smallexample
p 'foo.c'::x
@end smallexample

@noindent
looks up the value of @code{x} in the scope of the file @file{foo.c}.

@table @code
@cindex case-insensitive symbol names
@cindex case sensitivity in symbol names
@kindex set case-sensitive
@item set case-sensitive on
@itemx set case-sensitive off
@itemx set case-sensitive auto
Normally, when @value{GDBN} looks up symbols, it matches their names
with case sensitivity determined by the current source language.
Occasionally, you may wish to control that.  The command @code{set
case-sensitive} lets you do that by specifying @code{on} for
case-sensitive matches or @code{off} for case-insensitive ones.  If
you specify @code{auto}, case sensitivity is reset to the default
suitable for the source language.  The default is case-sensitive
matches for all languages except for Fortran, for which the default is
case-insensitive matches.

@kindex show case-sensitive
@item show case-sensitive
This command shows the current setting of case sensitivity for symbols
lookups.

@kindex set print type methods
@item set print type methods
@itemx set print type methods on
@itemx set print type methods off
Normally, when @value{GDBN} prints a class, it displays any methods
declared in that class.  You can control this behavior either by
passing the appropriate flag to @code{ptype}, or using @command{set
print type methods}.  Specifying @code{on} will cause @value{GDBN} to
display the methods; this is the default.  Specifying @code{off} will
cause @value{GDBN} to omit the methods.

@kindex show print type methods
@item show print type methods
This command shows the current setting of method display when printing
classes.

@kindex set print type nested-type-limit
@item set print type nested-type-limit @var{limit}
@itemx set print type nested-type-limit unlimited
Set the limit of displayed nested types that the type printer will
show.  A @var{limit} of @code{unlimited} or @code{-1} will show all
nested definitions.  By default, the type printer will not show any nested
types defined in classes.

@kindex show print type nested-type-limit
@item show print type nested-type-limit
This command shows the current display limit of nested types when
printing classes.

@kindex set print type typedefs
@item set print type typedefs
@itemx set print type typedefs on
@itemx set print type typedefs off

Normally, when @value{GDBN} prints a class, it displays any typedefs
defined in that class.  You can control this behavior either by
passing the appropriate flag to @code{ptype}, or using @command{set
print type typedefs}.  Specifying @code{on} will cause @value{GDBN} to
display the typedef definitions; this is the default.  Specifying
@code{off} will cause @value{GDBN} to omit the typedef definitions.
Note that this controls whether the typedef definition itself is
printed, not whether typedef names are substituted when printing other
types.

@kindex show print type typedefs
@item show print type typedefs
This command shows the current setting of typedef display when
printing classes.

@kindex info address
@cindex address of a symbol
@item info address @var{symbol}
Describe where the data for @var{symbol} is stored.  For a register
variable, this says which register it is kept in.  For a non-register
local variable, this prints the stack-frame offset at which the variable
is always stored.

Note the contrast with @samp{print &@var{symbol}}, which does not work
at all for a register variable, and for a stack local variable prints
the exact address of the current instantiation of the variable.

@kindex info symbol
@cindex symbol from address
@cindex closest symbol and offset for an address
@item info symbol @var{addr}
Print the name of a symbol which is stored at the address @var{addr}.
If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
nearest symbol and an offset from it:

@smallexample
(@value{GDBP}) info symbol 0x54320
_initialize_vx + 396 in section .text
@end smallexample

@noindent
This is the opposite of the @code{info address} command.  You can use
it to find out the name of a variable or a function given its address.

For dynamically linked executables, the name of executable or shared
library containing the symbol is also printed:

@smallexample
(@value{GDBP}) info symbol 0x400225
_start + 5 in section .text of /tmp/a.out
(@value{GDBP}) info symbol 0x2aaaac2811cf
__read_nocancel + 6 in section .text of /usr/lib64/libc.so.6
@end smallexample

@kindex demangle
@cindex demangle
@item demangle @r{[}-l @var{language}@r{]} @r{[}@var{--}@r{]} @var{name}
Demangle @var{name}.
If @var{language} is provided it is the name of the language to demangle
@var{name} in.  Otherwise @var{name} is demangled in the current language.

The @samp{--} option specifies the end of options,
and is useful when @var{name} begins with a dash.

The parameter @code{demangle-style} specifies how to interpret the kind
of mangling used. @xref{Print Settings}.

@kindex whatis
@item whatis[/@var{flags}] [@var{arg}]
Print the data type of @var{arg}, which can be either an expression
or a name of a data type.  With no argument, print the data type of
@code{$}, the last value in the value history.

If @var{arg} is an expression (@pxref{Expressions, ,Expressions}), it
is not actually evaluated, and any side-effecting operations (such as
assignments or function calls) inside it do not take place.

If @var{arg} is a variable or an expression, @code{whatis} prints its
literal type as it is used in the source code.  If the type was
defined using a @code{typedef}, @code{whatis} will @emph{not} print
the data type underlying the @code{typedef}.  If the type of the
variable or the expression is a compound data type, such as
@code{struct} or  @code{class}, @code{whatis} never prints their
fields or methods.  It just prints the @code{struct}/@code{class}
name (a.k.a.@: its @dfn{tag}).  If you want to see the members of
such a compound data type, use @code{ptype}.

If @var{arg} is a type name that was defined using @code{typedef},
@code{whatis} @dfn{unrolls} only one level of that @code{typedef}.
Unrolling means that @code{whatis} will show the underlying type used
in the @code{typedef} declaration of @var{arg}.  However, if that
underlying type is also a @code{typedef}, @code{whatis} will not
unroll it.

For C code, the type names may also have the form @samp{class
@var{class-name}}, @samp{struct @var{struct-tag}}, @samp{union
@var{union-tag}} or @samp{enum @var{enum-tag}}.

@var{flags} can be used to modify how the type is displayed.
Available flags are:

@table @code
@item r
Display in ``raw'' form.  Normally, @value{GDBN} substitutes template
parameters and typedefs defined in a class when printing the class'
members.  The @code{/r} flag disables this.

@item m
Do not print methods defined in the class.

@item M
Print methods defined in the class.  This is the default, but the flag
exists in case you change the default with @command{set print type methods}.

@item t
Do not print typedefs defined in the class.  Note that this controls
whether the typedef definition itself is printed, not whether typedef
names are substituted when printing other types.

@item T
Print typedefs defined in the class.  This is the default, but the flag
exists in case you change the default with @command{set print type typedefs}.

@item o
Print the offsets and sizes of fields in a struct, similar to what the
@command{pahole} tool does.  This option implies the @code{/tm} flags.

For example, given the following declarations:

@smallexample
struct tuv
@{
  int a1;
  char *a2;
  int a3;
@};

struct xyz
@{
  int f1;
  char f2;
  void *f3;
  struct tuv f4;
@};

union qwe
@{
  struct tuv fff1;
  struct xyz fff2;
@};

struct tyu
@{
  int a1 : 1;
  int a2 : 3;
  int a3 : 23;
  char a4 : 2;
  int64_t a5;
  int a6 : 5;
  int64_t a7 : 3;
@};
@end smallexample

Issuing a @kbd{ptype /o struct tuv} command would print:

@smallexample
(@value{GDBP}) ptype /o struct tuv
/* offset    |  size */  type = struct tuv @{
/*    0      |     4 */    int a1;
/* XXX  4-byte hole  */
/*    8      |     8 */    char *a2;
/*   16      |     4 */    int a3;

                           /* total size (bytes):   24 */
                         @}
@end smallexample

Notice the format of the first column of comments.  There, you can
find two parts separated by the @samp{|} character: the @emph{offset},
which indicates where the field is located inside the struct, in
bytes, and the @emph{size} of the field.  Another interesting line is
the marker of a @emph{hole} in the struct, indicating that it may be
possible to pack the struct and make it use less space by reorganizing
its fields.

It is also possible to print offsets inside an union:

@smallexample
(@value{GDBP}) ptype /o union qwe
/* offset    |  size */  type = union qwe @{
/*                24 */    struct tuv @{
/*    0      |     4 */        int a1;
/* XXX  4-byte hole  */
/*    8      |     8 */        char *a2;
/*   16      |     4 */        int a3;

                               /* total size (bytes):   24 */
                           @} fff1;
/*                40 */    struct xyz @{
/*    0      |     4 */        int f1;
/*    4      |     1 */        char f2;
/* XXX  3-byte hole  */
/*    8      |     8 */        void *f3;
/*   16      |    24 */        struct tuv @{
/*   16      |     4 */            int a1;
/* XXX  4-byte hole  */
/*   24      |     8 */            char *a2;
/*   32      |     4 */            int a3;

                                   /* total size (bytes):   24 */
                               @} f4;

                               /* total size (bytes):   40 */
                           @} fff2;

                           /* total size (bytes):   40 */
                         @}
@end smallexample

In this case, since @code{struct tuv} and @code{struct xyz} occupy the
same space (because we are dealing with an union), the offset is not
printed for them.  However, you can still examine the offset of each
of these structures' fields.

Another useful scenario is printing the offsets of a struct containing
bitfields:

@smallexample
(@value{GDBP}) ptype /o struct tyu
/* offset    |  size */  type = struct tyu @{
/*    0:31   |     4 */    int a1 : 1;
/*    0:28   |     4 */    int a2 : 3;
/*    0: 5   |     4 */    int a3 : 23;
/*    3: 3   |     1 */    signed char a4 : 2;
/* XXX  3-bit hole   */
/* XXX  4-byte hole  */
/*    8      |     8 */    int64_t a5;
/*   16: 0   |     4 */    int a6 : 5;
/*   16: 5   |     8 */    int64_t a7 : 3;
"/* XXX  7-byte padding  */

                           /* total size (bytes):   24 */
                         @}
@end smallexample

Note how the offset information is now extended to also include the
first bit of the bitfield.
@end table

@kindex ptype
@item ptype[/@var{flags}] [@var{arg}]
@code{ptype} accepts the same arguments as @code{whatis}, but prints a
detailed description of the type, instead of just the name of the type.
@xref{Expressions, ,Expressions}.

Contrary to @code{whatis}, @code{ptype} always unrolls any
@code{typedef}s in its argument declaration, whether the argument is
a variable, expression, or a data type.  This means that @code{ptype}
of a variable or an expression will not print literally its type as
present in the source code---use @code{whatis} for that.  @code{typedef}s at
the pointer or reference targets are also unrolled.  Only @code{typedef}s of
fields, methods and inner @code{class typedef}s of @code{struct}s,
@code{class}es and @code{union}s are not unrolled even with @code{ptype}.

For example, for this variable declaration:

@smallexample
typedef double real_t;
struct complex @{ real_t real; double imag; @};
typedef struct complex complex_t;
complex_t var;
real_t *real_pointer_var;
@end smallexample

@noindent
the two commands give this output:

@smallexample
@group
(@value{GDBP}) whatis var
type = complex_t
(@value{GDBP}) ptype var
type = struct complex @{
    real_t real;
    double imag;
@}
(@value{GDBP}) whatis complex_t
type = struct complex
(@value{GDBP}) whatis struct complex
type = struct complex
(@value{GDBP}) ptype struct complex
type = struct complex @{
    real_t real;
    double imag;
@}
(@value{GDBP}) whatis real_pointer_var
type = real_t *
(@value{GDBP}) ptype real_pointer_var
type = double *
@end group
@end smallexample

@noindent
As with @code{whatis}, using @code{ptype} without an argument refers to
the type of @code{$}, the last value in the value history.

@cindex incomplete type
Sometimes, programs use opaque data types or incomplete specifications
of complex data structure.  If the debug information included in the
program does not allow @value{GDBN} to display a full declaration of
the data type, it will say @samp{<incomplete type>}.  For example,
given these declarations:

@smallexample
    struct foo;
    struct foo *fooptr;
@end smallexample

@noindent
but no definition for @code{struct foo} itself, @value{GDBN} will say:

@smallexample
  (@value{GDBP}) ptype foo
  $1 = <incomplete type>
@end smallexample

@noindent
``Incomplete type'' is C terminology for data types that are not
completely specified.

@cindex unknown type
Othertimes, information about a variable's type is completely absent
from the debug information included in the program.  This most often
happens when the program or library where the variable is defined
includes no debug information at all.  @value{GDBN} knows the variable
exists from inspecting the linker/loader symbol table (e.g., the ELF
dynamic symbol table), but such symbols do not contain type
information.  Inspecting the type of a (global) variable for which
@value{GDBN} has no type information shows:

@smallexample
  (@value{GDBP}) ptype var
  type = <data variable, no debug info>
@end smallexample

@xref{Variables, no debug info variables}, for how to print the values
of such variables.

@kindex info types
@item info types [-q] [@var{regexp}]
Print a brief description of all types whose names match the regular
expression @var{regexp} (or all types in your program, if you supply
no argument).  Each complete typename is matched as though it were a
complete line; thus, @samp{i type value} gives information on all
types in your program whose names include the string @code{value}, but
@samp{i type ^value$} gives information only on types whose complete
name is @code{value}.

In programs using different languages, @value{GDBN} chooses the syntax
to print the type description according to the
@samp{set language} value: using @samp{set language auto}
(see @ref{Automatically, ,Set Language Automatically}) means to use the
language of the type, other values mean to use
the manually specified language (see @ref{Manually, ,Set Language Manually}).

This command differs from @code{ptype} in two ways: first, like
@code{whatis}, it does not print a detailed description; second, it
lists all source files and line numbers where a type is defined.

The output from @samp{into types} is proceeded with a header line
describing what types are being listed.  The optional flag @samp{-q},
which stands for @samp{quiet}, disables printing this header
information.

@kindex info type-printers
@item info type-printers
Versions of @value{GDBN} that ship with Python scripting enabled may
have ``type printers'' available.  When using @command{ptype} or
@command{whatis}, these printers are consulted when the name of a type
is needed.  @xref{Type Printing API}, for more information on writing
type printers.

@code{info type-printers} displays all the available type printers.

@kindex enable type-printer
@kindex disable type-printer
@item enable type-printer @var{name}@dots{}
@item disable type-printer @var{name}@dots{}
These commands can be used to enable or disable type printers.

@kindex info scope
@cindex local variables
@item info scope @var{location}
List all the variables local to a particular scope.  This command
accepts a @var{location} argument---a function name, a source line, or
an address preceded by a @samp{*}, and prints all the variables local
to the scope defined by that location.  (@xref{Specify Location}, for
details about supported forms of @var{location}.)  For example:

@smallexample
(@value{GDBP}) @b{info scope command_line_handler}
Scope for command_line_handler:
Symbol rl is an argument at stack/frame offset 8, length 4.
Symbol linebuffer is in static storage at address 0x150a18, length 4.
Symbol linelength is in static storage at address 0x150a1c, length 4.
Symbol p is a local variable in register $esi, length 4.
Symbol p1 is a local variable in register $ebx, length 4.
Symbol nline is a local variable in register $edx, length 4.
Symbol repeat is a local variable at frame offset -8, length 4.
@end smallexample

@noindent
This command is especially useful for determining what data to collect
during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
collect}.

@kindex info source
@item info source
Show information about the current source file---that is, the source file for
the function containing the current point of execution:
@itemize @bullet
@item
the name of the source file, and the directory containing it,
@item
the directory it was compiled in,
@item
its length, in lines,
@item
which programming language it is written in,
@item
if the debug information provides it, the program that compiled the file
(which may include, e.g., the compiler version and command line arguments),
@item
whether the executable includes debugging information for that file, and
if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
@item
whether the debugging information includes information about
preprocessor macros.
@end itemize


@kindex info sources
@item info sources
Print the names of all source files in your program for which there is
debugging information, organized into two lists: files whose symbols
have already been read, and files whose symbols will be read when needed.

@item info sources [-dirname | -basename] [--] [@var{regexp}]
Like @samp{info sources}, but only print the names of the files
matching the provided @var{regexp}.
By default, the @var{regexp} is used to match anywhere in the filename.
If @code{-dirname}, only files having a dirname matching @var{regexp} are shown.
If  @code{-basename}, only files having a basename matching @var{regexp}
are shown.
The matching is case-sensitive, except on operating systems that
have case-insensitive filesystem (e.g., MS-Windows).

@kindex info functions
@item info functions [-q] [-n]
Print the names and data types of all defined functions.
Similarly to @samp{info types}, this command groups its output by source
files and annotates each function definition with its source line
number.

In programs using different languages, @value{GDBN} chooses the syntax
to print the function name and type according to the
@samp{set language} value: using @samp{set language auto}
(see @ref{Automatically, ,Set Language Automatically}) means to use the
language of the function, other values mean to use
the manually specified language (see @ref{Manually, ,Set Language Manually}).

The @samp{-n} flag excludes @dfn{non-debugging symbols} from the
results.  A non-debugging symbol is a symbol that comes from the
executable's symbol table, not from the debug information (for
example, DWARF) associated with the executable.

The optional flag @samp{-q}, which stands for @samp{quiet}, disables
printing header information and messages explaining why no functions
have been printed.

@item info functions [-q] [-n] [-t @var{type_regexp}] [@var{regexp}]
Like @samp{info functions}, but only print the names and data types
of the functions selected with the provided regexp(s).

If @var{regexp} is provided, print only the functions whose names
match the regular expression @var{regexp}.
Thus, @samp{info fun step} finds all functions whose
names include @code{step}; @samp{info fun ^step} finds those whose names
start with @code{step}.  If a function name contains characters that
conflict with the regular expression language (e.g.@:
@samp{operator*()}), they may be quoted with a backslash.

If @var{type_regexp} is provided, print only the functions whose
types, as printed by the @code{whatis} command, match
the regular expression @var{type_regexp}.
If @var{type_regexp} contains space(s), it should be enclosed in
quote characters.  If needed, use backslash to escape the meaning
of special characters or quotes.
Thus, @samp{info fun -t '^int ('} finds the functions that return
an integer; @samp{info fun -t '(.*int.*'} finds the functions that
have an argument type containing int; @samp{info fun -t '^int (' ^step}
finds the functions whose names start with @code{step} and that return
int.

If both @var{regexp} and @var{type_regexp} are provided, a function
is printed only if its name matches @var{regexp} and its type matches
@var{type_regexp}.


@kindex info variables
@item info variables [-q] [-n]
Print the names and data types of all variables that are defined
outside of functions (i.e.@: excluding local variables).
The printed variables are grouped by source files and annotated with
their respective source line numbers.

In programs using different languages, @value{GDBN} chooses the syntax
to print the variable name and type according to the
@samp{set language} value: using @samp{set language auto}
(see @ref{Automatically, ,Set Language Automatically}) means to use the
language of the variable, other values mean to use
the manually specified language (see @ref{Manually, ,Set Language Manually}).

The @samp{-n} flag excludes non-debugging symbols from the results.

The optional flag @samp{-q}, which stands for @samp{quiet}, disables
printing header information and messages explaining why no variables
have been printed.

@item info variables [-q] [-n] [-t @var{type_regexp}] [@var{regexp}]
Like @kbd{info variables}, but only print the variables selected
with the provided regexp(s).

If @var{regexp} is provided, print only the variables whose names
match the regular expression @var{regexp}.

If @var{type_regexp} is provided, print only the variables whose
types, as printed by the @code{whatis} command, match
the regular expression @var{type_regexp}.
If @var{type_regexp} contains space(s), it should be enclosed in
quote characters.  If needed, use backslash to escape the meaning
of special characters or quotes.

If both @var{regexp} and @var{type_regexp} are provided, an argument
is printed only if its name matches @var{regexp} and its type matches
@var{type_regexp}.

@kindex info modules
@cindex modules
@item info modules @r{[}-q@r{]} @r{[}@var{regexp}@r{]}
List all Fortran modules in the program, or all modules matching the
optional regular expression @var{regexp}.

The optional flag @samp{-q}, which stands for @samp{quiet}, disables
printing header information and messages explaining why no modules
have been printed.

@kindex info module
@cindex Fortran modules, information about
@cindex functions and variables by Fortran module
@cindex module functions and variables
@item info module functions @r{[}-q@r{]} @r{[}-m @var{module-regexp}@r{]} @r{[}-t @var{type-regexp}@r{]} @r{[}@var{regexp}@r{]}
@itemx info module variables @r{[}-q@r{]} @r{[}-m @var{module-regexp}@r{]} @r{[}-t @var{type-regexp}@r{]} @r{[}@var{regexp}@r{]}
List all functions or variables within all Fortran modules.  The set
of functions or variables listed can be limited by providing some or
all of the optional regular expressions.  If @var{module-regexp} is
provided, then only Fortran modules matching @var{module-regexp} will
be searched.  Only functions or variables whose type matches the
optional regular expression @var{type-regexp} will be listed.  And
only functions or variables whose name matches the optional regular
expression @var{regexp} will be listed.

The optional flag @samp{-q}, which stands for @samp{quiet}, disables
printing header information and messages explaining why no functions
or variables have been printed.

@kindex info classes
@cindex Objective-C, classes and selectors
@item info classes
@itemx info classes @var{regexp}
Display all Objective-C classes in your program, or
(with the @var{regexp} argument) all those matching a particular regular
expression.

@kindex info selectors
@item info selectors
@itemx info selectors @var{regexp}
Display all Objective-C selectors in your program, or
(with the @var{regexp} argument) all those matching a particular regular
expression.

@ignore
This was never implemented.
@kindex info methods
@item info methods
@itemx info methods @var{regexp}
The @code{info methods} command permits the user to examine all defined
methods within C@t{++} program, or (with the @var{regexp} argument) a
specific set of methods found in the various C@t{++} classes.  Many
C@t{++} classes provide a large number of methods.  Thus, the output
from the @code{ptype} command can be overwhelming and hard to use.  The
@code{info-methods} command filters the methods, printing only those
which match the regular-expression @var{regexp}.
@end ignore

@cindex opaque data types
@kindex set opaque-type-resolution
@item set opaque-type-resolution on
Tell @value{GDBN} to resolve opaque types.  An opaque type is a type
declared as a pointer to a @code{struct}, @code{class}, or
@code{union}---for example, @code{struct MyType *}---that is used in one
source file although the full declaration of @code{struct MyType} is in
another source file.  The default is on.

A change in the setting of this subcommand will not take effect until
the next time symbols for a file are loaded.

@item set opaque-type-resolution off
Tell @value{GDBN} not to resolve opaque types.  In this case, the type
is printed as follows:
@smallexample
@{<no data fields>@}
@end smallexample

@kindex show opaque-type-resolution
@item show opaque-type-resolution
Show whether opaque types are resolved or not.

@kindex set print symbol-loading
@cindex print messages when symbols are loaded
@item set print symbol-loading
@itemx set print symbol-loading full
@itemx set print symbol-loading brief
@itemx set print symbol-loading off
The @code{set print symbol-loading} command allows you to control the
printing of messages when @value{GDBN} loads symbol information.
By default a message is printed for the executable and one for each
shared library, and normally this is what you want.  However, when
debugging apps with large numbers of shared libraries these messages
can be annoying.
When set to @code{brief} a message is printed for each executable,
and when @value{GDBN} loads a collection of shared libraries at once
it will only print one message regardless of the number of shared
libraries.  When set to @code{off} no messages are printed.

@kindex show print symbol-loading
@item show print symbol-loading
Show whether messages will be printed when a @value{GDBN} command
entered from the keyboard causes symbol information to be loaded.

@kindex maint print symbols
@cindex symbol dump
@kindex maint print psymbols
@cindex partial symbol dump
@kindex maint print msymbols
@cindex minimal symbol dump
@item maint print symbols @r{[}-pc @var{address}@r{]} @r{[}@var{filename}@r{]}
@itemx maint print symbols @r{[}-objfile @var{objfile}@r{]} @r{[}-source @var{source}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
@itemx maint print psymbols @r{[}-objfile @var{objfile}@r{]} @r{[}-pc @var{address}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
@itemx maint print psymbols @r{[}-objfile @var{objfile}@r{]} @r{[}-source @var{source}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
@itemx maint print msymbols @r{[}-objfile @var{objfile}@r{]} @r{[}--@r{]} @r{[}@var{filename}@r{]}
Write a dump of debugging symbol data into the file @var{filename} or
the terminal if @var{filename} is unspecified.
If @code{-objfile @var{objfile}} is specified, only dump symbols for
that objfile.
If @code{-pc @var{address}} is specified, only dump symbols for the file
with code at that address.  Note that @var{address} may be a symbol like
@code{main}.
If @code{-source @var{source}} is specified, only dump symbols for that
source file.

These commands are used to debug the @value{GDBN} symbol-reading code.
These commands do not modify internal @value{GDBN} state, therefore
@samp{maint print symbols} will only print symbols for already expanded symbol
tables.
You can use the command @code{info sources} to find out which files these are.
If you use @samp{maint print psymbols} instead, the dump shows information
about symbols that @value{GDBN} only knows partially---that is, symbols
defined in files that @value{GDBN} has skimmed, but not yet read completely.
Finally, @samp{maint print msymbols} just dumps ``minimal symbols'', e.g.,
``ELF symbols''.

@xref{Files, ,Commands to Specify Files}, for a discussion of how
@value{GDBN} reads symbols (in the description of @code{symbol-file}).

@kindex maint info symtabs
@kindex maint info psymtabs
@cindex listing @value{GDBN}'s internal symbol tables
@cindex symbol tables, listing @value{GDBN}'s internal
@cindex full symbol tables, listing @value{GDBN}'s internal
@cindex partial symbol tables, listing @value{GDBN}'s internal
@item maint info symtabs @r{[} @var{regexp} @r{]}
@itemx maint info psymtabs @r{[} @var{regexp} @r{]}

List the @code{struct symtab} or @code{struct partial_symtab}
structures whose names match @var{regexp}.  If @var{regexp} is not
given, list them all.  The output includes expressions which you can
copy into a @value{GDBN} debugging this one to examine a particular
structure in more detail.  For example:

@smallexample
(@value{GDBP}) maint info psymtabs dwarf2read
@{ objfile /home/gnu/build/gdb/gdb
  ((struct objfile *) 0x82e69d0)
  @{ psymtab /home/gnu/src/gdb/dwarf2read.c
    ((struct partial_symtab *) 0x8474b10)
    readin no
    fullname (null)
    text addresses 0x814d3c8 -- 0x8158074
    globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
    statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
    dependencies (none)
  @}
@}
(@value{GDBP}) maint info symtabs
(@value{GDBP})
@end smallexample
@noindent
We see that there is one partial symbol table whose filename contains
the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
and we see that @value{GDBN} has not read in any symtabs yet at all.
If we set a breakpoint on a function, that will cause @value{GDBN} to
read the symtab for the compilation unit containing that function:

@smallexample
(@value{GDBP}) break dwarf2_psymtab_to_symtab
Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
line 1574.
(@value{GDBP}) maint info symtabs
@{ objfile /home/gnu/build/gdb/gdb
  ((struct objfile *) 0x82e69d0)
  @{ symtab /home/gnu/src/gdb/dwarf2read.c
    ((struct symtab *) 0x86c1f38)
    dirname (null)
    fullname (null)
    blockvector ((struct blockvector *) 0x86c1bd0) (primary)
    linetable ((struct linetable *) 0x8370fa0)
    debugformat DWARF 2
  @}
@}
(@value{GDBP})
@end smallexample

@kindex maint info line-table
@cindex listing @value{GDBN}'s internal line tables
@cindex line tables, listing @value{GDBN}'s internal
@item maint info line-table @r{[} @var{regexp} @r{]}

List the @code{struct linetable} from all @code{struct symtab}
instances whose name matches @var{regexp}.  If @var{regexp} is not
given, list the @code{struct linetable} from all @code{struct symtab}.

@kindex maint set symbol-cache-size
@cindex symbol cache size
@item maint set symbol-cache-size @var{size}
Set the size of the symbol cache to @var{size}.
The default size is intended to be good enough for debugging
most applications.  This option exists to allow for experimenting
with different sizes.

@kindex maint show symbol-cache-size
@item maint show symbol-cache-size
Show the size of the symbol cache.

@kindex maint print symbol-cache
@cindex symbol cache, printing its contents
@item maint print symbol-cache
Print the contents of the symbol cache.
This is useful when debugging symbol cache issues.

@kindex maint print symbol-cache-statistics
@cindex symbol cache, printing usage statistics
@item maint print symbol-cache-statistics
Print symbol cache usage statistics.
This helps determine how well the cache is being utilized.

@kindex maint flush-symbol-cache
@cindex symbol cache, flushing
@item maint flush-symbol-cache
Flush the contents of the symbol cache, all entries are removed.
This command is useful when debugging the symbol cache.
It is also useful when collecting performance data.

@end table

@node Altering
@chapter Altering Execution

Once you think you have found an error in your program, you might want to
find out for certain whether correcting the apparent error would lead to
correct results in the rest of the run.  You can find the answer by
experiment, using the @value{GDBN} features for altering execution of the
program.

For example, you can store new values into variables or memory
locations, give your program a signal, restart it at a different
address, or even return prematurely from a function.

@menu
* Assignment::                  Assignment to variables
* Jumping::                     Continuing at a different address
* Signaling::                   Giving your program a signal
* Returning::                   Returning from a function
* Calling::                     Calling your program's functions
* Patching::                    Patching your program
* Compiling and Injecting Code:: Compiling and injecting code in @value{GDBN}
@end menu

@node Assignment
@section Assignment to Variables

@cindex assignment
@cindex setting variables
To alter the value of a variable, evaluate an assignment expression.
@xref{Expressions, ,Expressions}.  For example,

@smallexample
print x=4
@end smallexample

@noindent
stores the value 4 into the variable @code{x}, and then prints the
value of the assignment expression (which is 4).
@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
information on operators in supported languages.

@kindex set variable
@cindex variables, setting
If you are not interested in seeing the value of the assignment, use the
@code{set} command instead of the @code{print} command.  @code{set} is
really the same as @code{print} except that the expression's value is
not printed and is not put in the value history (@pxref{Value History,
,Value History}).  The expression is evaluated only for its effects.

If the beginning of the argument string of the @code{set} command
appears identical to a @code{set} subcommand, use the @code{set
variable} command instead of just @code{set}.  This command is identical
to @code{set} except for its lack of subcommands.  For example, if your
program has a variable @code{width}, you get an error if you try to set
a new value with just @samp{set width=13}, because @value{GDBN} has the
command @code{set width}:

@smallexample
(@value{GDBP}) whatis width
type = double
(@value{GDBP}) p width
$4 = 13
(@value{GDBP}) set width=47
Invalid syntax in expression.
@end smallexample

@noindent
The invalid expression, of course, is @samp{=47}.  In
order to actually set the program's variable @code{width}, use

@smallexample
(@value{GDBP}) set var width=47
@end smallexample

Because the @code{set} command has many subcommands that can conflict
with the names of program variables, it is a good idea to use the
@code{set variable} command instead of just @code{set}.  For example, if
your program has a variable @code{g}, you run into problems if you try
to set a new value with just @samp{set g=4}, because @value{GDBN} has
the command @code{set gnutarget}, abbreviated @code{set g}:

@smallexample
@group
(@value{GDBP}) whatis g
type = double
(@value{GDBP}) p g
$1 = 1
(@value{GDBP}) set g=4
(@value{GDBP}) p g
$2 = 1
(@value{GDBP}) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/smith/cc_progs/a.out
"/home/smith/cc_progs/a.out": can't open to read symbols:
                                 Invalid bfd target.
(@value{GDBP}) show g
The current BFD target is "=4".
@end group
@end smallexample

@noindent
The program variable @code{g} did not change, and you silently set the
@code{gnutarget} to an invalid value.  In order to set the variable
@code{g}, use

@smallexample
(@value{GDBP}) set var g=4
@end smallexample

@value{GDBN} allows more implicit conversions in assignments than C; you can
freely store an integer value into a pointer variable or vice versa,
and you can convert any structure to any other structure that is the
same length or shorter.
@comment FIXME: how do structs align/pad in these conversions?
@comment        /doc@cygnus.com 18dec1990

To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
construct to generate a value of specified type at a specified address
(@pxref{Expressions, ,Expressions}).  For example, @code{@{int@}0x83040} refers
to memory location @code{0x83040} as an integer (which implies a certain size
and representation in memory), and

@smallexample
set @{int@}0x83040 = 4
@end smallexample

@noindent
stores the value 4 into that memory location.

@node Jumping
@section Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place where
it stopped, with the @code{continue} command.  You can instead continue at
an address of your own choosing, with the following commands:

@table @code
@kindex jump
@kindex j @r{(@code{jump})}
@item jump @var{location}
@itemx j @var{location}
Resume execution at @var{location}.  Execution stops again immediately
if there is a breakpoint there.  @xref{Specify Location}, for a description
of the different forms of @var{location}.  It is common
practice to use the @code{tbreak} command in conjunction with
@code{jump}.  @xref{Set Breaks, ,Setting Breakpoints}.

The @code{jump} command does not change the current stack frame, or
the stack pointer, or the contents of any memory location or any
register other than the program counter.  If @var{location} is in
a different function from the one currently executing, the results may
be bizarre if the two functions expect different patterns of arguments or
of local variables.  For this reason, the @code{jump} command requests
confirmation if the specified line is not in the function currently
executing.  However, even bizarre results are predictable if you are
well acquainted with the machine-language code of your program.
@end table

On many systems, you can get much the same effect as the @code{jump}
command by storing a new value into the register @code{$pc}.  The
difference is that this does not start your program running; it only
changes the address of where it @emph{will} run when you continue.  For
example,

@smallexample
set $pc = 0x485
@end smallexample

@noindent
makes the next @code{continue} command or stepping command execute at
address @code{0x485}, rather than at the address where your program stopped.
@xref{Continuing and Stepping, ,Continuing and Stepping}.

The most common occasion to use the @code{jump} command is to back
up---perhaps with more breakpoints set---over a portion of a program
that has already executed, in order to examine its execution in more
detail.

@c @group
@node Signaling
@section Giving your Program a Signal
@cindex deliver a signal to a program

@table @code
@kindex signal
@item signal @var{signal}
Resume execution where your program is stopped, but immediately give it the
signal @var{signal}.  The @var{signal} can be the name or the number of a
signal.  For example, on many systems @code{signal 2} and @code{signal
SIGINT} are both ways of sending an interrupt signal.

Alternatively, if @var{signal} is zero, continue execution without
giving a signal.  This is useful when your program stopped on account of
a signal and would ordinarily see the signal when resumed with the
@code{continue} command; @samp{signal 0} causes it to resume without a
signal.

@emph{Note:} When resuming a multi-threaded program, @var{signal} is
delivered to the currently selected thread, not the thread that last
reported a stop.  This includes the situation where a thread was
stopped due to a signal.  So if you want to continue execution
suppressing the signal that stopped a thread, you should select that
same thread before issuing the @samp{signal 0} command.  If you issue
the @samp{signal 0} command with another thread as the selected one,
@value{GDBN} detects that and asks for confirmation.

Invoking the @code{signal} command is not the same as invoking the
@code{kill} utility from the shell.  Sending a signal with @code{kill}
causes @value{GDBN} to decide what to do with the signal depending on
the signal handling tables (@pxref{Signals}).  The @code{signal} command
passes the signal directly to your program.

@code{signal} does not repeat when you press @key{RET} a second time
after executing the command.

@kindex queue-signal
@item queue-signal @var{signal}
Queue @var{signal} to be delivered immediately to the current thread
when execution of the thread resumes.  The @var{signal} can be the name or
the number of a signal.  For example, on many systems @code{signal 2} and
@code{signal SIGINT} are both ways of sending an interrupt signal.
The handling of the signal must be set to pass the signal to the program,
otherwise @value{GDBN} will report an error.
You can control the handling of signals from @value{GDBN} with the
@code{handle} command (@pxref{Signals}).

Alternatively, if @var{signal} is zero, any currently queued signal
for the current thread is discarded and when execution resumes no signal
will be delivered.  This is useful when your program stopped on account
of a signal and would ordinarily see the signal when resumed with the
@code{continue} command.

This command differs from the @code{signal} command in that the signal
is just queued, execution is not resumed.  And @code{queue-signal} cannot
be used to pass a signal whose handling state has been set to @code{nopass}
(@pxref{Signals}).
@end table
@c @end group

@xref{stepping into signal handlers}, for information on how stepping
commands behave when the thread has a signal queued.

@node Returning
@section Returning from a Function

@table @code
@cindex returning from a function
@kindex return
@item return
@itemx return @var{expression}
You can cancel execution of a function call with the @code{return}
command.  If you give an
@var{expression} argument, its value is used as the function's return
value.
@end table

When you use @code{return}, @value{GDBN} discards the selected stack frame
(and all frames within it).  You can think of this as making the
discarded frame return prematurely.  If you wish to specify a value to
be returned, give that value as the argument to @code{return}.

This pops the selected stack frame (@pxref{Selection, ,Selecting a
Frame}), and any other frames inside of it, leaving its caller as the
innermost remaining frame.  That frame becomes selected.  The
specified value is stored in the registers used for returning values
of functions.

The @code{return} command does not resume execution; it leaves the
program stopped in the state that would exist if the function had just
returned.  In contrast, the @code{finish} command (@pxref{Continuing
and Stepping, ,Continuing and Stepping}) resumes execution until the
selected stack frame returns naturally.

@value{GDBN} needs to know how the @var{expression} argument should be set for
the inferior.  The concrete registers assignment depends on the OS ABI and the
type being returned by the selected stack frame.  For example it is common for
OS ABI to return floating point values in FPU registers while integer values in
CPU registers.  Still some ABIs return even floating point values in CPU
registers.  Larger integer widths (such as @code{long long int}) also have
specific placement rules.  @value{GDBN} already knows the OS ABI from its
current target so it needs to find out also the type being returned to make the
assignment into the right register(s).

Normally, the selected stack frame has debug info.  @value{GDBN} will always
use the debug info instead of the implicit type of @var{expression} when the
debug info is available.  For example, if you type @kbd{return -1}, and the
function in the current stack frame is declared to return a @code{long long
int}, @value{GDBN} transparently converts the implicit @code{int} value of -1
into a @code{long long int}:

@smallexample
Breakpoint 1, func () at gdb.base/return-nodebug.c:29
29        return 31;
(@value{GDBP}) return -1
Make func return now? (y or n) y
#0  0x004004f6 in main () at gdb.base/return-nodebug.c:43
43        printf ("result=%lld\n", func ());
(@value{GDBP})
@end smallexample

However, if the selected stack frame does not have a debug info, e.g., if the
function was compiled without debug info, @value{GDBN} has to find out the type
to return from user.  Specifying a different type by mistake may set the value
in different inferior registers than the caller code expects.  For example,
typing @kbd{return -1} with its implicit type @code{int} would set only a part
of a @code{long long int} result for a debug info less function (on 32-bit
architectures).  Therefore the user is required to specify the return type by
an appropriate cast explicitly:

@smallexample
Breakpoint 2, 0x0040050b in func ()
(@value{GDBP}) return -1
Return value type not available for selected stack frame.
Please use an explicit cast of the value to return.
(@value{GDBP}) return (long long int) -1
Make selected stack frame return now? (y or n) y
#0  0x00400526 in main ()
(@value{GDBP})
@end smallexample

@node Calling
@section Calling Program Functions

@table @code
@cindex calling functions
@cindex inferior functions, calling
@item print @var{expr}
Evaluate the expression @var{expr} and display the resulting value.
The expression may include calls to functions in the program being
debugged.

@kindex call
@item call @var{expr}
Evaluate the expression @var{expr} without displaying @code{void}
returned values.

You can use this variant of the @code{print} command if you want to
execute a function from your program that does not return anything
(a.k.a.@: @dfn{a void function}), but without cluttering the output
with @code{void} returned values that @value{GDBN} will otherwise
print.  If the result is not void, it is printed and saved in the
value history.
@end table

It is possible for the function you call via the @code{print} or
@code{call} command to generate a signal (e.g., if there's a bug in
the function, or if you passed it incorrect arguments).  What happens
in that case is controlled by the @code{set unwindonsignal} command.

Similarly, with a C@t{++} program it is possible for the function you
call via the @code{print} or @code{call} command to generate an
exception that is not handled due to the constraints of the dummy
frame.  In this case, any exception that is raised in the frame, but has
an out-of-frame exception handler will not be found.  GDB builds a
dummy-frame for the inferior function call, and the unwinder cannot
seek for exception handlers outside of this dummy-frame.  What happens
in that case is controlled by the
@code{set unwind-on-terminating-exception} command.

@table @code
@item set unwindonsignal
@kindex set unwindonsignal
@cindex unwind stack in called functions
@cindex call dummy stack unwinding
Set unwinding of the stack if a signal is received while in a function
that @value{GDBN} called in the program being debugged.  If set to on,
@value{GDBN} unwinds the stack it created for the call and restores
the context to what it was before the call.  If set to off (the
default), @value{GDBN} stops in the frame where the signal was
received.

@item show unwindonsignal
@kindex show unwindonsignal
Show the current setting of stack unwinding in the functions called by
@value{GDBN}.

@item set unwind-on-terminating-exception
@kindex set unwind-on-terminating-exception
@cindex unwind stack in called functions with unhandled exceptions
@cindex call dummy stack unwinding on unhandled exception.
Set unwinding of the stack if a C@t{++} exception is raised, but left
unhandled while in a function that @value{GDBN} called in the program being
debugged.  If set to on (the default), @value{GDBN} unwinds the stack
it created for the call and restores the context to what it was before
the call.  If set to off, @value{GDBN} the exception is delivered to
the default C@t{++} exception handler and the inferior terminated.

@item show unwind-on-terminating-exception
@kindex show unwind-on-terminating-exception
Show the current setting of stack unwinding in the functions called by
@value{GDBN}.

@item set may-call-functions
@kindex set may-call-functions
@cindex disabling calling functions in the program
@cindex calling functions in the program, disabling
Set permission to call functions in the program.
This controls whether @value{GDBN} will attempt to call functions in
the program, such as with expressions in the @code{print} command.  It
defaults to @code{on}.

To call a function in the program, @value{GDBN} has to temporarily
modify the state of the inferior.  This has potentially undesired side
effects.  Also, having @value{GDBN} call nested functions is likely to
be erroneous and may even crash the program being debugged.  You can
avoid such hazards by forbidding @value{GDBN} from calling functions
in the program being debugged.  If calling functions in the program
is forbidden, GDB will throw an error when a command (such as printing
an expression) starts a function call in the program.

@item show may-call-functions
@kindex show may-call-functions
Show permission to call functions in the program.

@end table

@subsection Calling functions with no debug info

@cindex no debug info functions
Sometimes, a function you wish to call is missing debug information.
In such case, @value{GDBN} does not know the type of the function,
including the types of the function's parameters.  To avoid calling
the inferior function incorrectly, which could result in the called
function functioning erroneously and even crash, @value{GDBN} refuses
to call the function unless you tell it the type of the function.

For prototyped (i.e.@: ANSI/ISO style) functions, there are two ways
to do that.  The simplest is to cast the call to the function's
declared return type.  For example:

@smallexample
(@value{GDBP}) p getenv ("PATH")
'getenv' has unknown return type; cast the call to its declared return type
(@value{GDBP}) p (char *) getenv ("PATH")
$1 = 0x7fffffffe7ba "/usr/local/bin:/"...
@end smallexample

Casting the return type of a no-debug function is equivalent to
casting the function to a pointer to a prototyped function that has a
prototype that matches the types of the passed-in arguments, and
calling that.  I.e., the call above is equivalent to:

@smallexample
(@value{GDBP}) p ((char * (*) (const char *)) getenv) ("PATH")
@end smallexample

@noindent
and given this prototyped C or C++ function with float parameters:

@smallexample
float multiply (float v1, float v2) @{ return v1 * v2; @}
@end smallexample

@noindent
these calls are equivalent:

@smallexample
(@value{GDBP}) p (float) multiply (2.0f, 3.0f)
(@value{GDBP}) p ((float (*) (float, float)) multiply) (2.0f, 3.0f)
@end smallexample

If the function you wish to call is declared as unprototyped (i.e.@:
old K&R style), you must use the cast-to-function-pointer syntax, so
that @value{GDBN} knows that it needs to apply default argument
promotions (promote float arguments to double).  @xref{ABI, float
promotion}.  For example, given this unprototyped C function with
float parameters, and no debug info:

@smallexample
float
multiply_noproto (v1, v2)
  float v1, v2;
@{
  return v1 * v2;
@}
@end smallexample

@noindent
you call it like this:

@smallexample
  (@value{GDBP}) p ((float (*) ()) multiply_noproto) (2.0f, 3.0f)
@end smallexample

@node Patching
@section Patching Programs

@cindex patching binaries
@cindex writing into executables
@cindex writing into corefiles

By default, @value{GDBN} opens the file containing your program's
executable code (or the corefile) read-only.  This prevents accidental
alterations to machine code; but it also prevents you from intentionally
patching your program's binary.

If you'd like to be able to patch the binary, you can specify that
explicitly with the @code{set write} command.  For example, you might
want to turn on internal debugging flags, or even to make emergency
repairs.

@table @code
@kindex set write
@item set write on
@itemx set write off
If you specify @samp{set write on}, @value{GDBN} opens executable and
core files for both reading and writing; if you specify @kbd{set write
off} (the default), @value{GDBN} opens them read-only.

If you have already loaded a file, you must load it again (using the
@code{exec-file} or @code{core-file} command) after changing @code{set
write}, for your new setting to take effect.

@item show write
@kindex show write
Display whether executable files and core files are opened for writing
as well as reading.
@end table

@node Compiling and Injecting Code
@section Compiling and injecting code in @value{GDBN}
@cindex injecting code
@cindex writing into executables
@cindex compiling code

@value{GDBN} supports on-demand compilation and code injection into
programs running under @value{GDBN}.  GCC 5.0 or higher built with
@file{libcc1.so} must be installed for this functionality to be enabled.
This functionality is implemented with the following commands.

@table @code
@kindex compile code
@item compile code @var{source-code}
@itemx compile code -raw @var{--} @var{source-code}
Compile @var{source-code} with the compiler language found as the current
language in @value{GDBN} (@pxref{Languages}).  If compilation and
injection is not supported with the current language specified in
@value{GDBN}, or the compiler does not support this feature, an error
message will be printed.  If @var{source-code} compiles and links
successfully, @value{GDBN} will load the object-code emitted,
and execute it within the context of the currently selected inferior.
It is important to note that the compiled code is executed immediately.
After execution, the compiled code is removed from @value{GDBN} and any
new types or variables you have defined will be deleted.

The command allows you to specify @var{source-code} in two ways.
The simplest method is to provide a single line of code to the command.
E.g.:

@smallexample
compile code printf ("hello world\n");
@end smallexample

If you specify options on the command line as well as source code, they
may conflict.  The @samp{--} delimiter can be used to separate options
from actual source code.  E.g.:

@smallexample
compile code -r -- printf ("hello world\n");
@end smallexample

Alternatively you can enter source code as multiple lines of text.  To
enter this mode, invoke the @samp{compile code} command without any text
following the command.  This will start the multiple-line editor and
allow you to type as many lines of source code as required.  When you
have completed typing, enter @samp{end} on its own line to exit the
editor.

@smallexample
compile code
>printf ("hello\n");
>printf ("world\n");
>end
@end smallexample

Specifying @samp{-raw}, prohibits @value{GDBN} from wrapping the
provided @var{source-code} in a callable scope.  In this case, you must
specify the entry point of the code by defining a function named
@code{_gdb_expr_}.  The @samp{-raw} code cannot access variables of the
inferior.  Using @samp{-raw} option may be needed for example when
@var{source-code} requires @samp{#include} lines which may conflict with
inferior symbols otherwise.

@kindex compile file
@item compile file @var{filename}
@itemx compile file -raw @var{filename}
Like @code{compile code}, but take the source code from @var{filename}.

@smallexample
compile file /home/user/example.c
@end smallexample
@end table

@table @code
@item compile print [[@var{options}] --] @var{expr}
@itemx compile print [[@var{options}] --] /@var{f} @var{expr}
Compile and execute @var{expr} with the compiler language found as the
current language in @value{GDBN} (@pxref{Languages}).  By default the
value of @var{expr} is printed in a format appropriate to its data type;
you can choose a different format by specifying @samp{/@var{f}}, where
@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
Formats}.  The @code{compile print} command accepts the same options
as the @code{print} command; see @ref{print options}.

@item compile print [[@var{options}] --]
@itemx compile print [[@var{options}] --] /@var{f}
@cindex reprint the last value
Alternatively you can enter the expression (source code producing it) as
multiple lines of text.  To enter this mode, invoke the @samp{compile print}
command without any text following the command.  This will start the
multiple-line editor.
@end table

@noindent
The process of compiling and injecting the code can be inspected using:

@table @code
@anchor{set debug compile}
@item set debug compile
@cindex compile command debugging info
Turns on or off display of @value{GDBN} process of compiling and
injecting the code.  The default is off.

@item show debug compile
Displays the current state of displaying @value{GDBN} process of
compiling and injecting the code.

@anchor{set debug compile-cplus-types}
@item set debug compile-cplus-types
@cindex compile C@t{++} type conversion
Turns on or off the display of C@t{++} type conversion debugging information.
The default is off.

@item show debug compile-cplus-types
Displays the current state of displaying debugging information for
C@t{++} type conversion.
@end table

@subsection Compilation options for the @code{compile} command

@value{GDBN} needs to specify the right compilation options for the code
to be injected, in part to make its ABI compatible with the inferior
and in part to make the injected code compatible with @value{GDBN}'s
injecting process.

@noindent
The options used, in increasing precedence:

@table @asis
@item target architecture and OS options (@code{gdbarch})
These options depend on target processor type and target operating
system, usually they specify at least 32-bit (@code{-m32}) or 64-bit
(@code{-m64}) compilation option.

@item compilation options recorded in the target
@value{NGCC} (since version 4.7) stores the options used for compilation
into @code{DW_AT_producer} part of DWARF debugging information according
to the @value{NGCC} option @code{-grecord-gcc-switches}.  One has to
explicitly specify @code{-g} during inferior compilation otherwise
@value{NGCC} produces no DWARF.  This feature is only relevant for
platforms where @code{-g} produces DWARF by default, otherwise one may
try to enforce DWARF by using @code{-gdwarf-4}.

@item compilation options set by @code{set compile-args}
@end table

@noindent
You can override compilation options using the following command:

@table @code
@item set compile-args
@cindex compile command options override
Set compilation options used for compiling and injecting code with the
@code{compile} commands.  These options override any conflicting ones
from the target architecture and/or options stored during inferior
compilation.

@item show compile-args
Displays the current state of compilation options override.
This does not show all the options actually used during compilation,
use @ref{set debug compile} for that.
@end table

@subsection Caveats when using the @code{compile} command

There are a few caveats to keep in mind when using the @code{compile}
command.  As the caveats are different per language, the table below
highlights specific issues on a per language basis.

@table @asis
@item C code examples and caveats
When the language in @value{GDBN} is set to @samp{C}, the compiler will
attempt to compile the source code with a @samp{C} compiler.  The source
code provided to the @code{compile} command will have much the same
access to variables and types as it normally would if it were part of
the program currently being debugged in @value{GDBN}.

Below is a sample program that forms the basis of the examples that
follow.  This program has been compiled and loaded into @value{GDBN},
much like any other normal debugging session.

@smallexample
void function1 (void)
@{
   int i = 42;
   printf ("function 1\n");
@}

void function2 (void)
@{
   int j = 12;
   function1 ();
@}

int main(void)
@{
   int k = 6;
   int *p;
   function2 ();
   return 0;
@}
@end smallexample

For the purposes of the examples in this section, the program above has
been compiled, loaded into @value{GDBN}, stopped at the function
@code{main}, and @value{GDBN} is awaiting input from the user.

To access variables and types for any program in @value{GDBN}, the
program must be compiled and packaged with debug information.  The
@code{compile} command is not an exception to this rule.  Without debug
information, you can still use the @code{compile} command, but you will
be very limited in what variables and types you can access.

So with that in mind, the example above has been compiled with debug
information enabled.  The @code{compile} command will have access to
all variables and types (except those that may have been optimized
out).  Currently, as @value{GDBN} has stopped the program in the
@code{main} function, the @code{compile} command would have access to
the variable @code{k}.  You could invoke the @code{compile} command
and type some source code to set the value of @code{k}.  You can also
read it, or do anything with that variable you would normally do in
@code{C}.  Be aware that changes to inferior variables in the
@code{compile} command are persistent.  In the following example:

@smallexample
compile code k = 3;
@end smallexample

@noindent
the variable @code{k} is now 3.  It will retain that value until
something else in the example program changes it, or another
@code{compile} command changes it.

Normal scope and access rules apply to source code compiled and
injected by the @code{compile} command.  In the example, the variables
@code{j} and @code{k} are not accessible yet, because the program is
currently stopped in the @code{main} function, where these variables
are not in scope.  Therefore, the following command

@smallexample
compile code j = 3;
@end smallexample

@noindent
will result in a compilation error message.

Once the program is continued, execution will bring these variables in
scope, and they will become accessible; then the code you specify via
the @code{compile} command will be able to access them.

You can create variables and types with the @code{compile} command as
part of your source code.  Variables and types that are created as part
of the @code{compile} command are not visible to the rest of the program for
the duration of its run.  This example is valid:

@smallexample
compile code int ff = 5; printf ("ff is %d\n", ff);
@end smallexample

However, if you were to type the following into @value{GDBN} after that
command has completed:

@smallexample
compile code printf ("ff is %d\n'', ff);
@end smallexample

@noindent
a compiler error would be raised as the variable @code{ff} no longer
exists.  Object code generated and injected by the @code{compile}
command is removed when its execution ends.  Caution is advised
when assigning to program variables values of variables created by the
code submitted to the @code{compile} command.  This example is valid:

@smallexample
compile code int ff = 5; k = ff;
@end smallexample

The value of the variable @code{ff} is assigned to @code{k}.  The variable
@code{k} does not require the existence of @code{ff} to maintain the value
it has been assigned.  However, pointers require particular care in
assignment.  If the source code compiled with the @code{compile} command
changed the address of a pointer in the example program, perhaps to a
variable created in the @code{compile} command, that pointer would point
to an invalid location when the command exits.  The following example
would likely cause issues with your debugged program:

@smallexample
compile code int ff = 5; p = &ff;
@end smallexample

In this example, @code{p} would point to @code{ff} when the
@code{compile} command is executing the source code provided to it.
However, as variables in the (example) program persist with their
assigned values, the variable @code{p} would point to an invalid
location when the command exists.  A general rule should be followed
in that you should either assign @code{NULL} to any assigned pointers,
or restore a valid location to the pointer before the command exits.

Similar caution must be exercised with any structs, unions, and typedefs
defined in @code{compile} command.  Types defined in the @code{compile}
command will no longer be available in the next @code{compile} command.
Therefore, if you cast a variable to a type defined in the
@code{compile} command, care must be taken to ensure that any future
need to resolve the type can be achieved.

@smallexample
(gdb) compile code static struct a @{ int a; @} v = @{ 42 @}; argv = &v;
(gdb) compile code printf ("%d\n", ((struct a *) argv)->a);
gdb command line:1:36: error: dereferencing pointer to incomplete type ‘struct a’
Compilation failed.
(gdb) compile code struct a @{ int a; @}; printf ("%d\n", ((struct a *) argv)->a);
42
@end smallexample

Variables that have been optimized away by the compiler are not
accessible to the code submitted to the @code{compile} command.
Access to those variables will generate a compiler error which @value{GDBN}
will print to the console.
@end table

@subsection Compiler search for the @code{compile} command

@value{GDBN} needs to find @value{NGCC} for the inferior being debugged
which may not be obvious for remote targets of different architecture
than where @value{GDBN} is running.  Environment variable @code{PATH} on
@value{GDBN} host is searched for @value{NGCC} binary matching the
target architecture and operating system.  This search can be overriden
by @code{set compile-gcc} @value{GDBN} command below.  @code{PATH} is
taken from shell that executed @value{GDBN}, it is not the value set by
@value{GDBN} command @code{set environment}).  @xref{Environment}.


Specifically @code{PATH} is searched for binaries matching regular expression
@code{@var{arch}(-[^-]*)?-@var{os}-gcc} according to the inferior target being
debugged.  @var{arch} is processor name --- multiarch is supported, so for
example both @code{i386} and @code{x86_64} targets look for pattern
@code{(x86_64|i.86)} and both @code{s390} and @code{s390x} targets look
for pattern @code{s390x?}.  @var{os} is currently supported only for
pattern @code{linux(-gnu)?}.

On Posix hosts the compiler driver @value{GDBN} needs to find also
shared library @file{libcc1.so} from the compiler.  It is searched in
default shared library search path (overridable with usual environment
variable @code{LD_LIBRARY_PATH}), unrelated to @code{PATH} or @code{set
compile-gcc} settings.  Contrary to it @file{libcc1plugin.so} is found
according to the installation of the found compiler --- as possibly
specified by the @code{set compile-gcc} command.

@table @code
@item set compile-gcc
@cindex compile command driver filename override
Set compilation command used for compiling and injecting code with the
@code{compile} commands.  If this option is not set (it is set to
an empty string), the search described above will occur --- that is the
default.

@item show compile-gcc
Displays the current compile command @value{NGCC} driver filename.
If set, it is the main command @command{gcc}, found usually for example
under name @file{x86_64-linux-gnu-gcc}.
@end table

@node GDB Files
@chapter @value{GDBN} Files

@value{GDBN} needs to know the file name of the program to be debugged,
both in order to read its symbol table and in order to start your
program.  To debug a core dump of a previous run, you must also tell
@value{GDBN} the name of the core dump file.

@menu
* Files::                       Commands to specify files
* File Caching::                Information about @value{GDBN}'s file caching
* Separate Debug Files::        Debugging information in separate files
* MiniDebugInfo::               Debugging information in a special section
* Index Files::                 Index files speed up GDB
* Symbol Errors::               Errors reading symbol files
* Data Files::                  GDB data files
@end menu

@node Files
@section Commands to Specify Files

@cindex symbol table
@cindex core dump file

You may want to specify executable and core dump file names.  The usual
way to do this is at start-up time, using the arguments to
@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
Out of @value{GDBN}}).

Occasionally it is necessary to change to a different file during a
@value{GDBN} session.  Or you may run @value{GDBN} and forget to
specify a file you want to use.  Or you are debugging a remote target
via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
Program}).  In these situations the @value{GDBN} commands to specify
new files are useful.

@table @code
@cindex executable file
@kindex file
@item file @var{filename}
Use @var{filename} as the program to be debugged.  It is read for its
symbols and for the contents of pure memory.  It is also the program
executed when you use the @code{run} command.  If you do not specify a
directory and the file is not found in the @value{GDBN} working directory,
@value{GDBN} uses the environment variable @code{PATH} as a list of
directories to search, just as the shell does when looking for a program
to run.  You can change the value of this variable, for both @value{GDBN}
and your program, using the @code{path} command.

@cindex unlinked object files
@cindex patching object files
You can load unlinked object @file{.o} files into @value{GDBN} using
the @code{file} command.  You will not be able to ``run'' an object
file, but you can disassemble functions and inspect variables.  Also,
if the underlying BFD functionality supports it, you could use
@kbd{gdb -write} to patch object files using this technique.  Note
that @value{GDBN} can neither interpret nor modify relocations in this
case, so branches and some initialized variables will appear to go to
the wrong place.  But this feature is still handy from time to time.

@item file
@code{file} with no argument makes @value{GDBN} discard any information it
has on both executable file and the symbol table.

@kindex exec-file
@item exec-file @r{[} @var{filename} @r{]}
Specify that the program to be run (but not the symbol table) is found
in @var{filename}.  @value{GDBN} searches the environment variable @code{PATH}
if necessary to locate your program.  Omitting @var{filename} means to
discard information on the executable file.

@kindex symbol-file
@item symbol-file @r{[} @var{filename} @r{[} -o @var{offset} @r{]]}
Read symbol table information from file @var{filename}.  @code{PATH} is
searched when necessary.  Use the @code{file} command to get both symbol
table and program to run from the same file.

If an optional @var{offset} is specified, it is added to the start
address of each section in the symbol file.  This is useful if the
program is relocated at runtime, such as the Linux kernel with kASLR
enabled.

@code{symbol-file} with no argument clears out @value{GDBN} information on your
program's symbol table.

The @code{symbol-file} command causes @value{GDBN} to forget the contents of
some breakpoints and auto-display expressions.  This is because they may
contain pointers to the internal data recording symbols and data types,
which are part of the old symbol table data being discarded inside
@value{GDBN}.

@code{symbol-file} does not repeat if you press @key{RET} again after
executing it once.

When @value{GDBN} is configured for a particular environment, it
understands debugging information in whatever format is the standard
generated for that environment; you may use either a @sc{gnu} compiler, or
other compilers that adhere to the local conventions.
Best results are usually obtained from @sc{gnu} compilers; for example,
using @code{@value{NGCC}} you can generate debugging information for
optimized code.

For most kinds of object files, with the exception of old SVR3 systems
using COFF, the @code{symbol-file} command does not normally read the
symbol table in full right away.  Instead, it scans the symbol table
quickly to find which source files and which symbols are present.  The
details are read later, one source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make @value{GDBN}
start up faster.  For the most part, it is invisible except for
occasional pauses while the symbol table details for a particular source
file are being read.  (The @code{set verbose} command can turn these
pauses into messages if desired.  @xref{Messages/Warnings, ,Optional
Warnings and Messages}.)

We have not implemented the two-stage strategy for COFF yet.  When the
symbol table is stored in COFF format, @code{symbol-file} reads the
symbol table data in full right away.  Note that ``stabs-in-COFF''
still does the two-stage strategy, since the debug info is actually
in stabs format.

@kindex readnow
@cindex reading symbols immediately
@cindex symbols, reading immediately
@item symbol-file @r{[} -readnow @r{]} @var{filename}
@itemx file @r{[} -readnow @r{]} @var{filename}
You can override the @value{GDBN} two-stage strategy for reading symbol
tables by using the @samp{-readnow} option with any of the commands that
load symbol table information, if you want to be sure @value{GDBN} has the
entire symbol table available.

@cindex @code{-readnever}, option for symbol-file command
@cindex never read symbols
@cindex symbols, never read
@item symbol-file @r{[} -readnever @r{]} @var{filename}
@itemx file @r{[} -readnever @r{]} @var{filename}
You can instruct @value{GDBN} to never read the symbolic information
contained in @var{filename} by using the @samp{-readnever} option.
@xref{--readnever}.

@c FIXME: for now no mention of directories, since this seems to be in
@c flux.  13mar1992 status is that in theory GDB would look either in
@c current dir or in same dir as myprog; but issues like competing
@c GDB's, or clutter in system dirs, mean that in practice right now
@c only current dir is used.  FFish says maybe a special GDB hierarchy
@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
@c files.

@kindex core-file
@item core-file @r{[}@var{filename}@r{]}
@itemx core
Specify the whereabouts of a core dump file to be used as the ``contents
of memory''.  Traditionally, core files contain only some parts of the
address space of the process that generated them; @value{GDBN} can access the
executable file itself for other parts.

@code{core-file} with no argument specifies that no core file is
to be used.

Note that the core file is ignored when your program is actually running
under @value{GDBN}.  So, if you have been running your program and you
wish to debug a core file instead, you must kill the subprocess in which
the program is running.  To do this, use the @code{kill} command
(@pxref{Kill Process, ,Killing the Child Process}).

@kindex add-symbol-file
@cindex dynamic linking
@item add-symbol-file @var{filename} @r{[} -readnow @r{|} -readnever @r{]} @r{[} -o @var{offset} @r{]} @r{[} @var{textaddress} @r{]} @r{[} -s @var{section} @var{address} @dots{} @r{]}
The @code{add-symbol-file} command reads additional symbol table
information from the file @var{filename}.  You would use this command
when @var{filename} has been dynamically loaded (by some other means)
into the program that is running.  The @var{textaddress} parameter gives
the memory address at which the file's text section has been loaded.
You can additionally specify the base address of other sections using
an arbitrary number of @samp{-s @var{section} @var{address}} pairs.
If a section is omitted, @value{GDBN} will use its default addresses
as found in @var{filename}.  Any @var{address} or @var{textaddress}
can be given as an expression.

If an optional @var{offset} is specified, it is added to the start
address of each section, except those for which the address was
specified explicitly.

The symbol table of the file @var{filename} is added to the symbol table
originally read with the @code{symbol-file} command.  You can use the
@code{add-symbol-file} command any number of times; the new symbol data
thus read is kept in addition to the old.

Changes can be reverted using the command @code{remove-symbol-file}.

@cindex relocatable object files, reading symbols from
@cindex object files, relocatable, reading symbols from
@cindex reading symbols from relocatable object files
@cindex symbols, reading from relocatable object files
@cindex @file{.o} files, reading symbols from
Although @var{filename} is typically a shared library file, an
executable file, or some other object file which has been fully
relocated for loading into a process, you can also load symbolic
information from relocatable @file{.o} files, as long as:

@itemize @bullet
@item
the file's symbolic information refers only to linker symbols defined in
that file, not to symbols defined by other object files,
@item
every section the file's symbolic information refers to has actually
been loaded into the inferior, as it appears in the file, and
@item
you can determine the address at which every section was loaded, and
provide these to the @code{add-symbol-file} command.
@end itemize

@noindent
Some embedded operating systems, like Sun Chorus and VxWorks, can load
relocatable files into an already running program; such systems
typically make the requirements above easy to meet.  However, it's
important to recognize that many native systems use complex link
procedures (@code{.linkonce} section factoring and C@t{++} constructor table
assembly, for example) that make the requirements difficult to meet.  In
general, one cannot assume that using @code{add-symbol-file} to read a
relocatable object file's symbolic information will have the same effect
as linking the relocatable object file into the program in the normal
way.

@code{add-symbol-file} does not repeat if you press @key{RET} after using it.

@kindex remove-symbol-file
@item remove-symbol-file @var{filename}
@item remove-symbol-file -a @var{address}
Remove a symbol file added via the @code{add-symbol-file} command.  The
file to remove can be identified by its @var{filename} or by an @var{address}
that lies within the boundaries of this symbol file in memory.  Example:

@smallexample
(gdb) add-symbol-file /home/user/gdb/mylib.so 0x7ffff7ff9480
add symbol table from file "/home/user/gdb/mylib.so" at
    .text_addr = 0x7ffff7ff9480
(y or n) y
Reading symbols from /home/user/gdb/mylib.so...
(gdb) remove-symbol-file -a 0x7ffff7ff9480
Remove symbol table from file "/home/user/gdb/mylib.so"? (y or n) y
(gdb)
@end smallexample


@code{remove-symbol-file} does not repeat if you press @key{RET} after using it.

@kindex add-symbol-file-from-memory
@cindex @code{syscall DSO}
@cindex load symbols from memory
@item add-symbol-file-from-memory @var{address}
Load symbols from the given @var{address} in a dynamically loaded
object file whose image is mapped directly into the inferior's memory.
For example, the Linux kernel maps a @code{syscall DSO} into each
process's address space; this DSO provides kernel-specific code for
some system calls.  The argument can be any expression whose
evaluation yields the address of the file's shared object file header.
For this command to work, you must have used @code{symbol-file} or
@code{exec-file} commands in advance.

@kindex section
@item section @var{section} @var{addr}
The @code{section} command changes the base address of the named
@var{section} of the exec file to @var{addr}.  This can be used if the
exec file does not contain section addresses, (such as in the
@code{a.out} format), or when the addresses specified in the file
itself are wrong.  Each section must be changed separately.  The
@code{info files} command, described below, lists all the sections and
their addresses.

@kindex info files
@kindex info target
@item info files
@itemx info target
@code{info files} and @code{info target} are synonymous; both print the
current target (@pxref{Targets, ,Specifying a Debugging Target}),
including the names of the executable and core dump files currently in
use by @value{GDBN}, and the files from which symbols were loaded.  The
command @code{help target} lists all possible targets rather than
current ones.

@kindex maint info sections
@item maint info sections
Another command that can give you extra information about program sections
is @code{maint info sections}.  In addition to the section information
displayed by @code{info files}, this command displays the flags and file
offset of each section in the executable and core dump files.  In addition,
@code{maint info sections} provides the following command options (which
may be arbitrarily combined):

@table @code
@item ALLOBJ
Display sections for all loaded object files, including shared libraries.
@item @var{sections}
Display info only for named @var{sections}.
@item @var{section-flags}
Display info only for sections for which @var{section-flags} are true.
The section flags that @value{GDBN} currently knows about are:
@table @code
@item ALLOC
Section will have space allocated in the process when loaded.
Set for all sections except those containing debug information.
@item LOAD
Section will be loaded from the file into the child process memory.
Set for pre-initialized code and data, clear for @code{.bss} sections.
@item RELOC
Section needs to be relocated before loading.
@item READONLY
Section cannot be modified by the child process.
@item CODE
Section contains executable code only.
@item DATA
Section contains data only (no executable code).
@item ROM
Section will reside in ROM.
@item CONSTRUCTOR
Section contains data for constructor/destructor lists.
@item HAS_CONTENTS
Section is not empty.
@item NEVER_LOAD
An instruction to the linker to not output the section.
@item COFF_SHARED_LIBRARY
A notification to the linker that the section contains
COFF shared library information.
@item IS_COMMON
Section contains common symbols.
@end table
@end table
@kindex set trust-readonly-sections
@cindex read-only sections
@item set trust-readonly-sections on
Tell @value{GDBN} that readonly sections in your object file
really are read-only (i.e.@: that their contents will not change).
In that case, @value{GDBN} can fetch values from these sections
out of the object file, rather than from the target program.
For some targets (notably embedded ones), this can be a significant
enhancement to debugging performance.

The default is off.

@item set trust-readonly-sections off
Tell @value{GDBN} not to trust readonly sections.  This means that
the contents of the section might change while the program is running,
and must therefore be fetched from the target when needed.

@item show trust-readonly-sections
Show the current setting of trusting readonly sections.
@end table

All file-specifying commands allow both absolute and relative file names
as arguments.  @value{GDBN} always converts the file name to an absolute file
name and remembers it that way.

@cindex shared libraries
@anchor{Shared Libraries}
@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, SunOS,
Darwin/Mach-O, SVr4, IBM RS/6000 AIX, QNX Neutrino, FDPIC (FR-V), and
DSBT (TIC6X) shared libraries.

On MS-Windows @value{GDBN} must be linked with the Expat library to support
shared libraries.  @xref{Expat}.

@value{GDBN} automatically loads symbol definitions from shared libraries
when you use the @code{run} command, or when you examine a core file.
(Before you issue the @code{run} command, @value{GDBN} does not understand
references to a function in a shared library, however---unless you are
debugging a core file).

@c FIXME: some @value{GDBN} release may permit some refs to undef
@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
@c FIXME...lib; check this from time to time when updating manual

There are times, however, when you may wish to not automatically load
symbol definitions from shared libraries, such as when they are
particularly large or there are many of them.

To control the automatic loading of shared library symbols, use the
commands:

@table @code
@kindex set auto-solib-add
@item set auto-solib-add @var{mode}
If @var{mode} is @code{on}, symbols from all shared object libraries
will be loaded automatically when the inferior begins execution, you
attach to an independently started inferior, or when the dynamic linker
informs @value{GDBN} that a new library has been loaded.  If @var{mode}
is @code{off}, symbols must be loaded manually, using the
@code{sharedlibrary} command.  The default value is @code{on}.

@cindex memory used for symbol tables
If your program uses lots of shared libraries with debug info that
takes large amounts of memory, you can decrease the @value{GDBN}
memory footprint by preventing it from automatically loading the
symbols from shared libraries.  To that end, type @kbd{set
auto-solib-add off} before running the inferior, then load each
library whose debug symbols you do need with @kbd{sharedlibrary
@var{regexp}}, where @var{regexp} is a regular expression that matches
the libraries whose symbols you want to be loaded.

@kindex show auto-solib-add
@item show auto-solib-add
Display the current autoloading mode.
@end table

@cindex load shared library
To explicitly load shared library symbols, use the @code{sharedlibrary}
command:

@table @code
@kindex info sharedlibrary
@kindex info share
@item info share @var{regex}
@itemx info sharedlibrary @var{regex}
Print the names of the shared libraries which are currently loaded
that match @var{regex}.  If @var{regex} is omitted then print
all shared libraries that are loaded.

@kindex info dll
@item info dll @var{regex}
This is an alias of @code{info sharedlibrary}.

@kindex sharedlibrary
@kindex share
@item sharedlibrary @var{regex}
@itemx share @var{regex}
Load shared object library symbols for files matching a
Unix regular expression.
As with files loaded automatically, it only loads shared libraries
required by your program for a core file or after typing @code{run}.  If
@var{regex} is omitted all shared libraries required by your program are
loaded.

@item nosharedlibrary
@kindex nosharedlibrary
@cindex unload symbols from shared libraries
Unload all shared object library symbols.  This discards all symbols
that have been loaded from all shared libraries.  Symbols from shared
libraries that were loaded by explicit user requests are not
discarded.
@end table

Sometimes you may wish that @value{GDBN} stops and gives you control
when any of shared library events happen.  The best way to do this is
to use @code{catch load} and @code{catch unload} (@pxref{Set
Catchpoints}).

@value{GDBN} also supports the the @code{set stop-on-solib-events}
command for this.  This command exists for historical reasons.  It is
less useful than setting a catchpoint, because it does not allow for
conditions or commands as a catchpoint does.

@table @code
@item set stop-on-solib-events
@kindex set stop-on-solib-events
This command controls whether @value{GDBN} should give you control
when the dynamic linker notifies it about some shared library event.
The most common event of interest is loading or unloading of a new
shared library.

@item show stop-on-solib-events
@kindex show stop-on-solib-events
Show whether @value{GDBN} stops and gives you control when shared
library events happen.
@end table

Shared libraries are also supported in many cross or remote debugging
configurations.  @value{GDBN} needs to have access to the target's libraries;
this can be accomplished either by providing copies of the libraries
on the host system, or by asking @value{GDBN} to automatically retrieve the
libraries from the target.  If copies of the target libraries are
provided, they need to be the same as the target libraries, although the
copies on the target can be stripped as long as the copies on the host are
not.

@cindex where to look for shared libraries
For remote debugging, you need to tell @value{GDBN} where the target
libraries are, so that it can load the correct copies---otherwise, it
may try to load the host's libraries.  @value{GDBN} has two variables
to specify the search directories for target libraries.

@table @code
@cindex prefix for executable and shared library file names
@cindex system root, alternate
@kindex set solib-absolute-prefix
@kindex set sysroot
@item set sysroot @var{path}
Use @var{path} as the system root for the program being debugged.  Any
absolute shared library paths will be prefixed with @var{path}; many
runtime loaders store the absolute paths to the shared library in the
target program's memory.  When starting processes remotely, and when
attaching to already-running processes (local or remote), their
executable filenames will be prefixed with @var{path} if reported to
@value{GDBN} as absolute by the operating system.  If you use
@code{set sysroot} to find executables and shared libraries, they need
to be laid out in the same way that they are on the target, with
e.g.@: a @file{/bin}, @file{/lib} and @file{/usr/lib} hierarchy under
@var{path}.

If @var{path} starts with the sequence @file{target:} and the target
system is remote then @value{GDBN} will retrieve the target binaries
from the remote system.  This is only supported when using a remote
target that supports the @code{remote get} command (@pxref{File
Transfer,,Sending files to a remote system}).  The part of @var{path}
following the initial @file{target:} (if present) is used as system
root prefix on the remote file system.  If @var{path} starts with the
sequence @file{remote:} this is converted to the sequence
@file{target:} by @code{set sysroot}@footnote{Historically the
functionality to retrieve binaries from the remote system was
provided by prefixing @var{path} with @file{remote:}}.  If you want
to specify a local system root using a directory that happens to be
named @file{target:} or @file{remote:}, you need to use some
equivalent variant of the name like @file{./target:}.

For targets with an MS-DOS based filesystem, such as MS-Windows and
SymbianOS, @value{GDBN} tries prefixing a few variants of the target
absolute file name with @var{path}.  But first, on Unix hosts,
@value{GDBN} converts all backslash directory separators into forward
slashes, because the backslash is not a directory separator on Unix:

@smallexample
  c:\foo\bar.dll @result{} c:/foo/bar.dll
@end smallexample

Then, @value{GDBN} attempts prefixing the target file name with
@var{path}, and looks for the resulting file name in the host file
system:

@smallexample
  c:/foo/bar.dll @result{} /path/to/sysroot/c:/foo/bar.dll
@end smallexample

If that does not find the binary, @value{GDBN} tries removing
the @samp{:} character from the drive spec, both for convenience, and,
for the case of the host file system not supporting file names with
colons:

@smallexample
  c:/foo/bar.dll @result{} /path/to/sysroot/c/foo/bar.dll
@end smallexample

This makes it possible to have a system root that mirrors a target
with more than one drive.  E.g., you may want to setup your local
copies of the target system shared libraries like so (note @samp{c} vs
@samp{z}):

@smallexample
 @file{/path/to/sysroot/c/sys/bin/foo.dll}
 @file{/path/to/sysroot/c/sys/bin/bar.dll}
 @file{/path/to/sysroot/z/sys/bin/bar.dll}
@end smallexample

@noindent
and point the system root at @file{/path/to/sysroot}, so that
@value{GDBN} can find the correct copies of both
@file{c:\sys\bin\foo.dll}, and @file{z:\sys\bin\bar.dll}.

If that still does not find the binary, @value{GDBN} tries
removing the whole drive spec from the target file name:

@smallexample
  c:/foo/bar.dll @result{} /path/to/sysroot/foo/bar.dll
@end smallexample

This last lookup makes it possible to not care about the drive name,
if you don't want or need to.

The @code{set solib-absolute-prefix} command is an alias for @code{set
sysroot}.

@cindex default system root
@cindex @samp{--with-sysroot}
You can set the default system root by using the configure-time
@samp{--with-sysroot} option.  If the system root is inside
@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
@samp{--exec-prefix}), then the default system root will be updated
automatically if the installed @value{GDBN} is moved to a new
location.

@kindex show sysroot
@item show sysroot
Display the current executable and shared library prefix.

@kindex set solib-search-path
@item set solib-search-path @var{path}
If this variable is set, @var{path} is a colon-separated list of
directories to search for shared libraries.  @samp{solib-search-path}
is used after @samp{sysroot} fails to locate the library, or if the
path to the library is relative instead of absolute.  If you want to
use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
finding your host's libraries.  @samp{sysroot} is preferred; setting
it to a nonexistent directory may interfere with automatic loading
of shared library symbols.

@kindex show solib-search-path
@item show solib-search-path
Display the current shared library search path.

@cindex DOS file-name semantics of file names.
@kindex set target-file-system-kind (unix|dos-based|auto)
@kindex show target-file-system-kind
@item set target-file-system-kind @var{kind}
Set assumed file system kind for target reported file names.

Shared library file names as reported by the target system may not
make sense as is on the system @value{GDBN} is running on.  For
example, when remote debugging a target that has MS-DOS based file
system semantics, from a Unix host, the target may be reporting to
@value{GDBN} a list of loaded shared libraries with file names such as
@file{c:\Windows\kernel32.dll}.  On Unix hosts, there's no concept of
drive letters, so the @samp{c:\} prefix is not normally understood as
indicating an absolute file name, and neither is the backslash
normally considered a directory separator character.  In that case,
the native file system would interpret this whole absolute file name
as a relative file name with no directory components.  This would make
it impossible to point @value{GDBN} at a copy of the remote target's
shared libraries on the host using @code{set sysroot}, and impractical
with @code{set solib-search-path}.  Setting
@code{target-file-system-kind} to @code{dos-based} tells @value{GDBN}
to interpret such file names similarly to how the target would, and to
map them to file names valid on @value{GDBN}'s native file system
semantics.  The value of @var{kind} can be @code{"auto"}, in addition
to one of the supported file system kinds.  In that case, @value{GDBN}
tries to determine the appropriate file system variant based on the
current target's operating system (@pxref{ABI, ,Configuring the
Current ABI}).  The supported file system settings are:

@table @code
@item unix
Instruct @value{GDBN} to assume the target file system is of Unix
kind.  Only file names starting the forward slash (@samp{/}) character
are considered absolute, and the directory separator character is also
the forward slash.

@item dos-based
Instruct @value{GDBN} to assume the target file system is DOS based.
File names starting with either a forward slash, or a drive letter
followed by a colon (e.g., @samp{c:}), are considered absolute, and
both the slash (@samp{/}) and the backslash (@samp{\\}) characters are
considered directory separators.

@item auto
Instruct @value{GDBN} to use the file system kind associated with the
target operating system (@pxref{ABI, ,Configuring the Current ABI}).
This is the default.
@end table
@end table

@cindex file name canonicalization
@cindex base name differences
When processing file names provided by the user, @value{GDBN}
frequently needs to compare them to the file names recorded in the
program's debug info.  Normally, @value{GDBN} compares just the
@dfn{base names} of the files as strings, which is reasonably fast
even for very large programs.  (The base name of a file is the last
portion of its name, after stripping all the leading directories.)
This shortcut in comparison is based upon the assumption that files
cannot have more than one base name.  This is usually true, but
references to files that use symlinks or similar filesystem
facilities violate that assumption.  If your program records files
using such facilities, or if you provide file names to @value{GDBN}
using symlinks etc., you can set @code{basenames-may-differ} to
@code{true} to instruct @value{GDBN} to completely canonicalize each
pair of file names it needs to compare.  This will make file-name
comparisons accurate, but at a price of a significant slowdown.

@table @code
@item set basenames-may-differ
@kindex set basenames-may-differ
Set whether a source file may have multiple base names.

@item show basenames-may-differ
@kindex show basenames-may-differ
Show whether a source file may have multiple base names.
@end table

@node File Caching
@section File Caching
@cindex caching of opened files
@cindex caching of bfd objects

To speed up file loading, and reduce memory usage, @value{GDBN} will
reuse the @code{bfd} objects used to track open files.  @xref{Top, ,
BFD, bfd, The Binary File Descriptor Library}.  The following commands
allow visibility and control of the caching behavior.

@table @code
@kindex maint info bfds
@item maint info bfds
This prints information about each @code{bfd} object that is known to
@value{GDBN}.

@kindex maint set bfd-sharing
@kindex maint show bfd-sharing
@kindex bfd caching
@item maint set bfd-sharing
@item maint show bfd-sharing
Control whether @code{bfd} objects can be shared.  When sharing is
enabled @value{GDBN} reuses already open @code{bfd} objects rather
than reopening the same file.  Turning sharing off does not cause
already shared @code{bfd} objects to be unshared, but all future files
that are opened will create a new @code{bfd} object.  Similarly,
re-enabling sharing does not cause multiple existing @code{bfd}
objects to be collapsed into a single shared @code{bfd} object.

@kindex set debug bfd-cache @var{level}
@kindex bfd caching
@item set debug bfd-cache @var{level}
Turns on debugging of the bfd cache, setting the level to @var{level}.

@kindex show debug bfd-cache
@kindex bfd caching
@item show debug bfd-cache
Show the current debugging level of the bfd cache.
@end table

@node Separate Debug Files
@section Debugging Information in Separate Files
@cindex separate debugging information files
@cindex debugging information in separate files
@cindex @file{.debug} subdirectories
@cindex debugging information directory, global
@cindex global debugging information directories
@cindex build ID, and separate debugging files
@cindex @file{.build-id} directory

@value{GDBN} allows you to put a program's debugging information in a
file separate from the executable itself, in a way that allows
@value{GDBN} to find and load the debugging information automatically.
Since debugging information can be very large---sometimes larger
than the executable code itself---some systems distribute debugging
information for their executables in separate files, which users can
install only when they need to debug a problem.

@value{GDBN} supports two ways of specifying the separate debug info
file:

@itemize @bullet
@item
The executable contains a @dfn{debug link} that specifies the name of
the separate debug info file.  The separate debug file's name is
usually @file{@var{executable}.debug}, where @var{executable} is the
name of the corresponding executable file without leading directories
(e.g., @file{ls.debug} for @file{/usr/bin/ls}).  In addition, the
debug link specifies a 32-bit @dfn{Cyclic Redundancy Check} (CRC)
checksum for the debug file, which @value{GDBN} uses to validate that
the executable and the debug file came from the same build.

@item
The executable contains a @dfn{build ID}, a unique bit string that is
also present in the corresponding debug info file.  (This is supported
only on some operating systems, when using the ELF or PE file formats
for binary files and the @sc{gnu} Binutils.)  For more details about
this feature, see the description of the @option{--build-id}
command-line option in @ref{Options, , Command Line Options, ld,
The GNU Linker}.  The debug info file's name is not specified
explicitly by the build ID, but can be computed from the build ID, see
below.
@end itemize

Depending on the way the debug info file is specified, @value{GDBN}
uses two different methods of looking for the debug file:

@itemize @bullet
@item
For the ``debug link'' method, @value{GDBN} looks up the named file in
the directory of the executable file, then in a subdirectory of that
directory named @file{.debug}, and finally under each one of the
global debug directories, in a subdirectory whose name is identical to
the leading directories of the executable's absolute file name.  (On
MS-Windows/MS-DOS, the drive letter of the executable's leading
directories is converted to a one-letter subdirectory, i.e.@:
@file{d:/usr/bin/} is converted to @file{/d/usr/bin/}, because Windows
filesystems disallow colons in file names.)

@item
For the ``build ID'' method, @value{GDBN} looks in the
@file{.build-id} subdirectory of each one of the global debug directories for
a file named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
are the rest of the bit string.  (Real build ID strings are 32 or more
hex characters, not 10.)
@end itemize

So, for example, suppose you ask @value{GDBN} to debug
@file{/usr/bin/ls}, which has a debug link that specifies the
file @file{ls.debug}, and a build ID whose value in hex is
@code{abcdef1234}.  If the list of the global debug directories includes
@file{/usr/lib/debug}, then @value{GDBN} will look for the following
debug information files, in the indicated order:

@itemize @minus
@item
@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
@item
@file{/usr/bin/ls.debug}
@item
@file{/usr/bin/.debug/ls.debug}
@item
@file{/usr/lib/debug/usr/bin/ls.debug}.
@end itemize

@anchor{debug-file-directory}
Global debugging info directories default to what is set by @value{GDBN}
configure option @option{--with-separate-debug-dir}.  During @value{GDBN} run
you can also set the global debugging info directories, and view the list
@value{GDBN} is currently using.

@table @code

@kindex set debug-file-directory
@item set debug-file-directory @var{directories}
Set the directories which @value{GDBN} searches for separate debugging
information files to @var{directory}.  Multiple path components can be set
concatenating them by a path separator.

@kindex show debug-file-directory
@item show debug-file-directory
Show the directories @value{GDBN} searches for separate debugging
information files.

@end table

@cindex @code{.gnu_debuglink} sections
@cindex debug link sections
A debug link is a special section of the executable file named
@code{.gnu_debuglink}.  The section must contain:

@itemize
@item
A filename, with any leading directory components removed, followed by
a zero byte,
@item
zero to three bytes of padding, as needed to reach the next four-byte
boundary within the section, and
@item
a four-byte CRC checksum, stored in the same endianness used for the
executable file itself.  The checksum is computed on the debugging
information file's full contents by the function given below, passing
zero as the @var{crc} argument.
@end itemize

Any executable file format can carry a debug link, as long as it can
contain a section named @code{.gnu_debuglink} with the contents
described above.

@cindex @code{.note.gnu.build-id} sections
@cindex build ID sections
The build ID is a special section in the executable file (and in other
ELF binary files that @value{GDBN} may consider).  This section is
often named @code{.note.gnu.build-id}, but that name is not mandatory.
It contains unique identification for the built files---the ID remains
the same across multiple builds of the same build tree.  The default
algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
content for the build ID string.  The same section with an identical
value is present in the original built binary with symbols, in its
stripped variant, and in the separate debugging information file.

The debugging information file itself should be an ordinary
executable, containing a full set of linker symbols, sections, and
debugging information.  The sections of the debugging information file
should have the same names, addresses, and sizes as the original file,
but they need not contain any data---much like a @code{.bss} section
in an ordinary executable.

The @sc{gnu} binary utilities (Binutils) package includes the
@samp{objcopy} utility that can produce
the separated executable / debugging information file pairs using the
following commands:

@smallexample
@kbd{objcopy --only-keep-debug foo foo.debug}
@kbd{strip -g foo}
@end smallexample

@noindent
These commands remove the debugging
information from the executable file @file{foo} and place it in the file
@file{foo.debug}.  You can use the first, second or both methods to link the
two files:

@itemize @bullet
@item
The debug link method needs the following additional command to also leave
behind a debug link in @file{foo}:

@smallexample
@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
@end smallexample

Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
a version of the @code{strip} command such that the command @kbd{strip foo -f
foo.debug} has the same functionality as the two @code{objcopy} commands and
the @code{ln -s} command above, together.

@item
Build ID gets embedded into the main executable using @code{ld --build-id} or
the @value{NGCC} counterpart @code{gcc -Wl,--build-id}.  Build ID support plus
compatibility fixes for debug files separation are present in @sc{gnu} binary
utilities (Binutils) package since version 2.18.
@end itemize

@noindent

@cindex CRC algorithm definition
The CRC used in @code{.gnu_debuglink} is the CRC-32 defined in
IEEE 802.3 using the polynomial:

@c TexInfo requires naked braces for multi-digit exponents for Tex
@c output, but this causes HTML output to barf. HTML has to be set using
@c raw commands. So we end up having to specify this equation in 2
@c different ways!
@ifhtml
@display
@html
 <em>x</em><sup>32</sup> + <em>x</em><sup>26</sup> + <em>x</em><sup>23</sup> + <em>x</em><sup>22</sup> + <em>x</em><sup>16</sup> + <em>x</em><sup>12</sup> + <em>x</em><sup>11</sup>
 + <em>x</em><sup>10</sup> + <em>x</em><sup>8</sup> + <em>x</em><sup>7</sup> + <em>x</em><sup>5</sup> + <em>x</em><sup>4</sup> + <em>x</em><sup>2</sup> + <em>x</em> + 1
@end html
@end display
@end ifhtml
@ifnothtml
@display
 @math{x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11}}
 @math{+ x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1}
@end display
@end ifnothtml

The function is computed byte at a time, taking the least
significant bit of each byte first.  The initial pattern
@code{0xffffffff} is used, to ensure leading zeros affect the CRC and
the final result is inverted to ensure trailing zeros also affect the
CRC.

@emph{Note:} This is the same CRC polynomial as used in handling the
@dfn{Remote Serial Protocol} @code{qCRC} packet (@pxref{qCRC packet}).
However in the case of the Remote Serial Protocol, the CRC is computed
@emph{most} significant bit first, and the result is not inverted, so
trailing zeros have no effect on the CRC value.

To complete the description, we show below the code of the function
which produces the CRC used in @code{.gnu_debuglink}.  Inverting the
initially supplied @code{crc} argument means that an initial call to
this function passing in zero will start computing the CRC using
@code{0xffffffff}.

@kindex gnu_debuglink_crc32
@smallexample
unsigned long
gnu_debuglink_crc32 (unsigned long crc,
                     unsigned char *buf, size_t len)
@{
  static const unsigned long crc32_table[256] =
    @{
      0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
      0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
      0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
      0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
      0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
      0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
      0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
      0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
      0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
      0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
      0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
      0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
      0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
      0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
      0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
      0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
      0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
      0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
      0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
      0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
      0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
      0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
      0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
      0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
      0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
      0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
      0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
      0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
      0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
      0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
      0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
      0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
      0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
      0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
      0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
      0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
      0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
      0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
      0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
      0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
      0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
      0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
      0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
      0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
      0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
      0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
      0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
      0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
      0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
      0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
      0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
      0x2d02ef8d
    @};
  unsigned char *end;

  crc = ~crc & 0xffffffff;
  for (end = buf + len; buf < end; ++buf)
    crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
  return ~crc & 0xffffffff;
@}
@end smallexample

@noindent
This computation does not apply to the ``build ID'' method.

@node MiniDebugInfo
@section Debugging information in a special section
@cindex separate debug sections
@cindex @samp{.gnu_debugdata} section

Some systems ship pre-built executables and libraries that have a
special @samp{.gnu_debugdata} section.  This feature is called
@dfn{MiniDebugInfo}.  This section holds an LZMA-compressed object and
is used to supply extra symbols for backtraces.

The intent of this section is to provide extra minimal debugging
information for use in simple backtraces.  It is not intended to be a
replacement for full separate debugging information (@pxref{Separate
Debug Files}).  The example below shows the intended use; however,
@value{GDBN} does not currently put restrictions on what sort of
debugging information might be included in the section.

@value{GDBN} has support for this extension.  If the section exists,
then it is used provided that no other source of debugging information
can be found, and that @value{GDBN} was configured with LZMA support.

This section can be easily created using @command{objcopy} and other
standard utilities:

@smallexample
# Extract the dynamic symbols from the main binary, there is no need
# to also have these in the normal symbol table.
nm -D @var{binary} --format=posix --defined-only \
  | awk '@{ print $1 @}' | sort > dynsyms

# Extract all the text (i.e. function) symbols from the debuginfo.
# (Note that we actually also accept "D" symbols, for the benefit
# of platforms like PowerPC64 that use function descriptors.)
nm @var{binary} --format=posix --defined-only \
  | awk '@{ if ($2 == "T" || $2 == "t" || $2 == "D") print $1 @}' \
  | sort > funcsyms

# Keep all the function symbols not already in the dynamic symbol
# table.
comm -13 dynsyms funcsyms > keep_symbols

# Separate full debug info into debug binary.
objcopy --only-keep-debug @var{binary} debug

# Copy the full debuginfo, keeping only a minimal set of symbols and
# removing some unnecessary sections.
objcopy -S --remove-section .gdb_index --remove-section .comment \
  --keep-symbols=keep_symbols debug mini_debuginfo

# Drop the full debug info from the original binary.
strip --strip-all -R .comment @var{binary}

# Inject the compressed data into the .gnu_debugdata section of the
# original binary.
xz mini_debuginfo
objcopy --add-section .gnu_debugdata=mini_debuginfo.xz @var{binary}
@end smallexample

@node Index Files
@section Index Files Speed Up @value{GDBN}
@cindex index files
@cindex @samp{.gdb_index} section

When @value{GDBN} finds a symbol file, it scans the symbols in the
file in order to construct an internal symbol table.  This lets most
@value{GDBN} operations work quickly---at the cost of a delay early
on.  For large programs, this delay can be quite lengthy, so
@value{GDBN} provides a way to build an index, which speeds up
startup.

For convenience, @value{GDBN} comes with a program,
@command{gdb-add-index}, which can be used to add the index to a
symbol file.  It takes the symbol file as its only argument:

@smallexample
$ gdb-add-index symfile
@end smallexample

@xref{gdb-add-index}.

It is also possible to do the work manually.  Here is what
@command{gdb-add-index} does behind the curtains.

The index is stored as a section in the symbol file.  @value{GDBN} can
write the index to a file, then you can put it into the symbol file
using @command{objcopy}.

To create an index file, use the @code{save gdb-index} command:

@table @code
@item save gdb-index [-dwarf-5] @var{directory}
@kindex save gdb-index
Create index files for all symbol files currently known by
@value{GDBN}.  For each known @var{symbol-file}, this command by
default creates it produces a single file
@file{@var{symbol-file}.gdb-index}.  If you invoke this command with
the @option{-dwarf-5} option, it produces 2 files:
@file{@var{symbol-file}.debug_names} and
@file{@var{symbol-file}.debug_str}.  The files are created in the
given @var{directory}.
@end table

Once you have created an index file you can merge it into your symbol
file, here named @file{symfile}, using @command{objcopy}:

@smallexample
$ objcopy --add-section .gdb_index=symfile.gdb-index \
    --set-section-flags .gdb_index=readonly symfile symfile
@end smallexample

Or for @code{-dwarf-5}:

@smallexample
$ objcopy --dump-section .debug_str=symfile.debug_str.new symfile
$ cat symfile.debug_str >>symfile.debug_str.new
$ objcopy --add-section .debug_names=symfile.gdb-index \
    --set-section-flags .debug_names=readonly \
    --update-section .debug_str=symfile.debug_str.new symfile symfile
@end smallexample

@value{GDBN} will normally ignore older versions of @file{.gdb_index}
sections that have been deprecated.  Usually they are deprecated because
they are missing a new feature or have performance issues.
To tell @value{GDBN} to use a deprecated index section anyway
specify @code{set use-deprecated-index-sections on}.
The default is @code{off}.
This can speed up startup, but may result in some functionality being lost.
@xref{Index Section Format}.

@emph{Warning:} Setting @code{use-deprecated-index-sections} to @code{on}
must be done before gdb reads the file.  The following will not work:

@smallexample
$ gdb -ex "set use-deprecated-index-sections on" <program>
@end smallexample

Instead you must do, for example,

@smallexample
$ gdb -iex "set use-deprecated-index-sections on" <program>
@end smallexample

There are currently some limitation on indices.  They only work when
using DWARF debugging information, not stabs.  And, only the
@code{-dwarf-5} index works for programs using Ada.

@subsection Automatic symbol index cache

@cindex automatic symbol index cache
It is possible for @value{GDBN} to automatically save a copy of this index in a
cache on disk and retrieve it from there when loading the same binary in the
future.  This feature can be turned on with @kbd{set index-cache on}.  The
following commands can be used to tweak the behavior of the index cache.

@table @code

@kindex set index-cache
@item set index-cache on
@itemx set index-cache off
Enable or disable the use of the symbol index cache.

@item set index-cache directory @var{directory}
@kindex show index-cache
@itemx show index-cache directory
Set/show the directory where index files will be saved.

The default value for this directory depends on the host platform.  On
most systems, the index is cached in the @file{gdb} subdirectory of
the directory pointed to by the @env{XDG_CACHE_HOME} environment
variable, if it is defined, else in the @file{.cache/gdb} subdirectory
of your home directory.  However, on some systems, the default may
differ according to local convention.

There is no limit on the disk space used by index cache.  It is perfectly safe
to delete the content of that directory to free up disk space.

@item show index-cache stats
Print the number of cache hits and misses since the launch of @value{GDBN}.

@end table

@node Symbol Errors
@section Errors Reading Symbol Files

While reading a symbol file, @value{GDBN} occasionally encounters problems,
such as symbol types it does not recognize, or known bugs in compiler
output.  By default, @value{GDBN} does not notify you of such problems, since
they are relatively common and primarily of interest to people
debugging compilers.  If you are interested in seeing information
about ill-constructed symbol tables, you can either ask @value{GDBN} to print
only one message about each such type of problem, no matter how many
times the problem occurs; or you can ask @value{GDBN} to print more messages,
to see how many times the problems occur, with the @code{set
complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
Messages}).

The messages currently printed, and their meanings, include:

@table @code
@item inner block not inside outer block in @var{symbol}

The symbol information shows where symbol scopes begin and end
(such as at the start of a function or a block of statements).  This
error indicates that an inner scope block is not fully contained
in its outer scope blocks.

@value{GDBN} circumvents the problem by treating the inner block as if it had
the same scope as the outer block.  In the error message, @var{symbol}
may be shown as ``@code{(don't know)}'' if the outer block is not a
function.

@item block at @var{address} out of order

The symbol information for symbol scope blocks should occur in
order of increasing addresses.  This error indicates that it does not
do so.

@value{GDBN} does not circumvent this problem, and has trouble
locating symbols in the source file whose symbols it is reading.  (You
can often determine what source file is affected by specifying
@code{set verbose on}.  @xref{Messages/Warnings, ,Optional Warnings and
Messages}.)

@item bad block start address patched

The symbol information for a symbol scope block has a start address
smaller than the address of the preceding source line.  This is known
to occur in the SunOS 4.1.1 (and earlier) C compiler.

@value{GDBN} circumvents the problem by treating the symbol scope block as
starting on the previous source line.

@item bad string table offset in symbol @var{n}

@cindex foo
Symbol number @var{n} contains a pointer into the string table which is
larger than the size of the string table.

@value{GDBN} circumvents the problem by considering the symbol to have the
name @code{foo}, which may cause other problems if many symbols end up
with this name.

@item unknown symbol type @code{0x@var{nn}}

The symbol information contains new data types that @value{GDBN} does
not yet know how to read.  @code{0x@var{nn}} is the symbol type of the
uncomprehended information, in hexadecimal.

@value{GDBN} circumvents the error by ignoring this symbol information.
This usually allows you to debug your program, though certain symbols
are not accessible.  If you encounter such a problem and feel like
debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
on @code{complain}, then go up to the function @code{read_dbx_symtab}
and examine @code{*bufp} to see the symbol.

@item stub type has NULL name

@value{GDBN} could not find the full definition for a struct or class.

@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
The symbol information for a C@t{++} member function is missing some
information that recent versions of the compiler should have output for
it.

@item info mismatch between compiler and debugger

@value{GDBN} could not parse a type specification output by the compiler.

@end table

@node Data Files
@section GDB Data Files

@cindex prefix for data files
@value{GDBN} will sometimes read an auxiliary data file.  These files
are kept in a directory known as the @dfn{data directory}.

You can set the data directory's name, and view the name @value{GDBN}
is currently using.

@table @code
@kindex set data-directory
@item set data-directory @var{directory}
Set the directory which @value{GDBN} searches for auxiliary data files
to @var{directory}.

@kindex show data-directory
@item show data-directory
Show the directory @value{GDBN} searches for auxiliary data files.
@end table

@cindex default data directory
@cindex @samp{--with-gdb-datadir}
You can set the default data directory by using the configure-time
@samp{--with-gdb-datadir} option.  If the data directory is inside
@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
@samp{--exec-prefix}), then the default data directory will be updated
automatically if the installed @value{GDBN} is moved to a new
location.

The data directory may also be specified with the
@code{--data-directory} command line option.
@xref{Mode Options}.

@node Targets
@chapter Specifying a Debugging Target

@cindex debugging target
A @dfn{target} is the execution environment occupied by your program.

Often, @value{GDBN} runs in the same host environment as your program;
in that case, the debugging target is specified as a side effect when
you use the @code{file} or @code{core} commands.  When you need more
flexibility---for example, running @value{GDBN} on a physically separate
host, or controlling a standalone system over a serial port or a
realtime system over a TCP/IP connection---you can use the @code{target}
command to specify one of the target types configured for @value{GDBN}
(@pxref{Target Commands, ,Commands for Managing Targets}).

@cindex target architecture
It is possible to build @value{GDBN} for several different @dfn{target
architectures}.  When @value{GDBN} is built like that, you can choose
one of the available architectures with the @kbd{set architecture}
command.

@table @code
@kindex set architecture
@kindex show architecture
@item set architecture @var{arch}
This command sets the current target architecture to @var{arch}.  The
value of @var{arch} can be @code{"auto"}, in addition to one of the
supported architectures.

@item show architecture
Show the current target architecture.

@item set processor
@itemx processor
@kindex set processor
@kindex show processor
These are alias commands for, respectively, @code{set architecture}
and @code{show architecture}.
@end table

@menu
* Active Targets::              Active targets
* Target Commands::             Commands for managing targets
* Byte Order::                  Choosing target byte order
@end menu

@node Active Targets
@section Active Targets

@cindex stacking targets
@cindex active targets
@cindex multiple targets

There are multiple classes of targets such as: processes, executable files or
recording sessions.  Core files belong to the process class, making core file
and process mutually exclusive.  Otherwise, @value{GDBN} can work concurrently
on multiple active targets, one in each class.  This allows you to (for
example) start a process and inspect its activity, while still having access to
the executable file after the process finishes.  Or if you start process
recording (@pxref{Reverse Execution}) and @code{reverse-step} there, you are
presented a virtual layer of the recording target, while the process target
remains stopped at the chronologically last point of the process execution.

Use the @code{core-file} and @code{exec-file} commands to select a new core
file or executable target (@pxref{Files, ,Commands to Specify Files}).  To
specify as a target a process that is already running, use the @code{attach}
command (@pxref{Attach, ,Debugging an Already-running Process}).

@node Target Commands
@section Commands for Managing Targets

@table @code
@item target @var{type} @var{parameters}
Connects the @value{GDBN} host environment to a target machine or
process.  A target is typically a protocol for talking to debugging
facilities.  You use the argument @var{type} to specify the type or
protocol of the target machine.

Further @var{parameters} are interpreted by the target protocol, but
typically include things like device names or host names to connect
with, process numbers, and baud rates.

The @code{target} command does not repeat if you press @key{RET} again
after executing the command.

@kindex help target
@item help target
Displays the names of all targets available.  To display targets
currently selected, use either @code{info target} or @code{info files}
(@pxref{Files, ,Commands to Specify Files}).

@item help target @var{name}
Describe a particular target, including any parameters necessary to
select it.

@kindex set gnutarget
@item set gnutarget @var{args}
@value{GDBN} uses its own library BFD to read your files.  @value{GDBN}
knows whether it is reading an @dfn{executable},
a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
with the @code{set gnutarget} command.  Unlike most @code{target} commands,
with @code{gnutarget} the @code{target} refers to a program, not a machine.

@quotation
@emph{Warning:} To specify a file format with @code{set gnutarget},
you must know the actual BFD name.
@end quotation

@noindent
@xref{Files, , Commands to Specify Files}.

@kindex show gnutarget
@item show gnutarget
Use the @code{show gnutarget} command to display what file format
@code{gnutarget} is set to read.  If you have not set @code{gnutarget},
@value{GDBN} will determine the file format for each file automatically,
and @code{show gnutarget} displays @samp{The current BFD target is "auto"}.
@end table

@cindex common targets
Here are some common targets (available, or not, depending on the GDB
configuration):

@table @code
@kindex target
@item target exec @var{program}
@cindex executable file target
An executable file.  @samp{target exec @var{program}} is the same as
@samp{exec-file @var{program}}.

@item target core @var{filename}
@cindex core dump file target
A core dump file.  @samp{target core @var{filename}} is the same as
@samp{core-file @var{filename}}.

@item target remote @var{medium}
@cindex remote target
A remote system connected to @value{GDBN} via a serial line or network
connection.  This command tells @value{GDBN} to use its own remote
protocol over @var{medium} for debugging.  @xref{Remote Debugging}.

For example, if you have a board connected to @file{/dev/ttya} on the
machine running @value{GDBN}, you could say:

@smallexample
target remote /dev/ttya
@end smallexample

@code{target remote} supports the @code{load} command.  This is only
useful if you have some other way of getting the stub to the target
system, and you can put it somewhere in memory where it won't get
clobbered by the download.

@item target sim @r{[}@var{simargs}@r{]} @dots{}
@cindex built-in simulator target
Builtin CPU simulator.  @value{GDBN} includes simulators for most architectures.
In general,
@smallexample
        target sim
        load
        run
@end smallexample
@noindent
works; however, you cannot assume that a specific memory map, device
drivers, or even basic I/O is available, although some simulators do
provide these.  For info about any processor-specific simulator details,
see the appropriate section in @ref{Embedded Processors, ,Embedded
Processors}.

@item target native
@cindex native target
Setup for local/native process debugging.  Useful to make the
@code{run} command spawn native processes (likewise @code{attach},
etc.@:) even when @code{set auto-connect-native-target} is @code{off}
(@pxref{set auto-connect-native-target}).

@end table

Different targets are available on different configurations of @value{GDBN};
your configuration may have more or fewer targets.

Many remote targets require you to download the executable's code once
you've successfully established a connection.  You may wish to control
various aspects of this process.

@table @code

@item set hash
@kindex set hash@r{, for remote monitors}
@cindex hash mark while downloading
This command controls whether a hash mark @samp{#} is displayed while
downloading a file to the remote monitor.  If on, a hash mark is
displayed after each S-record is successfully downloaded to the
monitor.

@item show hash
@kindex show hash@r{, for remote monitors}
Show the current status of displaying the hash mark.

@item set debug monitor
@kindex set debug monitor
@cindex display remote monitor communications
Enable or disable display of communications messages between
@value{GDBN} and the remote monitor.

@item show debug monitor
@kindex show debug monitor
Show the current status of displaying communications between
@value{GDBN} and the remote monitor.
@end table

@table @code

@kindex load @var{filename} @var{offset}
@item load @var{filename} @var{offset}
@anchor{load}
Depending on what remote debugging facilities are configured into
@value{GDBN}, the @code{load} command may be available.  Where it exists, it
is meant to make @var{filename} (an executable) available for debugging
on the remote system---by downloading, or dynamic linking, for example.
@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
the @code{add-symbol-file} command.

If your @value{GDBN} does not have a @code{load} command, attempting to
execute it gets the error message ``@code{You can't do that when your
target is @dots{}}''

The file is loaded at whatever address is specified in the executable.
For some object file formats, you can specify the load address when you
link the program; for other formats, like a.out, the object file format
specifies a fixed address.
@c FIXME! This would be a good place for an xref to the GNU linker doc.

It is also possible to tell @value{GDBN} to load the executable file at a
specific offset described by the optional argument @var{offset}.  When
@var{offset} is provided, @var{filename} must also be provided.

Depending on the remote side capabilities, @value{GDBN} may be able to
load programs into flash memory.

@code{load} does not repeat if you press @key{RET} again after using it.
@end table

@table @code

@kindex flash-erase
@item flash-erase
@anchor{flash-erase}

Erases all known flash memory regions on the target.

@end table

@node Byte Order
@section Choosing Target Byte Order

@cindex choosing target byte order
@cindex target byte order

Some types of processors, such as the @acronym{MIPS}, PowerPC, and Renesas SH,
offer the ability to run either big-endian or little-endian byte
orders.  Usually the executable or symbol will include a bit to
designate the endian-ness, and you will not need to worry about
which to use.  However, you may still find it useful to adjust
@value{GDBN}'s idea of processor endian-ness manually.

@table @code
@kindex set endian
@item set endian big
Instruct @value{GDBN} to assume the target is big-endian.

@item set endian little
Instruct @value{GDBN} to assume the target is little-endian.

@item set endian auto
Instruct @value{GDBN} to use the byte order associated with the
executable.

@item show endian
Display @value{GDBN}'s current idea of the target byte order.

@end table

If the @code{set endian auto} mode is in effect and no executable has
been selected, then the endianness used is the last one chosen either
by one of the @code{set endian big} and @code{set endian little}
commands or by inferring from the last executable used.  If no
endianness has been previously chosen, then the default for this mode
is inferred from the target @value{GDBN} has been built for, and is
@code{little} if the name of the target CPU has an @code{el} suffix
and @code{big} otherwise.

Note that these commands merely adjust interpretation of symbolic
data on the host, and that they have absolutely no effect on the
target system.


@node Remote Debugging
@chapter Debugging Remote Programs
@cindex remote debugging

If you are trying to debug a program running on a machine that cannot run
@value{GDBN} in the usual way, it is often useful to use remote debugging.
For example, you might use remote debugging on an operating system kernel,
or on a small system which does not have a general purpose operating system
powerful enough to run a full-featured debugger.

Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
to make this work with particular debugging targets.  In addition,
@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
but not specific to any particular target system) which you can use if you
write the remote stubs---the code that runs on the remote system to
communicate with @value{GDBN}.

Other remote targets may be available in your
configuration of @value{GDBN}; use @code{help target} to list them.

@menu
* Connecting::                  Connecting to a remote target
* File Transfer::               Sending files to a remote system
* Server::	                Using the gdbserver program
* Remote Configuration::        Remote configuration
* Remote Stub::                 Implementing a remote stub
@end menu

@node Connecting
@section Connecting to a Remote Target
@cindex remote debugging, connecting
@cindex @code{gdbserver}, connecting
@cindex remote debugging, types of connections
@cindex @code{gdbserver}, types of connections
@cindex @code{gdbserver}, @code{target remote} mode
@cindex @code{gdbserver}, @code{target extended-remote} mode

This section describes how to connect to a remote target, including the
types of connections and their differences, how to set up executable and
symbol files on the host and target, and the commands used for
connecting to and disconnecting from the remote target.

@subsection Types of Remote Connections

@value{GDBN} supports two types of remote connections, @code{target remote}
mode and @code{target extended-remote} mode.  Note that many remote targets
support only @code{target remote} mode.  There are several major
differences between the two types of connections, enumerated here:

@table @asis

@cindex remote debugging, detach and program exit
@item Result of detach or program exit
@strong{With target remote mode:} When the debugged program exits or you
detach from it, @value{GDBN} disconnects from the target.  When using
@code{gdbserver}, @code{gdbserver} will exit.

@strong{With target extended-remote mode:} When the debugged program exits or
you detach from it, @value{GDBN} remains connected to the target, even
though no program is running.  You can rerun the program, attach to a
running program, or use @code{monitor} commands specific to the target.

When using @code{gdbserver} in this case, it does not exit unless it was
invoked using the @option{--once} option.  If the @option{--once} option
was not used, you can ask @code{gdbserver} to exit using the
@code{monitor exit} command (@pxref{Monitor Commands for gdbserver}).

@item Specifying the program to debug
For both connection types you use the @code{file} command to specify the
program on the host system.  If you are using @code{gdbserver} there are
some differences in how to specify the location of the program on the
target.

@strong{With target remote mode:} You must either specify the program to debug
on the @code{gdbserver} command line or use the @option{--attach} option
(@pxref{Attaching to a program,,Attaching to a Running Program}).

@cindex @option{--multi}, @code{gdbserver} option
@strong{With target extended-remote mode:} You may specify the program to debug
on the @code{gdbserver} command line, or you can load the program or attach
to it using @value{GDBN} commands after connecting to @code{gdbserver}.

@anchor{--multi Option in Types of Remote Connnections}
You can start @code{gdbserver} without supplying an initial command to run
or process ID to attach.  To do this, use the @option{--multi} command line
option.  Then you can connect using @code{target extended-remote} and start
the program you want to debug (see below for details on using the
@code{run} command in this scenario).  Note that the conditions under which
@code{gdbserver} terminates depend on how @value{GDBN} connects to it
(@code{target remote} or @code{target extended-remote}).  The
@option{--multi} option to @code{gdbserver} has no influence on that.

@item The @code{run} command
@strong{With target remote mode:} The @code{run} command is not
supported.  Once a connection has been established, you can use all
the usual @value{GDBN} commands to examine and change data.  The
remote program is already running, so you can use commands like
@kbd{step} and @kbd{continue}.

@strong{With target extended-remote mode:} The @code{run} command is
supported.  The @code{run} command uses the value set by
@code{set remote exec-file} (@pxref{set remote exec-file}) to select
the program to run.  Command line arguments are supported, except for
wildcard expansion and I/O redirection (@pxref{Arguments}).

If you specify the program to debug on the command line, then the
@code{run} command is not required to start execution, and you can
resume using commands like @kbd{step} and @kbd{continue} as with
@code{target remote} mode.

@anchor{Attaching in Types of Remote Connections}
@item Attaching
@strong{With target remote mode:} The @value{GDBN} command @code{attach} is
not supported.  To attach to a running program using @code{gdbserver}, you
must use the @option{--attach} option (@pxref{Running gdbserver}).

@strong{With target extended-remote mode:} To attach to a running program,
you may use the @code{attach} command after the connection has been
established.  If you are using @code{gdbserver}, you may also invoke
@code{gdbserver} using the @option{--attach} option
(@pxref{Running gdbserver}).

Some remote targets allow @value{GDBN} to determine the executable file running
in the process the debugger is attaching to.  In such a case, @value{GDBN}
uses the value of @code{exec-file-mismatch} to handle a possible mismatch
between the executable file name running in the process and the name of the
current exec-file loaded by @value{GDBN} (@pxref{set exec-file-mismatch}).

@end table

@anchor{Host and target files}
@subsection Host and Target Files
@cindex remote debugging, symbol files
@cindex symbol files, remote debugging

@value{GDBN}, running on the host, needs access to symbol and debugging
information for your program running on the target.  This requires 
access to an unstripped copy of your program, and possibly any associated
symbol files.  Note that this section applies equally to both @code{target
remote} mode and @code{target extended-remote} mode.

Some remote targets (@pxref{qXfer executable filename read}, and
@pxref{Host I/O Packets}) allow @value{GDBN} to access program files over
the same connection used to communicate with @value{GDBN}.  With such a
target, if the remote program is unstripped, the only command you need is
@code{target remote} (or @code{target extended-remote}).

If the remote program is stripped, or the target does not support remote
program file access, start up @value{GDBN} using the name of the local
unstripped copy of your program as the first argument, or use the
@code{file} command.  Use @code{set sysroot} to specify the location (on
the host) of target libraries (unless your @value{GDBN} was compiled with
the correct sysroot using @code{--with-sysroot}).  Alternatively, you
may use @code{set solib-search-path} to specify how @value{GDBN} locates
target libraries.

The symbol file and target libraries must exactly match the executable
and libraries on the target, with one exception: the files on the host
system should not be stripped, even if the files on the target system
are.  Mismatched or missing files will lead to confusing results
during debugging.  On @sc{gnu}/Linux targets, mismatched or missing
files may also prevent @code{gdbserver} from debugging multi-threaded
programs.

@subsection Remote Connection Commands
@cindex remote connection commands
@value{GDBN} can communicate with the target over a serial line, a
local Unix domain socket, or
over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}.  In
each case, @value{GDBN} uses the same protocol for debugging your
program; only the medium carrying the debugging packets varies.  The
@code{target remote} and @code{target extended-remote} commands
establish a connection to the target.  Both commands accept the same
arguments, which indicate the medium to use:

@table @code

@item target remote @var{serial-device}
@itemx target extended-remote @var{serial-device}
@cindex serial line, @code{target remote}
Use @var{serial-device} to communicate with the target.  For example,
to use a serial line connected to the device named @file{/dev/ttyb}:

@smallexample
target remote /dev/ttyb
@end smallexample

If you're using a serial line, you may want to give @value{GDBN} the
@samp{--baud} option, or use the @code{set serial baud} command
(@pxref{Remote Configuration, set serial baud}) before the
@code{target} command.

@item target remote @var{local-socket}
@itemx target extended-remote @var{local-socket}
@cindex local socket, @code{target remote}
@cindex Unix domain socket
Use @var{local-socket} to communicate with the target.  For example,
to use a local Unix domain socket bound to the file system entry @file{/tmp/gdb-socket0}:

@smallexample
target remote /tmp/gdb-socket0
@end smallexample

Note that this command has the same form as the command to connect
to a serial line.  @value{GDBN} will automatically determine which
kind of file you have specified and will make the appropriate kind
of connection.
This feature is not available if the host system does not support
Unix domain sockets.

@item target remote @code{@var{host}:@var{port}}
@itemx target remote @code{@var{[host]}:@var{port}}
@itemx target remote @code{tcp:@var{host}:@var{port}}
@itemx target remote @code{tcp:@var{[host]}:@var{port}}
@itemx target remote @code{tcp4:@var{host}:@var{port}}
@itemx target remote @code{tcp6:@var{host}:@var{port}}
@itemx target remote @code{tcp6:@var{[host]}:@var{port}}
@itemx target extended-remote @code{@var{host}:@var{port}}
@itemx target extended-remote @code{@var{[host]}:@var{port}}
@itemx target extended-remote @code{tcp:@var{host}:@var{port}}
@itemx target extended-remote @code{tcp:@var{[host]}:@var{port}}
@itemx target extended-remote @code{tcp4:@var{host}:@var{port}}
@itemx target extended-remote @code{tcp6:@var{host}:@var{port}}
@itemx target extended-remote @code{tcp6:@var{[host]}:@var{port}}
@cindex @acronym{TCP} port, @code{target remote}
Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
The @var{host} may be either a host name, a numeric @acronym{IPv4}
address, or a numeric @acronym{IPv6} address (with or without the
square brackets to separate the address from the port); @var{port}
must be a decimal number.  The @var{host} could be the target machine
itself, if it is directly connected to the net, or it might be a
terminal server which in turn has a serial line to the target.

For example, to connect to port 2828 on a terminal server named
@code{manyfarms}:

@smallexample
target remote manyfarms:2828
@end smallexample

To connect to port 2828 on a terminal server whose address is
@code{2001:0db8:85a3:0000:0000:8a2e:0370:7334}, you can either use the
square bracket syntax:

@smallexample
target remote [2001:0db8:85a3:0000:0000:8a2e:0370:7334]:2828
@end smallexample

@noindent
or explicitly specify the @acronym{IPv6} protocol:

@smallexample
target remote tcp6:2001:0db8:85a3:0000:0000:8a2e:0370:7334:2828
@end smallexample

This last example may be confusing to the reader, because there is no
visible separation between the hostname and the port number.
Therefore, we recommend the user to provide @acronym{IPv6} addresses
using square brackets for clarity.  However, it is important to
mention that for @value{GDBN} there is no ambiguity: the number after
the last colon is considered to be the port number.

If your remote target is actually running on the same machine as your
debugger session (e.g.@: a simulator for your target running on the
same host), you can omit the hostname.  For example, to connect to
port 1234 on your local machine:

@smallexample
target remote :1234
@end smallexample
@noindent

Note that the colon is still required here.

@item target remote @code{udp:@var{host}:@var{port}}
@itemx target remote @code{udp:@var{[host]}:@var{port}}
@itemx target remote @code{udp4:@var{host}:@var{port}}
@itemx target remote @code{udp6:@var{[host]}:@var{port}}
@itemx target extended-remote @code{udp:@var{host}:@var{port}}
@itemx target extended-remote @code{udp:@var{host}:@var{port}}
@itemx target extended-remote @code{udp:@var{[host]}:@var{port}}
@itemx target extended-remote @code{udp4:@var{host}:@var{port}}
@itemx target extended-remote @code{udp6:@var{host}:@var{port}}
@itemx target extended-remote @code{udp6:@var{[host]}:@var{port}}
@cindex @acronym{UDP} port, @code{target remote}
Debug using @acronym{UDP} packets to @var{port} on @var{host}.  For example, to
connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:

@smallexample
target remote udp:manyfarms:2828
@end smallexample

When using a @acronym{UDP} connection for remote debugging, you should
keep in mind that the `U' stands for ``Unreliable''.  @acronym{UDP}
can silently drop packets on busy or unreliable networks, which will
cause havoc with your debugging session.

@item target remote | @var{command}
@itemx target extended-remote | @var{command}
@cindex pipe, @code{target remote} to
Run @var{command} in the background and communicate with it using a
pipe.  The @var{command} is a shell command, to be parsed and expanded
by the system's command shell, @code{/bin/sh}; it should expect remote
protocol packets on its standard input, and send replies on its
standard output.  You could use this to run a stand-alone simulator
that speaks the remote debugging protocol, to make net connections
using programs like @code{ssh}, or for other similar tricks.

If @var{command} closes its standard output (perhaps by exiting),
@value{GDBN} will try to send it a @code{SIGTERM} signal.  (If the
program has already exited, this will have no effect.)

@end table

@cindex interrupting remote programs
@cindex remote programs, interrupting
Whenever @value{GDBN} is waiting for the remote program, if you type the
interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
program.  This may or may not succeed, depending in part on the hardware
and the serial drivers the remote system uses.  If you type the
interrupt character once again, @value{GDBN} displays this prompt:

@smallexample
Interrupted while waiting for the program.
Give up (and stop debugging it)?  (y or n)
@end smallexample

In @code{target remote} mode, if you type @kbd{y}, @value{GDBN} abandons
the remote debugging session.  (If you decide you want to try again later,
you can use @kbd{target remote} again to connect once more.)  If you type
@kbd{n}, @value{GDBN} goes back to waiting.

In @code{target extended-remote} mode, typing @kbd{n} will leave
@value{GDBN} connected to the target.

@table @code
@kindex detach (remote)
@item detach
When you have finished debugging the remote program, you can use the
@code{detach} command to release it from @value{GDBN} control.
Detaching from the target normally resumes its execution, but the results
will depend on your particular remote stub.  After the @code{detach}
command in @code{target remote} mode, @value{GDBN} is free to connect to
another target.  In @code{target extended-remote} mode, @value{GDBN} is
still connected to the target.

@kindex disconnect
@item disconnect
The @code{disconnect} command closes the connection to the target, and
the target is generally not resumed.  It will wait for @value{GDBN}
(this instance or another one) to connect and continue debugging.  After
the @code{disconnect} command, @value{GDBN} is again free to connect to
another target.

@cindex send command to remote monitor
@cindex extend @value{GDBN} for remote targets
@cindex add new commands for external monitor
@kindex monitor
@item monitor @var{cmd}
This command allows you to send arbitrary commands directly to the
remote monitor.  Since @value{GDBN} doesn't care about the commands it
sends like this, this command is the way to extend @value{GDBN}---you
can add new commands that only the external monitor will understand
and implement.
@end table

@node File Transfer
@section Sending files to a remote system
@cindex remote target, file transfer
@cindex file transfer
@cindex sending files to remote systems

Some remote targets offer the ability to transfer files over the same
connection used to communicate with @value{GDBN}.  This is convenient
for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
running @code{gdbserver} over a network interface.  For other targets,
e.g.@: embedded devices with only a single serial port, this may be
the only way to upload or download files.

Not all remote targets support these commands.

@table @code
@kindex remote put
@item remote put @var{hostfile} @var{targetfile}
Copy file @var{hostfile} from the host system (the machine running
@value{GDBN}) to @var{targetfile} on the target system.

@kindex remote get
@item remote get @var{targetfile} @var{hostfile}
Copy file @var{targetfile} from the target system to @var{hostfile}
on the host system.

@kindex remote delete
@item remote delete @var{targetfile}
Delete @var{targetfile} from the target system.

@end table

@node Server
@section Using the @code{gdbserver} Program

@kindex gdbserver
@cindex remote connection without stubs
@code{gdbserver} is a control program for Unix-like systems, which
allows you to connect your program with a remote @value{GDBN} via
@code{target remote} or @code{target extended-remote}---but without
linking in the usual debugging stub.

@code{gdbserver} is not a complete replacement for the debugging stubs,
because it requires essentially the same operating-system facilities
that @value{GDBN} itself does.  In fact, a system that can run
@code{gdbserver} to connect to a remote @value{GDBN} could also run
@value{GDBN} locally!  @code{gdbserver} is sometimes useful nevertheless,
because it is a much smaller program than @value{GDBN} itself.  It is
also easier to port than all of @value{GDBN}, so you may be able to get
started more quickly on a new system by using @code{gdbserver}.
Finally, if you develop code for real-time systems, you may find that
the tradeoffs involved in real-time operation make it more convenient to
do as much development work as possible on another system, for example
by cross-compiling.  You can use @code{gdbserver} to make a similar
choice for debugging.

@value{GDBN} and @code{gdbserver} communicate via either a serial line
or a TCP connection, using the standard @value{GDBN} remote serial
protocol.

@quotation
@emph{Warning:} @code{gdbserver} does not have any built-in security.
Do not run @code{gdbserver} connected to any public network; a
@value{GDBN} connection to @code{gdbserver} provides access to the
target system with the same privileges as the user running
@code{gdbserver}.
@end quotation

@anchor{Running gdbserver}
@subsection Running @code{gdbserver}
@cindex arguments, to @code{gdbserver}
@cindex @code{gdbserver}, command-line arguments

Run @code{gdbserver} on the target system.  You need a copy of the
program you want to debug, including any libraries it requires.
@code{gdbserver} does not need your program's symbol table, so you can
strip the program if necessary to save space.  @value{GDBN} on the host
system does all the symbol handling.

To use the server, you must tell it how to communicate with @value{GDBN};
the name of your program; and the arguments for your program.  The usual
syntax is:

@smallexample
target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
@end smallexample

@var{comm} is either a device name (to use a serial line), or a TCP
hostname and portnumber, or @code{-} or @code{stdio} to use
stdin/stdout of @code{gdbserver}.
For example, to debug Emacs with the argument
@samp{foo.txt} and communicate with @value{GDBN} over the serial port
@file{/dev/com1}:

@smallexample
target> gdbserver /dev/com1 emacs foo.txt
@end smallexample

@code{gdbserver} waits passively for the host @value{GDBN} to communicate
with it.

To use a TCP connection instead of a serial line:

@smallexample
target> gdbserver host:2345 emacs foo.txt
@end smallexample

The only difference from the previous example is the first argument,
specifying that you are communicating with the host @value{GDBN} via
TCP.  The @samp{host:2345} argument means that @code{gdbserver} is to
expect a TCP connection from machine @samp{host} to local TCP port 2345.
(Currently, the @samp{host} part is ignored.)  You can choose any number
you want for the port number as long as it does not conflict with any
TCP ports already in use on the target system (for example, @code{23} is
reserved for @code{telnet}).@footnote{If you choose a port number that
conflicts with another service, @code{gdbserver} prints an error message
and exits.}  You must use the same port number with the host @value{GDBN}
@code{target remote} command.

The @code{stdio} connection is useful when starting @code{gdbserver}
with ssh:

@smallexample
(gdb) target remote | ssh -T hostname gdbserver - hello
@end smallexample

The @samp{-T} option to ssh is provided because we don't need a remote pty,
and we don't want escape-character handling.  Ssh does this by default when
a command is provided, the flag is provided to make it explicit.
You could elide it if you want to.

Programs started with stdio-connected gdbserver have @file{/dev/null} for
@code{stdin}, and @code{stdout},@code{stderr} are sent back to gdb for
display through a pipe connected to gdbserver.
Both @code{stdout} and @code{stderr} use the same pipe.

@anchor{Attaching to a program}
@subsubsection Attaching to a Running Program
@cindex attach to a program, @code{gdbserver}
@cindex @option{--attach}, @code{gdbserver} option

On some targets, @code{gdbserver} can also attach to running programs.
This is accomplished via the @code{--attach} argument.  The syntax is:

@smallexample
target> gdbserver --attach @var{comm} @var{pid}
@end smallexample

@var{pid} is the process ID of a currently running process.  It isn't
necessary to point @code{gdbserver} at a binary for the running process.

In @code{target extended-remote} mode, you can also attach using the
@value{GDBN} attach command
(@pxref{Attaching in Types of Remote Connections}).

@pindex pidof
You can debug processes by name instead of process ID if your target has the
@code{pidof} utility:

@smallexample
target> gdbserver --attach @var{comm} `pidof @var{program}`
@end smallexample

In case more than one copy of @var{program} is running, or @var{program}
has multiple threads, most versions of @code{pidof} support the
@code{-s} option to only return the first process ID.

@subsubsection TCP port allocation lifecycle of @code{gdbserver}

This section applies only when @code{gdbserver} is run to listen on a TCP
port.

@code{gdbserver} normally terminates after all of its debugged processes have
terminated in @kbd{target remote} mode.  On the other hand, for @kbd{target
extended-remote}, @code{gdbserver} stays running even with no processes left.
@value{GDBN} normally terminates the spawned debugged process on its exit,
which normally also terminates @code{gdbserver} in the @kbd{target remote}
mode.  Therefore, when the connection drops unexpectedly, and @value{GDBN}
cannot ask @code{gdbserver} to kill its debugged processes, @code{gdbserver}
stays running even in the @kbd{target remote} mode.

When @code{gdbserver} stays running, @value{GDBN} can connect to it again later.
Such reconnecting is useful for features like @ref{disconnected tracing}.  For
completeness, at most one @value{GDBN} can be connected at a time.

@cindex @option{--once}, @code{gdbserver} option
By default, @code{gdbserver} keeps the listening TCP port open, so that
subsequent connections are possible.  However, if you start @code{gdbserver}
with the @option{--once} option, it will stop listening for any further
connection attempts after connecting to the first @value{GDBN} session.  This
means no further connections to @code{gdbserver} will be possible after the
first one.  It also means @code{gdbserver} will terminate after the first
connection with remote @value{GDBN} has closed, even for unexpectedly closed
connections and even in the @kbd{target extended-remote} mode.  The
@option{--once} option allows reusing the same port number for connecting to
multiple instances of @code{gdbserver} running on the same host, since each
instance closes its port after the first connection.

@anchor{Other Command-Line Arguments for gdbserver}
@subsubsection Other Command-Line Arguments for @code{gdbserver}

You can use the @option{--multi} option to start @code{gdbserver} without
specifying a program to debug or a process to attach to.  Then you can
attach in @code{target extended-remote} mode and run or attach to a
program.  For more information,
@pxref{--multi Option in Types of Remote Connnections}.

@cindex @option{--debug}, @code{gdbserver} option
The @option{--debug} option tells @code{gdbserver} to display extra
status information about the debugging process.
@cindex @option{--remote-debug}, @code{gdbserver} option
The @option{--remote-debug} option tells @code{gdbserver} to display
remote protocol debug output.
@cindex @option{--debug-file}, @code{gdbserver} option
@cindex @code{gdbserver}, send all debug output to a single file
The @option{--debug-file=@var{filename}} option tells @code{gdbserver} to
write any debug output to the given @var{filename}.  These options are intended
for @code{gdbserver} development and for bug reports to the developers.

@cindex @option{--debug-format}, @code{gdbserver} option
The @option{--debug-format=option1[,option2,...]} option tells
@code{gdbserver} to include additional information in each output.
Possible options are:

@table @code
@item none
Turn off all extra information in debugging output.
@item all
Turn on all extra information in debugging output.
@item timestamps
Include a timestamp in each line of debugging output.
@end table

Options are processed in order.  Thus, for example, if @option{none}
appears last then no additional information is added to debugging output.

@cindex @option{--wrapper}, @code{gdbserver} option
The @option{--wrapper} option specifies a wrapper to launch programs
for debugging.  The option should be followed by the name of the
wrapper, then any command-line arguments to pass to the wrapper, then
@kbd{--} indicating the end of the wrapper arguments.

@code{gdbserver} runs the specified wrapper program with a combined
command line including the wrapper arguments, then the name of the
program to debug, then any arguments to the program.  The wrapper
runs until it executes your program, and then @value{GDBN} gains control.

You can use any program that eventually calls @code{execve} with
its arguments as a wrapper.  Several standard Unix utilities do
this, e.g.@: @code{env} and @code{nohup}.  Any Unix shell script ending
with @code{exec "$@@"} will also work.

For example, you can use @code{env} to pass an environment variable to
the debugged program, without setting the variable in @code{gdbserver}'s
environment:

@smallexample
$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
@end smallexample

@cindex @option{--selftest}
The @option{--selftest} option runs the self tests in @code{gdbserver}:

@smallexample
$ gdbserver --selftest
Ran 2 unit tests, 0 failed
@end smallexample

These tests are disabled in release.
@subsection Connecting to @code{gdbserver}

The basic procedure for connecting to the remote target is:
@itemize

@item
Run @value{GDBN} on the host system.

@item
Make sure you have the necessary symbol files
(@pxref{Host and target files}).
Load symbols for your application using the @code{file} command before you
connect.  Use @code{set sysroot} to locate target libraries (unless your
@value{GDBN} was compiled with the correct sysroot using
@code{--with-sysroot}).

@item
Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
For TCP connections, you must start up @code{gdbserver} prior to using
the @code{target} command.  Otherwise you may get an error whose
text depends on the host system, but which usually looks something like
@samp{Connection refused}.  Don't use the @code{load}
command in @value{GDBN} when using @code{target remote} mode, since the
program is already on the target.

@end itemize

@anchor{Monitor Commands for gdbserver}
@subsection Monitor Commands for @code{gdbserver}
@cindex monitor commands, for @code{gdbserver}

During a @value{GDBN} session using @code{gdbserver}, you can use the
@code{monitor} command to send special requests to @code{gdbserver}.
Here are the available commands.

@table @code
@item monitor help
List the available monitor commands.

@item monitor set debug 0
@itemx monitor set debug 1
Disable or enable general debugging messages.

@item monitor set remote-debug 0
@itemx monitor set remote-debug 1
Disable or enable specific debugging messages associated with the remote
protocol (@pxref{Remote Protocol}).

@item monitor set debug-file filename
@itemx monitor set debug-file
Send any debug output to the given file, or to stderr.

@item monitor set debug-format option1@r{[},option2,...@r{]}
Specify additional text to add to debugging messages.
Possible options are:

@table @code
@item none
Turn off all extra information in debugging output.
@item all
Turn on all extra information in debugging output.
@item timestamps
Include a timestamp in each line of debugging output.
@end table

Options are processed in order.  Thus, for example, if @option{none}
appears last then no additional information is added to debugging output.

@item monitor set libthread-db-search-path [PATH]
@cindex gdbserver, search path for @code{libthread_db}
When this command is issued, @var{path} is a colon-separated list of
directories to search for @code{libthread_db} (@pxref{Threads,,set
libthread-db-search-path}).  If you omit @var{path},
@samp{libthread-db-search-path} will be reset to its default value.

The special entry @samp{$pdir} for @samp{libthread-db-search-path} is
not supported in @code{gdbserver}.

@item monitor exit
Tell gdbserver to exit immediately.  This command should be followed by
@code{disconnect} to close the debugging session.  @code{gdbserver} will
detach from any attached processes and kill any processes it created.
Use @code{monitor exit} to terminate @code{gdbserver} at the end
of a multi-process mode debug session.

@end table

@subsection Tracepoints support in @code{gdbserver}
@cindex tracepoints support in @code{gdbserver}

On some targets, @code{gdbserver} supports tracepoints, fast
tracepoints and static tracepoints.

For fast or static tracepoints to work, a special library called the
@dfn{in-process agent} (IPA), must be loaded in the inferior process.
This library is built and distributed as an integral part of
@code{gdbserver}.  In addition, support for static tracepoints
requires building the in-process agent library with static tracepoints
support.  At present, the UST (LTTng Userspace Tracer,
@url{http://lttng.org/ust}) tracing engine is supported.  This support
is automatically available if UST development headers are found in the
standard include path when @code{gdbserver} is built, or if
@code{gdbserver} was explicitly configured using @option{--with-ust}
to point at such headers.  You can explicitly disable the support
using @option{--with-ust=no}.

There are several ways to load the in-process agent in your program:

@table @code
@item Specifying it as dependency at link time

You can link your program dynamically with the in-process agent
library.  On most systems, this is accomplished by adding
@code{-linproctrace} to the link command.

@item Using the system's preloading mechanisms

You can force loading the in-process agent at startup time by using
your system's support for preloading shared libraries.  Many Unixes
support the concept of preloading user defined libraries.  In most
cases, you do that by specifying @code{LD_PRELOAD=libinproctrace.so}
in the environment.  See also the description of @code{gdbserver}'s
@option{--wrapper} command line option.

@item Using @value{GDBN} to force loading the agent at run time

On some systems, you can force the inferior to load a shared library,
by calling a dynamic loader function in the inferior that takes care
of dynamically looking up and loading a shared library.  On most Unix
systems, the function is @code{dlopen}.  You'll use the @code{call}
command for that.  For example:

@smallexample
(@value{GDBP}) call dlopen ("libinproctrace.so", ...)
@end smallexample

Note that on most Unix systems, for the @code{dlopen} function to be
available, the program needs to be linked with @code{-ldl}.
@end table

On systems that have a userspace dynamic loader, like most Unix
systems, when you connect to @code{gdbserver} using @code{target
remote}, you'll find that the program is stopped at the dynamic
loader's entry point, and no shared library has been loaded in the
program's address space yet, including the in-process agent.  In that
case, before being able to use any of the fast or static tracepoints
features, you need to let the loader run and load the shared
libraries.  The simplest way to do that is to run the program to the
main procedure.  E.g., if debugging a C or C@t{++} program, start
@code{gdbserver} like so:

@smallexample
$ gdbserver :9999 myprogram
@end smallexample

Start GDB and connect to @code{gdbserver} like so, and run to main:

@smallexample
$ gdb myprogram
(@value{GDBP}) target remote myhost:9999
0x00007f215893ba60 in ?? () from /lib64/ld-linux-x86-64.so.2
(@value{GDBP}) b main
(@value{GDBP}) continue
@end smallexample

The in-process tracing agent library should now be loaded into the
process; you can confirm it with the @code{info sharedlibrary}
command, which will list @file{libinproctrace.so} as loaded in the
process.  You are now ready to install fast tracepoints, list static
tracepoint markers, probe static tracepoints markers, and start
tracing.

@node Remote Configuration
@section Remote Configuration

@kindex set remote
@kindex show remote
This section documents the configuration options available when
debugging remote programs.  For the options related to the File I/O
extensions of the remote protocol, see @ref{system,
system-call-allowed}.

@table @code
@item set remoteaddresssize @var{bits}
@cindex address size for remote targets
@cindex bits in remote address
Set the maximum size of address in a memory packet to the specified
number of bits.  @value{GDBN} will mask off the address bits above
that number, when it passes addresses to the remote target.  The
default value is the number of bits in the target's address.

@item show remoteaddresssize
Show the current value of remote address size in bits.

@item set serial baud @var{n}
@cindex baud rate for remote targets
Set the baud rate for the remote serial I/O to @var{n} baud.  The
value is used to set the speed of the serial port used for debugging
remote targets.

@item show serial baud
Show the current speed of the remote connection.

@item set serial parity @var{parity}
Set the parity for the remote serial I/O.  Supported values of @var{parity} are:
@code{even}, @code{none}, and @code{odd}.  The default is @code{none}.

@item show serial parity
Show the current parity of the serial port.

@item set remotebreak
@cindex interrupt remote programs
@cindex BREAK signal instead of Ctrl-C
@anchor{set remotebreak}
If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
when you type @kbd{Ctrl-c} to interrupt the program running
on the remote.  If set to off, @value{GDBN} sends the @samp{Ctrl-C}
character instead.  The default is off, since most remote systems
expect to see @samp{Ctrl-C} as the interrupt signal.

@item show remotebreak
Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
interrupt the remote program.

@item set remoteflow on
@itemx set remoteflow off
@kindex set remoteflow
Enable or disable hardware flow control (@code{RTS}/@code{CTS})
on the serial port used to communicate to the remote target.

@item show remoteflow
@kindex show remoteflow
Show the current setting of hardware flow control.

@item set remotelogbase @var{base}
Set the base (a.k.a.@: radix) of logging serial protocol
communications to @var{base}.  Supported values of @var{base} are:
@code{ascii}, @code{octal}, and @code{hex}.  The default is
@code{ascii}.

@item show remotelogbase
Show the current setting of the radix for logging remote serial
protocol.

@item set remotelogfile @var{file}
@cindex record serial communications on file
Record remote serial communications on the named @var{file}.  The
default is not to record at all.

@item show remotelogfile
Show the current setting  of the file name on which to record the
serial communications.

@item set remotetimeout @var{num}
@cindex timeout for serial communications
@cindex remote timeout
Set the timeout limit to wait for the remote target to respond to
@var{num} seconds.  The default is 2 seconds.

@item show remotetimeout
Show the current number of seconds to wait for the remote target
responses.

@cindex limit hardware breakpoints and watchpoints
@cindex remote target, limit break- and watchpoints
@anchor{set remote hardware-watchpoint-limit}
@anchor{set remote hardware-breakpoint-limit}
@item set remote hardware-watchpoint-limit @var{limit}
@itemx set remote hardware-breakpoint-limit @var{limit}
Restrict @value{GDBN} to using @var{limit} remote hardware watchpoints
or breakpoints.  The @var{limit} can be set to 0 to disable hardware
watchpoints or breakpoints, and @code{unlimited} for unlimited
watchpoints or breakpoints.

@item show remote hardware-watchpoint-limit
@itemx show remote hardware-breakpoint-limit
Show the current limit for the number of hardware watchpoints or
breakpoints that @value{GDBN} can use.

@cindex limit hardware watchpoints length
@cindex remote target, limit watchpoints length
@anchor{set remote hardware-watchpoint-length-limit}
@item set remote hardware-watchpoint-length-limit @var{limit}
Restrict @value{GDBN} to using @var{limit} bytes for the maximum
length of a remote hardware watchpoint.  A @var{limit} of 0 disables
hardware watchpoints and @code{unlimited} allows watchpoints of any
length.

@item show remote hardware-watchpoint-length-limit
Show the current limit (in bytes) of the maximum length of
a remote hardware watchpoint.

@item set remote exec-file @var{filename}
@itemx show remote exec-file
@anchor{set remote exec-file}
@cindex executable file, for remote target
Select the file used for @code{run} with @code{target
extended-remote}.  This should be set to a filename valid on the
target system.  If it is not set, the target will use a default
filename (e.g.@: the last program run).

@item set remote interrupt-sequence
@cindex interrupt remote programs
@cindex select Ctrl-C, BREAK or BREAK-g
Allow the user to select one of @samp{Ctrl-C}, a @code{BREAK} or
@samp{BREAK-g} as the
sequence to the remote target in order to interrupt the execution.
@samp{Ctrl-C} is a default.  Some system prefers @code{BREAK} which
is high level of serial line for some certain time.
Linux kernel prefers @samp{BREAK-g}, a.k.a Magic SysRq g.
It is @code{BREAK} signal followed by character @code{g}.

@item show interrupt-sequence
Show which of @samp{Ctrl-C}, @code{BREAK} or @code{BREAK-g}
is sent by @value{GDBN} to interrupt the remote program.
@code{BREAK-g} is BREAK signal followed by @code{g} and
also known as Magic SysRq g.

@item set remote interrupt-on-connect
@cindex send interrupt-sequence on start
Specify whether interrupt-sequence is sent to remote target when
@value{GDBN} connects to it.  This is mostly needed when you debug
Linux kernel.  Linux kernel expects @code{BREAK} followed by @code{g}
which is known as Magic SysRq g in order to connect @value{GDBN}.

@item show interrupt-on-connect
Show whether interrupt-sequence is sent
to remote target when @value{GDBN} connects to it.

@kindex set tcp
@kindex show tcp
@item set tcp auto-retry on
@cindex auto-retry, for remote TCP target
Enable auto-retry for remote TCP connections.  This is useful if the remote
debugging agent is launched in parallel with @value{GDBN}; there is a race
condition because the agent may not become ready to accept the connection
before @value{GDBN} attempts to connect.  When auto-retry is
enabled, if the initial attempt to connect fails, @value{GDBN} reattempts
to establish the connection using the timeout specified by 
@code{set tcp connect-timeout}.

@item set tcp auto-retry off
Do not auto-retry failed TCP connections.

@item show tcp auto-retry
Show the current auto-retry setting.

@item set tcp connect-timeout @var{seconds}
@itemx set tcp connect-timeout unlimited
@cindex connection timeout, for remote TCP target
@cindex timeout, for remote target connection
Set the timeout for establishing a TCP connection to the remote target to
@var{seconds}.  The timeout affects both polling to retry failed connections 
(enabled by @code{set tcp auto-retry on}) and waiting for connections
that are merely slow to complete, and represents an approximate cumulative
value.  If @var{seconds} is @code{unlimited}, there is no timeout and
@value{GDBN} will keep attempting to establish a connection forever,
unless interrupted with @kbd{Ctrl-c}.  The default is 15 seconds.

@item show tcp connect-timeout
Show the current connection timeout setting.
@end table

@cindex remote packets, enabling and disabling
The @value{GDBN} remote protocol autodetects the packets supported by
your debugging stub.  If you need to override the autodetection, you
can use these commands to enable or disable individual packets.  Each
packet can be set to @samp{on} (the remote target supports this
packet), @samp{off} (the remote target does not support this packet),
or @samp{auto} (detect remote target support for this packet).  They
all default to @samp{auto}.  For more information about each packet,
see @ref{Remote Protocol}.

During normal use, you should not have to use any of these commands.
If you do, that may be a bug in your remote debugging stub, or a bug
in @value{GDBN}.  You may want to report the problem to the
@value{GDBN} developers.

For each packet @var{name}, the command to enable or disable the
packet is @code{set remote @var{name}-packet}.  The available settings
are:

@multitable @columnfractions 0.28 0.32 0.25
@item Command Name
@tab Remote Packet
@tab Related Features

@item @code{fetch-register}
@tab @code{p}
@tab @code{info registers}

@item @code{set-register}
@tab @code{P}
@tab @code{set}

@item @code{binary-download}
@tab @code{X}
@tab @code{load}, @code{set}

@item @code{read-aux-vector}
@tab @code{qXfer:auxv:read}
@tab @code{info auxv}

@item @code{symbol-lookup}
@tab @code{qSymbol}
@tab Detecting multiple threads

@item @code{attach}
@tab @code{vAttach}
@tab @code{attach}

@item @code{verbose-resume}
@tab @code{vCont}
@tab Stepping or resuming multiple threads

@item @code{run}
@tab @code{vRun}
@tab @code{run}

@item @code{software-breakpoint}
@tab @code{Z0}
@tab @code{break}

@item @code{hardware-breakpoint}
@tab @code{Z1}
@tab @code{hbreak}

@item @code{write-watchpoint}
@tab @code{Z2}
@tab @code{watch}

@item @code{read-watchpoint}
@tab @code{Z3}
@tab @code{rwatch}

@item @code{access-watchpoint}
@tab @code{Z4}
@tab @code{awatch}

@item @code{pid-to-exec-file}
@tab @code{qXfer:exec-file:read}
@tab @code{attach}, @code{run}

@item @code{target-features}
@tab @code{qXfer:features:read}
@tab @code{set architecture}

@item @code{library-info}
@tab @code{qXfer:libraries:read}
@tab @code{info sharedlibrary}

@item @code{memory-map}
@tab @code{qXfer:memory-map:read}
@tab @code{info mem}

@item @code{read-sdata-object}
@tab @code{qXfer:sdata:read}
@tab @code{print $_sdata}

@item @code{read-siginfo-object}
@tab @code{qXfer:siginfo:read}
@tab @code{print $_siginfo}

@item @code{write-siginfo-object}
@tab @code{qXfer:siginfo:write}
@tab @code{set $_siginfo}

@item @code{threads}
@tab @code{qXfer:threads:read}
@tab @code{info threads}

@item @code{get-thread-local-@*storage-address}
@tab @code{qGetTLSAddr}
@tab Displaying @code{__thread} variables

@item @code{get-thread-information-block-address}
@tab @code{qGetTIBAddr}
@tab Display MS-Windows Thread Information Block.

@item @code{search-memory}
@tab @code{qSearch:memory}
@tab @code{find}

@item @code{supported-packets}
@tab @code{qSupported}
@tab Remote communications parameters

@item @code{catch-syscalls}
@tab @code{QCatchSyscalls}
@tab @code{catch syscall}

@item @code{pass-signals}
@tab @code{QPassSignals}
@tab @code{handle @var{signal}}

@item @code{program-signals}
@tab @code{QProgramSignals}
@tab @code{handle @var{signal}}

@item @code{hostio-close-packet}
@tab @code{vFile:close}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-open-packet}
@tab @code{vFile:open}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-pread-packet}
@tab @code{vFile:pread}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-pwrite-packet}
@tab @code{vFile:pwrite}
@tab @code{remote get}, @code{remote put}

@item @code{hostio-unlink-packet}
@tab @code{vFile:unlink}
@tab @code{remote delete}

@item @code{hostio-readlink-packet}
@tab @code{vFile:readlink}
@tab Host I/O

@item @code{hostio-fstat-packet}
@tab @code{vFile:fstat}
@tab Host I/O

@item @code{hostio-setfs-packet}
@tab @code{vFile:setfs}
@tab Host I/O

@item @code{noack-packet}
@tab @code{QStartNoAckMode}
@tab Packet acknowledgment

@item @code{osdata}
@tab @code{qXfer:osdata:read}
@tab @code{info os}

@item @code{query-attached}
@tab @code{qAttached}
@tab Querying remote process attach state.

@item @code{trace-buffer-size}
@tab @code{QTBuffer:size}
@tab @code{set trace-buffer-size}

@item @code{trace-status}
@tab @code{qTStatus}
@tab @code{tstatus}

@item @code{traceframe-info}
@tab @code{qXfer:traceframe-info:read}
@tab Traceframe info

@item @code{install-in-trace}
@tab @code{InstallInTrace}
@tab Install tracepoint in tracing

@item @code{disable-randomization}
@tab @code{QDisableRandomization}
@tab @code{set disable-randomization}

@item @code{startup-with-shell}
@tab @code{QStartupWithShell}
@tab @code{set startup-with-shell}

@item @code{environment-hex-encoded}
@tab @code{QEnvironmentHexEncoded}
@tab @code{set environment}

@item @code{environment-unset}
@tab @code{QEnvironmentUnset}
@tab @code{unset environment}

@item @code{environment-reset}
@tab @code{QEnvironmentReset}
@tab @code{Reset the inferior environment (i.e., unset user-set variables)}

@item @code{set-working-dir}
@tab @code{QSetWorkingDir}
@tab @code{set cwd}

@item @code{conditional-breakpoints-packet}
@tab @code{Z0 and Z1}
@tab @code{Support for target-side breakpoint condition evaluation}

@item @code{multiprocess-extensions}
@tab @code{multiprocess extensions}
@tab Debug multiple processes and remote process PID awareness

@item @code{swbreak-feature}
@tab @code{swbreak stop reason}
@tab @code{break}

@item @code{hwbreak-feature}
@tab @code{hwbreak stop reason}
@tab @code{hbreak}

@item @code{fork-event-feature}
@tab @code{fork stop reason}
@tab @code{fork}

@item @code{vfork-event-feature}
@tab @code{vfork stop reason}
@tab @code{vfork}

@item @code{exec-event-feature}
@tab @code{exec stop reason}
@tab @code{exec}

@item @code{thread-events}
@tab @code{QThreadEvents}
@tab Tracking thread lifetime.

@item @code{no-resumed-stop-reply}
@tab @code{no resumed thread left stop reply}
@tab Tracking thread lifetime.

@end multitable

@node Remote Stub
@section Implementing a Remote Stub

@cindex debugging stub, example
@cindex remote stub, example
@cindex stub example, remote debugging
The stub files provided with @value{GDBN} implement the target side of the
communication protocol, and the @value{GDBN} side is implemented in the
@value{GDBN} source file @file{remote.c}.  Normally, you can simply allow
these subroutines to communicate, and ignore the details.  (If you're
implementing your own stub file, you can still ignore the details: start
with one of the existing stub files.  @file{sparc-stub.c} is the best
organized, and therefore the easiest to read.)

@cindex remote serial debugging, overview
To debug a program running on another machine (the debugging
@dfn{target} machine), you must first arrange for all the usual
prerequisites for the program to run by itself.  For example, for a C
program, you need:

@enumerate
@item
A startup routine to set up the C runtime environment; these usually
have a name like @file{crt0}.  The startup routine may be supplied by
your hardware supplier, or you may have to write your own.

@item
A C subroutine library to support your program's
subroutine calls, notably managing input and output.

@item
A way of getting your program to the other machine---for example, a
download program.  These are often supplied by the hardware
manufacturer, but you may have to write your own from hardware
documentation.
@end enumerate

The next step is to arrange for your program to use a serial port to
communicate with the machine where @value{GDBN} is running (the @dfn{host}
machine).  In general terms, the scheme looks like this:

@table @emph
@item On the host,
@value{GDBN} already understands how to use this protocol; when everything
else is set up, you can simply use the @samp{target remote} command
(@pxref{Targets,,Specifying a Debugging Target}).

@item On the target,
you must link with your program a few special-purpose subroutines that
implement the @value{GDBN} remote serial protocol.  The file containing these
subroutines is called  a @dfn{debugging stub}.

On certain remote targets, you can use an auxiliary program
@code{gdbserver} instead of linking a stub into your program.
@xref{Server,,Using the @code{gdbserver} Program}, for details.
@end table

The debugging stub is specific to the architecture of the remote
machine; for example, use @file{sparc-stub.c} to debug programs on
@sc{sparc} boards.

@cindex remote serial stub list
These working remote stubs are distributed with @value{GDBN}:

@table @code

@item i386-stub.c
@cindex @file{i386-stub.c}
@cindex Intel
@cindex i386
For Intel 386 and compatible architectures.

@item m68k-stub.c
@cindex @file{m68k-stub.c}
@cindex Motorola 680x0
@cindex m680x0
For Motorola 680x0 architectures.

@item sh-stub.c
@cindex @file{sh-stub.c}
@cindex Renesas
@cindex SH
For Renesas SH architectures.

@item sparc-stub.c
@cindex @file{sparc-stub.c}
@cindex Sparc
For @sc{sparc} architectures.

@item sparcl-stub.c
@cindex @file{sparcl-stub.c}
@cindex Fujitsu
@cindex SparcLite
For Fujitsu @sc{sparclite} architectures.

@end table

The @file{README} file in the @value{GDBN} distribution may list other
recently added stubs.

@menu
* Stub Contents::       What the stub can do for you
* Bootstrapping::       What you must do for the stub
* Debug Session::       Putting it all together
@end menu

@node Stub Contents
@subsection What the Stub Can Do for You

@cindex remote serial stub
The debugging stub for your architecture supplies these three
subroutines:

@table @code
@item set_debug_traps
@findex set_debug_traps
@cindex remote serial stub, initialization
This routine arranges for @code{handle_exception} to run when your
program stops.  You must call this subroutine explicitly in your
program's startup code.

@item handle_exception
@findex handle_exception
@cindex remote serial stub, main routine
This is the central workhorse, but your program never calls it
explicitly---the setup code arranges for @code{handle_exception} to
run when a trap is triggered.

@code{handle_exception} takes control when your program stops during
execution (for example, on a breakpoint), and mediates communications
with @value{GDBN} on the host machine.  This is where the communications
protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
representative on the target machine.  It begins by sending summary
information on the state of your program, then continues to execute,
retrieving and transmitting any information @value{GDBN} needs, until you
execute a @value{GDBN} command that makes your program resume; at that point,
@code{handle_exception} returns control to your own code on the target
machine.

@item breakpoint
@cindex @code{breakpoint} subroutine, remote
Use this auxiliary subroutine to make your program contain a
breakpoint.  Depending on the particular situation, this may be the only
way for @value{GDBN} to get control.  For instance, if your target
machine has some sort of interrupt button, you won't need to call this;
pressing the interrupt button transfers control to
@code{handle_exception}---in effect, to @value{GDBN}.  On some machines,
simply receiving characters on the serial port may also trigger a trap;
again, in that situation, you don't need to call @code{breakpoint} from
your own program---simply running @samp{target remote} from the host
@value{GDBN} session gets control.

Call @code{breakpoint} if none of these is true, or if you simply want
to make certain your program stops at a predetermined point for the
start of your debugging session.
@end table

@node Bootstrapping
@subsection What You Must Do for the Stub

@cindex remote stub, support routines
The debugging stubs that come with @value{GDBN} are set up for a particular
chip architecture, but they have no information about the rest of your
debugging target machine.

First of all you need to tell the stub how to communicate with the
serial port.

@table @code
@item int getDebugChar()
@findex getDebugChar
Write this subroutine to read a single character from the serial port.
It may be identical to @code{getchar} for your target system; a
different name is used to allow you to distinguish the two if you wish.

@item void putDebugChar(int)
@findex putDebugChar
Write this subroutine to write a single character to the serial port.
It may be identical to @code{putchar} for your target system; a
different name is used to allow you to distinguish the two if you wish.
@end table

@cindex control C, and remote debugging
@cindex interrupting remote targets
If you want @value{GDBN} to be able to stop your program while it is
running, you need to use an interrupt-driven serial driver, and arrange
for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
character).  That is the character which @value{GDBN} uses to tell the
remote system to stop.

Getting the debugging target to return the proper status to @value{GDBN}
probably requires changes to the standard stub; one quick and dirty way
is to just execute a breakpoint instruction (the ``dirty'' part is that
@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).

Other routines you need to supply are:

@table @code
@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
@findex exceptionHandler
Write this function to install @var{exception_address} in the exception
handling tables.  You need to do this because the stub does not have any
way of knowing what the exception handling tables on your target system
are like (for example, the processor's table might be in @sc{rom},
containing entries which point to a table in @sc{ram}).
The @var{exception_number} specifies the exception which should be changed;
its meaning is architecture-dependent (for example, different numbers
might represent divide by zero, misaligned access, etc).  When this
exception occurs, control should be transferred directly to
@var{exception_address}, and the processor state (stack, registers,
and so on) should be just as it is when a processor exception occurs.  So if
you want to use a jump instruction to reach @var{exception_address}, it
should be a simple jump, not a jump to subroutine.

For the 386, @var{exception_address} should be installed as an interrupt
gate so that interrupts are masked while the handler runs.  The gate
should be at privilege level 0 (the most privileged level).  The
@sc{sparc} and 68k stubs are able to mask interrupts themselves without
help from @code{exceptionHandler}.

@item void flush_i_cache()
@findex flush_i_cache
On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
instruction cache, if any, on your target machine.  If there is no
instruction cache, this subroutine may be a no-op.

On target machines that have instruction caches, @value{GDBN} requires this
function to make certain that the state of your program is stable.
@end table

@noindent
You must also make sure this library routine is available:

@table @code
@item void *memset(void *, int, int)
@findex memset
This is the standard library function @code{memset} that sets an area of
memory to a known value.  If you have one of the free versions of
@code{libc.a}, @code{memset} can be found there; otherwise, you must
either obtain it from your hardware manufacturer, or write your own.
@end table

If you do not use the GNU C compiler, you may need other standard
library subroutines as well; this varies from one stub to another,
but in general the stubs are likely to use any of the common library
subroutines which @code{@value{NGCC}} generates as inline code.


@node Debug Session
@subsection Putting it All Together

@cindex remote serial debugging summary
In summary, when your program is ready to debug, you must follow these
steps.

@enumerate
@item
Make sure you have defined the supporting low-level routines
(@pxref{Bootstrapping,,What You Must Do for the Stub}):
@display
@code{getDebugChar}, @code{putDebugChar},
@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
@end display

@item
Insert these lines in your program's startup code, before the main
procedure is called:

@smallexample
set_debug_traps();
breakpoint();
@end smallexample

On some machines, when a breakpoint trap is raised, the hardware
automatically makes the PC point to the instruction after the
breakpoint.  If your machine doesn't do that, you may need to adjust
@code{handle_exception} to arrange for it to return to the instruction
after the breakpoint on this first invocation, so that your program
doesn't keep hitting the initial breakpoint instead of making
progress.

@item
For the 680x0 stub only, you need to provide a variable called
@code{exceptionHook}.  Normally you just use:

@smallexample
void (*exceptionHook)() = 0;
@end smallexample

@noindent
but if before calling @code{set_debug_traps}, you set it to point to a
function in your program, that function is called when
@code{@value{GDBN}} continues after stopping on a trap (for example, bus
error).  The function indicated by @code{exceptionHook} is called with
one parameter: an @code{int} which is the exception number.

@item
Compile and link together: your program, the @value{GDBN} debugging stub for
your target architecture, and the supporting subroutines.

@item
Make sure you have a serial connection between your target machine and
the @value{GDBN} host, and identify the serial port on the host.

@item
@c The "remote" target now provides a `load' command, so we should
@c document that.  FIXME.
Download your program to your target machine (or get it there by
whatever means the manufacturer provides), and start it.

@item
Start @value{GDBN} on the host, and connect to the target
(@pxref{Connecting,,Connecting to a Remote Target}).

@end enumerate

@node Configurations
@chapter Configuration-Specific Information

While nearly all @value{GDBN} commands are available for all native and
cross versions of the debugger, there are some exceptions.  This chapter
describes things that are only available in certain configurations.

There are three major categories of configurations: native
configurations, where the host and target are the same, embedded
operating system configurations, which are usually the same for several
different processor architectures, and bare embedded processors, which
are quite different from each other.

@menu
* Native::
* Embedded OS::
* Embedded Processors::
* Architectures::
@end menu

@node Native
@section Native

This section describes details specific to particular native
configurations.

@menu
* BSD libkvm Interface::	Debugging BSD kernel memory images
* Process Information::         Process information
* DJGPP Native::                Features specific to the DJGPP port
* Cygwin Native::		Features specific to the Cygwin port
* Hurd Native::                 Features specific to @sc{gnu} Hurd
* Darwin::			Features specific to Darwin
* FreeBSD::			Features specific to FreeBSD
@end menu

@node BSD libkvm Interface
@subsection BSD libkvm Interface

@cindex libkvm
@cindex kernel memory image
@cindex kernel crash dump

BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
interface that provides a uniform interface for accessing kernel virtual
memory images, including live systems and crash dumps.  @value{GDBN}
uses this interface to allow you to debug live kernels and kernel crash
dumps on many native BSD configurations.  This is implemented as a
special @code{kvm} debugging target.  For debugging a live system, load
the currently running kernel into @value{GDBN} and connect to the
@code{kvm} target:

@smallexample
(@value{GDBP}) @b{target kvm}
@end smallexample

For debugging crash dumps, provide the file name of the crash dump as an
argument:

@smallexample
(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
@end smallexample

Once connected to the @code{kvm} target, the following commands are
available:

@table @code
@kindex kvm
@item kvm pcb
Set current context from the @dfn{Process Control Block} (PCB) address.

@item kvm proc
Set current context from proc address.  This command isn't available on
modern FreeBSD systems.
@end table

@node Process Information
@subsection Process Information
@cindex /proc
@cindex examine process image
@cindex process info via @file{/proc}

Some operating systems provide interfaces to fetch additional
information about running processes beyond memory and per-thread
register state.  If @value{GDBN} is configured for an operating system
with a supported interface, the command @code{info proc} is available
to report information about the process running your program, or about
any process running on your system.

One supported interface is a facility called @samp{/proc} that can be
used to examine the image of a running process using file-system
subroutines.  This facility is supported on @sc{gnu}/Linux and Solaris
systems.

On FreeBSD systems, system control nodes are used to query process
information.

In addition, some systems may provide additional process information
in core files.  Note that a core file may include a subset of the
information available from a live process.  Process information is
currently available from cores created on @sc{gnu}/Linux and FreeBSD
systems.

@table @code
@kindex info proc
@cindex process ID
@item info proc
@itemx info proc @var{process-id}
Summarize available information about a process.  If a
process ID is specified by @var{process-id}, display information about
that process; otherwise display information about the program being
debugged.  The summary includes the debugged process ID, the command
line used to invoke it, its current working directory, and its
executable file's absolute file name.

On some systems, @var{process-id} can be of the form
@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
within a process.  If the optional @var{pid} part is missing, it means
a thread from the process being debugged (the leading @samp{/} still
needs to be present, or else @value{GDBN} will interpret the number as
a process ID rather than a thread ID).

@item info proc cmdline
@cindex info proc cmdline
Show the original command line of the process.  This command is
supported on @sc{gnu}/Linux and FreeBSD.

@item info proc cwd
@cindex info proc cwd
Show the current working directory of the process.  This command is
supported on @sc{gnu}/Linux and FreeBSD.

@item info proc exe
@cindex info proc exe
Show the name of executable of the process.  This command is supported
on @sc{gnu}/Linux and FreeBSD.

@item info proc files
@cindex info proc files
Show the file descriptors open by the process.  For each open file
descriptor, @value{GDBN} shows its number, type (file, directory,
character device, socket), file pointer offset, and the name of the
resource open on the descriptor.  The resource name can be a file name
(for files, directories, and devices) or a protocol followed by socket
address (for network connections).  This command is supported on
FreeBSD.

This example shows the open file descriptors for a process using a
tty for standard input and output as well as two network sockets:

@smallexample
(gdb) info proc files 22136
process 22136
Open files:

      FD   Type     Offset   Flags   Name
    text   file          - r-------- /usr/bin/ssh
    ctty    chr          - rw------- /dev/pts/20
     cwd    dir          - r-------- /usr/home/john
    root    dir          - r-------- /
       0    chr  0x32933a4 rw------- /dev/pts/20
       1    chr  0x32933a4 rw------- /dev/pts/20
       2    chr  0x32933a4 rw------- /dev/pts/20
       3 socket        0x0 rw----n-- tcp4 10.0.1.2:53014 -> 10.0.1.10:22
       4 socket        0x0 rw------- unix stream:/tmp/ssh-FIt89oAzOn5f/agent.2456
@end smallexample

@item info proc mappings
@cindex memory address space mappings
Report the memory address space ranges accessible in a process.  On
Solaris and FreeBSD systems, each memory range includes information on
whether the process has read, write, or execute access rights to each
range.  On @sc{gnu}/Linux and FreeBSD systems, each memory range
includes the object file which is mapped to that range.

@item info proc stat
@itemx info proc status
@cindex process detailed status information
Show additional process-related information, including the user ID and
group ID; virtual memory usage; the signals that are pending, blocked,
and ignored; its TTY; its consumption of system and user time; its
stack size; its @samp{nice} value; etc.  These commands are supported
on @sc{gnu}/Linux and FreeBSD.

For @sc{gnu}/Linux systems, see the @samp{proc} man page for more
information (type @kbd{man 5 proc} from your shell prompt).

For FreeBSD systems, @code{info proc stat} is an alias for @code{info
proc status}.

@item info proc all
Show all the information about the process described under all of the
above @code{info proc} subcommands.

@ignore
@comment These sub-options of 'info proc' were not included when
@comment procfs.c was re-written.  Keep their descriptions around
@comment against the day when someone finds the time to put them back in.
@kindex info proc times
@item info proc times
Starting time, user CPU time, and system CPU time for your program and
its children.

@kindex info proc id
@item info proc id
Report on the process IDs related to your program: its own process ID,
the ID of its parent, the process group ID, and the session ID.
@end ignore

@item set procfs-trace
@kindex set procfs-trace
@cindex @code{procfs} API calls
This command enables and disables tracing of @code{procfs} API calls.

@item show procfs-trace
@kindex show procfs-trace
Show the current state of @code{procfs} API call tracing.

@item set procfs-file @var{file}
@kindex set procfs-file
Tell @value{GDBN} to write @code{procfs} API trace to the named
@var{file}.  @value{GDBN} appends the trace info to the previous
contents of the file.  The default is to display the trace on the
standard output.

@item show procfs-file
@kindex show procfs-file
Show the file to which @code{procfs} API trace is written.

@item proc-trace-entry
@itemx proc-trace-exit
@itemx proc-untrace-entry
@itemx proc-untrace-exit
@kindex proc-trace-entry
@kindex proc-trace-exit
@kindex proc-untrace-entry
@kindex proc-untrace-exit
These commands enable and disable tracing of entries into and exits
from the @code{syscall} interface.

@item info pidlist
@kindex info pidlist
@cindex process list, QNX Neutrino
For QNX Neutrino only, this command displays the list of all the
processes and all the threads within each process.

@item info meminfo
@kindex info meminfo
@cindex mapinfo list, QNX Neutrino
For QNX Neutrino only, this command displays the list of all mapinfos.
@end table

@node DJGPP Native
@subsection Features for Debugging @sc{djgpp} Programs
@cindex @sc{djgpp} debugging
@cindex native @sc{djgpp} debugging
@cindex MS-DOS-specific commands

@cindex DPMI
@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
MS-Windows.  @sc{djgpp} programs are 32-bit protected-mode programs
that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
top of real-mode DOS systems and their emulations.

@value{GDBN} supports native debugging of @sc{djgpp} programs, and
defines a few commands specific to the @sc{djgpp} port.  This
subsection describes those commands.

@table @code
@kindex info dos
@item info dos
This is a prefix of @sc{djgpp}-specific commands which print
information about the target system and important OS structures.

@kindex sysinfo
@cindex MS-DOS system info
@cindex free memory information (MS-DOS)
@item info dos sysinfo
This command displays assorted information about the underlying
platform: the CPU type and features, the OS version and flavor, the
DPMI version, and the available conventional and DPMI memory.

@cindex GDT
@cindex LDT
@cindex IDT
@cindex segment descriptor tables
@cindex descriptor tables display
@item info dos gdt
@itemx info dos ldt
@itemx info dos idt
These 3 commands display entries from, respectively, Global, Local,
and Interrupt Descriptor Tables (GDT, LDT, and IDT).  The descriptor
tables are data structures which store a descriptor for each segment
that is currently in use.  The segment's selector is an index into a
descriptor table; the table entry for that index holds the
descriptor's base address and limit, and its attributes and access
rights.

A typical @sc{djgpp} program uses 3 segments: a code segment, a data
segment (used for both data and the stack), and a DOS segment (which
allows access to DOS/BIOS data structures and absolute addresses in
conventional memory).  However, the DPMI host will usually define
additional segments in order to support the DPMI environment.

@cindex garbled pointers
These commands allow to display entries from the descriptor tables.
Without an argument, all entries from the specified table are
displayed.  An argument, which should be an integer expression, means
display a single entry whose index is given by the argument.  For
example, here's a convenient way to display information about the
debugged program's data segment:

@smallexample
@exdent @code{(@value{GDBP}) info dos ldt $ds}
@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
@end smallexample

@noindent
This comes in handy when you want to see whether a pointer is outside
the data segment's limit (i.e.@: @dfn{garbled}).

@cindex page tables display (MS-DOS)
@item info dos pde
@itemx info dos pte
These two commands display entries from, respectively, the Page
Directory and the Page Tables.  Page Directories and Page Tables are
data structures which control how virtual memory addresses are mapped
into physical addresses.  A Page Table includes an entry for every
page of memory that is mapped into the program's address space; there
may be several Page Tables, each one holding up to 4096 entries.  A
Page Directory has up to 4096 entries, one each for every Page Table
that is currently in use.

Without an argument, @kbd{info dos pde} displays the entire Page
Directory, and @kbd{info dos pte} displays all the entries in all of
the Page Tables.  An argument, an integer expression, given to the
@kbd{info dos pde} command means display only that entry from the Page
Directory table.  An argument given to the @kbd{info dos pte} command
means display entries from a single Page Table, the one pointed to by
the specified entry in the Page Directory.

@cindex direct memory access (DMA) on MS-DOS
These commands are useful when your program uses @dfn{DMA} (Direct
Memory Access), which needs physical addresses to program the DMA
controller.

These commands are supported only with some DPMI servers.

@cindex physical address from linear address
@item info dos address-pte @var{addr}
This command displays the Page Table entry for a specified linear
address.  The argument @var{addr} is a linear address which should
already have the appropriate segment's base address added to it,
because this command accepts addresses which may belong to @emph{any}
segment.  For example, here's how to display the Page Table entry for
the page where a variable @code{i} is stored:

@smallexample
@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
@exdent @code{Page Table entry for address 0x11a00d30:}
@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
@end smallexample

@noindent
This says that @code{i} is stored at offset @code{0xd30} from the page
whose physical base address is @code{0x02698000}, and shows all the
attributes of that page.

Note that you must cast the addresses of variables to a @code{char *},
since otherwise the value of @code{__djgpp_base_address}, the base
address of all variables and functions in a @sc{djgpp} program, will
be added using the rules of C pointer arithmetics: if @code{i} is
declared an @code{int}, @value{GDBN} will add 4 times the value of
@code{__djgpp_base_address} to the address of @code{i}.

Here's another example, it displays the Page Table entry for the
transfer buffer:

@smallexample
@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
@exdent @code{Page Table entry for address 0x29110:}
@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
@end smallexample

@noindent
(The @code{+ 3} offset is because the transfer buffer's address is the
3rd member of the @code{_go32_info_block} structure.)  The output
clearly shows that this DPMI server maps the addresses in conventional
memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
linear (@code{0x29110}) addresses are identical.

This command is supported only with some DPMI servers.
@end table

@cindex DOS serial data link, remote debugging
In addition to native debugging, the DJGPP port supports remote
debugging via a serial data link.  The following commands are specific
to remote serial debugging in the DJGPP port of @value{GDBN}.

@table @code
@kindex set com1base
@kindex set com1irq
@kindex set com2base
@kindex set com2irq
@kindex set com3base
@kindex set com3irq
@kindex set com4base
@kindex set com4irq
@item set com1base @var{addr}
This command sets the base I/O port address of the @file{COM1} serial
port.

@item set com1irq @var{irq}
This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
for the @file{COM1} serial port.

There are similar commands @samp{set com2base}, @samp{set com3irq},
etc.@: for setting the port address and the @code{IRQ} lines for the
other 3 COM ports.

@kindex show com1base
@kindex show com1irq
@kindex show com2base
@kindex show com2irq
@kindex show com3base
@kindex show com3irq
@kindex show com4base
@kindex show com4irq
The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
display the current settings of the base address and the @code{IRQ}
lines used by the COM ports.

@item info serial
@kindex info serial
@cindex DOS serial port status
This command prints the status of the 4 DOS serial ports.  For each
port, it prints whether it's active or not, its I/O base address and
IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
counts of various errors encountered so far.
@end table


@node Cygwin Native
@subsection Features for Debugging MS Windows PE Executables
@cindex MS Windows debugging
@cindex native Cygwin debugging
@cindex Cygwin-specific commands

@value{GDBN} supports native debugging of MS Windows programs, including
DLLs with and without symbolic debugging information.

@cindex Ctrl-BREAK, MS-Windows
@cindex interrupt debuggee on MS-Windows
MS-Windows programs that call @code{SetConsoleMode} to switch off the
special meaning of the @samp{Ctrl-C} keystroke cannot be interrupted
by typing @kbd{C-c}.  For this reason, @value{GDBN} on MS-Windows
supports @kbd{C-@key{BREAK}} as an alternative interrupt key
sequence, which can be used to interrupt the debuggee even if it
ignores @kbd{C-c}.

There are various additional Cygwin-specific commands, described in
this section.  Working with DLLs that have no debugging symbols is
described in @ref{Non-debug DLL Symbols}.

@table @code
@kindex info w32
@item info w32
This is a prefix of MS Windows-specific commands which print
information about the target system and important OS structures.

@item info w32 selector
This command displays information returned by
the Win32 API @code{GetThreadSelectorEntry} function.
It takes an optional argument that is evaluated to
a long value to give the information about this given selector.
Without argument, this command displays information
about the six segment registers.

@item info w32 thread-information-block
This command displays thread specific information stored in the
Thread Information Block (readable on the X86 CPU family using @code{$fs}
selector for 32-bit programs and @code{$gs} for 64-bit programs).

@kindex signal-event
@item signal-event @var{id}
This command signals an event with user-provided @var{id}.  Used to resume
crashing process when attached to it using MS-Windows JIT debugging (AeDebug).

To use it, create or edit the following keys in
@code{HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug} and/or
@code{HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows NT\CurrentVersion\AeDebug}
(for x86_64 versions):

@itemize @minus
@item
@code{Debugger} (REG_SZ) --- a command to launch the debugger.
Suggested command is: @code{@var{fully-qualified-path-to-gdb.exe} -ex
"attach %ld" -ex "signal-event %ld" -ex "continue"}.

The first @code{%ld} will be replaced by the process ID of the
crashing process, the second @code{%ld} will be replaced by the ID of
the event that blocks the crashing process, waiting for @value{GDBN}
to attach.

@item
@code{Auto} (REG_SZ) --- either @code{1} or @code{0}.  @code{1} will
make the system run debugger specified by the Debugger key
automatically, @code{0} will cause a dialog box with ``OK'' and
``Cancel'' buttons to appear, which allows the user to either
terminate the crashing process (OK) or debug it (Cancel).
@end itemize

@kindex set cygwin-exceptions
@cindex debugging the Cygwin DLL
@cindex Cygwin DLL, debugging
@item set cygwin-exceptions @var{mode}
If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
happen inside the Cygwin DLL.  If @var{mode} is @code{off},
@value{GDBN} will delay recognition of exceptions, and may ignore some
exceptions which seem to be caused by internal Cygwin DLL
``bookkeeping''.  This option is meant primarily for debugging the
Cygwin DLL itself; the default value is @code{off} to avoid annoying
@value{GDBN} users with false @code{SIGSEGV} signals.

@kindex show cygwin-exceptions
@item show cygwin-exceptions
Displays whether @value{GDBN} will break on exceptions that happen
inside the Cygwin DLL itself.

@kindex set new-console
@item set new-console @var{mode}
If @var{mode} is @code{on} the debuggee will
be started in a new console on next start.
If @var{mode} is @code{off}, the debuggee will
be started in the same console as the debugger.

@kindex show new-console
@item show new-console
Displays whether a new console is used
when the debuggee is started.

@kindex set new-group
@item set new-group @var{mode}
This boolean value controls whether the debuggee should
start a new group or stay in the same group as the debugger.
This affects the way the Windows OS handles
@samp{Ctrl-C}.

@kindex show new-group
@item show new-group
Displays current value of new-group boolean.

@kindex set debugevents
@item set debugevents
This boolean value adds debug output concerning kernel events related
to the debuggee seen by the debugger.  This includes events that
signal thread and process creation and exit, DLL loading and
unloading, console interrupts, and debugging messages produced by the
Windows @code{OutputDebugString} API call.

@kindex set debugexec
@item set debugexec
This boolean value adds debug output concerning execute events
(such as resume thread) seen by the debugger.

@kindex set debugexceptions
@item set debugexceptions
This boolean value adds debug output concerning exceptions in the
debuggee seen by the debugger.

@kindex set debugmemory
@item set debugmemory
This boolean value adds debug output concerning debuggee memory reads
and writes by the debugger.

@kindex set shell
@item set shell
This boolean values specifies whether the debuggee is called
via a shell or directly (default value is on).

@kindex show shell
@item show shell
Displays if the debuggee will be started with a shell.

@end table

@menu
* Non-debug DLL Symbols::  Support for DLLs without debugging symbols
@end menu

@node Non-debug DLL Symbols
@subsubsection Support for DLLs without Debugging Symbols
@cindex DLLs with no debugging symbols
@cindex Minimal symbols and DLLs

Very often on windows, some of the DLLs that your program relies on do
not include symbolic debugging information (for example,
@file{kernel32.dll}).  When @value{GDBN} doesn't recognize any debugging
symbols in a DLL, it relies on the minimal amount of symbolic
information contained in the DLL's export table.  This section
describes working with such symbols, known internally to @value{GDBN} as
``minimal symbols''.

Note that before the debugged program has started execution, no DLLs
will have been loaded.  The easiest way around this problem is simply to
start the program --- either by setting a breakpoint or letting the
program run once to completion.

@subsubsection DLL Name Prefixes

In keeping with the naming conventions used by the Microsoft debugging
tools, DLL export symbols are made available with a prefix based on the
DLL name, for instance @code{KERNEL32!CreateFileA}.  The plain name is
also entered into the symbol table, so @code{CreateFileA} is often
sufficient.  In some cases there will be name clashes within a program
(particularly if the executable itself includes full debugging symbols)
necessitating the use of the fully qualified name when referring to the
contents of the DLL.  Use single-quotes around the name to avoid the
exclamation mark (``!'')  being interpreted as a language operator.

Note that the internal name of the DLL may be all upper-case, even
though the file name of the DLL is lower-case, or vice-versa.  Since
symbols within @value{GDBN} are @emph{case-sensitive} this may cause
some confusion. If in doubt, try the @code{info functions} and
@code{info variables} commands or even @code{maint print msymbols}
(@pxref{Symbols}). Here's an example:

@smallexample
(@value{GDBP}) info function CreateFileA
All functions matching regular expression "CreateFileA":

Non-debugging symbols:
0x77e885f4  CreateFileA
0x77e885f4  KERNEL32!CreateFileA
@end smallexample

@smallexample
(@value{GDBP}) info function !
All functions matching regular expression "!":

Non-debugging symbols:
0x6100114c  cygwin1!__assert
0x61004034  cygwin1!_dll_crt0@@0
0x61004240  cygwin1!dll_crt0(per_process *)
[etc...]
@end smallexample

@subsubsection Working with Minimal Symbols

Symbols extracted from a DLL's export table do not contain very much
type information. All that @value{GDBN} can do is guess whether a symbol
refers to a function or variable depending on the linker section that
contains the symbol. Also note that the actual contents of the memory
contained in a DLL are not available unless the program is running. This
means that you cannot examine the contents of a variable or disassemble
a function within a DLL without a running program.

Variables are generally treated as pointers and dereferenced
automatically. For this reason, it is often necessary to prefix a
variable name with the address-of operator (``&'') and provide explicit
type information in the command. Here's an example of the type of
problem:

@smallexample
(@value{GDBP}) print 'cygwin1!__argv'
'cygwin1!__argv' has unknown type; cast it to its declared type
@end smallexample

@smallexample
(@value{GDBP}) x 'cygwin1!__argv'
'cygwin1!__argv' has unknown type; cast it to its declared type
@end smallexample

And two possible solutions:

@smallexample
(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
@end smallexample

@smallexample
(@value{GDBP}) x/2x &'cygwin1!__argv'
0x610c0aa8 <cygwin1!__argv>:    0x10021608      0x00000000
(@value{GDBP}) x/x 0x10021608
0x10021608:     0x0022fd98
(@value{GDBP}) x/s 0x0022fd98
0x22fd98:        "/cygdrive/c/mydirectory/myprogram"
@end smallexample

Setting a break point within a DLL is possible even before the program
starts execution. However, under these circumstances, @value{GDBN} can't
examine the initial instructions of the function in order to skip the
function's frame set-up code. You can work around this by using ``*&''
to set the breakpoint at a raw memory address:

@smallexample
(@value{GDBP}) break *&'python22!PyOS_Readline'
Breakpoint 1 at 0x1e04eff0
@end smallexample

The author of these extensions is not entirely convinced that setting a
break point within a shared DLL like @file{kernel32.dll} is completely
safe.

@node Hurd Native
@subsection Commands Specific to @sc{gnu} Hurd Systems
@cindex @sc{gnu} Hurd debugging

This subsection describes @value{GDBN} commands specific to the
@sc{gnu} Hurd native debugging.

@table @code
@item set signals
@itemx set sigs
@kindex set signals@r{, Hurd command}
@kindex set sigs@r{, Hurd command}
This command toggles the state of inferior signal interception by
@value{GDBN}.  Mach exceptions, such as breakpoint traps, are not
affected by this command.  @code{sigs} is a shorthand alias for
@code{signals}.

@item show signals
@itemx show sigs
@kindex show signals@r{, Hurd command}
@kindex show sigs@r{, Hurd command}
Show the current state of intercepting inferior's signals.

@item set signal-thread
@itemx set sigthread
@kindex set signal-thread
@kindex set sigthread
This command tells @value{GDBN} which thread is the @code{libc} signal
thread.  That thread is run when a signal is delivered to a running
process.  @code{set sigthread} is the shorthand alias of @code{set
signal-thread}.

@item show signal-thread
@itemx show sigthread
@kindex show signal-thread
@kindex show sigthread
These two commands show which thread will run when the inferior is
delivered a signal.

@item set stopped
@kindex set stopped@r{, Hurd command}
This commands tells @value{GDBN} that the inferior process is stopped,
as with the @code{SIGSTOP} signal.  The stopped process can be
continued by delivering a signal to it.

@item show stopped
@kindex show stopped@r{, Hurd command}
This command shows whether @value{GDBN} thinks the debuggee is
stopped.

@item set exceptions
@kindex set exceptions@r{, Hurd command}
Use this command to turn off trapping of exceptions in the inferior.
When exception trapping is off, neither breakpoints nor
single-stepping will work.  To restore the default, set exception
trapping on.

@item show exceptions
@kindex show exceptions@r{, Hurd command}
Show the current state of trapping exceptions in the inferior.

@item set task pause
@kindex set task@r{, Hurd commands}
@cindex task attributes (@sc{gnu} Hurd)
@cindex pause current task (@sc{gnu} Hurd)
This command toggles task suspension when @value{GDBN} has control.
Setting it to on takes effect immediately, and the task is suspended
whenever @value{GDBN} gets control.  Setting it to off will take
effect the next time the inferior is continued.  If this option is set
to off, you can use @code{set thread default pause on} or @code{set
thread pause on} (see below) to pause individual threads.

@item show task pause
@kindex show task@r{, Hurd commands}
Show the current state of task suspension.

@item set task detach-suspend-count
@cindex task suspend count
@cindex detach from task, @sc{gnu} Hurd
This command sets the suspend count the task will be left with when
@value{GDBN} detaches from it.

@item show task detach-suspend-count
Show the suspend count the task will be left with when detaching.

@item set task exception-port
@itemx set task excp
@cindex task exception port, @sc{gnu} Hurd
This command sets the task exception port to which @value{GDBN} will
forward exceptions.  The argument should be the value of the @dfn{send
rights} of the task.  @code{set task excp} is a shorthand alias.

@item set noninvasive
@cindex noninvasive task options
This command switches @value{GDBN} to a mode that is the least
invasive as far as interfering with the inferior is concerned.  This
is the same as using @code{set task pause}, @code{set exceptions}, and
@code{set signals} to values opposite to the defaults.

@item info send-rights
@itemx info receive-rights
@itemx info port-rights
@itemx info port-sets
@itemx info dead-names
@itemx info ports
@itemx info psets
@cindex send rights, @sc{gnu} Hurd
@cindex receive rights, @sc{gnu} Hurd
@cindex port rights, @sc{gnu} Hurd
@cindex port sets, @sc{gnu} Hurd
@cindex dead names, @sc{gnu} Hurd
These commands display information about, respectively, send rights,
receive rights, port rights, port sets, and dead names of a task.
There are also shorthand aliases: @code{info ports} for @code{info
port-rights} and @code{info psets} for @code{info port-sets}.

@item set thread pause
@kindex set thread@r{, Hurd command}
@cindex thread properties, @sc{gnu} Hurd
@cindex pause current thread (@sc{gnu} Hurd)
This command toggles current thread suspension when @value{GDBN} has
control.  Setting it to on takes effect immediately, and the current
thread is suspended whenever @value{GDBN} gets control.  Setting it to
off will take effect the next time the inferior is continued.
Normally, this command has no effect, since when @value{GDBN} has
control, the whole task is suspended.  However, if you used @code{set
task pause off} (see above), this command comes in handy to suspend
only the current thread.

@item show thread pause
@kindex show thread@r{, Hurd command}
This command shows the state of current thread suspension.

@item set thread run
This command sets whether the current thread is allowed to run.

@item show thread run
Show whether the current thread is allowed to run.

@item set thread detach-suspend-count
@cindex thread suspend count, @sc{gnu} Hurd
@cindex detach from thread, @sc{gnu} Hurd
This command sets the suspend count @value{GDBN} will leave on a
thread when detaching.  This number is relative to the suspend count
found by @value{GDBN} when it notices the thread; use @code{set thread
takeover-suspend-count} to force it to an absolute value.

@item show thread detach-suspend-count
Show the suspend count @value{GDBN} will leave on the thread when
detaching.

@item set thread exception-port
@itemx set thread excp
Set the thread exception port to which to forward exceptions.  This
overrides the port set by @code{set task exception-port} (see above).
@code{set thread excp} is the shorthand alias.

@item set thread takeover-suspend-count
Normally, @value{GDBN}'s thread suspend counts are relative to the
value @value{GDBN} finds when it notices each thread.  This command
changes the suspend counts to be absolute instead.

@item set thread default
@itemx show thread default
@cindex thread default settings, @sc{gnu} Hurd
Each of the above @code{set thread} commands has a @code{set thread
default} counterpart (e.g., @code{set thread default pause}, @code{set
thread default exception-port}, etc.).  The @code{thread default}
variety of commands sets the default thread properties for all
threads; you can then change the properties of individual threads with
the non-default commands.
@end table

@node Darwin
@subsection Darwin
@cindex Darwin

@value{GDBN} provides the following commands specific to the Darwin target:

@table @code
@item set debug darwin @var{num}
@kindex set debug darwin
When set to a non zero value, enables debugging messages specific to
the Darwin support.  Higher values produce more verbose output.

@item show debug darwin
@kindex show debug darwin
Show the current state of Darwin messages.

@item set debug mach-o @var{num}
@kindex set debug mach-o
When set to a non zero value, enables debugging messages while
@value{GDBN} is reading Darwin object files.  (@dfn{Mach-O} is the
file format used on Darwin for object and executable files.)  Higher
values produce more verbose output.  This is a command to diagnose
problems internal to @value{GDBN} and should not be needed in normal
usage.

@item show debug mach-o
@kindex show debug mach-o
Show the current state of Mach-O file messages.

@item set mach-exceptions on
@itemx set mach-exceptions off
@kindex set mach-exceptions
On Darwin, faults are first reported as a Mach exception and are then
mapped to a Posix signal.  Use this command to turn on trapping of
Mach exceptions in the inferior.  This might be sometimes useful to
better understand the cause of a fault.  The default is off.

@item show mach-exceptions
@kindex show mach-exceptions
Show the current state of exceptions trapping.
@end table

@node FreeBSD
@subsection FreeBSD
@cindex FreeBSD

When the ABI of a system call is changed in the FreeBSD kernel, this
is implemented by leaving a compatibility system call using the old
ABI at the existing number and allocating a new system call number for
the version using the new ABI.  As a convenience, when a system call
is caught by name (@pxref{catch syscall}), compatibility system calls
are also caught.

For example, FreeBSD 12 introduced a new variant of the @code{kevent}
system call and catching the @code{kevent} system call by name catches
both variants:

@smallexample
(@value{GDBP}) catch syscall kevent
Catchpoint 1 (syscalls 'freebsd11_kevent' [363] 'kevent' [560])
(@value{GDBP})
@end smallexample


@node Embedded OS
@section Embedded Operating Systems

This section describes configurations involving the debugging of
embedded operating systems that are available for several different
architectures.

@value{GDBN} includes the ability to debug programs running on
various real-time operating systems.

@node Embedded Processors
@section Embedded Processors

This section goes into details specific to particular embedded
configurations.

@cindex send command to simulator
Whenever a specific embedded processor has a simulator, @value{GDBN}
allows to send an arbitrary command to the simulator.

@table @code
@item sim @var{command}
@kindex sim@r{, a command}
Send an arbitrary @var{command} string to the simulator.  Consult the
documentation for the specific simulator in use for information about
acceptable commands.
@end table


@menu
* ARC::                         Synopsys ARC
* ARM::                         ARM
* M68K::                        Motorola M68K
* MicroBlaze::			Xilinx MicroBlaze
* MIPS Embedded::               MIPS Embedded
* OpenRISC 1000::               OpenRISC 1000 (or1k)
* PowerPC Embedded::            PowerPC Embedded
* AVR::                         Atmel AVR
* CRIS::                        CRIS
* Super-H::                     Renesas Super-H
@end menu

@node ARC
@subsection Synopsys ARC
@cindex Synopsys ARC
@cindex ARC specific commands
@cindex ARC600
@cindex ARC700
@cindex ARC EM
@cindex ARC HS

@value{GDBN} provides the following ARC-specific commands:

@table @code
@item set debug arc
@kindex set debug arc
Control the level of ARC specific debug messages.  Use 0 for no messages (the
default), 1 for debug messages, and 2 for even more debug messages.

@item show debug arc
@kindex show debug arc
Show the level of ARC specific debugging in operation.

@item maint print arc arc-instruction @var{address}
@kindex maint print arc arc-instruction
Print internal disassembler information about instruction at a given address.

@end table

@node ARM
@subsection ARM

@value{GDBN} provides the following ARM-specific commands:

@table @code
@item set arm disassembler
@kindex set arm
This commands selects from a list of disassembly styles.  The
@code{"std"} style is the standard style.

@item show arm disassembler
@kindex show arm
Show the current disassembly style.

@item set arm apcs32
@cindex ARM 32-bit mode
This command toggles ARM operation mode between 32-bit and 26-bit.

@item show arm apcs32
Display the current usage of the ARM 32-bit mode.

@item set arm fpu @var{fputype}
This command sets the ARM floating-point unit (FPU) type.  The
argument @var{fputype} can be one of these:

@table @code
@item auto
Determine the FPU type by querying the OS ABI.
@item softfpa
Software FPU, with mixed-endian doubles on little-endian ARM
processors.
@item fpa
GCC-compiled FPA co-processor.
@item softvfp
Software FPU with pure-endian doubles.
@item vfp
VFP co-processor.
@end table

@item show arm fpu
Show the current type of the FPU.

@item set arm abi
This command forces @value{GDBN} to use the specified ABI.

@item show arm abi
Show the currently used ABI.

@item set arm fallback-mode (arm|thumb|auto)
@value{GDBN} uses the symbol table, when available, to determine
whether instructions are ARM or Thumb.  This command controls
@value{GDBN}'s default behavior when the symbol table is not
available.  The default is @samp{auto}, which causes @value{GDBN} to
use the current execution mode (from the @code{T} bit in the @code{CPSR}
register).

@item show arm fallback-mode
Show the current fallback instruction mode.

@item set arm force-mode (arm|thumb|auto)
This command overrides use of the symbol table to determine whether
instructions are ARM or Thumb.  The default is @samp{auto}, which
causes @value{GDBN} to use the symbol table and then the setting
of @samp{set arm fallback-mode}.

@item show arm force-mode
Show the current forced instruction mode.

@item set debug arm
Toggle whether to display ARM-specific debugging messages from the ARM
target support subsystem.

@item show debug arm
Show whether ARM-specific debugging messages are enabled.
@end table

@table @code
@item target sim @r{[}@var{simargs}@r{]} @dots{} 
The @value{GDBN} ARM simulator accepts the following optional arguments.

@table @code
@item --swi-support=@var{type}
Tell the simulator which SWI interfaces to support.  The argument
@var{type} may be a comma separated list of the following values.
The default value is @code{all}.

@table @code
@item none
@item demon
@item angel
@item redboot
@item all
@end table
@end table
@end table

@node M68K
@subsection M68k

The Motorola m68k configuration includes ColdFire support.

@node MicroBlaze
@subsection MicroBlaze
@cindex Xilinx MicroBlaze
@cindex XMD, Xilinx Microprocessor Debugger

The MicroBlaze is a soft-core processor supported on various Xilinx
FPGAs, such as Spartan or Virtex series.  Boards with these processors
usually have JTAG ports which connect to a host system running the Xilinx
Embedded Development Kit (EDK) or Software Development Kit (SDK).
This host system is used to download the configuration bitstream to
the target FPGA.  The Xilinx Microprocessor Debugger (XMD) program
communicates with the target board using the JTAG interface and
presents a @code{gdbserver} interface to the board.  By default
@code{xmd} uses port @code{1234}.  (While it is possible to change 
this default port, it requires the use of undocumented @code{xmd} 
commands.  Contact Xilinx support if you need to do this.)

Use these GDB commands to connect to the MicroBlaze target processor.

@table @code
@item target remote :1234
Use this command to connect to the target if you are running @value{GDBN}
on the same system as @code{xmd}.

@item target remote @var{xmd-host}:1234
Use this command to connect to the target if it is connected to @code{xmd}
running on a different system named @var{xmd-host}.

@item load
Use this command to download a program to the MicroBlaze target.

@item set debug microblaze @var{n}
Enable MicroBlaze-specific debugging messages if non-zero.

@item show debug microblaze @var{n}
Show MicroBlaze-specific debugging level.
@end table

@node MIPS Embedded
@subsection @acronym{MIPS} Embedded

@noindent
@value{GDBN} supports these special commands for @acronym{MIPS} targets:

@table @code
@item set mipsfpu double
@itemx set mipsfpu single
@itemx set mipsfpu none
@itemx set mipsfpu auto
@itemx show mipsfpu
@kindex set mipsfpu
@kindex show mipsfpu
@cindex @acronym{MIPS} remote floating point
@cindex floating point, @acronym{MIPS} remote
If your target board does not support the @acronym{MIPS} floating point
coprocessor, you should use the command @samp{set mipsfpu none} (if you
need this, you may wish to put the command in your @value{GDBN} init
file).  This tells @value{GDBN} how to find the return value of
functions which return floating point values.  It also allows
@value{GDBN} to avoid saving the floating point registers when calling
functions on the board.  If you are using a floating point coprocessor
with only single precision floating point support, as on the @sc{r4650}
processor, use the command @samp{set mipsfpu single}.  The default
double precision floating point coprocessor may be selected using
@samp{set mipsfpu double}.

In previous versions the only choices were double precision or no
floating point, so @samp{set mipsfpu on} will select double precision
and @samp{set mipsfpu off} will select no floating point.

As usual, you can inquire about the @code{mipsfpu} variable with
@samp{show mipsfpu}.
@end table

@node OpenRISC 1000
@subsection OpenRISC 1000
@cindex OpenRISC 1000

@noindent
The OpenRISC 1000 provides a free RISC instruction set architecture.  It is
mainly provided as a soft-core which can run on Xilinx, Altera and other
FPGA's.

@value{GDBN} for OpenRISC supports the below commands when connecting to
a target:

@table @code

@kindex target sim
@item target sim

Runs the builtin CPU simulator which can run very basic
programs but does not support most hardware functions like MMU.
For more complex use cases the user is advised to run an external
target, and connect using @samp{target remote}.

Example: @code{target sim}

@item set debug or1k
Toggle whether to display OpenRISC-specific debugging messages from the
OpenRISC target support subsystem.

@item show debug or1k
Show whether OpenRISC-specific debugging messages are enabled.
@end table

@node PowerPC Embedded
@subsection PowerPC Embedded

@cindex DVC register
@value{GDBN} supports using the DVC (Data Value Compare) register to
implement in hardware simple hardware watchpoint conditions of the form:

@smallexample
(@value{GDBP}) watch @var{ADDRESS|VARIABLE} \
  if  @var{ADDRESS|VARIABLE} == @var{CONSTANT EXPRESSION}
@end smallexample

The DVC register will be automatically used when @value{GDBN} detects
such pattern in a condition expression, and the created watchpoint uses one
debug register (either the @code{exact-watchpoints} option is on and the
variable is scalar, or the variable has a length of one byte).  This feature
is available in native @value{GDBN} running on a Linux kernel version 2.6.34
or newer.

When running on PowerPC embedded processors, @value{GDBN} automatically uses
ranged hardware watchpoints, unless the @code{exact-watchpoints} option is on,
in which case watchpoints using only one debug register are created when
watching variables of scalar types.

You can create an artificial array to watch an arbitrary memory
region using one of the following commands (@pxref{Expressions}):

@smallexample
(@value{GDBP}) watch *((char *) @var{address})@@@var{length}
(@value{GDBP}) watch @{char[@var{length}]@} @var{address}
@end smallexample

PowerPC embedded processors support masked watchpoints.  See the discussion
about the @code{mask} argument in @ref{Set Watchpoints}.

@cindex ranged breakpoint
PowerPC embedded processors support hardware accelerated
@dfn{ranged breakpoints}.  A ranged breakpoint stops execution of
the inferior whenever it executes an instruction at any address within
the range it specifies.  To set a ranged breakpoint in @value{GDBN},
use the @code{break-range} command.

@value{GDBN} provides the following PowerPC-specific commands:

@table @code
@kindex break-range
@item break-range @var{start-location}, @var{end-location}
Set a breakpoint for an address range given by
@var{start-location} and @var{end-location}, which can specify a function name,
a line number, an offset of lines from the current line or from the start
location, or an address of an instruction (see @ref{Specify Location},
for a list of all the possible ways to specify a @var{location}.)
The breakpoint will stop execution of the inferior whenever it
executes an instruction at any address within the specified range,
(including @var{start-location} and @var{end-location}.)

@kindex set powerpc
@item set powerpc soft-float
@itemx show powerpc soft-float
Force @value{GDBN} to use (or not use) a software floating point calling
convention.  By default, @value{GDBN} selects the calling convention based
on the selected architecture and the provided executable file.

@item set powerpc vector-abi
@itemx show powerpc vector-abi
Force @value{GDBN} to use the specified calling convention for vector
arguments and return values.  The valid options are @samp{auto};
@samp{generic}, to avoid vector registers even if they are present;
@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
registers.  By default, @value{GDBN} selects the calling convention
based on the selected architecture and the provided executable file.

@item set powerpc exact-watchpoints
@itemx show powerpc exact-watchpoints
Allow @value{GDBN} to use only one debug register when watching a variable
of scalar type, thus assuming that the variable is accessed through the
address of its first byte.

@end table

@node AVR
@subsection Atmel AVR
@cindex AVR

When configured for debugging the Atmel AVR, @value{GDBN} supports the
following AVR-specific commands:

@table @code
@item info io_registers
@kindex info io_registers@r{, AVR}
@cindex I/O registers (Atmel AVR)
This command displays information about the AVR I/O registers.  For
each register, @value{GDBN} prints its number and value.
@end table

@node CRIS
@subsection CRIS
@cindex CRIS

When configured for debugging CRIS, @value{GDBN} provides the
following CRIS-specific commands:

@table @code
@item set cris-version @var{ver}
@cindex CRIS version
Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
The CRIS version affects register names and sizes.  This command is useful in
case autodetection of the CRIS version fails.

@item show cris-version
Show the current CRIS version.

@item set cris-dwarf2-cfi
@cindex DWARF-2 CFI and CRIS
Set the usage of DWARF-2 CFI for CRIS debugging.  The default is @samp{on}.
Change to @samp{off} when using @code{gcc-cris} whose version is below 
@code{R59}.

@item show cris-dwarf2-cfi
Show the current state of using DWARF-2 CFI.

@item set cris-mode @var{mode}
@cindex CRIS mode
Set the current CRIS mode to @var{mode}.  It should only be changed when
debugging in guru mode, in which case it should be set to 
@samp{guru} (the default is @samp{normal}).

@item show cris-mode
Show the current CRIS mode.
@end table

@node Super-H
@subsection Renesas Super-H
@cindex Super-H

For the Renesas Super-H processor, @value{GDBN} provides these
commands:

@table @code
@item set sh calling-convention @var{convention}
@kindex set sh calling-convention
Set the calling-convention used when calling functions from @value{GDBN}.
Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
convention.  If the DWARF-2 information of the called function specifies
that the function follows the Renesas calling convention, the function
is called using the Renesas calling convention.  If the calling convention
is set to @samp{renesas}, the Renesas calling convention is always used,
regardless of the DWARF-2 information.  This can be used to override the
default of @samp{gcc} if debug information is missing, or the compiler
does not emit the DWARF-2 calling convention entry for a function.

@item show sh calling-convention
@kindex show sh calling-convention
Show the current calling convention setting.

@end table


@node Architectures
@section Architectures

This section describes characteristics of architectures that affect
all uses of @value{GDBN} with the architecture, both native and cross.

@menu
* AArch64::
* i386::
* Alpha::
* MIPS::
* HPPA::               HP PA architecture
* PowerPC::
* Nios II::
* Sparc64::
* S12Z::
@end menu

@node AArch64
@subsection AArch64
@cindex AArch64 support

When @value{GDBN} is debugging the AArch64 architecture, it provides the
following special commands:

@table @code
@item set debug aarch64
@kindex set debug aarch64
This command determines whether AArch64 architecture-specific debugging
messages are to be displayed.

@item show debug aarch64
Show whether AArch64 debugging messages are displayed.

@end table

@subsubsection AArch64 SVE.
@cindex AArch64 SVE.

When @value{GDBN} is debugging the AArch64 architecture, if the Scalable Vector
Extension (SVE) is present, then @value{GDBN} will provide the vector registers
@code{$z0} through @code{$z31}, vector predicate registers @code{$p0} through
@code{$p15}, and the @code{$ffr} register.  In addition, the pseudo register
@code{$vg} will be provided.  This is the vector granule for the current thread
and represents the number of 64-bit chunks in an SVE @code{z} register.

If the vector length changes, then the @code{$vg} register will be updated,
but the lengths of the @code{z} and @code{p} registers will not change.  This
is a known limitation of @value{GDBN} and does not affect the execution of the
target process.

@subsubsection AArch64 Pointer Authentication.
@cindex AArch64 Pointer Authentication.

When @value{GDBN} is debugging the AArch64 architecture, and the program is
using the v8.3-A feature Pointer Authentication (PAC), then whenever the link
register @code{$lr} is pointing to an PAC function its value will be masked.
When GDB prints a backtrace, any addresses that required unmasking will be
postfixed with the marker [PAC].  When using the MI, this is printed as part
of the @code{addr_flags} field.

@node i386
@subsection x86 Architecture-specific Issues

@table @code
@item set struct-convention @var{mode}
@kindex set struct-convention
@cindex struct return convention
@cindex struct/union returned in registers
Set the convention used by the inferior to return @code{struct}s and
@code{union}s from functions to @var{mode}.  Possible values of
@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
default).  @code{"default"} or @code{"pcc"} means that @code{struct}s
are returned on the stack, while @code{"reg"} means that a
@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
be returned in a register.

@item show struct-convention
@kindex show struct-convention
Show the current setting of the convention to return @code{struct}s
from functions.
@end table


@subsubsection Intel @dfn{Memory Protection Extensions} (MPX).
@cindex Intel Memory Protection Extensions (MPX).

Memory Protection Extension (MPX) adds the bound registers @samp{BND0}
@footnote{The register named with capital letters represent the architecture
registers.} through @samp{BND3}.  Bound registers store a pair of 64-bit values
which are the lower bound and upper bound.  Bounds are effective addresses or
memory locations.  The upper bounds are architecturally represented in 1's
complement form.  A bound having lower bound = 0, and upper bound = 0
(1's complement of all bits set) will allow access to the entire address space.

@samp{BND0} through @samp{BND3} are represented in @value{GDBN} as @samp{bnd0raw}
through @samp{bnd3raw}.  Pseudo registers @samp{bnd0} through @samp{bnd3}
display the upper bound performing the complement of one operation on the
upper bound value, i.e.@ when upper bound in @samp{bnd0raw} is 0 in the
@value{GDBN} @samp{bnd0} it will be @code{0xfff@dots{}}.  In this sense it
can also be noted that the upper bounds are inclusive.

As an example, assume that the register BND0 holds bounds for a pointer having
access allowed for the range between 0x32 and 0x71.  The values present on
bnd0raw and bnd registers are presented as follows:

@smallexample
	bnd0raw = @{0x32, 0xffffffff8e@}
	bnd0 = @{lbound = 0x32, ubound = 0x71@} : size 64
@end smallexample

This way the raw value can be accessed via bnd0raw@dots{}bnd3raw.  Any
change on bnd0@dots{}bnd3 or bnd0raw@dots{}bnd3raw is reflect on its
counterpart.  When the bnd0@dots{}bnd3 registers are displayed via
Python, the display includes the memory size, in bits, accessible to
the pointer.

Bounds can also be stored in bounds tables, which are stored in
application memory.  These tables store bounds for pointers by specifying
the bounds pointer's value along with its bounds.  Evaluating and changing
bounds located in bound tables is therefore interesting while investigating
bugs on MPX context.  @value{GDBN} provides commands for this purpose:

@table @code
@item show mpx bound @var{pointer}
@kindex show mpx bound
Display bounds of the given @var{pointer}.

@item set mpx bound @var{pointer}, @var{lbound}, @var{ubound}
@kindex  set mpx bound
Set the bounds of a pointer in the bound table.
This command takes three parameters: @var{pointer} is the pointers
whose bounds are to be changed, @var{lbound} and @var{ubound} are new values
for lower and upper bounds respectively.
@end table

When you call an inferior function on an Intel MPX enabled program,
GDB sets the inferior's bound registers to the init (disabled) state
before calling the function.  As a consequence, bounds checks for the
pointer arguments passed to the function will always pass.

This is necessary because when you call an inferior function, the
program is usually in the middle of the execution of other function.
Since at that point bound registers are in an arbitrary state, not
clearing them would lead to random bound violations in the called
function.

You can still examine the influence of the bound registers on the
execution of the called function by stopping the execution of the
called function at its prologue, setting bound registers, and
continuing the execution.  For example:

@smallexample
	$ break *upper
	Breakpoint 2 at 0x4009de: file i386-mpx-call.c, line 47.
	$ print upper (a, b, c, d, 1)
	Breakpoint 2, upper (a=0x0, b=0x6e0000005b, c=0x0, d=0x0, len=48)....
	$ print $bnd0
	@{lbound = 0x0, ubound = ffffffff@} : size -1
@end smallexample

At this last step the value of bnd0 can be changed for investigation of bound
violations caused along the execution of the call.  In order to know how to
set the bound registers or bound table for the call consult the ABI.

@node Alpha
@subsection Alpha

See the following section.

@node MIPS
@subsection @acronym{MIPS}

@cindex stack on Alpha
@cindex stack on @acronym{MIPS}
@cindex Alpha stack
@cindex @acronym{MIPS} stack
Alpha- and @acronym{MIPS}-based computers use an unusual stack frame, which
sometimes requires @value{GDBN} to search backward in the object code to
find the beginning of a function.

@cindex response time, @acronym{MIPS} debugging
To improve response time (especially for embedded applications, where
@value{GDBN} may be restricted to a slow serial line for this search)
you may want to limit the size of this search, using one of these
commands:

@table @code
@cindex @code{heuristic-fence-post} (Alpha, @acronym{MIPS})
@item set heuristic-fence-post @var{limit}
Restrict @value{GDBN} to examining at most @var{limit} bytes in its
search for the beginning of a function.  A value of @var{0} (the
default) means there is no limit.  However, except for @var{0}, the
larger the limit the more bytes @code{heuristic-fence-post} must search
and therefore the longer it takes to run.  You should only need to use
this command when debugging a stripped executable.

@item show heuristic-fence-post
Display the current limit.
@end table

@noindent
These commands are available @emph{only} when @value{GDBN} is configured
for debugging programs on Alpha or @acronym{MIPS} processors.

Several @acronym{MIPS}-specific commands are available when debugging @acronym{MIPS}
programs:

@table @code
@item set mips abi @var{arg}
@kindex set mips abi
@cindex set ABI for @acronym{MIPS}
Tell @value{GDBN} which @acronym{MIPS} ABI is used by the inferior.  Possible
values of @var{arg} are:

@table @samp
@item auto
The default ABI associated with the current binary (this is the
default).
@item o32
@item o64
@item n32
@item n64
@item eabi32
@item eabi64
@end table

@item show mips abi
@kindex show mips abi
Show the @acronym{MIPS} ABI used by @value{GDBN} to debug the inferior.

@item set mips compression @var{arg}
@kindex set mips compression
@cindex code compression, @acronym{MIPS}
Tell @value{GDBN} which @acronym{MIPS} compressed
@acronym{ISA, Instruction Set Architecture} encoding is used by the
inferior.  @value{GDBN} uses this for code disassembly and other
internal interpretation purposes.  This setting is only referred to
when no executable has been associated with the debugging session or
the executable does not provide information about the encoding it uses.
Otherwise this setting is automatically updated from information
provided by the executable.

Possible values of @var{arg} are @samp{mips16} and @samp{micromips}.
The default compressed @acronym{ISA} encoding is @samp{mips16}, as
executables containing @acronym{MIPS16} code frequently are not
identified as such.

This setting is ``sticky''; that is, it retains its value across
debugging sessions until reset either explicitly with this command or
implicitly from an executable.

The compiler and/or assembler typically add symbol table annotations to
identify functions compiled for the @acronym{MIPS16} or
@acronym{microMIPS} @acronym{ISA}s.  If these function-scope annotations
are present, @value{GDBN} uses them in preference to the global
compressed @acronym{ISA} encoding setting.

@item show mips compression
@kindex show mips compression
Show the @acronym{MIPS} compressed @acronym{ISA} encoding used by
@value{GDBN} to debug the inferior.

@item set mipsfpu
@itemx show mipsfpu
@xref{MIPS Embedded, set mipsfpu}.

@item set mips mask-address @var{arg}
@kindex set mips mask-address
@cindex @acronym{MIPS} addresses, masking
This command determines whether the most-significant 32 bits of 64-bit
@acronym{MIPS} addresses are masked off.  The argument @var{arg} can be
@samp{on}, @samp{off}, or @samp{auto}.  The latter is the default
setting, which lets @value{GDBN} determine the correct value.

@item show mips mask-address
@kindex show mips mask-address
Show whether the upper 32 bits of @acronym{MIPS} addresses are masked off or
not.

@item set remote-mips64-transfers-32bit-regs
@kindex set remote-mips64-transfers-32bit-regs
This command controls compatibility with 64-bit @acronym{MIPS} targets that
transfer data in 32-bit quantities.  If you have an old @acronym{MIPS} 64 target
that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
and 64 bits for other registers, set this option to @samp{on}.

@item show remote-mips64-transfers-32bit-regs
@kindex show remote-mips64-transfers-32bit-regs
Show the current setting of compatibility with older @acronym{MIPS} 64 targets.

@item set debug mips
@kindex set debug mips
This command turns on and off debugging messages for the @acronym{MIPS}-specific
target code in @value{GDBN}.

@item show debug mips
@kindex show debug mips
Show the current setting of @acronym{MIPS} debugging messages.
@end table


@node HPPA
@subsection HPPA
@cindex HPPA support

When @value{GDBN} is debugging the HP PA architecture, it provides the
following special commands:

@table @code
@item set debug hppa
@kindex set debug hppa
This command determines whether HPPA architecture-specific debugging
messages are to be displayed.

@item show debug hppa
Show whether HPPA debugging messages are displayed.

@item maint print unwind @var{address}
@kindex maint print unwind@r{, HPPA}
This command displays the contents of the unwind table entry at the
given @var{address}.

@end table


@node PowerPC
@subsection PowerPC
@cindex PowerPC architecture

When @value{GDBN} is debugging the PowerPC architecture, it provides a set of 
pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
numbers stored in the floating point registers. These values must be stored
in two consecutive registers, always starting at an even register like
@code{f0} or @code{f2}.

The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
@code{f2} and @code{f3} for @code{$dl1} and so on.

For POWER7 processors, @value{GDBN} provides a set of pseudo-registers, the 64-bit
wide Extended Floating Point Registers (@samp{f32} through @samp{f63}).

@node Nios II
@subsection Nios II
@cindex Nios II architecture

When @value{GDBN} is debugging the Nios II architecture,
it provides the following special commands:

@table @code

@item set debug nios2
@kindex set debug nios2
This command turns on and off debugging messages for the Nios II
target code in @value{GDBN}.

@item show debug nios2
@kindex show debug nios2
Show the current setting of Nios II debugging messages.
@end table

@node Sparc64
@subsection Sparc64
@cindex Sparc64 support
@cindex Application Data Integrity
@subsubsection ADI Support

The M7 processor supports an Application Data Integrity (ADI) feature that 
detects invalid data accesses.  When software allocates memory and enables 
ADI on the allocated memory, it chooses a 4-bit version number, sets the 
version in the upper 4 bits of the 64-bit pointer to that data, and stores 
the 4-bit version in every cacheline of that data.  Hardware saves the latter 
in spare bits in the cache and memory hierarchy.  On each load and store, 
the processor compares the upper 4 VA (virtual address) bits to the 
cacheline's version.  If there is a mismatch, the processor generates a 
version mismatch trap which can be either precise or disrupting.  The trap 
is an error condition which the kernel delivers to the process as a SIGSEGV 
signal.

Note that only 64-bit applications can use ADI and need to be built with
ADI-enabled.

Values of the ADI version tags, which are in granularity of a 
cacheline (64 bytes), can be viewed or modified. 


@table @code
@kindex adi examine
@item adi (examine | x) [ / @var{n} ] @var{addr}

The @code{adi examine} command displays the value of one ADI version tag per 
cacheline. 

@var{n} is a decimal integer specifying the number in bytes; the default 
is 1.  It specifies how much ADI version information, at the ratio of 1:ADI 
block size, to display. 

@var{addr} is the address in user address space where you want @value{GDBN} 
to begin displaying the ADI version tags. 

Below is an example of displaying ADI versions of variable "shmaddr".

@smallexample
(@value{GDBP}) adi x/100 shmaddr
   0xfff800010002c000:     0 0
@end smallexample

@kindex adi assign
@item adi (assign | a) [ / @var{n} ] @var{addr} = @var{tag}

The @code{adi assign} command is used to assign new ADI version tag 
to an address. 

@var{n} is a decimal integer specifying the number in bytes; 
the default is 1.  It specifies how much ADI version information, at the 
ratio of 1:ADI block size, to modify. 

@var{addr} is the address in user address space where you want @value{GDBN} 
to begin modifying the ADI version tags. 

@var{tag} is the new ADI version tag.

For example, do the following to modify then verify ADI versions of 
variable "shmaddr":

@smallexample
(@value{GDBP}) adi a/100 shmaddr = 7
(@value{GDBP}) adi x/100 shmaddr
   0xfff800010002c000:     7 7
@end smallexample

@end table

@node S12Z
@subsection S12Z
@cindex S12Z support

When @value{GDBN} is debugging the S12Z architecture,
it provides the following special command:

@table @code
@item maint info bdccsr
@kindex maint info bdccsr@r{, S12Z}
This command displays the current value of the microprocessor's
BDCCSR register.
@end table


@node Controlling GDB
@chapter Controlling @value{GDBN}

You can alter the way @value{GDBN} interacts with you by using the
@code{set} command.  For commands controlling how @value{GDBN} displays
data, see @ref{Print Settings, ,Print Settings}.  Other settings are
described here.

@menu
* Prompt::                      Prompt
* Editing::                     Command editing
* Command History::             Command history
* Screen Size::                 Screen size
* Output Styling::              Output styling
* Numbers::                     Numbers
* ABI::                         Configuring the current ABI
* Auto-loading::                Automatically loading associated files
* Messages/Warnings::           Optional warnings and messages
* Debugging Output::            Optional messages about internal happenings
* Other Misc Settings::         Other Miscellaneous Settings
@end menu

@node Prompt
@section Prompt

@cindex prompt

@value{GDBN} indicates its readiness to read a command by printing a string
called the @dfn{prompt}.  This string is normally @samp{(@value{GDBP})}.  You
can change the prompt string with the @code{set prompt} command.  For
instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
the prompt in one of the @value{GDBN} sessions so that you can always tell
which one you are talking to.

@emph{Note:}  @code{set prompt} does not add a space for you after the
prompt you set.  This allows you to set a prompt which ends in a space
or a prompt that does not.

@table @code
@kindex set prompt
@item set prompt @var{newprompt}
Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.

@kindex show prompt
@item show prompt
Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
@end table

Versions of @value{GDBN} that ship with Python scripting enabled have
prompt extensions.  The commands for interacting with these extensions
are:

@table @code
@kindex set extended-prompt
@item set extended-prompt @var{prompt}
Set an extended prompt that allows for substitutions.
@xref{gdb.prompt}, for a list of escape sequences that can be used for
substitution.  Any escape sequences specified as part of the prompt
string are replaced with the corresponding strings each time the prompt
is displayed.

For example:

@smallexample
set extended-prompt Current working directory: \w (gdb)
@end smallexample

Note that when an extended-prompt is set, it takes control of the
@var{prompt_hook} hook.  @xref{prompt_hook}, for further information.

@kindex show extended-prompt
@item show extended-prompt
Prints the extended prompt.  Any escape sequences specified as part of
the prompt string with @code{set extended-prompt}, are replaced with the
corresponding strings each time the prompt is displayed.
@end table

@node Editing
@section Command Editing
@cindex readline
@cindex command line editing

@value{GDBN} reads its input commands via the @dfn{Readline} interface.  This
@sc{gnu} library provides consistent behavior for programs which provide a
command line interface to the user.  Advantages are @sc{gnu} Emacs-style
or @dfn{vi}-style inline editing of commands, @code{csh}-like history
substitution, and a storage and recall of command history across
debugging sessions.

You may control the behavior of command line editing in @value{GDBN} with the
command @code{set}.

@table @code
@kindex set editing
@cindex editing
@item set editing
@itemx set editing on
Enable command line editing (enabled by default).

@item set editing off
Disable command line editing.

@kindex show editing
@item show editing
Show whether command line editing is enabled.
@end table

@ifset SYSTEM_READLINE
@xref{Command Line Editing, , , rluserman, GNU Readline Library},
@end ifset
@ifclear SYSTEM_READLINE
@xref{Command Line Editing},
@end ifclear
for more details about the Readline
interface.  Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
encouraged to read that chapter.

@cindex Readline application name
@value{GDBN} sets the Readline application name to @samp{gdb}.  This
is useful for conditions in @file{.inputrc}.

@cindex operate-and-get-next
@value{GDBN} defines a bindable Readline command,
@code{operate-and-get-next}.  This is bound to @kbd{C-o} by default.
This command accepts the current line for execution and fetches the
next line relative to the current line from the history for editing.
Any argument is ignored.

@node Command History
@section Command History
@cindex command history

@value{GDBN} can keep track of the commands you type during your
debugging sessions, so that you can be certain of precisely what
happened.  Use these commands to manage the @value{GDBN} command
history facility.

@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
package, to provide the history facility.
@ifset SYSTEM_READLINE
@xref{Using History Interactively, , , history, GNU History Library},
@end ifset
@ifclear SYSTEM_READLINE
@xref{Using History Interactively},
@end ifclear
for the detailed description of the History library.

To issue a command to @value{GDBN} without affecting certain aspects of
the state which is seen by users, prefix it with @samp{server }
(@pxref{Server Prefix}).  This
means that this command will not affect the command history, nor will it
affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
pressed on a line by itself.

@cindex @code{server}, command prefix
The server prefix does not affect the recording of values into the value
history; to print a value without recording it into the value history,
use the @code{output} command instead of the @code{print} command.

Here is the description of @value{GDBN} commands related to command
history.

@table @code
@cindex history substitution
@cindex history file
@kindex set history filename
@cindex @env{GDBHISTFILE}, environment variable
@item set history filename @r{[}@var{fname}@r{]}
Set the name of the @value{GDBN} command history file to @var{fname}.
This is the file where @value{GDBN} reads an initial command history
list, and where it writes the command history from this session when it
exits.  You can access this list through history expansion or through
the history command editing characters listed below.  This file defaults
to the value of the environment variable @code{GDBHISTFILE}, or to
@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
is not set.

The @code{GDBHISTFILE} environment variable is read after processing
any @value{GDBN} initialization files (@pxref{Startup}) and after
processing any commands passed using command line options (for
example, @code{-ex}).

If the @var{fname} argument is not given, or if the @code{GDBHISTFILE}
is the empty string then @value{GDBN} will neither try to load an
existing history file, nor will it try to save the history on exit.

@cindex save command history
@kindex set history save
@item set history save
@itemx set history save on
Record command history in a file, whose name may be specified with the
@code{set history filename} command.  By default, this option is
disabled.  The command history will be recorded when @value{GDBN}
exits.  If @code{set history filename} is set to the empty string then
history saving is disabled, even when @code{set history save} is
@code{on}.

@item set history save off
Don't record the command history into the file specified by @code{set
history filename} when @value{GDBN} exits.

@cindex history size
@kindex set history size
@cindex @env{GDBHISTSIZE}, environment variable
@item set history size @var{size}
@itemx set history size unlimited
Set the number of commands which @value{GDBN} keeps in its history list.
This defaults to the value of the environment variable @env{GDBHISTSIZE}, or
to 256 if this variable is not set.  Non-numeric values of @env{GDBHISTSIZE}
are ignored.  If @var{size} is @code{unlimited} or if @env{GDBHISTSIZE} is
either a negative number or the empty string, then the number of commands
@value{GDBN} keeps in the history list is unlimited.

The @code{GDBHISTSIZE} environment variable is read after processing
any @value{GDBN} initialization files (@pxref{Startup}) and after
processing any commands passed using command line options (for
example, @code{-ex}).

@cindex remove duplicate history
@kindex set history remove-duplicates
@item set history remove-duplicates @var{count}
@itemx set history remove-duplicates unlimited
Control the removal of duplicate history entries in the command history list.
If @var{count} is non-zero, @value{GDBN} will look back at the last @var{count}
history entries and remove the first entry that is a duplicate of the current
entry being added to the command history list.  If @var{count} is
@code{unlimited} then this lookbehind is unbounded.  If @var{count} is 0, then
removal of duplicate history entries is disabled.

Only history entries added during the current session are considered for
removal.  This option is set to 0 by default.

@end table

History expansion assigns special meaning to the character @kbd{!}.
@ifset SYSTEM_READLINE
@xref{Event Designators, , , history, GNU History Library},
@end ifset
@ifclear SYSTEM_READLINE
@xref{Event Designators},
@end ifclear
for more details.

@cindex history expansion, turn on/off
Since @kbd{!} is also the logical not operator in C, history expansion
is off by default. If you decide to enable history expansion with the
@code{set history expansion on} command, you may sometimes need to
follow @kbd{!} (when it is used as logical not, in an expression) with
a space or a tab to prevent it from being expanded.  The readline
history facilities do not attempt substitution on the strings
@kbd{!=} and @kbd{!(}, even when history expansion is enabled.

The commands to control history expansion are:

@table @code
@item set history expansion on
@itemx set history expansion
@kindex set history expansion
Enable history expansion.  History expansion is off by default.

@item set history expansion off
Disable history expansion.

@c @group
@kindex show history
@item show history
@itemx show history filename
@itemx show history save
@itemx show history size
@itemx show history expansion
These commands display the state of the @value{GDBN} history parameters.
@code{show history} by itself displays all four states.
@c @end group
@end table

@table @code
@kindex show commands
@cindex show last commands
@cindex display command history
@item show commands
Display the last ten commands in the command history.

@item show commands @var{n}
Print ten commands centered on command number @var{n}.

@item show commands +
Print ten commands just after the commands last printed.
@end table

@node Screen Size
@section Screen Size
@cindex size of screen
@cindex screen size
@cindex pagination
@cindex page size
@cindex pauses in output

Certain commands to @value{GDBN} may produce large amounts of
information output to the screen.  To help you read all of it,
@value{GDBN} pauses and asks you for input at the end of each page of
output.  Type @key{RET} when you want to see one more page of output,
@kbd{q} to discard the remaining output, or @kbd{c} to continue
without paging for the rest of the current command.  Also, the screen
width setting determines when to wrap lines of output.  Depending on
what is being printed, @value{GDBN} tries to break the line at a
readable place, rather than simply letting it overflow onto the
following line.

Normally @value{GDBN} knows the size of the screen from the terminal
driver software.  For example, on Unix @value{GDBN} uses the termcap data base
together with the value of the @code{TERM} environment variable and the
@code{stty rows} and @code{stty cols} settings.  If this is not correct,
you can override it with the @code{set height} and @code{set
width} commands:

@table @code
@kindex set height
@kindex set width
@kindex show width
@kindex show height
@item set height @var{lpp}
@itemx set height unlimited
@itemx show height
@itemx set width @var{cpl}
@itemx set width unlimited
@itemx show width
These @code{set} commands specify a screen height of @var{lpp} lines and
a screen width of @var{cpl} characters.  The associated @code{show}
commands display the current settings.

If you specify a height of either @code{unlimited} or zero lines,
@value{GDBN} does not pause during output no matter how long the
output is.  This is useful if output is to a file or to an editor
buffer.

Likewise, you can specify @samp{set width unlimited} or @samp{set
width 0} to prevent @value{GDBN} from wrapping its output.

@item set pagination on
@itemx set pagination off
@kindex set pagination
Turn the output pagination on or off; the default is on.  Turning
pagination off is the alternative to @code{set height unlimited}.  Note that
running @value{GDBN} with the @option{--batch} option (@pxref{Mode
Options, -batch}) also automatically disables pagination.

@item show pagination
@kindex show pagination
Show the current pagination mode.
@end table

@node Output Styling
@section Output Styling
@cindex styling
@cindex colors

@kindex set style
@kindex show style
@value{GDBN} can style its output on a capable terminal.  This is
enabled by default on most systems, but disabled by default when in
batch mode (@pxref{Mode Options}).  Various style settings are available;
and styles can also be disabled entirely.

@table @code
@item set style enabled @samp{on|off}
Enable or disable all styling.  The default is host-dependent, with
most hosts defaulting to @samp{on}.

@item show style enabled
Show the current state of styling.

@item set style sources @samp{on|off}
Enable or disable source code styling.  This affects whether source
code, such as the output of the @code{list} command, is styled.  Note
that source styling only works if styling in general is enabled, and
if @value{GDBN} was linked with the GNU Source Highlight library.  The
default is @samp{on}.

@item show style sources
Show the current state of source code styling.
@end table

Subcommands of @code{set style} control specific forms of styling.
These subcommands all follow the same pattern: each style-able object
can be styled with a foreground color, a background color, and an
intensity.

For example, the style of file names can be controlled using the
@code{set style filename} group of commands:

@table @code
@item set style filename background @var{color}
Set the background to @var{color}.  Valid colors are @samp{none}
(meaning the terminal's default color), @samp{black}, @samp{red},
@samp{green}, @samp{yellow}, @samp{blue}, @samp{magenta}, @samp{cyan},
and@samp{white}.

@item set style filename foreground @var{color}
Set the foreground to @var{color}.  Valid colors are @samp{none}
(meaning the terminal's default color), @samp{black}, @samp{red},
@samp{green}, @samp{yellow}, @samp{blue}, @samp{magenta}, @samp{cyan},
and@samp{white}.

@item set style filename intensity @var{value}
Set the intensity to @var{value}.  Valid intensities are @samp{normal}
(the default), @samp{bold}, and @samp{dim}.
@end table

The @code{show style} command and its subcommands are styling
a style name in their output using its own style.
So, use @command{show style} to see the complete list of styles,
their characteristics and the visual aspect of each style.

The style-able objects are:
@table @code
@item filename
Control the styling of file names.  By default, this style's
foreground color is green.

@item function
Control the styling of function names.  These are managed with the
@code{set style function} family of commands.  By default, this
style's foreground color is yellow.

@item variable
Control the styling of variable names.  These are managed with the
@code{set style variable} family of commands.  By default, this style's
foreground color is cyan.

@item address
Control the styling of addresses.  These are managed with the
@code{set style address} family of commands.  By default, this style's
foreground color is blue.

@item title
Control the styling of titles.  These are managed with the
@code{set style title} family of commands.  By default, this style's
intensity is bold.  Commands are using the title style to improve
the readability of large output.  For example, the commands
@command{apropos} and @command{help} are using the title style
for the command names.

@item highlight
Control the styling of highlightings.  These are managed with the
@code{set style highlight} family of commands.  By default, this style's
foreground color is red.  Commands are using the highlight style to draw
the user attention to some specific parts of their output.  For example,
the command @command{apropos -v REGEXP} uses the highlight style to
mark the documentation parts matching @var{regexp}.

@item tui-border
Control the styling of the TUI border.  Note that, unlike other
styling options, only the color of the border can be controlled via
@code{set style}.  This was done for compatibility reasons, as TUI
controls to set the border's intensity predated the addition of
general styling to @value{GDBN}.  @xref{TUI Configuration}.

@item tui-active-border
Control the styling of the active TUI border; that is, the TUI window
that has the focus.

@end table

@node Numbers
@section Numbers
@cindex number representation
@cindex entering numbers

You can always enter numbers in octal, decimal, or hexadecimal in
@value{GDBN} by the usual conventions: octal numbers begin with
@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
begin with @samp{0x}.  Numbers that neither begin with @samp{0} or
@samp{0x}, nor end with a @samp{.} are, by default, entered in base
10; likewise, the default display for numbers---when no particular
format is specified---is base 10.  You can change the default base for
both input and output with the commands described below.

@table @code
@kindex set input-radix
@item set input-radix @var{base}
Set the default base for numeric input.  Supported choices
for @var{base} are decimal 8, 10, or 16.  The base must itself be
specified either unambiguously or using the current input radix; for
example, any of

@smallexample
set input-radix 012
set input-radix 10.
set input-radix 0xa
@end smallexample

@noindent
sets the input base to decimal.  On the other hand, @samp{set input-radix 10}
leaves the input radix unchanged, no matter what it was, since
@samp{10}, being without any leading or trailing signs of its base, is
interpreted in the current radix.  Thus, if the current radix is 16,
@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
change the radix.

@kindex set output-radix
@item set output-radix @var{base}
Set the default base for numeric display.  Supported choices
for @var{base} are decimal 8, 10, or 16.  The base must itself be
specified either unambiguously or using the current input radix.

@kindex show input-radix
@item show input-radix
Display the current default base for numeric input.

@kindex show output-radix
@item show output-radix
Display the current default base for numeric display.

@item set radix @r{[}@var{base}@r{]}
@itemx show radix
@kindex set radix
@kindex show radix
These commands set and show the default base for both input and output
of numbers.  @code{set radix} sets the radix of input and output to
the same base; without an argument, it resets the radix back to its
default value of 10.

@end table

@node ABI
@section Configuring the Current ABI

@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
application automatically.  However, sometimes you need to override its
conclusions.  Use these commands to manage @value{GDBN}'s view of the
current ABI.

@cindex OS ABI
@kindex set osabi
@kindex show osabi
@cindex Newlib OS ABI and its influence on the longjmp handling

One @value{GDBN} configuration can debug binaries for multiple operating
system targets, either via remote debugging or native emulation.
@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
but you can override its conclusion using the @code{set osabi} command.
One example where this is useful is in debugging of binaries which use
an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
not have the same identifying marks that the standard C library for your
platform provides.

When @value{GDBN} is debugging the AArch64 architecture, it provides a
``Newlib'' OS ABI.  This is useful for handling @code{setjmp} and
@code{longjmp} when debugging binaries that use the @sc{newlib} C library.
The ``Newlib'' OS ABI can be selected by @code{set osabi Newlib}.

@table @code
@item show osabi
Show the OS ABI currently in use.

@item set osabi
With no argument, show the list of registered available OS ABI's.

@item set osabi @var{abi}
Set the current OS ABI to @var{abi}.
@end table

@cindex float promotion

Generally, the way that an argument of type @code{float} is passed to a
function depends on whether the function is prototyped.  For a prototyped
(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
according to the architecture's convention for @code{float}.  For unprototyped
(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
@code{double} and then passed.

Unfortunately, some forms of debug information do not reliably indicate whether
a function is prototyped.  If @value{GDBN} calls a function that is not marked
as prototyped, it consults @kbd{set coerce-float-to-double}.

@table @code
@kindex set coerce-float-to-double
@item set coerce-float-to-double
@itemx set coerce-float-to-double on
Arguments of type @code{float} will be promoted to @code{double} when passed
to an unprototyped function.  This is the default setting.

@item set coerce-float-to-double off
Arguments of type @code{float} will be passed directly to unprototyped
functions.

@kindex show coerce-float-to-double
@item show coerce-float-to-double
Show the current setting of promoting @code{float} to @code{double}.
@end table

@kindex set cp-abi
@kindex show cp-abi
@value{GDBN} needs to know the ABI used for your program's C@t{++}
objects.  The correct C@t{++} ABI depends on which C@t{++} compiler was
used to build your application.  @value{GDBN} only fully supports
programs with a single C@t{++} ABI; if your program contains code using
multiple C@t{++} ABI's or if @value{GDBN} can not identify your
program's ABI correctly, you can tell @value{GDBN} which ABI to use.
Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
``hpaCC'' for the HP ANSI C@t{++} compiler.  Other C@t{++} compilers may
use the ``gnu-v2'' or ``gnu-v3'' ABI's as well.  The default setting is
``auto''.

@table @code
@item show cp-abi
Show the C@t{++} ABI currently in use.

@item set cp-abi
With no argument, show the list of supported C@t{++} ABI's.

@item set cp-abi @var{abi}
@itemx set cp-abi auto
Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
@end table

@node Auto-loading
@section Automatically loading associated files
@cindex auto-loading

@value{GDBN} sometimes reads files with commands and settings automatically,
without being explicitly told so by the user.  We call this feature
@dfn{auto-loading}.  While auto-loading is useful for automatically adapting
@value{GDBN} to the needs of your project, it can sometimes produce unexpected
results or introduce security risks (e.g., if the file comes from untrusted
sources).

@menu
* Init File in the Current Directory:: @samp{set/show/info auto-load local-gdbinit}
* libthread_db.so.1 file::             @samp{set/show/info auto-load libthread-db}

* Auto-loading safe path::             @samp{set/show/info auto-load safe-path}
* Auto-loading verbose mode::          @samp{set/show debug auto-load}
@end menu

There are various kinds of files @value{GDBN} can automatically load.
In addition to these files, @value{GDBN} supports auto-loading code written
in various extension languages.  @xref{Auto-loading extensions}.

Note that loading of these associated files (including the local @file{.gdbinit}
file) requires accordingly configured @code{auto-load safe-path}
(@pxref{Auto-loading safe path}).

For these reasons, @value{GDBN} includes commands and options to let you
control when to auto-load files and which files should be auto-loaded.

@table @code
@anchor{set auto-load off}
@kindex set auto-load off
@item set auto-load off
Globally disable loading of all auto-loaded files.
You may want to use this command with the @samp{-iex} option
(@pxref{Option -init-eval-command}) such as:
@smallexample
$ @kbd{gdb -iex "set auto-load off" untrusted-executable corefile}
@end smallexample

Be aware that system init file (@pxref{System-wide configuration})
and init files from your home directory (@pxref{Home Directory Init File})
still get read (as they come from generally trusted directories).
To prevent @value{GDBN} from auto-loading even those init files, use the
@option{-nx} option (@pxref{Mode Options}), in addition to
@code{set auto-load no}.

@anchor{show auto-load}
@kindex show auto-load
@item show auto-load
Show whether auto-loading of each specific @samp{auto-load} file(s) is enabled
or disabled.

@smallexample
(gdb) show auto-load
gdb-scripts:  Auto-loading of canned sequences of commands scripts is on.
libthread-db:  Auto-loading of inferior specific libthread_db is on.
local-gdbinit:  Auto-loading of .gdbinit script from current directory
                is on.
python-scripts:  Auto-loading of Python scripts is on.
safe-path:  List of directories from which it is safe to auto-load files
            is $debugdir:$datadir/auto-load.
scripts-directory:  List of directories from which to load auto-loaded scripts
                    is $debugdir:$datadir/auto-load.
@end smallexample

@anchor{info auto-load}
@kindex info auto-load
@item info auto-load
Print whether each specific @samp{auto-load} file(s) have been auto-loaded or
not.

@smallexample
(gdb) info auto-load
gdb-scripts:
Loaded  Script
Yes     /home/user/gdb/gdb-gdb.gdb
libthread-db:  No auto-loaded libthread-db.
local-gdbinit:  Local .gdbinit file "/home/user/gdb/.gdbinit" has been
                loaded.
python-scripts:
Loaded  Script
Yes     /home/user/gdb/gdb-gdb.py
@end smallexample
@end table

These are @value{GDBN} control commands for the auto-loading:

@multitable @columnfractions .5 .5
@item @xref{set auto-load off}.
@tab Disable auto-loading globally.
@item @xref{show auto-load}.
@tab Show setting of all kinds of files.
@item @xref{info auto-load}.
@tab Show state of all kinds of files.
@item @xref{set auto-load gdb-scripts}.
@tab Control for @value{GDBN} command scripts.
@item @xref{show auto-load gdb-scripts}.
@tab Show setting of @value{GDBN} command scripts.
@item @xref{info auto-load gdb-scripts}.
@tab Show state of @value{GDBN} command scripts.
@item @xref{set auto-load python-scripts}.
@tab Control for @value{GDBN} Python scripts.
@item @xref{show auto-load python-scripts}.
@tab Show setting of @value{GDBN} Python scripts.
@item @xref{info auto-load python-scripts}.
@tab Show state of @value{GDBN} Python scripts.
@item @xref{set auto-load guile-scripts}.
@tab Control for @value{GDBN} Guile scripts.
@item @xref{show auto-load guile-scripts}.
@tab Show setting of @value{GDBN} Guile scripts.
@item @xref{info auto-load guile-scripts}.
@tab Show state of @value{GDBN} Guile scripts.
@item @xref{set auto-load scripts-directory}.
@tab Control for @value{GDBN} auto-loaded scripts location.
@item @xref{show auto-load scripts-directory}.
@tab Show @value{GDBN} auto-loaded scripts location.
@item @xref{add-auto-load-scripts-directory}.
@tab Add directory for auto-loaded scripts location list.
@item @xref{set auto-load local-gdbinit}.
@tab Control for init file in the current directory.
@item @xref{show auto-load local-gdbinit}.
@tab Show setting of init file in the current directory.
@item @xref{info auto-load local-gdbinit}.
@tab Show state of init file in the current directory.
@item @xref{set auto-load libthread-db}.
@tab Control for thread debugging library.
@item @xref{show auto-load libthread-db}.
@tab Show setting of thread debugging library.
@item @xref{info auto-load libthread-db}.
@tab Show state of thread debugging library.
@item @xref{set auto-load safe-path}.
@tab Control directories trusted for automatic loading.
@item @xref{show auto-load safe-path}.
@tab Show directories trusted for automatic loading.
@item @xref{add-auto-load-safe-path}.
@tab Add directory trusted for automatic loading.
@end multitable

@node Init File in the Current Directory
@subsection Automatically loading init file in the current directory
@cindex auto-loading init file in the current directory

By default, @value{GDBN} reads and executes the canned sequences of commands
from init file (if any) in the current working directory,
see @ref{Init File in the Current Directory during Startup}.

Note that loading of this local @file{.gdbinit} file also requires accordingly
configured @code{auto-load safe-path} (@pxref{Auto-loading safe path}).

@table @code
@anchor{set auto-load local-gdbinit}
@kindex set auto-load local-gdbinit
@item set auto-load local-gdbinit [on|off]
Enable or disable the auto-loading of canned sequences of commands
(@pxref{Sequences}) found in init file in the current directory.

@anchor{show auto-load local-gdbinit}
@kindex show auto-load local-gdbinit
@item show auto-load local-gdbinit
Show whether auto-loading of canned sequences of commands from init file in the
current directory is enabled or disabled.

@anchor{info auto-load local-gdbinit}
@kindex info auto-load local-gdbinit
@item info auto-load local-gdbinit
Print whether canned sequences of commands from init file in the
current directory have been auto-loaded.
@end table

@node libthread_db.so.1 file
@subsection Automatically loading thread debugging library
@cindex auto-loading libthread_db.so.1

This feature is currently present only on @sc{gnu}/Linux native hosts.

@value{GDBN} reads in some cases thread debugging library from places specific
to the inferior (@pxref{set libthread-db-search-path}).

The special @samp{libthread-db-search-path} entry @samp{$sdir} is processed
without checking this @samp{set auto-load libthread-db} switch as system
libraries have to be trusted in general.  In all other cases of
@samp{libthread-db-search-path} entries @value{GDBN} checks first if @samp{set
auto-load libthread-db} is enabled before trying to open such thread debugging
library.

Note that loading of this debugging library also requires accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

@table @code
@anchor{set auto-load libthread-db}
@kindex set auto-load libthread-db
@item set auto-load libthread-db [on|off]
Enable or disable the auto-loading of inferior specific thread debugging library.

@anchor{show auto-load libthread-db}
@kindex show auto-load libthread-db
@item show auto-load libthread-db
Show whether auto-loading of inferior specific thread debugging library is
enabled or disabled.

@anchor{info auto-load libthread-db}
@kindex info auto-load libthread-db
@item info auto-load libthread-db
Print the list of all loaded inferior specific thread debugging libraries and
for each such library print list of inferior @var{pid}s using it.
@end table

@node Auto-loading safe path
@subsection Security restriction for auto-loading
@cindex auto-loading safe-path

As the files of inferior can come from untrusted source (such as submitted by
an application user) @value{GDBN} does not always load any files automatically.
@value{GDBN} provides the @samp{set auto-load safe-path} setting to list
directories trusted for loading files not explicitly requested by user.
Each directory can also be a shell wildcard pattern.

If the path is not set properly you will see a warning and the file will not
get loaded:

@smallexample
$ ./gdb -q ./gdb
Reading symbols from /home/user/gdb/gdb...
warning: File "/home/user/gdb/gdb-gdb.gdb" auto-loading has been
         declined by your `auto-load safe-path' set
         to "$debugdir:$datadir/auto-load".
warning: File "/home/user/gdb/gdb-gdb.py" auto-loading has been
         declined by your `auto-load safe-path' set
         to "$debugdir:$datadir/auto-load".
@end smallexample

@noindent
To instruct @value{GDBN} to go ahead and use the init files anyway,
invoke @value{GDBN} like this:

@smallexample
$ gdb -q -iex "set auto-load safe-path /home/user/gdb" ./gdb
@end smallexample

The list of trusted directories is controlled by the following commands:

@table @code
@anchor{set auto-load safe-path}
@kindex set auto-load safe-path
@item set auto-load safe-path @r{[}@var{directories}@r{]}
Set the list of directories (and their subdirectories) trusted for automatic
loading and execution of scripts.  You can also enter a specific trusted file.
Each directory can also be a shell wildcard pattern; wildcards do not match
directory separator - see @code{FNM_PATHNAME} for system function @code{fnmatch}
(@pxref{Wildcard Matching, fnmatch, , libc, GNU C Library Reference Manual}).
If you omit @var{directories}, @samp{auto-load safe-path} will be reset to
its default value as specified during @value{GDBN} compilation.

The list of directories uses path separator (@samp{:} on GNU and Unix
systems, @samp{;} on MS-Windows and MS-DOS) to separate directories, similarly
to the @env{PATH} environment variable.

@anchor{show auto-load safe-path}
@kindex show auto-load safe-path
@item show auto-load safe-path
Show the list of directories trusted for automatic loading and execution of
scripts.

@anchor{add-auto-load-safe-path}
@kindex add-auto-load-safe-path
@item add-auto-load-safe-path
Add an entry (or list of entries) to the list of directories trusted for
automatic loading and execution of scripts.  Multiple entries may be delimited
by the host platform path separator in use.
@end table

This variable defaults to what @code{--with-auto-load-dir} has been configured
to (@pxref{with-auto-load-dir}).  @file{$debugdir} and @file{$datadir}
substitution applies the same as for @ref{set auto-load scripts-directory}.
The default @code{set auto-load safe-path} value can be also overriden by
@value{GDBN} configuration option @option{--with-auto-load-safe-path}.

Setting this variable to @file{/} disables this security protection,
corresponding @value{GDBN} configuration option is
@option{--without-auto-load-safe-path}.
This variable is supposed to be set to the system directories writable by the
system superuser only.  Users can add their source directories in init files in
their home directories (@pxref{Home Directory Init File}).  See also deprecated
init file in the current directory
(@pxref{Init File in the Current Directory during Startup}).

To force @value{GDBN} to load the files it declined to load in the previous
example, you could use one of the following ways:

@table @asis
@item @file{~/.gdbinit}: @samp{add-auto-load-safe-path ~/src/gdb}
Specify this trusted directory (or a file) as additional component of the list.
You have to specify also any existing directories displayed by
by @samp{show auto-load safe-path} (such as @samp{/usr:/bin} in this example).

@item @kbd{gdb -iex "set auto-load safe-path /usr:/bin:~/src/gdb" @dots{}}
Specify this directory as in the previous case but just for a single
@value{GDBN} session.

@item @kbd{gdb -iex "set auto-load safe-path /" @dots{}}
Disable auto-loading safety for a single @value{GDBN} session.
This assumes all the files you debug during this @value{GDBN} session will come
from trusted sources.

@item @kbd{./configure --without-auto-load-safe-path}
During compilation of @value{GDBN} you may disable any auto-loading safety.
This assumes all the files you will ever debug with this @value{GDBN} come from
trusted sources.
@end table

On the other hand you can also explicitly forbid automatic files loading which
also suppresses any such warning messages:

@table @asis
@item @kbd{gdb -iex "set auto-load no" @dots{}}
You can use @value{GDBN} command-line option for a single @value{GDBN} session.

@item @file{~/.gdbinit}: @samp{set auto-load no}
Disable auto-loading globally for the user
(@pxref{Home Directory Init File}).  While it is improbable, you could also
use system init file instead (@pxref{System-wide configuration}).
@end table

This setting applies to the file names as entered by user.  If no entry matches
@value{GDBN} tries as a last resort to also resolve all the file names into
their canonical form (typically resolving symbolic links) and compare the
entries again.  @value{GDBN} already canonicalizes most of the filenames on its
own before starting the comparison so a canonical form of directories is
recommended to be entered.

@node Auto-loading verbose mode
@subsection Displaying files tried for auto-load
@cindex auto-loading verbose mode

For better visibility of all the file locations where you can place scripts to
be auto-loaded with inferior --- or to protect yourself against accidental
execution of untrusted scripts --- @value{GDBN} provides a feature for printing
all the files attempted to be loaded.  Both existing and non-existing files may
be printed.

For example the list of directories from which it is safe to auto-load files
(@pxref{Auto-loading safe path}) applies also to canonicalized filenames which
may not be too obvious while setting it up.

@smallexample
(gdb) set debug auto-load on
(gdb) file ~/src/t/true
auto-load: Loading canned sequences of commands script "/tmp/true-gdb.gdb"
           for objfile "/tmp/true".
auto-load: Updating directories of "/usr:/opt".
auto-load: Using directory "/usr".
auto-load: Using directory "/opt".
warning: File "/tmp/true-gdb.gdb" auto-loading has been declined
         by your `auto-load safe-path' set to "/usr:/opt".
@end smallexample

@table @code
@anchor{set debug auto-load}
@kindex set debug auto-load
@item set debug auto-load [on|off]
Set whether to print the filenames attempted to be auto-loaded.

@anchor{show debug auto-load}
@kindex show debug auto-load
@item show debug auto-load
Show whether printing of the filenames attempted to be auto-loaded is turned
on or off.
@end table

@node Messages/Warnings
@section Optional Warnings and Messages

@cindex verbose operation
@cindex optional warnings
By default, @value{GDBN} is silent about its inner workings.  If you are
running on a slow machine, you may want to use the @code{set verbose}
command.  This makes @value{GDBN} tell you when it does a lengthy
internal operation, so you will not think it has crashed.

Currently, the messages controlled by @code{set verbose} are those
which announce that the symbol table for a source file is being read;
see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.

@table @code
@kindex set verbose
@item set verbose on
Enables @value{GDBN} output of certain informational messages.

@item set verbose off
Disables @value{GDBN} output of certain informational messages.

@kindex show verbose
@item show verbose
Displays whether @code{set verbose} is on or off.
@end table

By default, if @value{GDBN} encounters bugs in the symbol table of an
object file, it is silent; but if you are debugging a compiler, you may
find this information useful (@pxref{Symbol Errors, ,Errors Reading
Symbol Files}).

@table @code

@kindex set complaints
@item set complaints @var{limit}
Permits @value{GDBN} to output @var{limit} complaints about each type of
unusual symbols before becoming silent about the problem.  Set
@var{limit} to zero to suppress all complaints; set it to a large number
to prevent complaints from being suppressed.

@kindex show complaints
@item show complaints
Displays how many symbol complaints @value{GDBN} is permitted to produce.

@end table

@anchor{confirmation requests}
By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
lot of stupid questions to confirm certain commands.  For example, if
you try to run a program which is already running:

@smallexample
(@value{GDBP}) run
The program being debugged has been started already.
Start it from the beginning? (y or n)
@end smallexample

If you are willing to unflinchingly face the consequences of your own
commands, you can disable this ``feature'':

@table @code

@kindex set confirm
@cindex flinching
@cindex confirmation
@cindex stupid questions
@item set confirm off
Disables confirmation requests.  Note that running @value{GDBN} with
the @option{--batch} option (@pxref{Mode Options, -batch}) also
automatically disables confirmation requests.

@item set confirm on
Enables confirmation requests (the default).

@kindex show confirm
@item show confirm
Displays state of confirmation requests.

@end table

@cindex command tracing
If you need to debug user-defined commands or sourced files you may find it
useful to enable @dfn{command tracing}.  In this mode each command will be
printed as it is executed, prefixed with one or more @samp{+} symbols, the
quantity denoting the call depth of each command.

@table @code
@kindex set trace-commands
@cindex command scripts, debugging
@item set trace-commands on
Enable command tracing.
@item set trace-commands off
Disable command tracing.
@item show trace-commands
Display the current state of command tracing.
@end table

@node Debugging Output
@section Optional Messages about Internal Happenings
@cindex optional debugging messages

@value{GDBN} has commands that enable optional debugging messages from
various @value{GDBN} subsystems; normally these commands are of
interest to @value{GDBN} maintainers, or when reporting a bug.  This
section documents those commands.

@table @code
@kindex set exec-done-display
@item set exec-done-display
Turns on or off the notification of asynchronous commands'
completion.  When on, @value{GDBN} will print a message when an
asynchronous command finishes its execution.  The default is off.
@kindex show exec-done-display
@item show exec-done-display
Displays the current setting of asynchronous command completion
notification.
@kindex set debug
@cindex ARM AArch64
@item set debug aarch64
Turns on or off display of debugging messages related to ARM AArch64.
The default is off.
@kindex show debug
@item show debug aarch64
Displays the current state of displaying debugging messages related to
ARM AArch64.
@cindex gdbarch debugging info
@cindex architecture debugging info
@item set debug arch
Turns on or off display of gdbarch debugging info.  The default is off
@item show debug arch
Displays the current state of displaying gdbarch debugging info.
@item set debug aix-solib
@cindex AIX shared library debugging
Control display of debugging messages from the AIX shared library
support module.  The default is off.
@item show debug aix-thread
Show the current state of displaying AIX shared library debugging messages.
@item set debug aix-thread
@cindex AIX threads
Display debugging messages about inner workings of the AIX thread
module.
@item show debug aix-thread
Show the current state of AIX thread debugging info display.
@item set debug check-physname
@cindex physname
Check the results of the ``physname'' computation.  When reading DWARF
debugging information for C@t{++}, @value{GDBN} attempts to compute
each entity's name.  @value{GDBN} can do this computation in two
different ways, depending on exactly what information is present.
When enabled, this setting causes @value{GDBN} to compute the names
both ways and display any discrepancies.
@item show debug check-physname
Show the current state of ``physname'' checking.
@item set debug coff-pe-read
@cindex COFF/PE exported symbols
Control display of debugging messages related to reading of COFF/PE
exported symbols.  The default is off.
@item show debug coff-pe-read
Displays the current state of displaying debugging messages related to
reading of COFF/PE exported symbols.
@item set debug dwarf-die
@cindex DWARF DIEs
Dump DWARF DIEs after they are read in.
The value is the number of nesting levels to print.
A value of zero turns off the display.
@item show debug dwarf-die
Show the current state of DWARF DIE debugging.
@item set debug dwarf-line
@cindex DWARF Line Tables
Turns on or off display of debugging messages related to reading
DWARF line tables.  The default is 0 (off).
A value of 1 provides basic information.
A value greater than 1 provides more verbose information.
@item show debug dwarf-line
Show the current state of DWARF line table debugging.
@item set debug dwarf-read
@cindex DWARF Reading
Turns on or off display of debugging messages related to reading
DWARF debug info.  The default is 0 (off).
A value of 1 provides basic information.
A value greater than 1 provides more verbose information.
@item show debug dwarf-read
Show the current state of DWARF reader debugging.
@item set debug displaced
@cindex displaced stepping debugging info
Turns on or off display of @value{GDBN} debugging info for the
displaced stepping support.  The default is off.
@item show debug displaced
Displays the current state of displaying @value{GDBN} debugging info
related to displaced stepping.
@item set debug event
@cindex event debugging info
Turns on or off display of @value{GDBN} event debugging info.  The
default is off.
@item show debug event
Displays the current state of displaying @value{GDBN} event debugging
info.
@item set debug expression
@cindex expression debugging info
Turns on or off display of debugging info about @value{GDBN}
expression parsing.  The default is off.
@item show debug expression
Displays the current state of displaying debugging info about
@value{GDBN} expression parsing.
@item set debug fbsd-lwp
@cindex FreeBSD LWP debug messages
Turns on or off debugging messages from the FreeBSD LWP debug support.
@item show debug fbsd-lwp
Show the current state of FreeBSD LWP debugging messages.
@item set debug fbsd-nat
@cindex FreeBSD native target debug messages
Turns on or off debugging messages from the FreeBSD native target.
@item show debug fbsd-nat
Show the current state of FreeBSD native target debugging messages.
@item set debug frame
@cindex frame debugging info
Turns on or off display of @value{GDBN} frame debugging info.  The
default is off.
@item show debug frame
Displays the current state of displaying @value{GDBN} frame debugging
info.
@item set debug gnu-nat
@cindex @sc{gnu}/Hurd debug messages
Turn on or off debugging messages from the @sc{gnu}/Hurd debug support.
@item show debug gnu-nat
Show the current state of @sc{gnu}/Hurd debugging messages.
@item set debug infrun
@cindex inferior debugging info
Turns on or off display of @value{GDBN} debugging info for running the inferior.
The default is off.  @file{infrun.c} contains GDB's runtime state machine used 
for implementing operations such as single-stepping the inferior.
@item show debug infrun
Displays the current state of @value{GDBN} inferior debugging.
@item set debug jit
@cindex just-in-time compilation, debugging messages
Turn on or off debugging messages from JIT debug support.
@item show debug jit
Displays the current state of @value{GDBN} JIT debugging.
@item set debug lin-lwp
@cindex @sc{gnu}/Linux LWP debug messages
@cindex Linux lightweight processes
Turn on or off debugging messages from the Linux LWP debug support.
@item show debug lin-lwp
Show the current state of Linux LWP debugging messages.
@item set debug linux-namespaces
@cindex @sc{gnu}/Linux namespaces debug messages
Turn on or off debugging messages from the Linux namespaces debug support.
@item show debug linux-namespaces
Show the current state of Linux namespaces debugging messages.
@item set debug mach-o
@cindex Mach-O symbols processing
Control display of debugging messages related to Mach-O symbols
processing.  The default is off.
@item show debug mach-o
Displays the current state of displaying debugging messages related to
reading of COFF/PE exported symbols.
@item set debug notification
@cindex remote async notification debugging info
Turn on or off debugging messages about remote async notification.
The default is off.
@item show debug notification
Displays the current state of remote async notification debugging messages.
@item set debug observer
@cindex observer debugging info
Turns on or off display of @value{GDBN} observer debugging.  This
includes info such as the notification of observable events.
@item show debug observer
Displays the current state of observer debugging.
@item set debug overload
@cindex C@t{++} overload debugging info
Turns on or off display of @value{GDBN} C@t{++} overload debugging
info. This includes info such as ranking of functions, etc.  The default
is off.
@item show debug overload
Displays the current state of displaying @value{GDBN} C@t{++} overload
debugging info.
@cindex expression parser, debugging info
@cindex debug expression parser
@item set debug parser
Turns on or off the display of expression parser debugging output.
Internally, this sets the @code{yydebug} variable in the expression
parser.  @xref{Tracing, , Tracing Your Parser, bison, Bison}, for
details.  The default is off.
@item show debug parser
Show the current state of expression parser debugging.
@cindex packets, reporting on stdout
@cindex serial connections, debugging
@cindex debug remote protocol
@cindex remote protocol debugging
@cindex display remote packets
@item set debug remote
Turns on or off display of reports on all packets sent back and forth across
the serial line to the remote machine.  The info is printed on the
@value{GDBN} standard output stream. The default is off.
@item show debug remote
Displays the state of display of remote packets.

@item set debug remote-packet-max-chars
Sets the maximum number of characters to display for each remote packet when
@code{set debug remote} is on.  This is useful to prevent @value{GDBN} from
displaying lengthy remote packets and polluting the console.

The default value is @code{512}, which means @value{GDBN} will truncate each
remote packet after 512 bytes.

Setting this option to @code{unlimited} will disable truncation and will output
the full length of the remote packets.
@item show debug remote-packet-max-chars
Displays the number of bytes to output for remote packet debugging.

@item set debug separate-debug-file
Turns on or off display of debug output about separate debug file search.
@item show debug separate-debug-file
Displays the state of separate debug file search debug output.

@item set debug serial
Turns on or off display of @value{GDBN} serial debugging info. The
default is off.
@item show debug serial
Displays the current state of displaying @value{GDBN} serial debugging
info.
@item set debug solib-frv
@cindex FR-V shared-library debugging
Turn on or off debugging messages for FR-V shared-library code.
@item show debug solib-frv
Display the current state of FR-V shared-library code debugging
messages.
@item set debug symbol-lookup
@cindex symbol lookup
Turns on or off display of debugging messages related to symbol lookup.
The default is 0 (off).
A value of 1 provides basic information.
A value greater than 1 provides more verbose information.
@item show debug symbol-lookup
Show the current state of symbol lookup debugging messages.
@item set debug symfile
@cindex symbol file functions
Turns on or off display of debugging messages related to symbol file functions.
The default is off.  @xref{Files}.
@item show debug symfile
Show the current state of symbol file debugging messages.
@item set debug symtab-create
@cindex symbol table creation
Turns on or off display of debugging messages related to symbol table creation.
The default is 0 (off).
A value of 1 provides basic information.
A value greater than 1 provides more verbose information.
@item show debug symtab-create
Show the current state of symbol table creation debugging.
@item set debug target
@cindex target debugging info
Turns on or off display of @value{GDBN} target debugging info. This info
includes what is going on at the target level of GDB, as it happens. The
default is 0.  Set it to 1 to track events, and to 2 to also track the
value of large memory transfers.
@item show debug target
Displays the current state of displaying @value{GDBN} target debugging
info.
@item set debug timestamp
@cindex timestamping debugging info
Turns on or off display of timestamps with @value{GDBN} debugging info.
When enabled, seconds and microseconds are displayed before each debugging
message.
@item show debug timestamp
Displays the current state of displaying timestamps with @value{GDBN}
debugging info.
@item set debug varobj
@cindex variable object debugging info
Turns on or off display of @value{GDBN} variable object debugging
info. The default is off.
@item show debug varobj
Displays the current state of displaying @value{GDBN} variable object
debugging info.
@item set debug xml
@cindex XML parser debugging
Turn on or off debugging messages for built-in XML parsers.
@item show debug xml
Displays the current state of XML debugging messages.
@end table

@node Other Misc Settings
@section Other Miscellaneous Settings
@cindex miscellaneous settings

@table @code
@kindex set interactive-mode
@item set interactive-mode
If @code{on}, forces @value{GDBN} to assume that GDB was started
in a terminal.  In practice, this means that @value{GDBN} should wait
for the user to answer queries generated by commands entered at
the command prompt.  If @code{off}, forces @value{GDBN} to operate
in the opposite mode, and it uses the default answers to all queries.
If @code{auto} (the default), @value{GDBN} tries to determine whether
its standard input is a terminal, and works in interactive-mode if it
is, non-interactively otherwise.

In the vast majority of cases, the debugger should be able to guess
correctly which mode should be used.  But this setting can be useful
in certain specific cases, such as running a MinGW @value{GDBN}
inside a cygwin window.

@kindex show interactive-mode
@item show interactive-mode
Displays whether the debugger is operating in interactive mode or not.
@end table

@node Extending GDB
@chapter Extending @value{GDBN}
@cindex extending GDB

@value{GDBN} provides several mechanisms for extension.
@value{GDBN} also provides the ability to automatically load
extensions when it reads a file for debugging.  This allows the
user to automatically customize @value{GDBN} for the program
being debugged.

@menu
* Sequences::                Canned Sequences of @value{GDBN} Commands
* Python::                   Extending @value{GDBN} using Python
* Guile::                    Extending @value{GDBN} using Guile
* Auto-loading extensions::  Automatically loading extensions
* Multiple Extension Languages:: Working with multiple extension languages
* Aliases::                  Creating new spellings of existing commands
@end menu

To facilitate the use of extension languages, @value{GDBN} is capable
of evaluating the contents of a file.  When doing so, @value{GDBN}
can recognize which extension language is being used by looking at
the filename extension.  Files with an unrecognized filename extension
are always treated as a @value{GDBN} Command Files.
@xref{Command Files,, Command files}.

You can control how @value{GDBN} evaluates these files with the following
setting:

@table @code
@kindex set script-extension
@kindex show script-extension
@item set script-extension off
All scripts are always evaluated as @value{GDBN} Command Files.

@item set script-extension soft
The debugger determines the scripting language based on filename
extension.  If this scripting language is supported, @value{GDBN}
evaluates the script using that language.  Otherwise, it evaluates
the file as a @value{GDBN} Command File.

@item set script-extension strict
The debugger determines the scripting language based on filename
extension, and evaluates the script using that language.  If the
language is not supported, then the evaluation fails.

@item show script-extension
Display the current value of the @code{script-extension} option.

@end table

@ifset SYSTEM_GDBINIT_DIR
This setting is not used for files in the system-wide gdbinit directory.
Files in that directory must have an extension matching their language,
or have a @file{.gdb} extension to be interpreted as regular @value{GDBN}
commands.  @xref{Startup}.
@end ifset

@node Sequences
@section Canned Sequences of Commands

Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
Command Lists}), @value{GDBN} provides two ways to store sequences of
commands for execution as a unit: user-defined commands and command
files.

@menu
* Define::             How to define your own commands
* Hooks::              Hooks for user-defined commands
* Command Files::      How to write scripts of commands to be stored in a file
* Output::             Commands for controlled output
* Auto-loading sequences::  Controlling auto-loaded command files
@end menu

@node Define
@subsection User-defined Commands

@cindex user-defined command
@cindex arguments, to user-defined commands
A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
which you assign a new name as a command.  This is done with the
@code{define} command.  User commands may accept an unlimited number of arguments
separated by whitespace.  Arguments are accessed within the user command
via @code{$arg0@dots{}$argN}.  A trivial example:

@smallexample
define adder
  print $arg0 + $arg1 + $arg2
end
@end smallexample

@noindent
To execute the command use:

@smallexample
adder 1 2 3
@end smallexample

@noindent
This defines the command @code{adder}, which prints the sum of
its three arguments.  Note the arguments are text substitutions, so they may
reference variables, use complex expressions, or even perform inferior
functions calls.

@cindex argument count in user-defined commands
@cindex how many arguments (user-defined commands)
In addition, @code{$argc} may be used to find out how many arguments have
been passed.

@smallexample
define adder
  if $argc == 2
    print $arg0 + $arg1
  end
  if $argc == 3
    print $arg0 + $arg1 + $arg2
  end
end
@end smallexample

Combining with the @code{eval} command (@pxref{eval}) makes it easier
to process a variable number of arguments:

@smallexample
define adder
  set $i = 0
  set $sum = 0
  while $i < $argc
    eval "set $sum = $sum + $arg%d", $i
    set $i = $i + 1
  end
  print $sum
end
@end smallexample

@table @code

@kindex define
@item define @var{commandname}
Define a command named @var{commandname}.  If there is already a command
by that name, you are asked to confirm that you want to redefine it.
The argument @var{commandname} may be a bare command name consisting of letters,
numbers, dashes, dots, and underscores.  It may also start with any
predefined or user-defined prefix command.
For example, @samp{define target my-target} creates
a user-defined @samp{target my-target} command.

The definition of the command is made up of other @value{GDBN} command lines,
which are given following the @code{define} command.  The end of these
commands is marked by a line containing @code{end}.

@kindex document
@kindex end@r{ (user-defined commands)}
@item document @var{commandname}
Document the user-defined command @var{commandname}, so that it can be
accessed by @code{help}.  The command @var{commandname} must already be
defined.  This command reads lines of documentation just as @code{define}
reads the lines of the command definition, ending with @code{end}.
After the @code{document} command is finished, @code{help} on command
@var{commandname} displays the documentation you have written.

You may use the @code{document} command again to change the
documentation of a command.  Redefining the command with @code{define}
does not change the documentation.

@kindex define-prefix
@item define-prefix @var{commandname}
Define or mark the command @var{commandname} as a user-defined prefix
command.  Once marked, @var{commandname} can be used as prefix command
by the  @code{define} command.
Note that @code{define-prefix} can be used with a not yet defined
@var{commandname}.  In such a case, @var{commandname} is defined as
an empty user-defined command.
In case you redefine a command that was marked as a user-defined
prefix command, the subcommands of the redefined command are kept
(and @value{GDBN} indicates so to the user).

Example:
@example
(gdb) define-prefix abc
(gdb) define-prefix abc def
(gdb) define abc def
Type commands for definition of "abc def".
End with a line saying just "end".
>echo command initial def\n
>end
(gdb) define abc def ghi
Type commands for definition of "abc def ghi".
End with a line saying just "end".
>echo command ghi\n
>end
(gdb) define abc def
Keeping subcommands of prefix command "def".
Redefine command "def"? (y or n) y
Type commands for definition of "abc def".
End with a line saying just "end".
>echo command def\n
>end
(gdb) abc def ghi
command ghi
(gdb) abc def
command def
(gdb)
@end example

@kindex dont-repeat
@cindex don't repeat command
@item dont-repeat
Used inside a user-defined command, this tells @value{GDBN} that this
command should not be repeated when the user hits @key{RET}
(@pxref{Command Syntax, repeat last command}).

@kindex help user-defined
@item help user-defined
List all user-defined commands and all python commands defined in class
COMMAND_USER.  The first line of the documentation or docstring is
included (if any).

@kindex show user
@item show user
@itemx show user @var{commandname}
Display the @value{GDBN} commands used to define @var{commandname} (but
not its documentation).  If no @var{commandname} is given, display the
definitions for all user-defined commands.
This does not work for user-defined python commands.

@cindex infinite recursion in user-defined commands
@kindex show max-user-call-depth
@kindex set max-user-call-depth
@item show max-user-call-depth
@itemx set max-user-call-depth
The value of @code{max-user-call-depth} controls how many recursion
levels are allowed in user-defined commands before @value{GDBN} suspects an
infinite recursion and aborts the command.
This does not apply to user-defined python commands.
@end table

In addition to the above commands, user-defined commands frequently
use control flow commands, described in @ref{Command Files}.

When user-defined commands are executed, the
commands of the definition are not printed.  An error in any command
stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed
without asking when used inside a user-defined command.  Many @value{GDBN}
commands that normally print messages to say what they are doing omit the
messages when used in a user-defined command.

@node Hooks
@subsection User-defined Command Hooks
@cindex command hooks
@cindex hooks, for commands
@cindex hooks, pre-command

@kindex hook
You may define @dfn{hooks}, which are a special kind of user-defined
command.  Whenever you run the command @samp{foo}, if the user-defined
command @samp{hook-foo} exists, it is executed (with no arguments)
before that command.

@cindex hooks, post-command
@kindex hookpost
A hook may also be defined which is run after the command you executed.
Whenever you run the command @samp{foo}, if the user-defined command
@samp{hookpost-foo} exists, it is executed (with no arguments) after
that command.  Post-execution hooks may exist simultaneously with
pre-execution hooks, for the same command.

It is valid for a hook to call the command which it hooks.  If this
occurs, the hook is not re-executed, thereby avoiding infinite recursion.

@c It would be nice if hookpost could be passed a parameter indicating
@c if the command it hooks executed properly or not.  FIXME!

@kindex stop@r{, a pseudo-command}
In addition, a pseudo-command, @samp{stop} exists.  Defining
(@samp{hook-stop}) makes the associated commands execute every time
execution stops in your program: before breakpoint commands are run,
displays are printed, or the stack frame is printed.

For example, to ignore @code{SIGALRM} signals while
single-stepping, but treat them normally during normal execution,
you could define:

@smallexample
define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGALRM pass
end
@end smallexample

As a further example, to hook at the beginning and end of the @code{echo}
command, and to add extra text to the beginning and end of the message,
you could define:

@smallexample
define hook-echo
echo <<<---
end

define hookpost-echo
echo --->>>\n
end

(@value{GDBP}) echo Hello World
<<<---Hello World--->>>
(@value{GDBP})

@end smallexample

You can define a hook for any single-word command in @value{GDBN}, but
not for command aliases; you should define a hook for the basic command
name, e.g.@:  @code{backtrace} rather than @code{bt}.
@c FIXME!  So how does Joe User discover whether a command is an alias
@c or not?
You can hook a multi-word command by adding @code{hook-} or
@code{hookpost-} to the last word of the command, e.g.@:
@samp{define target hook-remote} to add a hook to @samp{target remote}.

If an error occurs during the execution of your hook, execution of
@value{GDBN} commands stops and @value{GDBN} issues a prompt
(before the command that you actually typed had a chance to run).

If you try to define a hook which does not match any known command, you
get a warning from the @code{define} command.

@node Command Files
@subsection Command Files

@cindex command files
@cindex scripting commands
A command file for @value{GDBN} is a text file made of lines that are
@value{GDBN} commands.  Comments (lines starting with @kbd{#}) may
also be included.  An empty line in a command file does nothing; it
does not mean to repeat the last command, as it would from the
terminal.

You can request the execution of a command file with the @code{source}
command.  Note that the @code{source} command is also used to evaluate
scripts that are not Command Files.  The exact behavior can be configured
using the @code{script-extension} setting.
@xref{Extending GDB,, Extending GDB}.

@table @code
@kindex source
@cindex execute commands from a file
@item source [-s] [-v] @var{filename}
Execute the command file @var{filename}.
@end table

The lines in a command file are generally executed sequentially,
unless the order of execution is changed by one of the
@emph{flow-control commands} described below.  The commands are not
printed as they are executed.  An error in any command terminates
execution of the command file and control is returned to the console.

@value{GDBN} first searches for @var{filename} in the current directory.
If the file is not found there, and @var{filename} does not specify a
directory, then @value{GDBN} also looks for the file on the source search path
(specified with the @samp{directory} command);
except that @file{$cdir} is not searched because the compilation directory
is not relevant to scripts.

If @code{-s} is specified, then @value{GDBN} searches for @var{filename}
on the search path even if @var{filename} specifies a directory.
The search is done by appending @var{filename} to each element of the
search path.  So, for example, if @var{filename} is @file{mylib/myscript}
and the search path contains @file{/home/user} then @value{GDBN} will
look for the script @file{/home/user/mylib/myscript}.
The search is also done if @var{filename} is an absolute path.
For example, if @var{filename} is @file{/tmp/myscript} and
the search path contains @file{/home/user} then @value{GDBN} will
look for the script @file{/home/user/tmp/myscript}.
For DOS-like systems, if @var{filename} contains a drive specification,
it is stripped before concatenation.  For example, if @var{filename} is
@file{d:myscript} and the search path contains @file{c:/tmp} then @value{GDBN}
will look for the script @file{c:/tmp/myscript}.

If @code{-v}, for verbose mode, is given then @value{GDBN} displays
each command as it is executed.  The option must be given before
@var{filename}, and is interpreted as part of the filename anywhere else.

Commands that would ask for confirmation if used interactively proceed
without asking when used in a command file.  Many @value{GDBN} commands that
normally print messages to say what they are doing omit the messages
when called from command files.

@value{GDBN} also accepts command input from standard input.  In this
mode, normal output goes to standard output and error output goes to
standard error.  Errors in a command file supplied on standard input do
not terminate execution of the command file---execution continues with
the next command.

@smallexample
gdb < cmds > log 2>&1
@end smallexample

(The syntax above will vary depending on the shell used.) This example
will execute commands from the file @file{cmds}. All output and errors
would be directed to @file{log}.

Since commands stored on command files tend to be more general than
commands typed interactively, they frequently need to deal with
complicated situations, such as different or unexpected values of
variables and symbols, changes in how the program being debugged is
built, etc.  @value{GDBN} provides a set of flow-control commands to
deal with these complexities.  Using these commands, you can write
complex scripts that loop over data structures, execute commands
conditionally, etc.

@table @code
@kindex if
@kindex else
@item if
@itemx else
This command allows to include in your script conditionally executed
commands. The @code{if} command takes a single argument, which is an
expression to evaluate.  It is followed by a series of commands that
are executed only if the expression is true (its value is nonzero).
There can then optionally be an @code{else} line, followed by a series
of commands that are only executed if the expression was false.  The
end of the list is marked by a line containing @code{end}.

@kindex while
@item while
This command allows to write loops.  Its syntax is similar to
@code{if}: the command takes a single argument, which is an expression
to evaluate, and must be followed by the commands to execute, one per
line, terminated by an @code{end}.  These commands are called the
@dfn{body} of the loop.  The commands in the body of @code{while} are
executed repeatedly as long as the expression evaluates to true.

@kindex loop_break
@item loop_break
This command exits the @code{while} loop in whose body it is included.
Execution of the script continues after that @code{while}s @code{end}
line.

@kindex loop_continue
@item loop_continue
This command skips the execution of the rest of the body of commands
in the @code{while} loop in whose body it is included.  Execution
branches to the beginning of the @code{while} loop, where it evaluates
the controlling expression.

@kindex end@r{ (if/else/while commands)}
@item end
Terminate the block of commands that are the body of @code{if},
@code{else}, or @code{while} flow-control commands.
@end table


@node Output
@subsection Commands for Controlled Output

During the execution of a command file or a user-defined command, normal
@value{GDBN} output is suppressed; the only output that appears is what is
explicitly printed by the commands in the definition.  This section
describes three commands useful for generating exactly the output you
want.

@table @code
@kindex echo
@item echo @var{text}
@c I do not consider backslash-space a standard C escape sequence
@c because it is not in ANSI.
Print @var{text}.  Nonprinting characters can be included in
@var{text} using C escape sequences, such as @samp{\n} to print a
newline.  @strong{No newline is printed unless you specify one.}
In addition to the standard C escape sequences, a backslash followed
by a space stands for a space.  This is useful for displaying a
string with spaces at the beginning or the end, since leading and
trailing spaces are otherwise trimmed from all arguments.
To print @samp{@w{ }and foo =@w{ }}, use the command
@samp{echo \@w{ }and foo = \@w{ }}.

A backslash at the end of @var{text} can be used, as in C, to continue
the command onto subsequent lines.  For example,

@smallexample
echo This is some text\n\
which is continued\n\
onto several lines.\n
@end smallexample

produces the same output as

@smallexample
echo This is some text\n
echo which is continued\n
echo onto several lines.\n
@end smallexample

@kindex output
@item output @var{expression}
Print the value of @var{expression} and nothing but that value: no
newlines, no @samp{$@var{nn} = }.  The value is not entered in the
value history either.  @xref{Expressions, ,Expressions}, for more information
on expressions.

@item output/@var{fmt} @var{expression}
Print the value of @var{expression} in format @var{fmt}.  You can use
the same formats as for @code{print}.  @xref{Output Formats,,Output
Formats}, for more information.

@kindex printf
@item printf @var{template}, @var{expressions}@dots{}
Print the values of one or more @var{expressions} under the control of
the string @var{template}.  To print several values, make
@var{expressions} be a comma-separated list of individual expressions,
which may be either numbers or pointers.  Their values are printed as
specified by @var{template}, exactly as a C program would do by
executing the code below:

@smallexample
printf (@var{template}, @var{expressions}@dots{});
@end smallexample

As in @code{C} @code{printf}, ordinary characters in @var{template}
are printed verbatim, while @dfn{conversion specification} introduced
by the @samp{%} character cause subsequent @var{expressions} to be
evaluated, their values converted and formatted according to type and
style information encoded in the conversion specifications, and then
printed.

For example, you can print two values in hex like this:

@smallexample
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
@end smallexample

@code{printf} supports all the standard @code{C} conversion
specifications, including the flags and modifiers between the @samp{%}
character and the conversion letter, with the following exceptions:

@itemize @bullet
@item
The argument-ordering modifiers, such as @samp{2$}, are not supported.

@item
The modifier @samp{*} is not supported for specifying precision or
width.

@item
The @samp{'} flag (for separation of digits into groups according to
@code{LC_NUMERIC'}) is not supported.

@item
The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
supported.

@item
The conversion letter @samp{n} (as in @samp{%n}) is not supported.

@item
The conversion letters @samp{a} and @samp{A} are not supported.
@end itemize

@noindent
Note that the @samp{ll} type modifier is supported only if the
underlying @code{C} implementation used to build @value{GDBN} supports
the @code{long long int} type, and the @samp{L} type modifier is
supported only if @code{long double} type is available.

As in @code{C}, @code{printf} supports simple backslash-escape
sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
@samp{\a}, and @samp{\f}, that consist of backslash followed by a
single character.  Octal and hexadecimal escape sequences are not
supported.

Additionally, @code{printf} supports conversion specifications for DFP
(@dfn{Decimal Floating Point}) types using the following length modifiers
together with a floating point specifier.
letters:

@itemize @bullet
@item
@samp{H} for printing @code{Decimal32} types.

@item
@samp{D} for printing @code{Decimal64} types.

@item
@samp{DD} for printing @code{Decimal128} types.
@end itemize

If the underlying @code{C} implementation used to build @value{GDBN} has
support for the three length modifiers for DFP types, other modifiers
such as width and precision will also be available for @value{GDBN} to use.

In case there is no such @code{C} support, no additional modifiers will be
available and the value will be printed in the standard way.

Here's an example of printing DFP types using the above conversion letters:
@smallexample
printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
@end smallexample

@anchor{eval}
@kindex eval
@item eval @var{template}, @var{expressions}@dots{}
Convert the values of one or more @var{expressions} under the control of
the string @var{template} to a command line, and call it.

@end table

@node Auto-loading sequences
@subsection Controlling auto-loading native @value{GDBN} scripts
@cindex native script auto-loading

When a new object file is read (for example, due to the @code{file}
command, or because the inferior has loaded a shared library),
@value{GDBN} will look for the command file @file{@var{objfile}-gdb.gdb}.
@xref{Auto-loading extensions}.

Auto-loading can be enabled or disabled,
and the list of auto-loaded scripts can be printed.

@table @code
@anchor{set auto-load gdb-scripts}
@kindex set auto-load gdb-scripts
@item set auto-load gdb-scripts [on|off]
Enable or disable the auto-loading of canned sequences of commands scripts.

@anchor{show auto-load gdb-scripts}
@kindex show auto-load gdb-scripts
@item show auto-load gdb-scripts
Show whether auto-loading of canned sequences of commands scripts is enabled or
disabled.

@anchor{info auto-load gdb-scripts}
@kindex info auto-load gdb-scripts
@cindex print list of auto-loaded canned sequences of commands scripts
@item info auto-load gdb-scripts [@var{regexp}]
Print the list of all canned sequences of commands scripts that @value{GDBN}
auto-loaded.
@end table

If @var{regexp} is supplied only canned sequences of commands scripts with
matching names are printed.

@c Python docs live in a separate file.
@include python.texi

@c Guile docs live in a separate file.
@include guile.texi

@node Auto-loading extensions
@section Auto-loading extensions
@cindex auto-loading extensions

@value{GDBN} provides two mechanisms for automatically loading extensions
when a new object file is read (for example, due to the @code{file}
command, or because the inferior has loaded a shared library):
@file{@var{objfile}-gdb.@var{ext}} and the @code{.debug_gdb_scripts}
section of modern file formats like ELF.

@menu
* objfile-gdb.ext file: objfile-gdbdotext file.  The @file{@var{objfile}-gdb.@var{ext}} file
* .debug_gdb_scripts section: dotdebug_gdb_scripts section.  The @code{.debug_gdb_scripts} section
* Which flavor to choose?::
@end menu

The auto-loading feature is useful for supplying application-specific
debugging commands and features.

Auto-loading can be enabled or disabled,
and the list of auto-loaded scripts can be printed.
See the @samp{auto-loading} section of each extension language
for more information.
For @value{GDBN} command files see @ref{Auto-loading sequences}.
For Python files see @ref{Python Auto-loading}.

Note that loading of this script file also requires accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

@node objfile-gdbdotext file
@subsection The @file{@var{objfile}-gdb.@var{ext}} file
@cindex @file{@var{objfile}-gdb.gdb}
@cindex @file{@var{objfile}-gdb.py}
@cindex @file{@var{objfile}-gdb.scm}

When a new object file is read, @value{GDBN} looks for a file named
@file{@var{objfile}-gdb.@var{ext}} (we call it @var{script-name} below),
where @var{objfile} is the object file's name and
where @var{ext} is the file extension for the extension language:

@table @code
@item @file{@var{objfile}-gdb.gdb}
GDB's own command language
@item @file{@var{objfile}-gdb.py}
Python
@item @file{@var{objfile}-gdb.scm}
Guile
@end table

@var{script-name} is formed by ensuring that the file name of @var{objfile}
is absolute, following all symlinks, and resolving @code{.} and @code{..}
components, and appending the @file{-gdb.@var{ext}} suffix.
If this file exists and is readable, @value{GDBN} will evaluate it as a
script in the specified extension language.

If this file does not exist, then @value{GDBN} will look for
@var{script-name} file in all of the directories as specified below.

Note that loading of these files requires an accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

For object files using @file{.exe} suffix @value{GDBN} tries to load first the
scripts normally according to its @file{.exe} filename.  But if no scripts are
found @value{GDBN} also tries script filenames matching the object file without
its @file{.exe} suffix.  This @file{.exe} stripping is case insensitive and it
is attempted on any platform.  This makes the script filenames compatible
between Unix and MS-Windows hosts.

@table @code
@anchor{set auto-load scripts-directory}
@kindex set auto-load scripts-directory
@item set auto-load scripts-directory @r{[}@var{directories}@r{]}
Control @value{GDBN} auto-loaded scripts location.  Multiple directory entries
may be delimited by the host platform path separator in use
(@samp{:} on Unix, @samp{;} on MS-Windows and MS-DOS).

Each entry here needs to be covered also by the security setting
@code{set auto-load safe-path} (@pxref{set auto-load safe-path}).

@anchor{with-auto-load-dir}
This variable defaults to @file{$debugdir:$datadir/auto-load}.  The default
@code{set auto-load safe-path} value can be also overriden by @value{GDBN}
configuration option @option{--with-auto-load-dir}.

Any reference to @file{$debugdir} will get replaced by
@var{debug-file-directory} value (@pxref{Separate Debug Files}) and any
reference to @file{$datadir} will get replaced by @var{data-directory} which is
determined at @value{GDBN} startup (@pxref{Data Files}).  @file{$debugdir} and
@file{$datadir} must be placed as a directory component --- either alone or
delimited by @file{/} or @file{\} directory separators, depending on the host
platform.

The list of directories uses path separator (@samp{:} on GNU and Unix
systems, @samp{;} on MS-Windows and MS-DOS) to separate directories, similarly
to the @env{PATH} environment variable.

@anchor{show auto-load scripts-directory}
@kindex show auto-load scripts-directory
@item show auto-load scripts-directory
Show @value{GDBN} auto-loaded scripts location.

@anchor{add-auto-load-scripts-directory}
@kindex add-auto-load-scripts-directory
@item add-auto-load-scripts-directory @r{[}@var{directories}@dots{}@r{]}
Add an entry (or list of entries) to the list of auto-loaded scripts locations.
Multiple entries may be delimited by the host platform path separator in use.
@end table

@value{GDBN} does not track which files it has already auto-loaded this way.
@value{GDBN} will load the associated script every time the corresponding
@var{objfile} is opened.
So your @file{-gdb.@var{ext}} file should be careful to avoid errors if it
is evaluated more than once.

@node dotdebug_gdb_scripts section
@subsection The @code{.debug_gdb_scripts} section
@cindex @code{.debug_gdb_scripts} section

For systems using file formats like ELF and COFF,
when @value{GDBN} loads a new object file
it will look for a special section named @code{.debug_gdb_scripts}.
If this section exists, its contents is a list of null-terminated entries
specifying scripts to load.  Each entry begins with a non-null prefix byte that
specifies the kind of entry, typically the extension language and whether the
script is in a file or inlined in @code{.debug_gdb_scripts}.

The following entries are supported:

@table @code
@item SECTION_SCRIPT_ID_PYTHON_FILE = 1
@item SECTION_SCRIPT_ID_SCHEME_FILE = 3
@item SECTION_SCRIPT_ID_PYTHON_TEXT = 4
@item SECTION_SCRIPT_ID_SCHEME_TEXT = 6
@end table

@subsubsection Script File Entries

If the entry specifies a file, @value{GDBN} will look for the file first
in the current directory and then along the source search path
(@pxref{Source Path, ,Specifying Source Directories}),
except that @file{$cdir} is not searched, since the compilation
directory is not relevant to scripts.

File entries can be placed in section @code{.debug_gdb_scripts} with,
for example, this GCC macro for Python scripts.

@example
/* Note: The "MS" section flags are to remove duplicates.  */
#define DEFINE_GDB_PY_SCRIPT(script_name) \
  asm("\
.pushsection \".debug_gdb_scripts\", \"MS\",@@progbits,1\n\
.byte 1 /* Python */\n\
.asciz \"" script_name "\"\n\
.popsection \n\
");
@end example

@noindent
For Guile scripts, replace @code{.byte 1} with @code{.byte 3}.
Then one can reference the macro in a header or source file like this:

@example
DEFINE_GDB_PY_SCRIPT ("my-app-scripts.py")
@end example

The script name may include directories if desired.

Note that loading of this script file also requires accordingly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).

If the macro invocation is put in a header, any application or library
using this header will get a reference to the specified script,
and with the use of @code{"MS"} attributes on the section, the linker
will remove duplicates.

@subsubsection Script Text Entries

Script text entries allow to put the executable script in the entry
itself instead of loading it from a file.
The first line of the entry, everything after the prefix byte and up to
the first newline (@code{0xa}) character, is the script name, and must not
contain any kind of space character, e.g., spaces or tabs.
The rest of the entry, up to the trailing null byte, is the script to
execute in the specified language.  The name needs to be unique among
all script names, as @value{GDBN} executes each script only once based
on its name.

Here is an example from file @file{py-section-script.c} in the @value{GDBN}
testsuite.

@example
#include "symcat.h"
#include "gdb/section-scripts.h"
asm(
".pushsection \".debug_gdb_scripts\", \"MS\",@@progbits,1\n"
".byte " XSTRING (SECTION_SCRIPT_ID_PYTHON_TEXT) "\n"
".ascii \"gdb.inlined-script\\n\"\n"
".ascii \"class test_cmd (gdb.Command):\\n\"\n"
".ascii \"  def __init__ (self):\\n\"\n"
".ascii \"    super (test_cmd, self).__init__ ("
    "\\\"test-cmd\\\", gdb.COMMAND_OBSCURE)\\n\"\n"
".ascii \"  def invoke (self, arg, from_tty):\\n\"\n"
".ascii \"    print (\\\"test-cmd output, arg = %s\\\" % arg)\\n\"\n"
".ascii \"test_cmd ()\\n\"\n"
".byte 0\n"
".popsection\n"
);
@end example

Loading of inlined scripts requires a properly configured
@code{auto-load safe-path} (@pxref{Auto-loading safe path}).
The path to specify in @code{auto-load safe-path} is the path of the file
containing the @code{.debug_gdb_scripts} section.

@node Which flavor to choose?
@subsection Which flavor to choose?

Given the multiple ways of auto-loading extensions, it might not always
be clear which one to choose.  This section provides some guidance.

@noindent
Benefits of the @file{-gdb.@var{ext}} way:

@itemize @bullet
@item
Can be used with file formats that don't support multiple sections.

@item
Ease of finding scripts for public libraries.

Scripts specified in the @code{.debug_gdb_scripts} section are searched for
in the source search path.
For publicly installed libraries, e.g., @file{libstdc++}, there typically
isn't a source directory in which to find the script.

@item
Doesn't require source code additions.
@end itemize

@noindent
Benefits of the @code{.debug_gdb_scripts} way:

@itemize @bullet
@item
Works with static linking.

Scripts for libraries done the @file{-gdb.@var{ext}} way require an objfile to
trigger their loading.  When an application is statically linked the only
objfile available is the executable, and it is cumbersome to attach all the
scripts from all the input libraries to the executable's
@file{-gdb.@var{ext}} script.

@item
Works with classes that are entirely inlined.

Some classes can be entirely inlined, and thus there may not be an associated
shared library to attach a @file{-gdb.@var{ext}} script to.

@item
Scripts needn't be copied out of the source tree.

In some circumstances, apps can be built out of large collections of internal
libraries, and the build infrastructure necessary to install the
@file{-gdb.@var{ext}} scripts in a place where @value{GDBN} can find them is
cumbersome.  It may be easier to specify the scripts in the
@code{.debug_gdb_scripts} section as relative paths, and add a path to the
top of the source tree to the source search path.
@end itemize

@node Multiple Extension Languages
@section Multiple Extension Languages

The Guile and Python extension languages do not share any state,
and generally do not interfere with each other.
There are some things to be aware of, however.

@subsection Python comes first

Python was @value{GDBN}'s first extension language, and to avoid breaking
existing behaviour Python comes first.  This is generally solved by the
``first one wins'' principle.  @value{GDBN} maintains a list of enabled
extension languages, and when it makes a call to an extension language,
(say to pretty-print a value), it tries each in turn until an extension
language indicates it has performed the request (e.g., has returned the
pretty-printed form of a value).
This extends to errors while performing such requests: If an error happens
while, for example, trying to pretty-print an object then the error is
reported and any following extension languages are not tried.

@node Aliases
@section Creating new spellings of existing commands
@cindex aliases for commands

It is often useful to define alternate spellings of existing commands.
For example, if a new @value{GDBN} command defined in Python has
a long name to type, it is handy to have an abbreviated version of it
that involves less typing.

@value{GDBN} itself uses aliases.  For example @samp{s} is an alias
of the @samp{step} command even though it is otherwise an ambiguous
abbreviation of other commands like @samp{set} and @samp{show}.

Aliases are also used to provide shortened or more common versions
of multi-word commands.  For example, @value{GDBN} provides the
@samp{tty} alias of the @samp{set inferior-tty} command.

You can define a new alias with the @samp{alias} command.

@table @code

@kindex alias
@item alias [-a] [--] @var{ALIAS} = @var{COMMAND}

@end table

@var{ALIAS} specifies the name of the new alias.
Each word of @var{ALIAS} must consist of letters, numbers, dashes and
underscores.

@var{COMMAND} specifies the name of an existing command
that is being aliased.

The @samp{-a} option specifies that the new alias is an abbreviation
of the command.  Abbreviations are not shown in command
lists displayed by the @samp{help} command.

The @samp{--} option specifies the end of options,
and is useful when @var{ALIAS} begins with a dash.

Here is a simple example showing how to make an abbreviation
of a command so that there is less to type.
Suppose you were tired of typing @samp{disas}, the current
shortest unambiguous abbreviation of the @samp{disassemble} command
and you wanted an even shorter version named @samp{di}.
The following will accomplish this.

@smallexample
(gdb) alias -a di = disas
@end smallexample

Note that aliases are different from user-defined commands.
With a user-defined command, you also need to write documentation
for it with the @samp{document} command.
An alias automatically picks up the documentation of the existing command.

Here is an example where we make @samp{elms} an abbreviation of
@samp{elements} in the @samp{set print elements} command.
This is to show that you can make an abbreviation of any part
of a command.

@smallexample
(gdb) alias -a set print elms = set print elements
(gdb) alias -a show print elms = show print elements
(gdb) set p elms 20
(gdb) show p elms
Limit on string chars or array elements to print is 200.
@end smallexample

Note that if you are defining an alias of a @samp{set} command,
and you want to have an alias for the corresponding @samp{show}
command, then you need to define the latter separately.

Unambiguously abbreviated commands are allowed in @var{COMMAND} and
@var{ALIAS}, just as they are normally.

@smallexample
(gdb) alias -a set pr elms = set p ele
@end smallexample

Finally, here is an example showing the creation of a one word
alias for a more complex command.
This creates alias @samp{spe} of the command @samp{set print elements}.

@smallexample
(gdb) alias spe = set print elements
(gdb) spe 20
@end smallexample

@node Interpreters
@chapter Command Interpreters
@cindex command interpreters

@value{GDBN} supports multiple command interpreters, and some command
infrastructure to allow users or user interface writers to switch
between interpreters or run commands in other interpreters.

@value{GDBN} currently supports two command interpreters, the console
interpreter (sometimes called the command-line interpreter or @sc{cli})
and the machine interface interpreter (or @sc{gdb/mi}).  This manual
describes both of these interfaces in great detail.

By default, @value{GDBN} will start with the console interpreter.
However, the user may choose to start @value{GDBN} with another
interpreter by specifying the @option{-i} or @option{--interpreter}
startup options.  Defined interpreters include:

@table @code
@item console
@cindex console interpreter
The traditional console or command-line interpreter.  This is the most often
used interpreter with @value{GDBN}. With no interpreter specified at runtime,
@value{GDBN} will use this interpreter.

@item mi
@cindex mi interpreter
The newest @sc{gdb/mi} interface (currently @code{mi3}).  Used primarily
by programs wishing to use @value{GDBN} as a backend for a debugger GUI
or an IDE.  For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
Interface}.

@item mi3
@cindex mi3 interpreter
The @sc{gdb/mi} interface introduced in @value{GDBN} 9.1.

@item mi2
@cindex mi2 interpreter
The @sc{gdb/mi} interface introduced in @value{GDBN} 6.0.

@item mi1
@cindex mi1 interpreter
The @sc{gdb/mi} interface introduced in @value{GDBN} 5.1.

@end table

@cindex invoke another interpreter

@kindex interpreter-exec
You may execute commands in any interpreter from the current
interpreter using the appropriate command.  If you are running the
console interpreter, simply use the @code{interpreter-exec} command:

@smallexample
interpreter-exec mi "-data-list-register-names"
@end smallexample

@sc{gdb/mi} has a similar command, although it is only available in versions of
@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).

Note that @code{interpreter-exec} only changes the interpreter for the
duration of the specified command.  It does not change the interpreter
permanently.

@cindex start a new independent interpreter

Although you may only choose a single interpreter at startup, it is
possible to run an independent interpreter on a specified input/output
device (usually a tty).

For example, consider a debugger GUI or IDE that wants to provide a
@value{GDBN} console view.  It may do so by embedding a terminal
emulator widget in its GUI, starting @value{GDBN} in the traditional
command-line mode with stdin/stdout/stderr redirected to that
terminal, and then creating an MI interpreter running on a specified
input/output device.  The console interpreter created by @value{GDBN}
at startup handles commands the user types in the terminal widget,
while the GUI controls and synchronizes state with @value{GDBN} using
the separate MI interpreter.

To start a new secondary @dfn{user interface} running MI, use the
@code{new-ui} command:

@kindex new-ui
@cindex new user interface
@smallexample
new-ui @var{interpreter} @var{tty}
@end smallexample

The @var{interpreter} parameter specifies the interpreter to run.
This accepts the same values as the @code{interpreter-exec} command.
For example, @samp{console}, @samp{mi}, @samp{mi2}, etc.  The
@var{tty} parameter specifies the name of the bidirectional file the
interpreter uses for input/output, usually the name of a
pseudoterminal slave on Unix systems.  For example:

@smallexample
(@value{GDBP}) new-ui mi /dev/pts/9
@end smallexample

@noindent
runs an MI interpreter on @file{/dev/pts/9}.

@node TUI
@chapter @value{GDBN} Text User Interface
@cindex TUI
@cindex Text User Interface

@menu
* TUI Overview::                TUI overview
* TUI Keys::                    TUI key bindings
* TUI Single Key Mode::         TUI single key mode
* TUI Commands::                TUI-specific commands
* TUI Configuration::           TUI configuration variables
@end menu

The @value{GDBN} Text User Interface (TUI) is a terminal
interface which uses the @code{curses} library to show the source
file, the assembly output, the program registers and @value{GDBN}
commands in separate text windows.  The TUI mode is supported only
on platforms where a suitable version of the @code{curses} library
is available.

The TUI mode is enabled by default when you invoke @value{GDBN} as
@samp{@value{GDBP} -tui}.
You can also switch in and out of TUI mode while @value{GDBN} runs by
using various TUI commands and key bindings, such as @command{tui
enable} or @kbd{C-x C-a}.  @xref{TUI Commands, ,TUI Commands}, and
@ref{TUI Keys, ,TUI Key Bindings}.

@node TUI Overview
@section TUI Overview

In TUI mode, @value{GDBN} can display several text windows:

@table @emph
@item command
This window is the @value{GDBN} command window with the @value{GDBN}
prompt and the @value{GDBN} output.  The @value{GDBN} input is still
managed using readline.

@item source
The source window shows the source file of the program.  The current
line and active breakpoints are displayed in this window.

@item assembly
The assembly window shows the disassembly output of the program.

@item register
This window shows the processor registers.  Registers are highlighted
when their values change.
@end table

The source and assembly windows show the current program position
by highlighting the current line and marking it with a @samp{>} marker.
Breakpoints are indicated with two markers.  The first marker
indicates the breakpoint type:

@table @code
@item B
Breakpoint which was hit at least once.

@item b
Breakpoint which was never hit.

@item H
Hardware breakpoint which was hit at least once.

@item h
Hardware breakpoint which was never hit.
@end table

The second marker indicates whether the breakpoint is enabled or not:

@table @code
@item +
Breakpoint is enabled.

@item -
Breakpoint is disabled.
@end table

The source, assembly and register windows are updated when the current
thread changes, when the frame changes, or when the program counter
changes.

These windows are not all visible at the same time.  The command
window is always visible.  The others can be arranged in several
layouts:

@itemize @bullet
@item
source only,

@item
assembly only,

@item
source and assembly,

@item
source and registers, or

@item
assembly and registers.
@end itemize

These are the standard layouts, but other layouts can be defined.

A status line above the command window shows the following information:

@table @emph
@item target
Indicates the current @value{GDBN} target.
(@pxref{Targets, ,Specifying a Debugging Target}).

@item process
Gives the current process or thread number.
When no process is being debugged, this field is set to @code{No process}.

@item function
Gives the current function name for the selected frame.
The name is demangled if demangling is turned on (@pxref{Print Settings}).
When there is no symbol corresponding to the current program counter,
the string @code{??} is displayed.

@item line
Indicates the current line number for the selected frame.
When the current line number is not known, the string @code{??} is displayed.

@item pc
Indicates the current program counter address.
@end table

@node TUI Keys
@section TUI Key Bindings
@cindex TUI key bindings

The TUI installs several key bindings in the readline keymaps
@ifset SYSTEM_READLINE
(@pxref{Command Line Editing, , , rluserman, GNU Readline Library}).
@end ifset
@ifclear SYSTEM_READLINE
(@pxref{Command Line Editing}).
@end ifclear
The following key bindings are installed for both TUI mode and the
@value{GDBN} standard mode.

@table @kbd
@kindex C-x C-a
@item C-x C-a
@kindex C-x a
@itemx C-x a
@kindex C-x A
@itemx C-x A
Enter or leave the TUI mode.  When leaving the TUI mode,
the curses window management stops and @value{GDBN} operates using
its standard mode, writing on the terminal directly.  When reentering
the TUI mode, control is given back to the curses windows.
The screen is then refreshed.

This key binding uses the bindable Readline function
@code{tui-switch-mode}.

@kindex C-x 1
@item C-x 1
Use a TUI layout with only one window.  The layout will
either be @samp{source} or @samp{assembly}.  When the TUI mode
is not active, it will switch to the TUI mode.

Think of this key binding as the Emacs @kbd{C-x 1} binding.

This key binding uses the bindable Readline function
@code{tui-delete-other-windows}.

@kindex C-x 2
@item C-x 2
Use a TUI layout with at least two windows.  When the current
layout already has two windows, the next layout with two windows is used.
When a new layout is chosen, one window will always be common to the
previous layout and the new one.

Think of it as the Emacs @kbd{C-x 2} binding.

This key binding uses the bindable Readline function
@code{tui-change-windows}.

@kindex C-x o
@item C-x o
Change the active window.  The TUI associates several key bindings
(like scrolling and arrow keys) with the active window.  This command
gives the focus to the next TUI window.

Think of it as the Emacs @kbd{C-x o} binding.

This key binding uses the bindable Readline function
@code{tui-other-window}.

@kindex C-x s
@item C-x s
Switch in and out of the TUI SingleKey mode that binds single
keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).

This key binding uses the bindable Readline function
@code{next-keymap}.
@end table

The following key bindings only work in the TUI mode:

@table @asis
@kindex PgUp
@item @key{PgUp}
Scroll the active window one page up.

@kindex PgDn
@item @key{PgDn}
Scroll the active window one page down.

@kindex Up
@item @key{Up}
Scroll the active window one line up.

@kindex Down
@item @key{Down}
Scroll the active window one line down.

@kindex Left
@item @key{Left}
Scroll the active window one column left.

@kindex Right
@item @key{Right}
Scroll the active window one column right.

@kindex C-L
@item @kbd{C-L}
Refresh the screen.
@end table

Because the arrow keys scroll the active window in the TUI mode, they
are not available for their normal use by readline unless the command
window has the focus.  When another window is active, you must use
other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
and @kbd{C-f} to control the command window.

@node TUI Single Key Mode
@section TUI Single Key Mode
@cindex TUI single key mode

The TUI also provides a @dfn{SingleKey} mode, which binds several
frequently used @value{GDBN} commands to single keys.  Type @kbd{C-x s} to
switch into this mode, where the following key bindings are used:

@table @kbd
@kindex c @r{(SingleKey TUI key)}
@item c
continue

@kindex d @r{(SingleKey TUI key)}
@item d
down

@kindex f @r{(SingleKey TUI key)}
@item f
finish

@kindex n @r{(SingleKey TUI key)}
@item n
next

@kindex o @r{(SingleKey TUI key)}
@item o
nexti.  The shortcut letter @samp{o} stands for ``step Over''.

@kindex q @r{(SingleKey TUI key)}
@item q
exit the SingleKey mode.

@kindex r @r{(SingleKey TUI key)}
@item r
run

@kindex s @r{(SingleKey TUI key)}
@item s
step

@kindex i @r{(SingleKey TUI key)}
@item i
stepi.  The shortcut letter @samp{i} stands for ``step Into''.

@kindex u @r{(SingleKey TUI key)}
@item u
up

@kindex v @r{(SingleKey TUI key)}
@item v
info locals

@kindex w @r{(SingleKey TUI key)}
@item w
where
@end table

Other keys temporarily switch to the @value{GDBN} command prompt.
The key that was pressed is inserted in the editing buffer so that
it is possible to type most @value{GDBN} commands without interaction
with the TUI SingleKey mode.  Once the command is entered the TUI
SingleKey mode is restored.  The only way to permanently leave
this mode is by typing @kbd{q} or @kbd{C-x s}.

@cindex SingleKey keymap name
If @value{GDBN} was built with Readline 8.0 or later, the TUI
SingleKey keymap will be named @samp{SingleKey}.  This can be used in
@file{.inputrc} to add additional bindings to this keymap.

@node TUI Commands
@section TUI-specific Commands
@cindex TUI commands

The TUI has specific commands to control the text windows.
These commands are always available, even when @value{GDBN} is not in
the TUI mode.  When @value{GDBN} is in the standard mode, most
of these commands will automatically switch to the TUI mode.

Note that if @value{GDBN}'s @code{stdout} is not connected to a
terminal, or @value{GDBN} has been started with the machine interface
interpreter (@pxref{GDB/MI, ,The @sc{gdb/mi} Interface}), most of
these commands will fail with an error, because it would not be
possible or desirable to enable curses window management.

@table @code
@item tui enable
@kindex tui enable
Activate TUI mode.  The last active TUI window layout will be used if
TUI mode has previously been used in the current debugging session,
otherwise a default layout is used.

@item tui disable
@kindex tui disable
Disable TUI mode, returning to the console interpreter.

@item info win
@kindex info win
List and give the size of all displayed windows.

@item tui new-layout @var{name} @var{window} @var{weight} @r{[}@var{window} @var{weight}@dots{}@r{]}
@kindex tui new-layout
Create a new TUI layout.  The new layout will be named @var{name}, and
can be accessed using the @code{layout} command (see below).

Each @var{window} parameter is either the name of a window to display,
or a window description.  The windows will be displayed from top to
bottom in the order listed.

The names of the windows are the same as the ones given to the
@code{focus} command (see below); additional, the @code{status}
window can be specified.  Note that, because it is of fixed height,
the weight assigned to the status window is of no importance.  It is
conventional to use @samp{0} here.

A window description looks a bit like an invocation of @code{tui
new-layout}, and is of the form
@{@r{[}@code{-horizontal}@r{]}@var{window} @var{weight} @r{[}@var{window} @var{weight}@dots{}@r{]}@}.

This specifies a sub-layout.  If @code{-horizontal} is given, the
windows in this description will be arranged side-by-side, rather than
top-to-bottom.

Each @var{weight} is an integer.  It is the weight of this window
relative to all the other windows in the layout.  These numbers are
used to calculate how much of the screen is given to each window.

For example:

@example
(gdb) tui new-layout example src 1 regs 1 status 0 cmd 1
@end example

Here, the new layout is called @samp{example}.  It shows the source
and register windows, followed by the status window, and then finally
the command window.  The non-status windows all have the same weight,
so the terminal will be split into three roughly equal sections.

Here is a more complex example, showing a horizontal layout:

@example
(gdb) tui new-layout example @{-horizontal src 1 asm 1@} 2 status 0 cmd 1
@end example

This will result in side-by-side source and assembly windows; with the
status and command window being beneath these, filling the entire
width of the terminal.  Because they have weight 2, the source and
assembly windows will be twice the height of the command window.

@item layout @var{name}
@kindex layout
Changes which TUI windows are displayed.  The @var{name} parameter
controls which layout is shown.  It can be either one of the built-in
layout names, or the name of a layout defined by the user using
@code{tui new-layout}.

The built-in layouts are as follows:

@table @code
@item next
Display the next layout.

@item prev
Display the previous layout.

@item src
Display the source and command windows.

@item asm
Display the assembly and command windows.

@item split
Display the source, assembly, and command windows.

@item regs
When in @code{src} layout display the register, source, and command
windows.  When in @code{asm} or @code{split} layout display the
register, assembler, and command windows.
@end table

@item focus @var{name}
@kindex focus
Changes which TUI window is currently active for scrolling.  The
@var{name} parameter can be any of the following:

@table @code
@item next
Make the next window active for scrolling.

@item prev
Make the previous window active for scrolling.

@item src
Make the source window active for scrolling.

@item asm
Make the assembly window active for scrolling.

@item regs
Make the register window active for scrolling.

@item cmd
Make the command window active for scrolling.
@end table

@item refresh
@kindex refresh
Refresh the screen.  This is similar to typing @kbd{C-L}.

@item tui reg @var{group}
@kindex tui reg
Changes the register group displayed in the tui register window to
@var{group}.  If the register window is not currently displayed this
command will cause the register window to be displayed.  The list of
register groups, as well as their order is target specific. The
following groups are available on most targets:
@table @code
@item next
Repeatedly selecting this group will cause the display to cycle
through all of the available register groups.

@item prev
Repeatedly selecting this group will cause the display to cycle
through all of the available register groups in the reverse order to
@var{next}.

@item general
Display the general registers.
@item float
Display the floating point registers.
@item system
Display the system registers.
@item vector
Display the vector registers.
@item all
Display all registers.
@end table

@item update
@kindex update
Update the source window and the current execution point.

@item winheight @var{name} +@var{count}
@itemx winheight @var{name} -@var{count}
@kindex winheight
Change the height of the window @var{name} by @var{count}
lines.  Positive counts increase the height, while negative counts
decrease it.  The @var{name} parameter can be one of @code{src} (the
source window), @code{cmd} (the command window), @code{asm} (the
disassembly window), or @code{regs} (the register display window).
@end table

@node TUI Configuration
@section TUI Configuration Variables
@cindex TUI configuration variables

Several configuration variables control the appearance of TUI windows.

@table @code
@item set tui border-kind @var{kind}
@kindex set tui border-kind
Select the border appearance for the source, assembly and register windows.
The possible values are the following:
@table @code
@item space
Use a space character to draw the border.

@item ascii
Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.

@item acs
Use the Alternate Character Set to draw the border.  The border is
drawn using character line graphics if the terminal supports them.
@end table

@item set tui border-mode @var{mode}
@kindex set tui border-mode
@itemx set tui active-border-mode @var{mode}
@kindex set tui active-border-mode
Select the display attributes for the borders of the inactive windows
or the active window.  The @var{mode} can be one of the following:
@table @code
@item normal
Use normal attributes to display the border.

@item standout
Use standout mode.

@item reverse
Use reverse video mode.

@item half
Use half bright mode.

@item half-standout
Use half bright and standout mode.

@item bold
Use extra bright or bold mode.

@item bold-standout
Use extra bright or bold and standout mode.
@end table

@item set tui tab-width @var{nchars}
@kindex set tui tab-width
@kindex tabset
Set the width of tab stops to be @var{nchars} characters.  This
setting affects the display of TAB characters in the source and
assembly windows.

@item set tui compact-source @r{[}on@r{|}off@r{]}
@kindex set tui compact-source
Set whether the TUI source window is displayed in ``compact'' form.
The default display uses more space for line numbers and starts the
source text at the next tab stop; the compact display uses only as
much space as is needed for the line numbers in the current file, and
only a single space to separate the line numbers from the source.
@end table

Note that the colors of the TUI borders can be controlled using the
appropriate @code{set style} commands.  @xref{Output Styling}.

@node Emacs
@chapter Using @value{GDBN} under @sc{gnu} Emacs

@cindex Emacs
@cindex @sc{gnu} Emacs
A special interface allows you to use @sc{gnu} Emacs to view (and
edit) the source files for the program you are debugging with
@value{GDBN}.

To use this interface, use the command @kbd{M-x gdb} in Emacs.  Give the
executable file you want to debug as an argument.  This command starts
@value{GDBN} as a subprocess of Emacs, with input and output through a newly
created Emacs buffer.
@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)

Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
things:

@itemize @bullet
@item
All ``terminal'' input and output goes through an Emacs buffer, called
the GUD buffer.

This applies both to @value{GDBN} commands and their output, and to the input
and output done by the program you are debugging.

This is useful because it means that you can copy the text of previous
commands and input them again; you can even use parts of the output
in this way.

All the facilities of Emacs' Shell mode are available for interacting
with your program.  In particular, you can send signals the usual
way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
stop.

@item
@value{GDBN} displays source code through Emacs.

Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
source file for that frame and puts an arrow (@samp{=>}) at the
left margin of the current line.  Emacs uses a separate buffer for
source display, and splits the screen to show both your @value{GDBN} session
and the source.

Explicit @value{GDBN} @code{list} or search commands still produce output as
usual, but you probably have no reason to use them from Emacs.
@end itemize

We call this @dfn{text command mode}.  Emacs 22.1, and later, also uses
a graphical mode, enabled by default, which provides further buffers
that can control the execution and describe the state of your program.
@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.

If you specify an absolute file name when prompted for the @kbd{M-x
gdb} argument, then Emacs sets your current working directory to where
your program resides.  If you only specify the file name, then Emacs
sets your current working directory to the directory associated
with the previous buffer.  In this case, @value{GDBN} may find your
program by searching your environment's @code{PATH} variable, but on
some operating systems it might not find the source.  So, although the
@value{GDBN} input and output session proceeds normally, the auxiliary
buffer does not display the current source and line of execution.

The initial working directory of @value{GDBN} is printed on the top
line of the GUD buffer and this serves as a default for the commands
that specify files for @value{GDBN} to operate on.  @xref{Files,
,Commands to Specify Files}.

By default, @kbd{M-x gdb} calls the program called @file{gdb}.  If you
need to call @value{GDBN} by a different name (for example, if you
keep several configurations around, with different names) you can
customize the Emacs variable @code{gud-gdb-command-name} to run the
one you want.

In the GUD buffer, you can use these special Emacs commands in
addition to the standard Shell mode commands:

@table @kbd
@item C-h m
Describe the features of Emacs' GUD Mode.

@item C-c C-s
Execute to another source line, like the @value{GDBN} @code{step} command; also
update the display window to show the current file and location.

@item C-c C-n
Execute to next source line in this function, skipping all function
calls, like the @value{GDBN} @code{next} command.  Then update the display window
to show the current file and location.

@item C-c C-i
Execute one instruction, like the @value{GDBN} @code{stepi} command; update
display window accordingly.

@item C-c C-f
Execute until exit from the selected stack frame, like the @value{GDBN}
@code{finish} command.

@item C-c C-r
Continue execution of your program, like the @value{GDBN} @code{continue}
command.

@item C-c <
Go up the number of frames indicated by the numeric argument
(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
like the @value{GDBN} @code{up} command.

@item C-c >
Go down the number of frames indicated by the numeric argument, like the
@value{GDBN} @code{down} command.
@end table

In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
tells @value{GDBN} to set a breakpoint on the source line point is on.

In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
separate frame which shows a backtrace when the GUD buffer is current.
Move point to any frame in the stack and type @key{RET} to make it
become the current frame and display the associated source in the
source buffer.  Alternatively, click @kbd{Mouse-2} to make the
selected frame become the current one.  In graphical mode, the
speedbar displays watch expressions.

If you accidentally delete the source-display buffer, an easy way to get
it back is to type the command @code{f} in the @value{GDBN} buffer, to
request a frame display; when you run under Emacs, this recreates
the source buffer if necessary to show you the context of the current
frame.

The source files displayed in Emacs are in ordinary Emacs buffers
which are visiting the source files in the usual way.  You can edit
the files with these buffers if you wish; but keep in mind that @value{GDBN}
communicates with Emacs in terms of line numbers.  If you add or
delete lines from the text, the line numbers that @value{GDBN} knows cease
to correspond properly with the code.

A more detailed description of Emacs' interaction with @value{GDBN} is
given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
Emacs Manual}).

@node GDB/MI
@chapter The @sc{gdb/mi} Interface

@unnumberedsec Function and Purpose

@cindex @sc{gdb/mi}, its purpose
@sc{gdb/mi} is a line based machine oriented text interface to
@value{GDBN} and is activated by specifying using the
@option{--interpreter} command line option (@pxref{Mode Options}).  It
is specifically intended to support the development of systems which
use the debugger as just one small component of a larger system.

This chapter is a specification of the @sc{gdb/mi} interface.  It is written
in the form of a reference manual.

Note that @sc{gdb/mi} is still under construction, so some of the
features described below are incomplete and subject to change
(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).  

@unnumberedsec Notation and Terminology

@cindex notational conventions, for @sc{gdb/mi}
This chapter uses the following notation:

@itemize @bullet
@item
@code{|} separates two alternatives.

@item
@code{[ @var{something} ]} indicates that @var{something} is optional:
it may or may not be given.

@item
@code{( @var{group} )*} means that @var{group} inside the parentheses
may repeat zero or more times.

@item
@code{( @var{group} )+} means that @var{group} inside the parentheses
may repeat one or more times.

@item
@code{"@var{string}"} means a literal @var{string}.
@end itemize

@ignore
@heading Dependencies
@end ignore

@menu
* GDB/MI General Design::
* GDB/MI Command Syntax::
* GDB/MI Compatibility with CLI::
* GDB/MI Development and Front Ends::
* GDB/MI Output Records::
* GDB/MI Simple Examples::
* GDB/MI Command Description Format::
* GDB/MI Breakpoint Commands::
* GDB/MI Catchpoint Commands::
* GDB/MI Program Context::
* GDB/MI Thread Commands::
* GDB/MI Ada Tasking Commands::
* GDB/MI Program Execution::
* GDB/MI Stack Manipulation::
* GDB/MI Variable Objects::
* GDB/MI Data Manipulation::
* GDB/MI Tracepoint Commands::
* GDB/MI Symbol Query::
* GDB/MI File Commands::
@ignore
* GDB/MI Kod Commands::
* GDB/MI Memory Overlay Commands::
* GDB/MI Signal Handling Commands::
@end ignore
* GDB/MI Target Manipulation::
* GDB/MI File Transfer Commands::
* GDB/MI Ada Exceptions Commands::
* GDB/MI Support Commands::
* GDB/MI Miscellaneous Commands::
@end menu

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI General Design
@section @sc{gdb/mi} General Design
@cindex GDB/MI General Design

Interaction of a @sc{GDB/MI} frontend with @value{GDBN} involves three
parts---commands sent to @value{GDBN}, responses to those commands
and notifications.  Each command results in exactly one response,
indicating either successful completion of the command, or an error.
For the commands that do not resume the target, the response contains the
requested information.  For the commands that resume the target, the
response only indicates whether the target was successfully resumed.
Notifications is the mechanism for reporting changes in the state of the
target, or in @value{GDBN} state, that cannot conveniently be associated with
a command and reported as part of that command response.

The important examples of notifications are:
@itemize @bullet

@item 
Exec notifications.  These are used to report changes in
target state---when a target is resumed, or stopped.  It would not
be feasible to include this information in response of resuming
commands, because one resume commands can result in multiple events in
different threads.  Also, quite some time may pass before any event
happens in the target, while a frontend needs to know whether the resuming
command itself was successfully executed.

@item 
Console output, and status notifications.  Console output
notifications are used to report output of CLI commands, as well as
diagnostics for other commands.  Status notifications are used to
report the progress of a long-running operation.  Naturally, including
this information in command response would mean no output is produced
until the command is finished, which is undesirable.

@item
General notifications.  Commands may have various side effects on
the @value{GDBN} or target state beyond their official purpose.  For example,
a command may change the selected thread.  Although such changes can
be included in command response, using notification allows for more
orthogonal frontend design.

@end itemize

There's no guarantee that whenever an MI command reports an error,
@value{GDBN} or the target are in any specific state, and especially,
the state is not reverted to the state before the MI command was
processed.  Therefore, whenever an MI command results in an error, 
we recommend that the frontend refreshes all the information shown in 
the user interface.


@menu
* Context management::
* Asynchronous and non-stop modes::
* Thread groups::
@end menu

@node Context management
@subsection Context management

@subsubsection Threads and Frames

In most cases when @value{GDBN} accesses the target, this access is
done in context of a specific thread and frame (@pxref{Frames}).
Often, even when accessing global data, the target requires that a thread
be specified.  The CLI interface maintains the selected thread and frame,
and supplies them to target on each command.  This is convenient,
because a command line user would not want to specify that information
explicitly on each command, and because user interacts with
@value{GDBN} via a single terminal, so no confusion is possible as 
to what thread and frame are the current ones.

In the case of MI, the concept of selected thread and frame is less
useful.  First, a frontend can easily remember this information
itself.  Second, a graphical frontend can have more than one window,
each one used for debugging a different thread, and the frontend might
want to access additional threads for internal purposes.  This
increases the risk that by relying on implicitly selected thread, the
frontend may be operating on a wrong one.  Therefore, each MI command
should explicitly specify which thread and frame to operate on.  To
make it possible, each MI command accepts the @samp{--thread} and
@samp{--frame} options, the value to each is @value{GDBN} global
identifier for thread and frame to operate on.

Usually, each top-level window in a frontend allows the user to select
a thread and a frame, and remembers the user selection for further
operations.  However, in some cases @value{GDBN} may suggest that the
current thread or frame be changed.  For example, when stopping on a
breakpoint it is reasonable to switch to the thread where breakpoint is
hit.  For another example, if the user issues the CLI @samp{thread} or
@samp{frame} commands via the frontend, it is desirable to change the
frontend's selection to the one specified by user.  @value{GDBN}
communicates the suggestion to change current thread and frame using the
@samp{=thread-selected} notification.

Note that historically, MI shares the selected thread with CLI, so 
frontends used the @code{-thread-select} to execute commands in the
right context.  However, getting this to work right is cumbersome.  The
simplest way is for frontend to emit @code{-thread-select} command
before every command.  This doubles the number of commands that need
to be sent.  The alternative approach is to suppress @code{-thread-select}
if the selected thread in @value{GDBN} is supposed to be identical to the
thread the frontend wants to operate on.  However, getting this
optimization right can be tricky.  In particular, if the frontend
sends several commands to @value{GDBN}, and one of the commands changes the
selected thread, then the behaviour of subsequent commands will
change.  So, a frontend should either wait for response from such
problematic commands, or explicitly add @code{-thread-select} for
all subsequent commands.  No frontend is known to do this exactly
right, so it is suggested to just always pass the @samp{--thread} and
@samp{--frame} options.

@subsubsection Language

The execution of several commands depends on which language is selected.
By default, the current language (@pxref{show language}) is used.
But for commands known to be language-sensitive, it is recommended
to use the @samp{--language} option.  This option takes one argument,
which is the name of the language to use while executing the command.
For instance:

@smallexample
-data-evaluate-expression --language c "sizeof (void*)"
^done,value="4"
(gdb) 
@end smallexample

The valid language names are the same names accepted by the
@samp{set language} command (@pxref{Manually}), excluding @samp{auto},
@samp{local} or @samp{unknown}.

@node Asynchronous and non-stop modes
@subsection Asynchronous command execution and non-stop mode

On some targets, @value{GDBN} is capable of processing MI commands
even while the target is running.  This is called @dfn{asynchronous
command execution} (@pxref{Background Execution}).  The frontend may
specify a preference for asynchronous execution using the
@code{-gdb-set mi-async 1} command, which should be emitted before
either running the executable or attaching to the target.  After the
frontend has started the executable or attached to the target, it can
find if asynchronous execution is enabled using the
@code{-list-target-features} command.

@table @code
@item -gdb-set mi-async on
@item -gdb-set mi-async off
Set whether MI is in asynchronous mode.

When @code{off}, which is the default, MI execution commands (e.g.,
@code{-exec-continue}) are foreground commands, and @value{GDBN} waits
for the program to stop before processing further commands.

When @code{on}, MI execution commands are background execution
commands (e.g., @code{-exec-continue} becomes the equivalent of the
@code{c&} CLI command), and so @value{GDBN} is capable of processing
MI commands even while the target is running.

@item -gdb-show mi-async
Show whether MI asynchronous mode is enabled.
@end table

Note: In @value{GDBN} version 7.7 and earlier, this option was called
@code{target-async} instead of @code{mi-async}, and it had the effect
of both putting MI in asynchronous mode and making CLI background
commands possible.  CLI background commands are now always possible
``out of the box'' if the target supports them.  The old spelling is
kept as a deprecated alias for backwards compatibility.

Even if @value{GDBN} can accept a command while target is running,
many commands that access the target do not work when the target is
running.  Therefore, asynchronous command execution is most useful
when combined with non-stop mode (@pxref{Non-Stop Mode}).  Then,
it is possible to examine the state of one thread, while other threads
are running.

When a given thread is running, MI commands that try to access the
target in the context of that thread may not work, or may work only on
some targets.  In particular, commands that try to operate on thread's
stack will not work, on any target.  Commands that read memory, or
modify breakpoints, may work or not work, depending on the target.  Note
that even commands that operate on global state, such as @code{print},
@code{set}, and breakpoint commands, still access the target in the
context of a specific thread,  so frontend should try to find a
stopped thread and perform the operation on that thread (using the
@samp{--thread} option).

Which commands will work in the context of a running thread is
highly target dependent.  However, the two commands
@code{-exec-interrupt}, to stop a thread, and @code{-thread-info},
to find the state of a thread, will always work.

@node Thread groups
@subsection Thread groups
@value{GDBN} may be used to debug several processes at the same time.
On some platforms, @value{GDBN} may support debugging of several
hardware systems, each one having several cores with several different
processes running on each core.  This section describes the MI
mechanism to support such debugging scenarios.

The key observation is that regardless of the structure of the 
target, MI can have a global list of threads, because most commands that 
accept the @samp{--thread} option do not need to know what process that
thread belongs to.  Therefore, it is not necessary to introduce
neither additional @samp{--process} option, nor an notion of the
current process in the MI interface.  The only strictly new feature
that is required is the ability to find how the threads are grouped
into processes.

To allow the user to discover such grouping, and to support arbitrary
hierarchy of machines/cores/processes, MI introduces the concept of a
@dfn{thread group}.  Thread group is a collection of threads and other
thread groups.  A thread group always has a string identifier, a type,
and may have additional attributes specific to the type.  A new
command, @code{-list-thread-groups}, returns the list of top-level
thread groups, which correspond to processes that @value{GDBN} is
debugging at the moment.  By passing an identifier of a thread group
to the @code{-list-thread-groups} command, it is possible to obtain
the members of specific thread group.

To allow the user to easily discover processes, and other objects, he
wishes to debug, a concept of @dfn{available thread group} is
introduced.  Available thread group is an thread group that
@value{GDBN} is not debugging, but that can be attached to, using the
@code{-target-attach} command.  The list of available top-level thread
groups can be obtained using @samp{-list-thread-groups --available}.
In general, the content of a thread group may be only retrieved only
after attaching to that thread group.

Thread groups are related to inferiors (@pxref{Inferiors Connections and
Programs}).  Each inferior corresponds to a thread group of a special
type @samp{process}, and some additional operations are permitted on
such thread groups.

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Command Syntax
@section @sc{gdb/mi} Command Syntax

@menu
* GDB/MI Input Syntax::
* GDB/MI Output Syntax::
@end menu

@node GDB/MI Input Syntax
@subsection @sc{gdb/mi} Input Syntax

@cindex input syntax for @sc{gdb/mi}
@cindex @sc{gdb/mi}, input syntax
@table @code
@item @var{command} @expansion{}
@code{@var{cli-command} | @var{mi-command}}

@item @var{cli-command} @expansion{}
@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
@var{cli-command} is any existing @value{GDBN} CLI command.

@item @var{mi-command} @expansion{}
@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}

@item @var{token} @expansion{}
"any sequence of digits"

@item @var{option} @expansion{}
@code{"-" @var{parameter} [ " " @var{parameter} ]}

@item @var{parameter} @expansion{}
@code{@var{non-blank-sequence} | @var{c-string}}

@item @var{operation} @expansion{}
@emph{any of the operations described in this chapter}

@item @var{non-blank-sequence} @expansion{}
@emph{anything, provided it doesn't contain special characters such as
"-", @var{nl}, """ and of course " "}

@item @var{c-string} @expansion{}
@code{""" @var{seven-bit-iso-c-string-content} """}

@item @var{nl} @expansion{}
@code{CR | CR-LF}
@end table

@noindent
Notes:

@itemize @bullet
@item
The CLI commands are still handled by the @sc{mi} interpreter; their
output is described below.

@item
The @code{@var{token}}, when present, is passed back when the command
finishes.

@item
Some @sc{mi} commands accept optional arguments as part of the parameter
list.  Each option is identified by a leading @samp{-} (dash) and may be
followed by an optional argument parameter.  Options occur first in the
parameter list and can be delimited from normal parameters using
@samp{--} (this is useful when some parameters begin with a dash).
@end itemize

Pragmatics:

@itemize @bullet
@item
We want easy access to the existing CLI syntax (for debugging).

@item
We want it to be easy to spot a @sc{mi} operation.
@end itemize

@node GDB/MI Output Syntax
@subsection @sc{gdb/mi} Output Syntax

@cindex output syntax of @sc{gdb/mi}
@cindex @sc{gdb/mi}, output syntax
The output from @sc{gdb/mi} consists of zero or more out-of-band records
followed, optionally, by a single result record.  This result record
is for the most recent command.  The sequence of output records is
terminated by @samp{(gdb)}.

If an input command was prefixed with a @code{@var{token}} then the
corresponding output for that command will also be prefixed by that same
@var{token}.

@table @code
@item @var{output} @expansion{}
@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}

@item @var{result-record} @expansion{}
@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}

@item @var{out-of-band-record} @expansion{}
@code{@var{async-record} | @var{stream-record}}

@item @var{async-record} @expansion{}
@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}

@item @var{exec-async-output} @expansion{}
@code{[ @var{token} ] "*" @var{async-output nl}}

@item @var{status-async-output} @expansion{}
@code{[ @var{token} ] "+" @var{async-output nl}}

@item @var{notify-async-output} @expansion{}
@code{[ @var{token} ] "=" @var{async-output nl}}

@item @var{async-output} @expansion{}
@code{@var{async-class} ( "," @var{result} )*}

@item @var{result-class} @expansion{}
@code{"done" | "running" | "connected" | "error" | "exit"}

@item @var{async-class} @expansion{}
@code{"stopped" | @var{others}} (where @var{others} will be added
depending on the needs---this is still in development).

@item @var{result} @expansion{}
@code{ @var{variable} "=" @var{value}}

@item @var{variable} @expansion{}
@code{ @var{string} }

@item @var{value} @expansion{}
@code{ @var{const} | @var{tuple} | @var{list} }

@item @var{const} @expansion{}
@code{@var{c-string}}

@item @var{tuple} @expansion{}
@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }

@item @var{list} @expansion{}
@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
@var{result} ( "," @var{result} )* "]" }

@item @var{stream-record} @expansion{}
@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}

@item @var{console-stream-output} @expansion{}
@code{"~" @var{c-string nl}}

@item @var{target-stream-output} @expansion{}
@code{"@@" @var{c-string nl}}

@item @var{log-stream-output} @expansion{}
@code{"&" @var{c-string nl}}

@item @var{nl} @expansion{}
@code{CR | CR-LF}

@item @var{token} @expansion{}
@emph{any sequence of digits}.
@end table

@noindent
Notes:

@itemize @bullet
@item
All output sequences end in a single line containing a period.

@item
The @code{@var{token}} is from the corresponding request.  Note that
for all async output, while the token is allowed by the grammar and
may be output by future versions of @value{GDBN} for select async
output messages, it is generally omitted.  Frontends should treat
all async output as reporting general changes in the state of the
target and there should be no need to associate async output to any
prior command.

@item
@cindex status output in @sc{gdb/mi}
@var{status-async-output} contains on-going status information about the
progress of a slow operation.  It can be discarded.  All status output is
prefixed by @samp{+}.

@item
@cindex async output in @sc{gdb/mi}
@var{exec-async-output} contains asynchronous state change on the target
(stopped, started, disappeared).  All async output is prefixed by
@samp{*}.

@item
@cindex notify output in @sc{gdb/mi}
@var{notify-async-output} contains supplementary information that the
client should handle (e.g., a new breakpoint information).  All notify
output is prefixed by @samp{=}.

@item
@cindex console output in @sc{gdb/mi}
@var{console-stream-output} is output that should be displayed as is in the
console.  It is the textual response to a CLI command.  All the console
output is prefixed by @samp{~}.

@item
@cindex target output in @sc{gdb/mi}
@var{target-stream-output} is the output produced by the target program.
All the target output is prefixed by @samp{@@}.

@item
@cindex log output in @sc{gdb/mi}
@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
instance messages that should be displayed as part of an error log.  All
the log output is prefixed by @samp{&}.

@item
@cindex list output in @sc{gdb/mi}
New @sc{gdb/mi} commands should only output @var{lists} containing
@var{values}.


@end itemize

@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
details about the various output records.

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Compatibility with CLI
@section @sc{gdb/mi} Compatibility with CLI

@cindex compatibility, @sc{gdb/mi} and CLI
@cindex @sc{gdb/mi}, compatibility with CLI

For the developers convenience CLI commands can be entered directly,
but there may be some unexpected behaviour.  For example, commands
that query the user will behave as if the user replied yes, breakpoint
command lists are not executed and some CLI commands, such as
@code{if}, @code{when} and @code{define}, prompt for further input with
@samp{>}, which is not valid MI output.

This feature may be removed at some stage in the future and it is
recommended that front ends use the @code{-interpreter-exec} command
(@pxref{-interpreter-exec}).

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Development and Front Ends
@section @sc{gdb/mi} Development and Front Ends
@cindex @sc{gdb/mi} development

The application which takes the MI output and presents the state of the
program being debugged to the user is called a @dfn{front end}.

Since @sc{gdb/mi} is used by a variety of front ends to @value{GDBN}, changes
to the MI interface may break existing usage.  This section describes how the
protocol changes and how to request previous version of the protocol when it
does.

Some changes in MI need not break a carefully designed front end, and
for these the MI version will remain unchanged.  The following is a
list of changes that may occur within one level, so front ends should
parse MI output in a way that can handle them:

@itemize @bullet
@item
New MI commands may be added.

@item
New fields may be added to the output of any MI command.

@item
The range of values for fields with specified values, e.g.,
@code{in_scope} (@pxref{-var-update}) may be extended.

@c The format of field's content e.g type prefix, may change so parse it
@c   at your own risk.  Yes, in general?

@c The order of fields may change?  Shouldn't really matter but it might
@c resolve inconsistencies.
@end itemize

If the changes are likely to break front ends, the MI version level
will be increased by one.  The new versions of the MI protocol are not compatible
with the old versions.  Old versions of MI remain available, allowing front ends
to keep using them until they are modified to use the latest MI version.

Since @code{--interpreter=mi} always points to the latest MI version, it is
recommended that front ends request a specific version of MI when launching
@value{GDBN} (e.g. @code{--interpreter=mi2}) to make sure they get an
interpreter with the MI version they expect.

The following table gives a summary of the the released versions of the MI
interface: the version number, the version of GDB in which it first appeared
and the breaking changes compared to the previous version.

@multitable @columnfractions .05 .05 .9
@headitem MI version @tab GDB version @tab Breaking changes

@item
@center 1
@tab
@center 5.1
@tab
None

@item
@center 2
@tab
@center 6.0
@tab

@itemize
@item
The @code{-environment-pwd}, @code{-environment-directory} and
@code{-environment-path} commands now returns values using the MI output
syntax, rather than CLI output syntax.

@item
@code{-var-list-children}'s @code{children} result field is now a list, rather
than a tuple.

@item
@code{-var-update}'s @code{changelist} result field is now a list, rather than
a tuple.
@end itemize

@item
@center 3
@tab
@center 9.1
@tab

@itemize
@item
The output of information about multi-location breakpoints has changed in the
responses to the @code{-break-insert} and @code{-break-info} commands, as well
as in the @code{=breakpoint-created} and @code{=breakpoint-modified} events.
The multiple locations are now placed in a @code{locations} field, whose value
is a list.
@end itemize

@end multitable

If your front end cannot yet migrate to a more recent version of the
MI protocol, you can nevertheless selectively enable specific features
available in those recent MI versions, using the following commands:

@table @code

@item -fix-multi-location-breakpoint-output
Use the output for multi-location breakpoints which was introduced by
MI 3, even when using MI versions 2 or 1.  This command has no
effect when using MI version 3 or later.

@end table

The best way to avoid unexpected changes in MI that might break your front
end is to make your project known to @value{GDBN} developers and
follow development on @email{gdb@@sourceware.org} and
@email{gdb-patches@@sourceware.org}.
@cindex mailing lists

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Output Records
@section @sc{gdb/mi} Output Records

@menu
* GDB/MI Result Records::
* GDB/MI Stream Records::
* GDB/MI Async Records::
* GDB/MI Breakpoint Information::
* GDB/MI Frame Information::
* GDB/MI Thread Information::
* GDB/MI Ada Exception Information::
@end menu

@node GDB/MI Result Records
@subsection @sc{gdb/mi} Result Records

@cindex result records in @sc{gdb/mi}
@cindex @sc{gdb/mi}, result records
In addition to a number of out-of-band notifications, the response to a
@sc{gdb/mi} command includes one of the following result indications:

@table @code
@findex ^done
@item "^done" [ "," @var{results} ]
The synchronous operation was successful, @code{@var{results}} are the return
values.

@item "^running"
@findex ^running
This result record is equivalent to @samp{^done}.  Historically, it
was output instead of @samp{^done} if the command has resumed the
target.  This behaviour is maintained for backward compatibility, but
all frontends should treat @samp{^done} and @samp{^running}
identically and rely on the @samp{*running} output record to determine
which threads are resumed.

@item "^connected"
@findex ^connected
@value{GDBN} has connected to a remote target.

@item "^error" "," "msg=" @var{c-string} [ "," "code=" @var{c-string} ]
@findex ^error
The operation failed.  The @code{msg=@var{c-string}} variable contains
the corresponding error message.

If present, the @code{code=@var{c-string}} variable provides an error
code on which consumers can rely on to detect the corresponding
error condition.  At present, only one error code is defined:

@table @samp
@item "undefined-command"
Indicates that the command causing the error does not exist.
@end table

@item "^exit"
@findex ^exit
@value{GDBN} has terminated.

@end table

@node GDB/MI Stream Records
@subsection @sc{gdb/mi} Stream Records

@cindex @sc{gdb/mi}, stream records
@cindex stream records in @sc{gdb/mi}
@value{GDBN} internally maintains a number of output streams: the console, the
target, and the log.  The output intended for each of these streams is
funneled through the @sc{gdb/mi} interface using @dfn{stream records}.

Each stream record begins with a unique @dfn{prefix character} which
identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
Syntax}).  In addition to the prefix, each stream record contains a
@code{@var{string-output}}.  This is either raw text (with an implicit new
line) or a quoted C string (which does not contain an implicit newline).

@table @code
@item "~" @var{string-output}
The console output stream contains text that should be displayed in the
CLI console window.  It contains the textual responses to CLI commands.

@item "@@" @var{string-output}
The target output stream contains any textual output from the running
target.  This is only present when GDB's event loop is truly
asynchronous, which is currently only the case for remote targets.

@item "&" @var{string-output}
The log stream contains debugging messages being produced by @value{GDBN}'s
internals.
@end table

@node GDB/MI Async Records
@subsection @sc{gdb/mi} Async Records

@cindex async records in @sc{gdb/mi}
@cindex @sc{gdb/mi}, async records
@dfn{Async} records are used to notify the @sc{gdb/mi} client of
additional changes that have occurred.  Those changes can either be a
consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
target activity (e.g., target stopped).

The following is the list of possible async records:

@table @code

@item *running,thread-id="@var{thread}"
The target is now running.  The @var{thread} field can be the global
thread ID of the the thread that is now running, and it can be
@samp{all} if all threads are running.  The frontend should assume
that no interaction with a running thread is possible after this
notification is produced.  The frontend should not assume that this
notification is output only once for any command.  @value{GDBN} may
emit this notification several times, either for different threads,
because it cannot resume all threads together, or even for a single
thread, if the thread must be stepped though some code before letting
it run freely.

@item *stopped,reason="@var{reason}",thread-id="@var{id}",stopped-threads="@var{stopped}",core="@var{core}"
The target has stopped.  The @var{reason} field can have one of the
following values:

@table @code
@item breakpoint-hit
A breakpoint was reached.
@item watchpoint-trigger
A watchpoint was triggered.
@item read-watchpoint-trigger
A read watchpoint was triggered.
@item access-watchpoint-trigger 
An access watchpoint was triggered.
@item function-finished
An -exec-finish or similar CLI command was accomplished.
@item location-reached
An -exec-until or similar CLI command was accomplished.
@item watchpoint-scope
A watchpoint has gone out of scope.
@item end-stepping-range
An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or 
similar CLI command was accomplished.
@item exited-signalled 
The inferior exited because of a signal.
@item exited 
The inferior exited.
@item exited-normally 
The inferior exited normally.
@item signal-received 
A signal was received by the inferior.
@item solib-event
The inferior has stopped due to a library being loaded or unloaded.
This can happen when @code{stop-on-solib-events} (@pxref{Files}) is
set or when a @code{catch load} or @code{catch unload} catchpoint is
in use (@pxref{Set Catchpoints}).
@item fork
The inferior has forked.  This is reported when @code{catch fork}
(@pxref{Set Catchpoints}) has been used.
@item vfork
The inferior has vforked.  This is reported in when @code{catch vfork}
(@pxref{Set Catchpoints}) has been used.
@item syscall-entry
The inferior entered a system call.  This is reported when @code{catch
syscall} (@pxref{Set Catchpoints}) has been used.
@item syscall-return
The inferior returned from a system call.  This is reported when
@code{catch syscall} (@pxref{Set Catchpoints}) has been used.
@item exec
The inferior called @code{exec}.  This is reported when @code{catch exec}
(@pxref{Set Catchpoints}) has been used.
@end table

The @var{id} field identifies the global thread ID of the thread
that directly caused the stop -- for example by hitting a breakpoint.
Depending on whether all-stop
mode is in effect (@pxref{All-Stop Mode}), @value{GDBN} may either
stop all threads, or only the thread that directly triggered the stop.
If all threads are stopped, the @var{stopped} field will have the
value of @code{"all"}.  Otherwise, the value of the @var{stopped}
field will be a list of thread identifiers.  Presently, this list will
always include a single thread, but frontend should be prepared to see
several threads in the list.  The @var{core} field reports the
processor core on which the stop event has happened.  This field may be absent
if such information is not available.

@item =thread-group-added,id="@var{id}"
@itemx =thread-group-removed,id="@var{id}"
A thread group was either added or removed.  The @var{id} field
contains the @value{GDBN} identifier of the thread group.  When a thread
group is added, it generally might not be associated with a running
process.  When a thread group is removed, its id becomes invalid and
cannot be used in any way.

@item =thread-group-started,id="@var{id}",pid="@var{pid}"
A thread group became associated with a running program,
either because the program was just started or the thread group
was attached to a program.  The @var{id} field contains the
@value{GDBN} identifier of the thread group.  The @var{pid} field
contains process identifier, specific to the operating system.

@item =thread-group-exited,id="@var{id}"[,exit-code="@var{code}"]
A thread group is no longer associated with a running program,
either because the program has exited, or because it was detached
from.  The @var{id} field contains the @value{GDBN} identifier of the
thread group.  The @var{code} field is the exit code of the inferior; it exists
only when the inferior exited with some code.

@item =thread-created,id="@var{id}",group-id="@var{gid}"
@itemx =thread-exited,id="@var{id}",group-id="@var{gid}"
A thread either was created, or has exited.  The @var{id} field
contains the global @value{GDBN} identifier of the thread.  The @var{gid}
field identifies the thread group this thread belongs to.

@item =thread-selected,id="@var{id}"[,frame="@var{frame}"]
Informs that the selected thread or frame were changed.  This notification
is not emitted as result of the @code{-thread-select} or
@code{-stack-select-frame} commands, but is emitted whenever an MI command
that is not documented to change the selected thread and frame actually
changes them.  In particular, invoking, directly or indirectly
(via user-defined command), the CLI @code{thread} or @code{frame} commands,
will generate this notification.  Changing the thread or frame from another
user interface (see @ref{Interpreters}) will also generate this notification.

The @var{frame} field is only present if the newly selected thread is
stopped.  See @ref{GDB/MI Frame Information} for the format of its value.

We suggest that in response to this notification, front ends
highlight the selected thread and cause subsequent commands to apply to
that thread.

@item =library-loaded,...
Reports that a new library file was loaded by the program.  This
notification has 5 fields---@var{id}, @var{target-name},
@var{host-name}, @var{symbols-loaded} and @var{ranges}.  The @var{id} field is an
opaque identifier of the library.  For remote debugging case,
@var{target-name} and @var{host-name} fields give the name of the
library file on the target, and on the host respectively.  For native
debugging, both those fields have the same value.  The
@var{symbols-loaded} field is emitted only for backward compatibility
and should not be relied on to convey any useful information.  The
@var{thread-group} field, if present, specifies the id of the thread
group in whose context the library was loaded.  If the field is
absent, it means the library was loaded in the context of all present
thread groups.  The @var{ranges} field specifies the ranges of addresses belonging
to this library.

@item =library-unloaded,...
Reports that a library was unloaded by the program.  This notification
has 3 fields---@var{id}, @var{target-name} and @var{host-name} with
the same meaning as for the @code{=library-loaded} notification.
The @var{thread-group} field, if present, specifies the id of the
thread group in whose context the library was unloaded.  If the field is
absent, it means the library was unloaded in the context of all present
thread groups.

@item =traceframe-changed,num=@var{tfnum},tracepoint=@var{tpnum}
@itemx =traceframe-changed,end
Reports that the trace frame was changed and its new number is
@var{tfnum}.  The number of the tracepoint associated with this trace
frame is @var{tpnum}.

@item =tsv-created,name=@var{name},initial=@var{initial}
Reports that the new trace state variable @var{name} is created with
initial value @var{initial}.

@item =tsv-deleted,name=@var{name}
@itemx =tsv-deleted
Reports that the trace state variable @var{name} is deleted or all
trace state variables are deleted.

@item =tsv-modified,name=@var{name},initial=@var{initial}[,current=@var{current}]
Reports that the trace state variable @var{name} is modified with
the initial value @var{initial}. The current value @var{current} of
trace state variable is optional and is reported if the current
value of trace state variable is known.

@item =breakpoint-created,bkpt=@{...@}
@itemx =breakpoint-modified,bkpt=@{...@}
@itemx =breakpoint-deleted,id=@var{number}
Reports that a breakpoint was created, modified, or deleted,
respectively.  Only user-visible breakpoints are reported to the MI
user.

The @var{bkpt} argument is of the same form as returned by the various
breakpoint commands; @xref{GDB/MI Breakpoint Commands}.  The
@var{number} is the ordinal number of the breakpoint.

Note that if a breakpoint is emitted in the result record of a
command, then it will not also be emitted in an async record.

@item =record-started,thread-group="@var{id}",method="@var{method}"[,format="@var{format}"]
@itemx =record-stopped,thread-group="@var{id}"
Execution log recording was either started or stopped on an
inferior.  The @var{id} is the @value{GDBN} identifier of the thread
group corresponding to the affected inferior.

The @var{method} field indicates the method used to record execution.  If the
method in use supports multiple recording formats, @var{format} will be present
and contain the currently used format.  @xref{Process Record and Replay},
for existing method and format values.

@item =cmd-param-changed,param=@var{param},value=@var{value}
Reports that a parameter of the command @code{set @var{param}} is
changed to @var{value}.  In the multi-word @code{set} command,
the @var{param} is the whole parameter list to @code{set} command.
For example, In command @code{set check type on}, @var{param}
is @code{check type} and @var{value} is @code{on}.

@item =memory-changed,thread-group=@var{id},addr=@var{addr},len=@var{len}[,type="code"]
Reports that bytes from @var{addr} to @var{data} + @var{len} were
written in an inferior.  The @var{id} is the identifier of the
thread group corresponding to the affected inferior.  The optional
@code{type="code"} part is reported if the memory written to holds
executable code.
@end table

@node GDB/MI Breakpoint Information
@subsection @sc{gdb/mi} Breakpoint Information

When @value{GDBN} reports information about a breakpoint, a
tracepoint, a watchpoint, or a catchpoint, it uses a tuple with the
following fields:

@table @code
@item number
The breakpoint number.

@item type
The type of the breakpoint.  For ordinary breakpoints this will be
@samp{breakpoint}, but many values are possible.

@item catch-type
If the type of the breakpoint is @samp{catchpoint}, then this
indicates the exact type of catchpoint.

@item disp
This is the breakpoint disposition---either @samp{del}, meaning that
the breakpoint will be deleted at the next stop, or @samp{keep},
meaning that the breakpoint will not be deleted.

@item enabled
This indicates whether the breakpoint is enabled, in which case the
value is @samp{y}, or disabled, in which case the value is @samp{n}.
Note that this is not the same as the field @code{enable}.

@item addr
The address of the breakpoint.  This may be a hexidecimal number,
giving the address; or the string @samp{<PENDING>}, for a pending
breakpoint; or the string @samp{<MULTIPLE>}, for a breakpoint with
multiple locations.  This field will not be present if no address can
be determined.  For example, a watchpoint does not have an address.

@item addr_flags
Optional field containing any flags related to the address.  These flags are
architecture-dependent; see @ref{Architectures} for their meaning for a
particular CPU.

@item func
If known, the function in which the breakpoint appears.
If not known, this field is not present.

@item filename
The name of the source file which contains this function, if known.
If not known, this field is not present.

@item fullname
The full file name of the source file which contains this function, if
known.  If not known, this field is not present.

@item line
The line number at which this breakpoint appears, if known.
If not known, this field is not present.

@item at
If the source file is not known, this field may be provided.  If
provided, this holds the address of the breakpoint, possibly followed
by a symbol name.

@item pending
If this breakpoint is pending, this field is present and holds the
text used to set the breakpoint, as entered by the user.

@item evaluated-by
Where this breakpoint's condition is evaluated, either @samp{host} or
@samp{target}.

@item thread
If this is a thread-specific breakpoint, then this identifies the
thread in which the breakpoint can trigger.

@item task
If this breakpoint is restricted to a particular Ada task, then this
field will hold the task identifier.

@item cond
If the breakpoint is conditional, this is the condition expression.

@item ignore
The ignore count of the breakpoint.

@item enable
The enable count of the breakpoint.

@item traceframe-usage
FIXME.

@item static-tracepoint-marker-string-id
For a static tracepoint, the name of the static tracepoint marker.

@item mask
For a masked watchpoint, this is the mask.

@item pass
A tracepoint's pass count.

@item original-location
The location of the breakpoint as originally specified by the user.
This field is optional.

@item times
The number of times the breakpoint has been hit.

@item installed
This field is only given for tracepoints.  This is either @samp{y},
meaning that the tracepoint is installed, or @samp{n}, meaning that it
is not.

@item what
Some extra data, the exact contents of which are type-dependent.

@item locations
This field is present if the breakpoint has multiple locations.  It is also
exceptionally present if the breakpoint is enabled and has a single, disabled
location.

The value is a list of locations.  The format of a location is described below.

@end table

A location in a multi-location breakpoint is represented as a tuple with the
following fields:

@table @code

@item number
The location number as a dotted pair, like @samp{1.2}.  The first digit is the
number of the parent breakpoint.  The second digit is the number of the
location within that breakpoint.

@item enabled
This indicates whether the location is enabled, in which case the
value is @samp{y}, or disabled, in which case the value is @samp{n}.
Note that this is not the same as the field @code{enable}.

@item addr
The address of this location as an hexidecimal number.

@item addr_flags
Optional field containing any flags related to the address.  These flags are
architecture-dependent; see @ref{Architectures} for their meaning for a
particular CPU.

@item func
If known, the function in which the location appears.
If not known, this field is not present.

@item file
The name of the source file which contains this location, if known.
If not known, this field is not present.

@item fullname
The full file name of the source file which contains this location, if
known.  If not known, this field is not present.

@item line
The line number at which this location appears, if known.
If not known, this field is not present.

@item thread-groups
The thread groups this location is in.

@end table

For example, here is what the output of @code{-break-insert}
(@pxref{GDB/MI Breakpoint Commands}) might be:

@smallexample
-> -break-insert main
<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
    enabled="y",addr="0x08048564",func="main",file="myprog.c",
    fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],
    times="0"@}
<- (gdb)
@end smallexample

@node GDB/MI Frame Information
@subsection @sc{gdb/mi} Frame Information

Response from many MI commands includes an information about stack
frame.  This information is a tuple that may have the following
fields:

@table @code
@item level
The level of the stack frame.  The innermost frame has the level of
zero.  This field is always present.

@item func
The name of the function corresponding to the frame.  This field may
be absent if @value{GDBN} is unable to determine the function name.

@item addr
The code address for the frame.  This field is always present.

@item addr_flags
Optional field containing any flags related to the address.  These flags are
architecture-dependent; see @ref{Architectures} for their meaning for a
particular CPU.

@item file
The name of the source files that correspond to the frame's code
address.  This field may be absent.

@item line
The source line corresponding to the frames' code address.  This field
may be absent.

@item from
The name of the binary file (either executable or shared library) the
corresponds to the frame's code address.  This field may be absent.

@end table

@node GDB/MI Thread Information
@subsection @sc{gdb/mi} Thread Information

Whenever @value{GDBN} has to report an information about a thread, it
uses a tuple with the following fields.  The fields are always present unless
stated otherwise.

@table @code
@item id
The global numeric id assigned to the thread by @value{GDBN}.

@item target-id
The target-specific string identifying the thread.

@item details
Additional information about the thread provided by the target.
It is supposed to be human-readable and not interpreted by the
frontend.  This field is optional.

@item name
The name of the thread.  If the user specified a name using the
@code{thread name} command, then this name is given.  Otherwise, if
@value{GDBN} can extract the thread name from the target, then that
name is given.  If @value{GDBN} cannot find the thread name, then this
field is omitted.

@item state
The execution state of the thread, either @samp{stopped} or @samp{running},
depending on whether the thread is presently running.

@item frame
The stack frame currently executing in the thread.  This field is only present
if the thread is stopped.  Its format is documented in
@ref{GDB/MI Frame Information}.

@item core
The value of this field is an integer number of the processor core the
thread was last seen on.  This field is optional.
@end table

@node GDB/MI Ada Exception Information
@subsection @sc{gdb/mi} Ada Exception Information

Whenever a @code{*stopped} record is emitted because the program
stopped after hitting an exception catchpoint (@pxref{Set Catchpoints}),
@value{GDBN} provides the name of the exception that was raised via
the @code{exception-name} field.  Also, for exceptions that were raised
with an exception message, @value{GDBN} provides that message via
the @code{exception-message} field.

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Simple Examples
@section Simple Examples of @sc{gdb/mi} Interaction
@cindex @sc{gdb/mi}, simple examples

This subsection presents several simple examples of interaction using
the @sc{gdb/mi} interface.  In these examples, @samp{->} means that the
following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
the output received from @sc{gdb/mi}.

Note the line breaks shown in the examples are here only for
readability, they don't appear in the real output.

@subheading Setting a Breakpoint

Setting a breakpoint generates synchronous output which contains detailed
information of the breakpoint.

@smallexample
-> -break-insert main
<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
    enabled="y",addr="0x08048564",func="main",file="myprog.c",
    fullname="/home/nickrob/myprog.c",line="68",thread-groups=["i1"],
    times="0"@}
<- (gdb)
@end smallexample

@subheading Program Execution

Program execution generates asynchronous records and MI gives the
reason that execution stopped.

@smallexample
-> -exec-run
<- ^running
<- (gdb)
<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
   frame=@{addr="0x08048564",func="main",
   args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
   file="myprog.c",fullname="/home/nickrob/myprog.c",line="68",
   arch="i386:x86_64"@}
<- (gdb)
-> -exec-continue
<- ^running
<- (gdb)
<- *stopped,reason="exited-normally"
<- (gdb)
@end smallexample

@subheading Quitting @value{GDBN}

Quitting @value{GDBN} just prints the result class @samp{^exit}.

@smallexample
-> (gdb)
<- -gdb-exit
<- ^exit
@end smallexample

Please note that @samp{^exit} is printed immediately, but it might
take some time for @value{GDBN} to actually exit.  During that time, @value{GDBN}
performs necessary cleanups, including killing programs being debugged
or disconnecting from debug hardware, so the frontend should wait till
@value{GDBN} exits and should only forcibly kill @value{GDBN} if it
fails to exit in reasonable time.

@subheading A Bad Command

Here's what happens if you pass a non-existent command:

@smallexample
-> -rubbish
<- ^error,msg="Undefined MI command: rubbish"
<- (gdb)
@end smallexample


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Command Description Format
@section @sc{gdb/mi} Command Description Format

The remaining sections describe blocks of commands.  Each block of
commands is laid out in a fashion similar to this section.

@subheading Motivation

The motivation for this collection of commands.

@subheading Introduction

A brief introduction to this collection of commands as a whole.

@subheading Commands

For each command in the block, the following is described:

@subsubheading Synopsis

@smallexample
 -command @var{args}@dots{}
@end smallexample

@subsubheading Result

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} CLI command(s), if any.

@subsubheading Example

Example(s) formatted for readability.  Some of the described commands  have
not been implemented yet and these are labeled N.A.@: (not available).


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Breakpoint Commands
@section @sc{gdb/mi} Breakpoint Commands

@cindex breakpoint commands for @sc{gdb/mi}
@cindex @sc{gdb/mi}, breakpoint commands
This section documents @sc{gdb/mi} commands for manipulating
breakpoints.

@subheading The @code{-break-after} Command
@findex -break-after

@subsubheading Synopsis

@smallexample
 -break-after @var{number} @var{count}
@end smallexample

The breakpoint number @var{number} is not in effect until it has been
hit @var{count} times.  To see how this is reflected in the output of
the @samp{-break-list} command, see the description of the
@samp{-break-list} command below.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{ignore}.

@subsubheading Example

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",type="breakpoint",disp="keep",
enabled="y",addr="0x000100d0",func="main",file="hello.c",
fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],
times="0"@}
(gdb)
-break-after 1 3
~
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",thread-groups=["i1"],times="0",ignore="3"@}]@}
(gdb)
@end smallexample

@ignore
@subheading The @code{-break-catch} Command
@findex -break-catch
@end ignore

@subheading The @code{-break-commands} Command
@findex -break-commands

@subsubheading Synopsis

@smallexample
 -break-commands @var{number} [ @var{command1} ... @var{commandN} ]
@end smallexample

Specifies the CLI commands that should be executed when breakpoint
@var{number} is hit.  The parameters @var{command1} to @var{commandN}
are the commands.  If no command is specified, any previously-set
commands are cleared.  @xref{Break Commands}.  Typical use of this
functionality is tracing a program, that is, printing of values of
some variables whenever breakpoint is hit and then continuing.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{commands}.

@subsubheading Example

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",type="breakpoint",disp="keep",
enabled="y",addr="0x000100d0",func="main",file="hello.c",
fullname="/home/foo/hello.c",line="5",thread-groups=["i1"],
times="0"@}
(gdb)
-break-commands 1 "print v" "continue"
^done
(gdb)
@end smallexample

@subheading The @code{-break-condition} Command
@findex -break-condition

@subsubheading Synopsis

@smallexample
 -break-condition @var{number} @var{expr}
@end smallexample

Breakpoint @var{number} will stop the program only if the condition in
@var{expr} is true.  The condition becomes part of the
@samp{-break-list} output (see the description of the @samp{-break-list}
command below).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{condition}.

@subsubheading Example

@smallexample
(gdb)
-break-condition 1 1
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",cond="1",thread-groups=["i1"],times="0",ignore="3"@}]@}
(gdb)
@end smallexample

@subheading The @code{-break-delete} Command
@findex -break-delete

@subsubheading Synopsis

@smallexample
 -break-delete ( @var{breakpoint} )+
@end smallexample

Delete the breakpoint(s) whose number(s) are specified in the argument
list.  This is obviously reflected in the breakpoint list.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{delete}.

@subsubheading Example

@smallexample
(gdb)
-break-delete 1
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[]@}
(gdb)
@end smallexample

@subheading The @code{-break-disable} Command
@findex -break-disable

@subsubheading Synopsis

@smallexample
 -break-disable ( @var{breakpoint} )+
@end smallexample

Disable the named @var{breakpoint}(s).  The field @samp{enabled} in the
break list is now set to @samp{n} for the named @var{breakpoint}(s).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{disable}.

@subsubheading Example

@smallexample
(gdb)
-break-disable 2
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",thread-groups=["i1"],times="0"@}]@}
(gdb)
@end smallexample

@subheading The @code{-break-enable} Command
@findex -break-enable

@subsubheading Synopsis

@smallexample
 -break-enable ( @var{breakpoint} )+
@end smallexample

Enable (previously disabled) @var{breakpoint}(s).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{enable}.

@subsubheading Example

@smallexample
(gdb)
-break-enable 2
^done
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
line="5",thread-groups=["i1"],times="0"@}]@}
(gdb)
@end smallexample

@subheading The @code{-break-info} Command
@findex -break-info

@subsubheading Synopsis

@smallexample
 -break-info @var{breakpoint}
@end smallexample

@c REDUNDANT???
Get information about a single breakpoint.

The result is a table of breakpoints.  @xref{GDB/MI Breakpoint
Information}, for details on the format of each breakpoint in the
table.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.

@subsubheading Example
N.A.

@subheading The @code{-break-insert} Command
@findex -break-insert
@anchor{-break-insert}

@subsubheading Synopsis

@smallexample
 -break-insert [ -t ] [ -h ] [ -f ] [ -d ] [ -a ]
    [ -c @var{condition} ] [ -i @var{ignore-count} ]
    [ -p @var{thread-id} ] [ @var{location} ]
@end smallexample

@noindent
If specified, @var{location}, can be one of:

@table @var
@item linespec location
A linespec location.  @xref{Linespec Locations}.

@item explicit location
An explicit location.  @sc{gdb/mi} explicit locations are
analogous to the CLI's explicit locations using the option names
listed below.  @xref{Explicit Locations}.

@table @samp
@item --source @var{filename}
The source file name of the location.  This option requires the use
of either @samp{--function} or @samp{--line}.

@item --function @var{function}
The name of a function or method.

@item --label @var{label}
The name of a label.

@item --line @var{lineoffset}
An absolute or relative line offset from the start of the location.
@end table

@item address location
An address location, *@var{address}.  @xref{Address Locations}.
@end table

@noindent
The possible optional parameters of this command are:

@table @samp
@item -t
Insert a temporary breakpoint.
@item -h
Insert a hardware breakpoint.
@item -f
If @var{location} cannot be parsed (for example if it
refers to unknown files or functions), create a pending
breakpoint. Without this flag, @value{GDBN} will report
an error, and won't create a breakpoint, if @var{location}
cannot be parsed.
@item -d
Create a disabled breakpoint.
@item -a
Create a tracepoint.  @xref{Tracepoints}.  When this parameter
is used together with @samp{-h}, a fast tracepoint is created.
@item -c @var{condition}
Make the breakpoint conditional on @var{condition}.
@item -i @var{ignore-count}
Initialize the @var{ignore-count}.
@item -p @var{thread-id}
Restrict the breakpoint to the thread with the specified global
@var{thread-id}.
@end table

@subsubheading Result

@xref{GDB/MI Breakpoint Information}, for details on the format of the
resulting breakpoint.

Note: this format is open to change.
@c An out-of-band breakpoint instead of part of the result?

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
@samp{hbreak}, and @samp{thbreak}. @c and @samp{rbreak}.

@subsubheading Example

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
fullname="/home/foo/recursive2.c,line="4",thread-groups=["i1"],
times="0"@}
(gdb)
-break-insert -t foo
^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
fullname="/home/foo/recursive2.c,line="11",thread-groups=["i1"],
times="0"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x0001072c", func="main",file="recursive2.c",
fullname="/home/foo/recursive2.c,"line="4",thread-groups=["i1"],
times="0"@},
bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
addr="0x00010774",func="foo",file="recursive2.c",
fullname="/home/foo/recursive2.c",line="11",thread-groups=["i1"],
times="0"@}]@}
(gdb)
@c -break-insert -r foo.*
@c ~int foo(int, int);
@c ^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
@c "fullname="/home/foo/recursive2.c",line="11",thread-groups=["i1"],
@c times="0"@}
@c (gdb)
@end smallexample

@subheading The @code{-dprintf-insert} Command
@findex -dprintf-insert

@subsubheading Synopsis

@smallexample
 -dprintf-insert [ -t ] [ -f ] [ -d ]
    [ -c @var{condition} ] [ -i @var{ignore-count} ]
    [ -p @var{thread-id} ] [ @var{location} ] [ @var{format} ]
    [ @var{argument} ]
@end smallexample

@noindent
If supplied, @var{location} may be specified the same way as for
the @code{-break-insert} command.  @xref{-break-insert}.

The possible optional parameters of this command are:

@table @samp
@item -t
Insert a temporary breakpoint.
@item -f
If @var{location} cannot be parsed (for example, if it
refers to unknown files or functions), create a pending
breakpoint.  Without this flag, @value{GDBN} will report
an error, and won't create a breakpoint, if @var{location}
cannot be parsed.
@item -d
Create a disabled breakpoint.
@item -c @var{condition}
Make the breakpoint conditional on @var{condition}.
@item -i @var{ignore-count}
Set the ignore count of the breakpoint (@pxref{Conditions, ignore count})
to @var{ignore-count}.
@item -p @var{thread-id}
Restrict the breakpoint to the thread with the specified global
@var{thread-id}.
@end table

@subsubheading Result

@xref{GDB/MI Breakpoint Information}, for details on the format of the
resulting breakpoint.

@c An out-of-band breakpoint instead of part of the result?

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{dprintf}.

@subsubheading Example

@smallexample
(gdb)
4-dprintf-insert foo "At foo entry\n"
4^done,bkpt=@{number="1",type="dprintf",disp="keep",enabled="y",
addr="0x000000000040061b",func="foo",file="mi-dprintf.c",
fullname="mi-dprintf.c",line="25",thread-groups=["i1"],
times="0",script=@{"printf \"At foo entry\\n\"","continue"@},
original-location="foo"@}
(gdb)
5-dprintf-insert 26 "arg=%d, g=%d\n" arg g
5^done,bkpt=@{number="2",type="dprintf",disp="keep",enabled="y",
addr="0x000000000040062a",func="foo",file="mi-dprintf.c",
fullname="mi-dprintf.c",line="26",thread-groups=["i1"],
times="0",script=@{"printf \"arg=%d, g=%d\\n\", arg, g","continue"@},
original-location="mi-dprintf.c:26"@}
(gdb)
@end smallexample

@subheading The @code{-break-list} Command
@findex -break-list

@subsubheading Synopsis

@smallexample
 -break-list
@end smallexample

Displays the list of inserted breakpoints, showing the following fields:

@table @samp
@item Number
number of the breakpoint
@item Type
type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
@item Disposition
should the breakpoint be deleted or disabled when it is hit: @samp{keep}
or @samp{nokeep}
@item Enabled
is the breakpoint enabled or no: @samp{y} or @samp{n}
@item Address
memory location at which the breakpoint is set
@item What
logical location of the breakpoint, expressed by function name, file
name, line number
@item Thread-groups
list of thread groups to which this breakpoint applies
@item Times
number of times the breakpoint has been hit
@end table

If there are no breakpoints or watchpoints, the @code{BreakpointTable}
@code{body} field is an empty list.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info break}.

@subsubheading Example

@smallexample
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x000100d0",func="main",file="hello.c",line="5",thread-groups=["i1"],
times="0"@},
bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
line="13",thread-groups=["i1"],times="0"@}]@}
(gdb)
@end smallexample

Here's an example of the result when there are no breakpoints:

@smallexample
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[]@}
(gdb)
@end smallexample

@subheading The @code{-break-passcount} Command
@findex -break-passcount

@subsubheading Synopsis

@smallexample
 -break-passcount @var{tracepoint-number} @var{passcount}
@end smallexample

Set the passcount for tracepoint @var{tracepoint-number} to
@var{passcount}.  If the breakpoint referred to by @var{tracepoint-number}
is not a tracepoint, error is emitted.  This corresponds to CLI
command @samp{passcount}.

@subheading The @code{-break-watch} Command
@findex -break-watch

@subsubheading Synopsis

@smallexample
 -break-watch [ -a | -r ]
@end smallexample

Create a watchpoint.  With the @samp{-a} option it will create an
@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
read from or on a write to the memory location.  With the @samp{-r}
option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
trigger only when the memory location is accessed for reading.  Without
either of the options, the watchpoint created is a regular watchpoint,
i.e., it will trigger when the memory location is accessed for writing.
@xref{Set Watchpoints, , Setting Watchpoints}.

Note that @samp{-break-list} will report a single list of watchpoints and
breakpoints inserted.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
@samp{rwatch}.

@subsubheading Example

Setting a watchpoint on a variable in the @code{main} function:

@smallexample
(gdb)
-break-watch x
^done,wpt=@{number="2",exp="x"@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
value=@{old="-268439212",new="55"@},
frame=@{func="main",args=[],file="recursive2.c",
fullname="/home/foo/bar/recursive2.c",line="5",arch="i386:x86_64"@}
(gdb)
@end smallexample

Setting a watchpoint on a variable local to a function.  @value{GDBN} will stop
the program execution twice: first for the variable changing value, then
for the watchpoint going out of scope.

@smallexample
(gdb)
-break-watch C
^done,wpt=@{number="5",exp="C"@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-trigger",
wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
frame=@{func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13",
arch="i386:x86_64"@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-scope",wpnum="5",
frame=@{func="callee3",args=[@{name="strarg",
value="0x11940 \"A string argument.\""@}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",
arch="i386:x86_64"@}
(gdb)
@end smallexample

Listing breakpoints and watchpoints, at different points in the program
execution.  Note that once the watchpoint goes out of scope, it is
deleted.

@smallexample
(gdb)
-break-watch C
^done,wpt=@{number="2",exp="C"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",thread-groups=["i1"],
times="1"@},
bkpt=@{number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",thread-groups=["i1"],times="0"@}]@}
(gdb)
-exec-continue
^running
(gdb)
*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
value=@{old="-276895068",new="3"@},
frame=@{func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13",
arch="i386:x86_64"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",thread-groups=["i1"],
times="1"@},
bkpt=@{number="2",type="watchpoint",disp="keep",
enabled="y",addr="",what="C",thread-groups=["i1"],times="-5"@}]@}
(gdb)
-exec-continue
^running
^done,reason="watchpoint-scope",wpnum="2",
frame=@{func="callee3",args=[@{name="strarg",
value="0x11940 \"A string argument.\""@}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",
arch="i386:x86_64"@}
(gdb)
-break-list
^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
@{width="40",alignment="2",col_name="what",colhdr="What"@}],
body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
thread-groups=["i1"],times="1"@}]@}
(gdb)
@end smallexample


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Catchpoint Commands
@section @sc{gdb/mi} Catchpoint Commands

This section documents @sc{gdb/mi} commands for manipulating
catchpoints.

@menu
* Shared Library GDB/MI Catchpoint Commands::
* Ada Exception GDB/MI Catchpoint Commands::
* C++ Exception GDB/MI Catchpoint Commands::
@end menu

@node Shared Library GDB/MI Catchpoint Commands
@subsection Shared Library @sc{gdb/mi} Catchpoints

@subheading The @code{-catch-load} Command
@findex -catch-load

@subsubheading Synopsis

@smallexample
 -catch-load [ -t ] [ -d ] @var{regexp}
@end smallexample

Add a catchpoint for library load events.  If the @samp{-t} option is used,
the catchpoint is a temporary one (@pxref{Set Breaks, ,Setting
Breakpoints}).  If the @samp{-d} option is used, the catchpoint is created
in a disabled state.  The @samp{regexp} argument is a regular
expression used to match the name of the loaded library.


@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{catch load}.

@subsubheading Example

@smallexample
-catch-load -t foo.so
^done,bkpt=@{number="1",type="catchpoint",disp="del",enabled="y",
what="load of library matching foo.so",catch-type="load",times="0"@}
(gdb)
@end smallexample


@subheading The @code{-catch-unload} Command
@findex -catch-unload

@subsubheading Synopsis

@smallexample
 -catch-unload [ -t ] [ -d ] @var{regexp}
@end smallexample

Add a catchpoint for library unload events.  If the @samp{-t} option is
used, the catchpoint is a temporary one (@pxref{Set Breaks, ,Setting
Breakpoints}).  If the @samp{-d} option is used, the catchpoint is
created in a disabled state.  The @samp{regexp} argument is a regular
expression used to match the name of the unloaded library.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{catch unload}.

@subsubheading Example

@smallexample
-catch-unload -d bar.so
^done,bkpt=@{number="2",type="catchpoint",disp="keep",enabled="n",
what="load of library matching bar.so",catch-type="unload",times="0"@}
(gdb)
@end smallexample

@node Ada Exception GDB/MI Catchpoint Commands
@subsection Ada Exception @sc{gdb/mi} Catchpoints

The following @sc{gdb/mi} commands can be used to create catchpoints
that stop the execution when Ada exceptions are being raised.

@subheading The @code{-catch-assert} Command
@findex -catch-assert

@subsubheading Synopsis

@smallexample
 -catch-assert [ -c @var{condition}] [ -d ] [ -t ]
@end smallexample

Add a catchpoint for failed Ada assertions.

The possible optional parameters for this command are:

@table @samp
@item -c @var{condition}
Make the catchpoint conditional on @var{condition}.
@item -d
Create a disabled catchpoint.
@item -t
Create a temporary catchpoint.
@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{catch assert}.

@subsubheading Example

@smallexample
-catch-assert
^done,bkptno="5",bkpt=@{number="5",type="breakpoint",disp="keep",
enabled="y",addr="0x0000000000404888",what="failed Ada assertions",
thread-groups=["i1"],times="0",
original-location="__gnat_debug_raise_assert_failure"@}
(gdb)
@end smallexample

@subheading The @code{-catch-exception} Command
@findex -catch-exception

@subsubheading Synopsis

@smallexample
 -catch-exception [ -c @var{condition}] [ -d ] [ -e @var{exception-name} ]
    [ -t ] [ -u ]
@end smallexample

Add a catchpoint stopping when Ada exceptions are raised.
By default, the command stops the program when any Ada exception
gets raised.  But it is also possible, by using some of the
optional parameters described below, to create more selective
catchpoints.

The possible optional parameters for this command are:

@table @samp
@item -c @var{condition}
Make the catchpoint conditional on @var{condition}.
@item -d
Create a disabled catchpoint.
@item -e @var{exception-name}
Only stop when @var{exception-name} is raised.  This option cannot
be used combined with @samp{-u}.
@item -t
Create a temporary catchpoint.
@item -u
Stop only when an unhandled exception gets raised.  This option
cannot be used combined with @samp{-e}.
@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{catch exception}
and @samp{catch exception unhandled}.

@subsubheading Example

@smallexample
-catch-exception -e Program_Error
^done,bkptno="4",bkpt=@{number="4",type="breakpoint",disp="keep",
enabled="y",addr="0x0000000000404874",
what="`Program_Error' Ada exception", thread-groups=["i1"],
times="0",original-location="__gnat_debug_raise_exception"@}
(gdb)
@end smallexample

@subheading The @code{-catch-handlers} Command
@findex -catch-handlers

@subsubheading Synopsis

@smallexample
 -catch-handlers [ -c @var{condition}] [ -d ] [ -e @var{exception-name} ]
    [ -t ]
@end smallexample

Add a catchpoint stopping when Ada exceptions are handled.
By default, the command stops the program when any Ada exception
gets handled.  But it is also possible, by using some of the
optional parameters described below, to create more selective
catchpoints.

The possible optional parameters for this command are:

@table @samp
@item -c @var{condition}
Make the catchpoint conditional on @var{condition}.
@item -d
Create a disabled catchpoint.
@item -e @var{exception-name}
Only stop when @var{exception-name} is handled.
@item -t
Create a temporary catchpoint.
@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{catch handlers}.

@subsubheading Example

@smallexample
-catch-handlers -e Constraint_Error
^done,bkptno="4",bkpt=@{number="4",type="breakpoint",disp="keep",
enabled="y",addr="0x0000000000402f68",
what="`Constraint_Error' Ada exception handlers",thread-groups=["i1"],
times="0",original-location="__gnat_begin_handler"@}
(gdb)
@end smallexample

@node C++ Exception GDB/MI Catchpoint Commands
@subsection C@t{++} Exception @sc{gdb/mi} Catchpoints

The following @sc{gdb/mi} commands can be used to create catchpoints
that stop the execution when C@t{++} exceptions are being throw, rethrown,
or caught.

@subheading The @code{-catch-throw} Command
@findex -catch-throw

@subsubheading Synopsis

@smallexample
 -catch-throw [ -t ] [ -r @var{regexp}]
@end smallexample

Stop when the debuggee throws a C@t{++} exception.  If @var{regexp} is
given, then only exceptions whose type matches the regular expression
will be caught.

If @samp{-t} is given, then the catchpoint is enabled only for one
stop, the catchpoint is automatically deleted after stopping once for
the event.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{catch throw}
and @samp{tcatch throw} (@pxref{Set Catchpoints}).

@subsubheading Example

@smallexample
-catch-throw -r exception_type
^done,bkpt=@{number="1",type="catchpoint",disp="keep",enabled="y",
  what="exception throw",catch-type="throw",
  thread-groups=["i1"],
  regexp="exception_type",times="0"@}
(gdb)
-exec-run
^running
(gdb)
~"\n"
~"Catchpoint 1 (exception thrown), 0x00007ffff7ae00ed
  in __cxa_throw () from /lib64/libstdc++.so.6\n"
*stopped,bkptno="1",reason="breakpoint-hit",disp="keep",
  frame=@{addr="0x00007ffff7ae00ed",func="__cxa_throw",
  args=[],from="/lib64/libstdc++.so.6",arch="i386:x86-64"@},
  thread-id="1",stopped-threads="all",core="6"
(gdb)
@end smallexample

@subheading The @code{-catch-rethrow} Command
@findex -catch-rethrow

@subsubheading Synopsis

@smallexample
 -catch-rethrow [ -t ] [ -r @var{regexp}]
@end smallexample

Stop when a C@t{++} exception is re-thrown.  If @var{regexp} is given,
then only exceptions whose type matches the regular expression will be
caught.

If @samp{-t} is given, then the catchpoint is enabled only for one
stop, the catchpoint is automatically deleted after the first event is
caught.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{catch rethrow}
and @samp{tcatch rethrow} (@pxref{Set Catchpoints}).

@subsubheading Example

@smallexample
-catch-rethrow -r exception_type
^done,bkpt=@{number="1",type="catchpoint",disp="keep",enabled="y",
  what="exception rethrow",catch-type="rethrow",
  thread-groups=["i1"],
  regexp="exception_type",times="0"@}
(gdb)
-exec-run
^running
(gdb)
~"\n"
~"Catchpoint 1 (exception rethrown), 0x00007ffff7ae00ed
  in __cxa_rethrow () from /lib64/libstdc++.so.6\n"
*stopped,bkptno="1",reason="breakpoint-hit",disp="keep",
  frame=@{addr="0x00007ffff7ae00ed",func="__cxa_rethrow",
  args=[],from="/lib64/libstdc++.so.6",arch="i386:x86-64"@},
  thread-id="1",stopped-threads="all",core="6"
(gdb)
@end smallexample

@subheading The @code{-catch-catch} Command
@findex -catch-catch

@subsubheading Synopsis

@smallexample
 -catch-catch [ -t ] [ -r @var{regexp}]
@end smallexample

Stop when the debuggee catches a C@t{++} exception.  If @var{regexp}
is given, then only exceptions whose type matches the regular
expression will be caught.

If @samp{-t} is given, then the catchpoint is enabled only for one
stop, the catchpoint is automatically deleted after the first event is
caught.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{catch catch}
and @samp{tcatch catch} (@pxref{Set Catchpoints}).

@subsubheading Example

@smallexample
-catch-catch -r exception_type
^done,bkpt=@{number="1",type="catchpoint",disp="keep",enabled="y",
  what="exception catch",catch-type="catch",
  thread-groups=["i1"],
  regexp="exception_type",times="0"@}
(gdb)
-exec-run
^running
(gdb)
~"\n"
~"Catchpoint 1 (exception caught), 0x00007ffff7ae00ed
  in __cxa_begin_catch () from /lib64/libstdc++.so.6\n"
*stopped,bkptno="1",reason="breakpoint-hit",disp="keep",
  frame=@{addr="0x00007ffff7ae00ed",func="__cxa_begin_catch",
  args=[],from="/lib64/libstdc++.so.6",arch="i386:x86-64"@},
  thread-id="1",stopped-threads="all",core="6"
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Program Context
@section @sc{gdb/mi}  Program Context

@subheading The @code{-exec-arguments} Command
@findex -exec-arguments


@subsubheading Synopsis

@smallexample
 -exec-arguments @var{args}
@end smallexample

Set the inferior program arguments, to be used in the next
@samp{-exec-run}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{set args}.

@subsubheading Example

@smallexample
(gdb)
-exec-arguments -v word
^done
(gdb)
@end smallexample


@ignore
@subheading The @code{-exec-show-arguments} Command
@findex -exec-show-arguments

@subsubheading Synopsis

@smallexample
 -exec-show-arguments
@end smallexample

Print the arguments of the program.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{show args}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-environment-cd} Command
@findex -environment-cd

@subsubheading Synopsis

@smallexample
 -environment-cd @var{pathdir}
@end smallexample

Set @value{GDBN}'s working directory.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{cd}.

@subsubheading Example

@smallexample
(gdb)
-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done
(gdb)
@end smallexample


@subheading The @code{-environment-directory} Command
@findex -environment-directory

@subsubheading Synopsis

@smallexample
 -environment-directory [ -r ] [ @var{pathdir} ]+
@end smallexample

Add directories @var{pathdir} to beginning of search path for source files.
If the @samp{-r} option is used, the search path is reset to the default
search path.  If directories @var{pathdir} are supplied in addition to the
@samp{-r} option, the search path is first reset and then addition
occurs as normal.
Multiple directories may be specified, separated by blanks.  Specifying
multiple directories in a single command
results in the directories added to the beginning of the
search path in the same order they were presented in the command.
If blanks are needed as
part of a directory name, double-quotes should be used around
the name.  In the command output, the path will show up separated
by the system directory-separator character.  The directory-separator
character must not be used
in any directory name.
If no directories are specified, the current search path is displayed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{dir}.

@subsubheading Example

@smallexample
(gdb)
-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
(gdb)
-environment-directory ""
^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
(gdb)
-environment-directory -r /home/jjohnstn/src/gdb /usr/src
^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
(gdb)
-environment-directory -r
^done,source-path="$cdir:$cwd"
(gdb)
@end smallexample


@subheading The @code{-environment-path} Command
@findex -environment-path

@subsubheading Synopsis

@smallexample
 -environment-path [ -r ] [ @var{pathdir} ]+
@end smallexample

Add directories @var{pathdir} to beginning of search path for object files.
If the @samp{-r} option is used, the search path is reset to the original
search path that existed at gdb start-up.  If directories @var{pathdir} are
supplied in addition to the
@samp{-r} option, the search path is first reset and then addition
occurs as normal.
Multiple directories may be specified, separated by blanks.  Specifying
multiple directories in a single command
results in the directories added to the beginning of the
search path in the same order they were presented in the command.
If blanks are needed as
part of a directory name, double-quotes should be used around
the name.  In the command output, the path will show up separated
by the system directory-separator character.  The directory-separator
character must not be used
in any directory name.
If no directories are specified, the current path is displayed.


@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{path}.

@subsubheading Example

@smallexample
(gdb)
-environment-path
^done,path="/usr/bin"
(gdb)
-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
(gdb)
-environment-path -r /usr/local/bin
^done,path="/usr/local/bin:/usr/bin"
(gdb)
@end smallexample


@subheading The @code{-environment-pwd} Command
@findex -environment-pwd

@subsubheading Synopsis

@smallexample
 -environment-pwd
@end smallexample

Show the current working directory.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{pwd}.

@subsubheading Example

@smallexample
(gdb)
-environment-pwd
^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Thread Commands
@section @sc{gdb/mi} Thread Commands


@subheading The @code{-thread-info} Command
@findex -thread-info

@subsubheading Synopsis

@smallexample
 -thread-info [ @var{thread-id} ]
@end smallexample

Reports information about either a specific thread, if the
@var{thread-id} parameter is present, or about all threads.
@var{thread-id} is the thread's global thread ID.  When printing
information about all threads, also reports the global ID of the
current thread.

@subsubheading @value{GDBN} Command

The @samp{info thread} command prints the same information
about all threads.

@subsubheading Result

The result contains the following attributes:

@table @samp
@item threads
A list of threads.  The format of the elements of the list is described in
@ref{GDB/MI Thread Information}.

@item current-thread-id
The global id of the currently selected thread.  This field is omitted if there
is no selected thread (for example, when the selected inferior is not running,
and therefore has no threads) or if a @var{thread-id} argument was passed to
the command.

@end table

@subsubheading Example

@smallexample
-thread-info
^done,threads=[
@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
   frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",
           args=[]@},state="running"@},
@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
   frame=@{level="0",addr="0x0804891f",func="foo",
           args=[@{name="i",value="10"@}],
           file="/tmp/a.c",fullname="/tmp/a.c",line="158",arch="i386:x86_64"@},
           state="running"@}],
current-thread-id="1"
(gdb)
@end smallexample

@subheading The @code{-thread-list-ids} Command
@findex -thread-list-ids

@subsubheading Synopsis

@smallexample
 -thread-list-ids
@end smallexample

Produces a list of the currently known global @value{GDBN} thread ids.
At the end of the list it also prints the total number of such
threads.

This command is retained for historical reasons, the
@code{-thread-info} command should be used instead.

@subsubheading @value{GDBN} Command

Part of @samp{info threads} supplies the same information.

@subsubheading Example

@smallexample
(gdb)
-thread-list-ids
^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
current-thread-id="1",number-of-threads="3"
(gdb)
@end smallexample


@subheading The @code{-thread-select} Command
@findex -thread-select

@subsubheading Synopsis

@smallexample
 -thread-select @var{thread-id}
@end smallexample

Make thread with global thread number @var{thread-id} the current
thread.  It prints the number of the new current thread, and the
topmost frame for that thread.

This command is deprecated in favor of explicitly using the
@samp{--thread} option to each command.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{thread}.

@subsubheading Example

@smallexample
(gdb)
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",thread-id="2",line="187",
file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
(gdb)
-thread-list-ids
^done,
thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
number-of-threads="3"
(gdb)
-thread-select 3
^done,new-thread-id="3",
frame=@{level="0",func="vprintf",
args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
@{name="arg",value="0x2"@}],file="vprintf.c",line="31",arch="i386:x86_64"@}
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Ada Tasking Commands
@section @sc{gdb/mi} Ada Tasking Commands

@subheading The @code{-ada-task-info} Command
@findex -ada-task-info

@subsubheading Synopsis

@smallexample
 -ada-task-info [ @var{task-id} ]
@end smallexample

Reports information about either a specific Ada task, if the
@var{task-id} parameter is present, or about all Ada tasks.

@subsubheading @value{GDBN} Command

The @samp{info tasks} command prints the same information
about all Ada tasks (@pxref{Ada Tasks}).

@subsubheading Result

The result is a table of Ada tasks.  The following columns are
defined for each Ada task:

@table @samp
@item current
This field exists only for the current thread.  It has the value @samp{*}.

@item id
The identifier that @value{GDBN} uses to refer to the Ada task.

@item task-id
The identifier that the target uses to refer to the Ada task.

@item thread-id
The global thread identifier of the thread corresponding to the Ada
task.

This field should always exist, as Ada tasks are always implemented
on top of a thread.  But if @value{GDBN} cannot find this corresponding
thread for any reason, the field is omitted.

@item parent-id
This field exists only when the task was created by another task.
In this case, it provides the ID of the parent task.

@item priority
The base priority of the task.

@item state
The current state of the task.  For a detailed description of the
possible states, see @ref{Ada Tasks}.

@item name
The name of the task.

@end table

@subsubheading Example

@smallexample
-ada-task-info
^done,tasks=@{nr_rows="3",nr_cols="8",
hdr=[@{width="1",alignment="-1",col_name="current",colhdr=""@},
@{width="3",alignment="1",col_name="id",colhdr="ID"@},
@{width="9",alignment="1",col_name="task-id",colhdr="TID"@},
@{width="4",alignment="1",col_name="thread-id",colhdr=""@},
@{width="4",alignment="1",col_name="parent-id",colhdr="P-ID"@},
@{width="3",alignment="1",col_name="priority",colhdr="Pri"@},
@{width="22",alignment="-1",col_name="state",colhdr="State"@},
@{width="1",alignment="2",col_name="name",colhdr="Name"@}],
body=[@{current="*",id="1",task-id="   644010",thread-id="1",priority="48",
state="Child Termination Wait",name="main_task"@}]@}
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Program Execution
@section @sc{gdb/mi} Program Execution

These are the asynchronous commands which generate the out-of-band
record @samp{*stopped}.  Currently @value{GDBN} only really executes
asynchronously with remote targets and this interaction is mimicked in
other cases.

@subheading The @code{-exec-continue} Command
@findex -exec-continue

@subsubheading Synopsis

@smallexample
 -exec-continue [--reverse] [--all|--thread-group N]
@end smallexample

Resumes the execution of the inferior program, which will continue
to execute until it reaches a debugger stop event.  If the 
@samp{--reverse} option is specified, execution resumes in reverse until 
it reaches a stop event.  Stop events may include
@itemize @bullet
@item
breakpoints or watchpoints
@item
signals or exceptions
@item
the end of the process (or its beginning under @samp{--reverse})
@item
the end or beginning of a replay log if one is being used.
@end itemize
In all-stop mode (@pxref{All-Stop
Mode}), may resume only one thread, or all threads, depending on the
value of the @samp{scheduler-locking} variable.  If @samp{--all} is
specified, all threads (in all inferiors) will be resumed.  The @samp{--all} option is
ignored in all-stop mode.  If the @samp{--thread-group} options is
specified, then all threads in that thread group are resumed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} corresponding is @samp{continue}.

@subsubheading Example

@smallexample
-exec-continue
^running
(gdb)
@@Hello world
*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
line="13",arch="i386:x86_64"@}
(gdb)
@end smallexample


@subheading The @code{-exec-finish} Command
@findex -exec-finish

@subsubheading Synopsis

@smallexample
 -exec-finish [--reverse]
@end smallexample

Resumes the execution of the inferior program until the current
function is exited.  Displays the results returned by the function.
If the @samp{--reverse} option is specified, resumes the reverse
execution of the inferior program until the point where current
function was called.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{finish}.

@subsubheading Example

Function returning @code{void}.

@smallexample
-exec-finish
^running
(gdb)
@@hello from foo
*stopped,reason="function-finished",frame=@{func="main",args=[],
file="hello.c",fullname="/home/foo/bar/hello.c",line="7",arch="i386:x86_64"@}
(gdb)
@end smallexample

Function returning other than @code{void}.  The name of the internal
@value{GDBN} variable storing the result is printed, together with the
value itself.

@smallexample
-exec-finish
^running
(gdb)
*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
args=[@{name="a",value="1"],@{name="b",value="9"@}@},
file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
arch="i386:x86_64"@},
gdb-result-var="$1",return-value="0"
(gdb)
@end smallexample


@subheading The @code{-exec-interrupt} Command
@findex -exec-interrupt

@subsubheading Synopsis

@smallexample
 -exec-interrupt [--all|--thread-group N]
@end smallexample

Interrupts the background execution of the target.  Note how the token
associated with the stop message is the one for the execution command
that has been interrupted.  The token for the interrupt itself only
appears in the @samp{^done} output.  If the user is trying to
interrupt a non-running program, an error message will be printed.

Note that when asynchronous execution is enabled, this command is
asynchronous just like other execution commands.  That is, first the
@samp{^done} response will be printed, and the target stop will be
reported after that using the @samp{*stopped} notification.

In non-stop mode, only the context thread is interrupted by default.
All threads (in all inferiors) will be interrupted if the
@samp{--all}  option is specified.  If the @samp{--thread-group}
option is specified, all threads in that group will be interrupted.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{interrupt}.

@subsubheading Example

@smallexample
(gdb)
111-exec-continue
111^running

(gdb)
222-exec-interrupt
222^done
(gdb)
111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
fullname="/home/foo/bar/try.c",line="13",arch="i386:x86_64"@}
(gdb)

(gdb)
-exec-interrupt
^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
(gdb)
@end smallexample

@subheading The @code{-exec-jump} Command
@findex -exec-jump

@subsubheading Synopsis

@smallexample
 -exec-jump @var{location}
@end smallexample

Resumes execution of the inferior program at the location specified by
parameter.  @xref{Specify Location}, for a description of the
different forms of @var{location}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{jump}.

@subsubheading Example

@smallexample
-exec-jump foo.c:10
*running,thread-id="all"
^running
@end smallexample


@subheading The @code{-exec-next} Command
@findex -exec-next

@subsubheading Synopsis

@smallexample
 -exec-next [--reverse]
@end smallexample

Resumes execution of the inferior program, stopping when the beginning
of the next source line is reached.

If the @samp{--reverse} option is specified, resumes reverse execution
of the inferior program, stopping at the beginning of the previous
source line.  If you issue this command on the first line of a
function, it will take you back to the caller of that function, to the
source line where the function was called.


@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{next}.

@subsubheading Example

@smallexample
-exec-next
^running
(gdb)
*stopped,reason="end-stepping-range",line="8",file="hello.c"
(gdb)
@end smallexample


@subheading The @code{-exec-next-instruction} Command
@findex -exec-next-instruction

@subsubheading Synopsis

@smallexample
 -exec-next-instruction [--reverse]
@end smallexample

Executes one machine instruction.  If the instruction is a function
call, continues until the function returns.  If the program stops at an
instruction in the middle of a source line, the address will be
printed as well.

If the @samp{--reverse} option is specified, resumes reverse execution
of the inferior program, stopping at the previous instruction.  If the
previously executed instruction was a return from another function,
it will continue to execute in reverse until the call to that function
(from the current stack frame) is reached.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{nexti}.

@subsubheading Example

@smallexample
(gdb)
-exec-next-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
addr="0x000100d4",line="5",file="hello.c"
(gdb)
@end smallexample


@subheading The @code{-exec-return} Command
@findex -exec-return

@subsubheading Synopsis

@smallexample
 -exec-return
@end smallexample

Makes current function return immediately.  Doesn't execute the inferior.
Displays the new current frame.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{return}.

@subsubheading Example

@smallexample
(gdb)
200-break-insert callee4
200^done,bkpt=@{number="1",addr="0x00010734",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
(gdb)
000-exec-run
000^running
(gdb)
000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
frame=@{func="callee4",args=[],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
arch="i386:x86_64"@}
(gdb)
205-break-delete
205^done
(gdb)
111-exec-return
111^done,frame=@{level="0",func="callee3",
args=[@{name="strarg",
value="0x11940 \"A string argument.\""@}],
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18",
arch="i386:x86_64"@}
(gdb)
@end smallexample


@subheading The @code{-exec-run} Command
@findex -exec-run

@subsubheading Synopsis

@smallexample
 -exec-run [ --all | --thread-group N ] [ --start ]
@end smallexample

Starts execution of the inferior from the beginning.  The inferior
executes until either a breakpoint is encountered or the program
exits.  In the latter case the output will include an exit code, if
the program has exited exceptionally.

When neither the @samp{--all} nor the @samp{--thread-group} option
is specified, the current inferior is started.  If the
@samp{--thread-group} option is specified, it should refer to a thread
group of type @samp{process}, and that thread group will be started.
If the @samp{--all} option is specified, then all inferiors will be started.

Using the @samp{--start} option instructs the debugger to stop
the execution at the start of the inferior's main subprogram,
following the same behavior as the @code{start} command
(@pxref{Starting}).

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{run}.

@subsubheading Examples

@smallexample
(gdb)
-break-insert main
^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
(gdb)
-exec-run
^running
(gdb)
*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
frame=@{func="main",args=[],file="recursive2.c",
fullname="/home/foo/bar/recursive2.c",line="4",arch="i386:x86_64"@}
(gdb)
@end smallexample

@noindent
Program exited normally:

@smallexample
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited-normally"
(gdb)
@end smallexample

@noindent
Program exited exceptionally:

@smallexample
(gdb)
-exec-run
^running
(gdb)
x = 55
*stopped,reason="exited",exit-code="01"
(gdb)
@end smallexample

Another way the program can terminate is if it receives a signal such as
@code{SIGINT}.  In this case, @sc{gdb/mi} displays this:

@smallexample
(gdb)
*stopped,reason="exited-signalled",signal-name="SIGINT",
signal-meaning="Interrupt"
@end smallexample


@c @subheading -exec-signal


@subheading The @code{-exec-step} Command
@findex -exec-step

@subsubheading Synopsis

@smallexample
 -exec-step [--reverse]
@end smallexample

Resumes execution of the inferior program, stopping when the beginning
of the next source line is reached, if the next source line is not a
function call.  If it is, stop at the first instruction of the called
function.  If the @samp{--reverse} option is specified, resumes reverse
execution of the inferior program, stopping at the beginning of the
previously executed source line.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{step}.

@subsubheading Example

Stepping into a function:

@smallexample
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",
frame=@{func="foo",args=[@{name="a",value="10"@},
@{name="b",value="0"@}],file="recursive2.c",
fullname="/home/foo/bar/recursive2.c",line="11",arch="i386:x86_64"@}
(gdb)
@end smallexample

Regular stepping:

@smallexample
-exec-step
^running
(gdb)
*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
(gdb)
@end smallexample


@subheading The @code{-exec-step-instruction} Command
@findex -exec-step-instruction

@subsubheading Synopsis

@smallexample
 -exec-step-instruction [--reverse]
@end smallexample

Resumes the inferior which executes one machine instruction.  If the
@samp{--reverse} option is specified, resumes reverse execution of the
inferior program, stopping at the previously executed instruction.
The output, once @value{GDBN} has stopped, will vary depending on
whether we have stopped in the middle of a source line or not.  In the
former case, the address at which the program stopped will be printed
as well.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{stepi}.

@subsubheading Example

@smallexample
(gdb)
-exec-step-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
frame=@{func="foo",args=[],file="try.c",
fullname="/home/foo/bar/try.c",line="10",arch="i386:x86_64"@}
(gdb)
-exec-step-instruction
^running

(gdb)
*stopped,reason="end-stepping-range",
frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
fullname="/home/foo/bar/try.c",line="10",arch="i386:x86_64"@}
(gdb)
@end smallexample


@subheading The @code{-exec-until} Command
@findex -exec-until

@subsubheading Synopsis

@smallexample
 -exec-until [ @var{location} ]
@end smallexample

Executes the inferior until the @var{location} specified in the
argument is reached.  If there is no argument, the inferior executes
until a source line greater than the current one is reached.  The
reason for stopping in this case will be @samp{location-reached}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{until}.

@subsubheading Example

@smallexample
(gdb)
-exec-until recursive2.c:6
^running
(gdb)
x = 55
*stopped,reason="location-reached",frame=@{func="main",args=[],
file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6",
arch="i386:x86_64"@}
(gdb)
@end smallexample

@ignore
@subheading -file-clear
Is this going away????
@end ignore

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Stack Manipulation
@section @sc{gdb/mi} Stack Manipulation Commands

@subheading The @code{-enable-frame-filters} Command
@findex -enable-frame-filters

@smallexample
-enable-frame-filters
@end smallexample

@value{GDBN} allows Python-based frame filters to affect the output of
the MI commands relating to stack traces.  As there is no way to
implement this in a fully backward-compatible way, a front end must
request that this functionality be enabled.

Once enabled, this feature cannot be disabled.

Note that if Python support has not been compiled into @value{GDBN},
this command will still succeed (and do nothing).

@subheading The @code{-stack-info-frame} Command
@findex -stack-info-frame

@subsubheading Synopsis

@smallexample
 -stack-info-frame
@end smallexample

Get info on the selected frame.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
(without arguments).

@subsubheading Example

@smallexample
(gdb)
-stack-info-frame
^done,frame=@{level="1",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17",
arch="i386:x86_64"@}
(gdb)
@end smallexample

@subheading The @code{-stack-info-depth} Command
@findex -stack-info-depth

@subsubheading Synopsis

@smallexample
 -stack-info-depth [ @var{max-depth} ]
@end smallexample

Return the depth of the stack.  If the integer argument @var{max-depth}
is specified, do not count beyond @var{max-depth} frames.

@subsubheading @value{GDBN} Command

There's no equivalent @value{GDBN} command.

@subsubheading Example

For a stack with frame levels 0 through 11:

@smallexample
(gdb)
-stack-info-depth
^done,depth="12"
(gdb)
-stack-info-depth 4
^done,depth="4"
(gdb)
-stack-info-depth 12
^done,depth="12"
(gdb)
-stack-info-depth 11
^done,depth="11"
(gdb)
-stack-info-depth 13
^done,depth="12"
(gdb)
@end smallexample

@anchor{-stack-list-arguments}
@subheading The @code{-stack-list-arguments} Command
@findex -stack-list-arguments

@subsubheading Synopsis

@smallexample
 -stack-list-arguments [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
    [ @var{low-frame} @var{high-frame} ]
@end smallexample

Display a list of the arguments for the frames between @var{low-frame}
and @var{high-frame} (inclusive).  If @var{low-frame} and
@var{high-frame} are not provided, list the arguments for the whole
call stack.  If the two arguments are equal, show the single frame
at the corresponding level.  It is an error if @var{low-frame} is
larger than the actual number of frames.  On the other hand,
@var{high-frame} may be larger than the actual number of frames, in
which case only existing frames will be returned.

If @var{print-values} is 0 or @code{--no-values}, print only the names of
the variables; if it is 1 or @code{--all-values}, print also their
values; and if it is 2 or @code{--simple-values}, print the name,
type and value for simple data types, and the name and type for arrays,
structures and unions.  If the option @code{--no-frame-filters} is
supplied, then Python frame filters will not be executed.

If the @code{--skip-unavailable} option is specified, arguments that
are not available are not listed.  Partially available arguments
are still displayed, however.

Use of this command to obtain arguments in a single frame is
deprecated in favor of the @samp{-stack-list-variables} command.

@subsubheading @value{GDBN} Command

@value{GDBN} does not have an equivalent command.  @code{gdbtk} has a
@samp{gdb_get_args} command which partially overlaps with the
functionality of @samp{-stack-list-arguments}.

@subsubheading Example

@smallexample
(gdb)
-stack-list-frames
^done,
stack=[
frame=@{level="0",addr="0x00010734",func="callee4",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
arch="i386:x86_64"@},
frame=@{level="1",addr="0x0001076c",func="callee3",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17",
arch="i386:x86_64"@},
frame=@{level="2",addr="0x0001078c",func="callee2",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22",
arch="i386:x86_64"@},
frame=@{level="3",addr="0x000107b4",func="callee1",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27",
arch="i386:x86_64"@},
frame=@{level="4",addr="0x000107e0",func="main",
file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32",
arch="i386:x86_64"@}]
(gdb)
-stack-list-arguments 0
^done,
stack-args=[
frame=@{level="0",args=[]@},
frame=@{level="1",args=[name="strarg"]@},
frame=@{level="2",args=[name="intarg",name="strarg"]@},
frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
frame=@{level="4",args=[]@}]
(gdb)
-stack-list-arguments 1
^done,
stack-args=[
frame=@{level="0",args=[]@},
frame=@{level="1",
 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
frame=@{level="2",args=[
@{name="intarg",value="2"@},
@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
@{frame=@{level="3",args=[
@{name="intarg",value="2"@},
@{name="strarg",value="0x11940 \"A string argument.\""@},
@{name="fltarg",value="3.5"@}]@},
frame=@{level="4",args=[]@}]
(gdb)
-stack-list-arguments 0 2 2
^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
(gdb)
-stack-list-arguments 1 2 2
^done,stack-args=[frame=@{level="2",
args=[@{name="intarg",value="2"@},
@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
(gdb)
@end smallexample

@c @subheading -stack-list-exception-handlers


@anchor{-stack-list-frames}
@subheading The @code{-stack-list-frames} Command
@findex -stack-list-frames

@subsubheading Synopsis

@smallexample
 -stack-list-frames [ --no-frame-filters @var{low-frame} @var{high-frame} ]
@end smallexample

List the frames currently on the stack.  For each frame it displays the
following info:

@table @samp
@item @var{level}
The frame number, 0 being the topmost frame, i.e., the innermost function.
@item @var{addr}
The @code{$pc} value for that frame.
@item @var{func}
Function name.
@item @var{file}
File name of the source file where the function lives.
@item @var{fullname}
The full file name of the source file where the function lives.
@item @var{line}
Line number corresponding to the @code{$pc}.
@item @var{from}
The shared library where this function is defined.  This is only given
if the frame's function is not known.
@item @var{arch}
Frame's architecture.
@end table

If invoked without arguments, this command prints a backtrace for the
whole stack.  If given two integer arguments, it shows the frames whose
levels are between the two arguments (inclusive).  If the two arguments
are equal, it shows the single frame at the corresponding level.  It is
an error if @var{low-frame} is larger than the actual number of
frames.  On the other hand, @var{high-frame} may be larger than the
actual number of frames, in which case only existing frames will be
returned.  If the option @code{--no-frame-filters} is supplied, then
Python frame filters will not be executed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.

@subsubheading Example

Full stack backtrace:

@smallexample
(gdb)
-stack-list-frames
^done,stack=
[frame=@{level="0",addr="0x0001076c",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11",
  arch="i386:x86_64"@},
frame=@{level="1",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="2",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="3",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="4",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="5",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="6",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="7",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="8",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="9",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="10",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="11",addr="0x00010738",func="main",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4",
  arch="i386:x86_64"@}]
(gdb)
@end smallexample

Show frames between @var{low_frame} and @var{high_frame}:

@smallexample
(gdb)
-stack-list-frames 3 5
^done,stack=
[frame=@{level="3",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="4",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@},
frame=@{level="5",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@}]
(gdb)
@end smallexample

Show a single frame:

@smallexample
(gdb)
-stack-list-frames 3 3
^done,stack=
[frame=@{level="3",addr="0x000107a4",func="foo",
  file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14",
  arch="i386:x86_64"@}]
(gdb)
@end smallexample


@subheading The @code{-stack-list-locals} Command
@findex -stack-list-locals
@anchor{-stack-list-locals}

@subsubheading Synopsis

@smallexample
 -stack-list-locals [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
@end smallexample

Display the local variable names for the selected frame.  If
@var{print-values} is 0 or @code{--no-values}, print only the names of
the variables; if it is 1 or @code{--all-values}, print also their
values; and if it is 2 or @code{--simple-values}, print the name,
type and value for simple data types, and the name and type for arrays,
structures and unions.  In this last case, a frontend can immediately
display the value of simple data types and create variable objects for
other data types when the user wishes to explore their values in
more detail.  If the option @code{--no-frame-filters} is supplied, then
Python frame filters will not be executed.

If the @code{--skip-unavailable} option is specified, local variables
that are not available are not listed.  Partially available local
variables are still displayed, however.

This command is deprecated in favor of the
@samp{-stack-list-variables} command.

@subsubheading @value{GDBN} Command

@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.

@subsubheading Example

@smallexample
(gdb)
-stack-list-locals 0
^done,locals=[name="A",name="B",name="C"]
(gdb)
-stack-list-locals --all-values
^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
  @{name="C",value="@{1, 2, 3@}"@}]
-stack-list-locals --simple-values
^done,locals=[@{name="A",type="int",value="1"@},
  @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
(gdb)
@end smallexample

@anchor{-stack-list-variables}
@subheading The @code{-stack-list-variables} Command
@findex -stack-list-variables

@subsubheading Synopsis

@smallexample
 -stack-list-variables [ --no-frame-filters ] [ --skip-unavailable ] @var{print-values}
@end smallexample

Display the names of local variables and function arguments for the selected frame.  If
@var{print-values} is 0 or @code{--no-values}, print only the names of
the variables; if it is 1 or @code{--all-values}, print also their
values; and if it is 2 or @code{--simple-values}, print the name,
type and value for simple data types, and the name and type for arrays,
structures and unions.  If the option @code{--no-frame-filters} is
supplied, then Python frame filters will not be executed.

If the @code{--skip-unavailable} option is specified, local variables
and arguments that are not available are not listed.  Partially
available arguments and local variables are still displayed, however.

@subsubheading Example

@smallexample
(gdb)
-stack-list-variables --thread 1 --frame 0 --all-values
^done,variables=[@{name="x",value="11"@},@{name="s",value="@{a = 1, b = 2@}"@}]
(gdb)
@end smallexample


@subheading The @code{-stack-select-frame} Command
@findex -stack-select-frame

@subsubheading Synopsis

@smallexample
 -stack-select-frame @var{framenum}
@end smallexample

Change the selected frame.  Select a different frame @var{framenum} on
the stack.

This command in deprecated in favor of passing the @samp{--frame}
option to every command.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.

@subsubheading Example

@smallexample
(gdb)
-stack-select-frame 2
^done
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Variable Objects
@section @sc{gdb/mi} Variable Objects

@ignore

@subheading Motivation for Variable Objects in @sc{gdb/mi}

For the implementation of a variable debugger window (locals, watched
expressions, etc.), we are proposing the adaptation of the existing code
used by @code{Insight}.

The two main reasons for that are:

@enumerate 1
@item
It has been proven in practice (it is already on its second generation).

@item
It will shorten development time (needless to say how important it is
now).
@end enumerate

The original interface was designed to be used by Tcl code, so it was
slightly changed so it could be used through @sc{gdb/mi}.  This section
describes the @sc{gdb/mi} operations that will be available and gives some
hints about their use.

@emph{Note}: In addition to the set of operations described here, we
expect the @sc{gui} implementation of a variable window to require, at
least, the following operations:

@itemize @bullet
@item @code{-gdb-show} @code{output-radix}
@item @code{-stack-list-arguments}
@item @code{-stack-list-locals}
@item @code{-stack-select-frame}
@end itemize

@end ignore

@subheading Introduction to Variable Objects

@cindex variable objects in @sc{gdb/mi}

Variable objects are "object-oriented" MI interface for examining and
changing values of expressions.  Unlike some other MI interfaces that
work with expressions, variable objects are specifically designed for
simple and efficient presentation in the frontend.  A variable object
is identified by string name.  When a variable object is created, the
frontend specifies the expression for that variable object.  The
expression can be a simple variable, or it can be an arbitrary complex
expression, and can even involve CPU registers.  After creating a
variable object, the frontend can invoke other variable object
operations---for example to obtain or change the value of a variable
object, or to change display format.

Variable objects have hierarchical tree structure.  Any variable object
that corresponds to a composite type, such as structure in C, has
a number of child variable objects, for example corresponding to each
element of a structure.  A child variable object can itself have 
children, recursively.  Recursion ends when we reach 
leaf variable objects, which always have built-in types.  Child variable
objects are created only by explicit request, so if a frontend 
is not interested in the children of a particular variable object, no
child will be created.

For a leaf variable object it is possible to obtain its value as a
string, or set the value from a string.  String value can be also
obtained for a non-leaf variable object, but it's generally a string
that only indicates the type of the object, and does not list its
contents.  Assignment to a non-leaf variable object is not allowed.
 
A frontend does not need to read the values of all variable objects each time
the program stops.  Instead, MI provides an update command that lists all
variable objects whose values has changed since the last update
operation.  This considerably reduces the amount of data that must
be transferred to the frontend.  As noted above, children variable
objects are created on demand, and only leaf variable objects have a
real value.  As result, gdb will read target memory only for leaf
variables that frontend has created.

The automatic update is not always desirable.  For example, a frontend
might want to keep a value of some expression for future reference,
and never update it.  For another example,  fetching memory is
relatively slow for embedded targets, so a frontend might want
to disable automatic update for the variables that are either not
visible on the screen, or ``closed''.  This is possible using so
called ``frozen variable objects''.  Such variable objects are never
implicitly updated.  

Variable objects can be either @dfn{fixed} or @dfn{floating}.  For the
fixed variable object, the expression is parsed when the variable
object is created, including associating identifiers to specific
variables.  The meaning of expression never changes.  For a floating
variable object the values of variables whose names appear in the
expressions are re-evaluated every time in the context of the current
frame.  Consider this example:

@smallexample
void do_work(...)
@{
        struct work_state state;

        if (...)
           do_work(...);
@}
@end smallexample

If a fixed variable object for the @code{state} variable is created in
this function, and we enter the recursive call, the variable
object will report the value of @code{state} in the top-level
@code{do_work} invocation.  On the other hand, a floating variable
object will report the value of @code{state} in the current frame.

If an expression specified when creating a fixed variable object
refers to a local variable, the variable object becomes bound to the
thread and frame in which the variable object is created.  When such
variable object is updated, @value{GDBN} makes sure that the
thread/frame combination the variable object is bound to still exists,
and re-evaluates the variable object in context of that thread/frame.

The following is the complete set of @sc{gdb/mi} operations defined to
access this functionality:

@multitable @columnfractions .4 .6
@item @strong{Operation}
@tab @strong{Description}

@item @code{-enable-pretty-printing}
@tab enable Python-based pretty-printing
@item @code{-var-create}
@tab create a variable object
@item @code{-var-delete}
@tab delete the variable object and/or its children
@item @code{-var-set-format}
@tab set the display format of this variable
@item @code{-var-show-format}
@tab show the display format of this variable
@item @code{-var-info-num-children}
@tab tells how many children this object has
@item @code{-var-list-children}
@tab return a list of the object's children
@item @code{-var-info-type}
@tab show the type of this variable object
@item @code{-var-info-expression}
@tab print parent-relative expression that this variable object represents
@item @code{-var-info-path-expression}
@tab print full expression that this variable object represents
@item @code{-var-show-attributes}
@tab is this variable editable? does it exist here?
@item @code{-var-evaluate-expression}
@tab get the value of this variable
@item @code{-var-assign}
@tab set the value of this variable
@item @code{-var-update}
@tab update the variable and its children
@item @code{-var-set-frozen}
@tab set frozenness attribute
@item @code{-var-set-update-range}
@tab set range of children to display on update
@end multitable

In the next subsection we describe each operation in detail and suggest
how it can be used.

@subheading Description And Use of Operations on Variable Objects

@subheading The @code{-enable-pretty-printing} Command
@findex -enable-pretty-printing

@smallexample
-enable-pretty-printing
@end smallexample

@value{GDBN} allows Python-based visualizers to affect the output of the
MI variable object commands.  However, because there was no way to
implement this in a fully backward-compatible way, a front end must
request that this functionality be enabled.

Once enabled, this feature cannot be disabled.

Note that if Python support has not been compiled into @value{GDBN},
this command will still succeed (and do nothing).

This feature is currently (as of @value{GDBN} 7.0) experimental, and
may work differently in future versions of @value{GDBN}.

@subheading The @code{-var-create} Command
@findex -var-create

@subsubheading Synopsis

@smallexample
 -var-create @{@var{name} | "-"@}
    @{@var{frame-addr} | "*" | "@@"@} @var{expression}
@end smallexample

This operation creates a variable object, which allows the monitoring of
a variable, the result of an expression, a memory cell or a CPU
register.

The @var{name} parameter is the string by which the object can be
referenced.  It must be unique.  If @samp{-} is specified, the varobj
system will generate a string ``varNNNNNN'' automatically.  It will be
unique provided that one does not specify @var{name} of that format.
The command fails if a duplicate name is found.

The frame under which the expression should be evaluated can be
specified by @var{frame-addr}.  A @samp{*} indicates that the current
frame should be used.  A @samp{@@} indicates that a floating variable
object must be created.

@var{expression} is any expression valid on the current language set (must not
begin with a @samp{*}), or one of the following:

@itemize @bullet
@item
@samp{*@var{addr}}, where @var{addr} is the address of a memory cell

@item
@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)

@item
@samp{$@var{regname}} --- a CPU register name
@end itemize

@cindex dynamic varobj
A varobj's contents may be provided by a Python-based pretty-printer.  In this
case the varobj is known as a @dfn{dynamic varobj}.  Dynamic varobjs
have slightly different semantics in some cases.  If the
@code{-enable-pretty-printing} command is not sent, then @value{GDBN}
will never create a dynamic varobj.  This ensures backward
compatibility for existing clients.

@subsubheading Result

This operation returns attributes of the newly-created varobj.  These
are:

@table @samp
@item name
The name of the varobj.

@item numchild
The number of children of the varobj.  This number is not necessarily
reliable for a dynamic varobj.  Instead, you must examine the
@samp{has_more} attribute.

@item value
The varobj's scalar value.  For a varobj whose type is some sort of
aggregate (e.g., a @code{struct}), or for a dynamic varobj, this value
will not be interesting.

@item type
The varobj's type.  This is a string representation of the type, as
would be printed by the @value{GDBN} CLI.  If @samp{print object}
(@pxref{Print Settings, set print object}) is set to @code{on}, the
@emph{actual} (derived) type of the object is shown rather than the
@emph{declared} one.

@item thread-id
If a variable object is bound to a specific thread, then this is the
thread's global identifier.

@item has_more
For a dynamic varobj, this indicates whether there appear to be any
children available.  For a non-dynamic varobj, this will be 0.

@item dynamic
This attribute will be present and have the value @samp{1} if the
varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
then this attribute will not be present.

@item displayhint
A dynamic varobj can supply a display hint to the front end.  The
value comes directly from the Python pretty-printer object's
@code{display_hint} method.  @xref{Pretty Printing API}.
@end table

Typical output will look like this:

@smallexample
 name="@var{name}",numchild="@var{N}",type="@var{type}",thread-id="@var{M}",
  has_more="@var{has_more}"
@end smallexample


@subheading The @code{-var-delete} Command
@findex -var-delete

@subsubheading Synopsis

@smallexample
 -var-delete [ -c ] @var{name}
@end smallexample

Deletes a previously created variable object and all of its children.
With the @samp{-c} option, just deletes the children.

Returns an error if the object @var{name} is not found.


@subheading The @code{-var-set-format} Command
@findex -var-set-format

@subsubheading Synopsis

@smallexample
 -var-set-format @var{name} @var{format-spec}
@end smallexample

Sets the output format for the value of the object @var{name} to be
@var{format-spec}.

@anchor{-var-set-format}
The syntax for the @var{format-spec} is as follows:

@smallexample
 @var{format-spec} @expansion{}
 @{binary | decimal | hexadecimal | octal | natural | zero-hexadecimal@}
@end smallexample

The natural format is the default format choosen automatically
based on the variable type (like decimal for an @code{int}, hex
for pointers, etc.).

The zero-hexadecimal format has a representation similar to hexadecimal
but with padding zeroes to the left of the value.  For example, a 32-bit
hexadecimal value of 0x1234 would be represented as 0x00001234 in the
zero-hexadecimal format.

For a variable with children, the format is set only on the 
variable itself, and the children are not affected.  

@subheading The @code{-var-show-format} Command
@findex -var-show-format

@subsubheading Synopsis

@smallexample
 -var-show-format @var{name}
@end smallexample

Returns the format used to display the value of the object @var{name}.

@smallexample
 @var{format} @expansion{}
 @var{format-spec}
@end smallexample


@subheading The @code{-var-info-num-children} Command
@findex -var-info-num-children

@subsubheading Synopsis

@smallexample
 -var-info-num-children @var{name}
@end smallexample

Returns the number of children of a variable object @var{name}:

@smallexample
 numchild=@var{n}
@end smallexample

Note that this number is not completely reliable for a dynamic varobj.
It will return the current number of children, but more children may
be available.


@subheading The @code{-var-list-children} Command
@findex -var-list-children

@subsubheading Synopsis

@smallexample
 -var-list-children [@var{print-values}] @var{name} [@var{from} @var{to}]
@end smallexample
@anchor{-var-list-children}

Return a list of the children of the specified variable object and
create variable objects for them, if they do not already exist.  With
a single argument or if @var{print-values} has a value of 0 or
@code{--no-values}, print only the names of the variables; if
@var{print-values} is 1 or @code{--all-values}, also print their
values; and if it is 2 or @code{--simple-values} print the name and
value for simple data types and just the name for arrays, structures
and unions.

@var{from} and @var{to}, if specified, indicate the range of children
to report.  If @var{from} or @var{to} is less than zero, the range is
reset and all children will be reported.  Otherwise, children starting
at @var{from} (zero-based) and up to and excluding @var{to} will be
reported.

If a child range is requested, it will only affect the current call to
@code{-var-list-children}, but not future calls to @code{-var-update}.
For this, you must instead use @code{-var-set-update-range}.  The
intent of this approach is to enable a front end to implement any
update approach it likes; for example, scrolling a view may cause the
front end to request more children with @code{-var-list-children}, and
then the front end could call @code{-var-set-update-range} with a
different range to ensure that future updates are restricted to just
the visible items.

For each child the following results are returned:

@table @var

@item name
Name of the variable object created for this child.

@item exp
The expression to be shown to the user by the front end to designate this child.
For example this may be the name of a structure member.

For a dynamic varobj, this value cannot be used to form an
expression.  There is no way to do this at all with a dynamic varobj.

For C/C@t{++} structures there are several pseudo children returned to
designate access qualifiers.  For these pseudo children @var{exp} is
@samp{public}, @samp{private}, or @samp{protected}.  In this case the
type and value are not present.

A dynamic varobj will not report the access qualifying
pseudo-children, regardless of the language.  This information is not
available at all with a dynamic varobj.

@item numchild
Number of children this child has.  For a dynamic varobj, this will be
0.

@item type
The type of the child.  If @samp{print object}
(@pxref{Print Settings, set print object}) is set to @code{on}, the
@emph{actual} (derived) type of the object is shown rather than the
@emph{declared} one.

@item value
If values were requested, this is the value.

@item thread-id
If this variable object is associated with a thread, this is the
thread's global thread id.  Otherwise this result is not present.

@item frozen
If the variable object is frozen, this variable will be present with a value of 1.

@item displayhint
A dynamic varobj can supply a display hint to the front end.  The
value comes directly from the Python pretty-printer object's
@code{display_hint} method.  @xref{Pretty Printing API}.

@item dynamic
This attribute will be present and have the value @samp{1} if the
varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
then this attribute will not be present.

@end table

The result may have its own attributes:

@table @samp
@item displayhint
A dynamic varobj can supply a display hint to the front end.  The
value comes directly from the Python pretty-printer object's
@code{display_hint} method.  @xref{Pretty Printing API}.

@item has_more
This is an integer attribute which is nonzero if there are children
remaining after the end of the selected range.
@end table

@subsubheading Example

@smallexample
(gdb)
 -var-list-children n
 ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
(gdb)
 -var-list-children --all-values n
 ^done,numchild=@var{n},children=[child=@{name=@var{name},exp=@var{exp},
 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
@end smallexample


@subheading The @code{-var-info-type} Command
@findex -var-info-type

@subsubheading Synopsis

@smallexample
 -var-info-type @var{name}
@end smallexample

Returns the type of the specified variable @var{name}.  The type is
returned as a string in the same format as it is output by the
@value{GDBN} CLI:

@smallexample
 type=@var{typename}
@end smallexample


@subheading The @code{-var-info-expression} Command
@findex -var-info-expression

@subsubheading Synopsis

@smallexample
 -var-info-expression @var{name}
@end smallexample

Returns a string that is suitable for presenting this
variable object in user interface.  The string is generally
not valid expression in the current language, and cannot be evaluated.

For example, if @code{a} is an array, and variable object
@code{A} was created for @code{a}, then we'll get this output:

@smallexample
(gdb) -var-info-expression A.1
^done,lang="C",exp="1"
@end smallexample

@noindent
Here, the value of @code{lang} is the language name, which can be
found in @ref{Supported Languages}.

Note that the output of the @code{-var-list-children} command also
includes those expressions, so the @code{-var-info-expression} command
is of limited use.

@subheading The @code{-var-info-path-expression} Command
@findex -var-info-path-expression

@subsubheading Synopsis

@smallexample
 -var-info-path-expression @var{name}
@end smallexample

Returns an expression that can be evaluated in the current
context and will yield the same value that a variable object has.
Compare this with the @code{-var-info-expression} command, which
result can be used only for UI presentation.  Typical use of
the @code{-var-info-path-expression} command is creating a 
watchpoint from a variable object.

This command is currently not valid for children of a dynamic varobj,
and will give an error when invoked on one.

For example, suppose @code{C} is a C@t{++} class, derived from class
@code{Base}, and that the @code{Base} class has a member called
@code{m_size}.  Assume a variable @code{c} is has the type of
@code{C} and a variable object @code{C} was created for variable
@code{c}.  Then, we'll get this output:
@smallexample
(gdb) -var-info-path-expression C.Base.public.m_size
^done,path_expr=((Base)c).m_size)
@end smallexample

@subheading The @code{-var-show-attributes} Command
@findex -var-show-attributes

@subsubheading Synopsis

@smallexample
 -var-show-attributes @var{name}
@end smallexample

List attributes of the specified variable object @var{name}:

@smallexample
 status=@var{attr} [ ( ,@var{attr} )* ]
@end smallexample

@noindent
where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.

@subheading The @code{-var-evaluate-expression} Command
@findex -var-evaluate-expression

@subsubheading Synopsis

@smallexample
 -var-evaluate-expression [-f @var{format-spec}] @var{name}
@end smallexample

Evaluates the expression that is represented by the specified variable
object and returns its value as a string.  The format of the string
can be specified with the @samp{-f} option.  The possible values of 
this option are the same as for @code{-var-set-format} 
(@pxref{-var-set-format}).  If the @samp{-f} option is not specified,
the current display format will be used.  The current display format 
can be changed using the @code{-var-set-format} command.

@smallexample
 value=@var{value}
@end smallexample

Note that one must invoke @code{-var-list-children} for a variable
before the value of a child variable can be evaluated.

@subheading The @code{-var-assign} Command
@findex -var-assign

@subsubheading Synopsis

@smallexample
 -var-assign @var{name} @var{expression}
@end smallexample

Assigns the value of @var{expression} to the variable object specified
by @var{name}.  The object must be @samp{editable}.  If the variable's
value is altered by the assign, the variable will show up in any
subsequent @code{-var-update} list.

@subsubheading Example

@smallexample
(gdb)
-var-assign var1 3
^done,value="3"
(gdb)
-var-update *
^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
(gdb)
@end smallexample

@subheading The @code{-var-update} Command
@findex -var-update

@subsubheading Synopsis

@smallexample
 -var-update [@var{print-values}] @{@var{name} | "*"@}
@end smallexample

Reevaluate the expressions corresponding to the variable object
@var{name} and all its direct and indirect children, and return the
list of variable objects whose values have changed; @var{name} must
be a root variable object.  Here, ``changed'' means that the result of
@code{-var-evaluate-expression} before and after the
@code{-var-update} is different.  If @samp{*} is used as the variable
object names, all existing variable objects are updated, except
for frozen ones (@pxref{-var-set-frozen}).  The option
@var{print-values} determines whether both names and values, or just
names are printed.  The possible values of this option are the same
as for @code{-var-list-children} (@pxref{-var-list-children}).  It is
recommended to use the @samp{--all-values} option, to reduce the
number of MI commands needed on each program stop.

With the @samp{*} parameter, if a variable object is bound to a
currently running thread, it will not be updated, without any
diagnostic.

If @code{-var-set-update-range} was previously used on a varobj, then
only the selected range of children will be reported.

@code{-var-update} reports all the changed varobjs in a tuple named
@samp{changelist}.

Each item in the change list is itself a tuple holding:

@table @samp
@item name
The name of the varobj.

@item value
If values were requested for this update, then this field will be
present and will hold the value of the varobj.

@item in_scope
@anchor{-var-update}
This field is a string which may take one of three values:

@table @code
@item "true"
The variable object's current value is valid.

@item "false"
The variable object does not currently hold a valid value but it may
hold one in the future if its associated expression comes back into
scope.

@item "invalid"
The variable object no longer holds a valid value.
This can occur when the executable file being debugged has changed,
either through recompilation or by using the @value{GDBN} @code{file}
command.  The front end should normally choose to delete these variable
objects.
@end table

In the future new values may be added to this list so the front should
be prepared for this possibility.  @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.

@item type_changed
This is only present if the varobj is still valid.  If the type
changed, then this will be the string @samp{true}; otherwise it will
be @samp{false}.

When a varobj's type changes, its children are also likely to have
become incorrect.  Therefore, the varobj's children are automatically
deleted when this attribute is @samp{true}.  Also, the varobj's update
range, when set using the @code{-var-set-update-range} command, is
unset.

@item new_type
If the varobj's type changed, then this field will be present and will
hold the new type.

@item new_num_children
For a dynamic varobj, if the number of children changed, or if the
type changed, this will be the new number of children.

The @samp{numchild} field in other varobj responses is generally not
valid for a dynamic varobj -- it will show the number of children that
@value{GDBN} knows about, but because dynamic varobjs lazily
instantiate their children, this will not reflect the number of
children which may be available.

The @samp{new_num_children} attribute only reports changes to the
number of children known by @value{GDBN}.  This is the only way to
detect whether an update has removed children (which necessarily can
only happen at the end of the update range).

@item displayhint
The display hint, if any.

@item has_more
This is an integer value, which will be 1 if there are more children
available outside the varobj's update range.

@item dynamic
This attribute will be present and have the value @samp{1} if the
varobj is a dynamic varobj.  If the varobj is not a dynamic varobj,
then this attribute will not be present.

@item new_children
If new children were added to a dynamic varobj within the selected
update range (as set by @code{-var-set-update-range}), then they will
be listed in this attribute.
@end table

@subsubheading Example

@smallexample
(gdb)
-var-assign var1 3
^done,value="3"
(gdb)
-var-update --all-values var1
^done,changelist=[@{name="var1",value="3",in_scope="true",
type_changed="false"@}]
(gdb)
@end smallexample

@subheading The @code{-var-set-frozen} Command
@findex -var-set-frozen
@anchor{-var-set-frozen}

@subsubheading Synopsis

@smallexample
 -var-set-frozen @var{name} @var{flag}
@end smallexample

Set the frozenness flag on the variable object @var{name}.  The
@var{flag} parameter should be either @samp{1} to make the variable
frozen or @samp{0} to make it unfrozen.  If a variable object is
frozen, then neither itself, nor any of its children, are 
implicitly updated by @code{-var-update} of 
a parent variable or by @code{-var-update *}.  Only
@code{-var-update} of the variable itself will update its value and
values of its children.  After a variable object is unfrozen, it is
implicitly updated by all subsequent @code{-var-update} operations.  
Unfreezing a variable does not update it, only subsequent
@code{-var-update} does.

@subsubheading Example

@smallexample
(gdb)
-var-set-frozen V 1
^done
(gdb)
@end smallexample

@subheading The @code{-var-set-update-range} command
@findex -var-set-update-range
@anchor{-var-set-update-range}

@subsubheading Synopsis

@smallexample
 -var-set-update-range @var{name} @var{from} @var{to}
@end smallexample

Set the range of children to be returned by future invocations of
@code{-var-update}.

@var{from} and @var{to} indicate the range of children to report.  If
@var{from} or @var{to} is less than zero, the range is reset and all
children will be reported.  Otherwise, children starting at @var{from}
(zero-based) and up to and excluding @var{to} will be reported.

@subsubheading Example

@smallexample
(gdb)
-var-set-update-range V 1 2
^done
@end smallexample

@subheading The @code{-var-set-visualizer} command
@findex -var-set-visualizer
@anchor{-var-set-visualizer}

@subsubheading Synopsis

@smallexample
 -var-set-visualizer @var{name} @var{visualizer}
@end smallexample

Set a visualizer for the variable object @var{name}.

@var{visualizer} is the visualizer to use.  The special value
@samp{None} means to disable any visualizer in use.

If not @samp{None}, @var{visualizer} must be a Python expression.
This expression must evaluate to a callable object which accepts a
single argument.  @value{GDBN} will call this object with the value of
the varobj @var{name} as an argument (this is done so that the same
Python pretty-printing code can be used for both the CLI and MI).
When called, this object must return an object which conforms to the
pretty-printing interface (@pxref{Pretty Printing API}).

The pre-defined function @code{gdb.default_visualizer} may be used to
select a visualizer by following the built-in process
(@pxref{Selecting Pretty-Printers}).  This is done automatically when
a varobj is created, and so ordinarily is not needed.

This feature is only available if Python support is enabled.  The MI
command @code{-list-features} (@pxref{GDB/MI Support Commands})
can be used to check this.

@subsubheading Example

Resetting the visualizer:

@smallexample
(gdb)
-var-set-visualizer V None
^done
@end smallexample

Reselecting the default (type-based) visualizer:

@smallexample
(gdb)
-var-set-visualizer V gdb.default_visualizer
^done
@end smallexample

Suppose @code{SomeClass} is a visualizer class.  A lambda expression
can be used to instantiate this class for a varobj:

@smallexample
(gdb)
-var-set-visualizer V "lambda val: SomeClass()"
^done
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Data Manipulation
@section @sc{gdb/mi} Data Manipulation

@cindex data manipulation, in @sc{gdb/mi}
@cindex @sc{gdb/mi}, data manipulation
This section describes the @sc{gdb/mi} commands that manipulate data:
examine memory and registers, evaluate expressions, etc.

For details about what an addressable memory unit is,
@pxref{addressable memory unit}.

@c REMOVED FROM THE INTERFACE.
@c @subheading -data-assign
@c Change the value of a program variable. Plenty of side effects.
@c @subsubheading GDB Command
@c set variable
@c @subsubheading Example
@c N.A.

@subheading The @code{-data-disassemble} Command
@findex -data-disassemble

@subsubheading Synopsis

@smallexample
 -data-disassemble
    [ -s @var{start-addr} -e @var{end-addr} ]
  | [ -a @var{addr} ]
  | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
  -- @var{mode}
@end smallexample

@noindent
Where:

@table @samp
@item @var{start-addr}
is the beginning address (or @code{$pc})
@item @var{end-addr}
is the end address
@item @var{addr}
is an address anywhere within (or the name of) the function to
disassemble.  If an address is specified, the whole function
surrounding that address will be disassembled.  If a name is
specified, the whole function with that name will be disassembled.
@item @var{filename}
is the name of the file to disassemble
@item @var{linenum}
is the line number to disassemble around
@item @var{lines}
is the number of disassembly lines to be produced.  If it is -1,
the whole function will be disassembled, in case no @var{end-addr} is
specified.  If @var{end-addr} is specified as a non-zero value, and
@var{lines} is lower than the number of disassembly lines between
@var{start-addr} and @var{end-addr}, only @var{lines} lines are
displayed; if @var{lines} is higher than the number of lines between
@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
are displayed.
@item @var{mode}
is one of:
@itemize @bullet
@item 0 disassembly only
@item 1 mixed source and disassembly (deprecated)
@item 2 disassembly with raw opcodes
@item 3 mixed source and disassembly with raw opcodes (deprecated)
@item 4 mixed source and disassembly
@item 5 mixed source and disassembly with raw opcodes
@end itemize

Modes 1 and 3 are deprecated.  The output is ``source centric''
which hasn't proved useful in practice.
@xref{Machine Code}, for a discussion of the difference between
@code{/m} and @code{/s} output of the @code{disassemble} command.
@end table

@subsubheading Result

The result of the @code{-data-disassemble} command will be a list named
@samp{asm_insns}, the contents of this list depend on the @var{mode}
used with the @code{-data-disassemble} command.

For modes 0 and 2 the @samp{asm_insns} list contains tuples with the
following fields:

@table @code
@item address
The address at which this instruction was disassembled.

@item func-name
The name of the function this instruction is within.

@item offset
The decimal offset in bytes from the start of @samp{func-name}.

@item inst
The text disassembly for this @samp{address}.

@item opcodes
This field is only present for modes 2, 3 and 5.  This contains the raw opcode
bytes for the @samp{inst} field.

@end table

For modes 1, 3, 4 and 5 the @samp{asm_insns} list contains tuples named
@samp{src_and_asm_line}, each of which has the following fields:

@table @code
@item line
The line number within @samp{file}.

@item file
The file name from the compilation unit.  This might be an absolute
file name or a relative file name depending on the compile command
used.

@item fullname
Absolute file name of @samp{file}.  It is converted to a canonical form
using the source file search path
(@pxref{Source Path, ,Specifying Source Directories})
and after resolving all the symbolic links.

If the source file is not found this field will contain the path as
present in the debug information.

@item line_asm_insn
This is a list of tuples containing the disassembly for @samp{line} in
@samp{file}.  The fields of each tuple are the same as for
@code{-data-disassemble} in @var{mode} 0 and 2, so @samp{address},
@samp{func-name}, @samp{offset}, @samp{inst}, and optionally
@samp{opcodes}.

@end table

Note that whatever included in the @samp{inst} field, is not
manipulated directly by @sc{gdb/mi}, i.e., it is not possible to
adjust its format.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{disassemble}.

@subsubheading Example

Disassemble from the current value of @code{$pc} to @code{$pc + 20}:

@smallexample
(gdb)
-data-disassemble -s $pc -e "$pc + 20" -- 0
^done,
asm_insns=[
@{address="0x000107c0",func-name="main",offset="4",
inst="mov  2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi  %hi(0x11800), %o2"@},
@{address="0x000107c8",func-name="main",offset="12",
inst="or  %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
@{address="0x000107cc",func-name="main",offset="16",
inst="sethi  %hi(0x11800), %o2"@},
@{address="0x000107d0",func-name="main",offset="20",
inst="or  %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
(gdb)
@end smallexample

Disassemble the whole @code{main} function.  Line 32 is part of
@code{main}.

@smallexample
-data-disassemble -f basics.c -l 32 -- 0
^done,asm_insns=[
@{address="0x000107bc",func-name="main",offset="0",
inst="save  %sp, -112, %sp"@},
@{address="0x000107c0",func-name="main",offset="4",
inst="mov   2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi %hi(0x11800), %o2"@},
[@dots{}]
@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
(gdb)
@end smallexample

Disassemble 3 instructions from the start of @code{main}:

@smallexample
(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 0
^done,asm_insns=[
@{address="0x000107bc",func-name="main",offset="0",
inst="save  %sp, -112, %sp"@},
@{address="0x000107c0",func-name="main",offset="4",
inst="mov  2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi  %hi(0x11800), %o2"@}]
(gdb)
@end smallexample

Disassemble 3 instructions from the start of @code{main} in mixed mode:

@smallexample
(gdb)
-data-disassemble -f basics.c -l 32 -n 3 -- 1
^done,asm_insns=[
src_and_asm_line=@{line="31",
file="../../../src/gdb/testsuite/gdb.mi/basics.c",
fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",
line_asm_insn=[@{address="0x000107bc",
func-name="main",offset="0",inst="save  %sp, -112, %sp"@}]@},
src_and_asm_line=@{line="32",
file="../../../src/gdb/testsuite/gdb.mi/basics.c",
fullname="/absolute/path/to/src/gdb/testsuite/gdb.mi/basics.c",
line_asm_insn=[@{address="0x000107c0",
func-name="main",offset="4",inst="mov  2, %o0"@},
@{address="0x000107c4",func-name="main",offset="8",
inst="sethi  %hi(0x11800), %o2"@}]@}]
(gdb)
@end smallexample


@subheading The @code{-data-evaluate-expression} Command
@findex -data-evaluate-expression

@subsubheading Synopsis

@smallexample
 -data-evaluate-expression @var{expr}
@end smallexample

Evaluate @var{expr} as an expression.  The expression could contain an
inferior function call.  The function call will execute synchronously.
If the expression contains spaces, it must be enclosed in double quotes.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
@samp{call}.  In @code{gdbtk} only, there's a corresponding
@samp{gdb_eval} command.

@subsubheading Example

In the following example, the numbers that precede the commands are the
@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
Command Syntax}.  Notice how @sc{gdb/mi} returns the same tokens in its
output.

@smallexample
211-data-evaluate-expression A
211^done,value="1"
(gdb)
311-data-evaluate-expression &A
311^done,value="0xefffeb7c"
(gdb)
411-data-evaluate-expression A+3
411^done,value="4"
(gdb)
511-data-evaluate-expression "A + 3"
511^done,value="4"
(gdb)
@end smallexample


@subheading The @code{-data-list-changed-registers} Command
@findex -data-list-changed-registers

@subsubheading Synopsis

@smallexample
 -data-list-changed-registers
@end smallexample

Display a list of the registers that have changed.

@subsubheading @value{GDBN} Command

@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
has the corresponding command @samp{gdb_changed_register_list}.

@subsubheading Example

On a PPC MBX board:

@smallexample
(gdb)
-exec-continue
^running

(gdb)
*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
line="5",arch="powerpc"@}
(gdb)
-data-list-changed-registers
^done,changed-registers=["0","1","2","4","5","6","7","8","9",
"10","11","13","14","15","16","17","18","19","20","21","22","23",
"24","25","26","27","28","30","31","64","65","66","67","69"]
(gdb)
@end smallexample


@subheading The @code{-data-list-register-names} Command
@findex -data-list-register-names

@subsubheading Synopsis

@smallexample
 -data-list-register-names [ ( @var{regno} )+ ]
@end smallexample

Show a list of register names for the current target.  If no arguments
are given, it shows a list of the names of all the registers.  If
integer numbers are given as arguments, it will print a list of the
names of the registers corresponding to the arguments.  To ensure
consistency between a register name and its number, the output list may
include empty register names.

@subsubheading @value{GDBN} Command

@value{GDBN} does not have a command which corresponds to
@samp{-data-list-register-names}.  In @code{gdbtk} there is a
corresponding command @samp{gdb_regnames}.

@subsubheading Example

For the PPC MBX board:
@smallexample
(gdb)
-data-list-register-names
^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
"", "pc","ps","cr","lr","ctr","xer"]
(gdb)
-data-list-register-names 1 2 3
^done,register-names=["r1","r2","r3"]
(gdb)
@end smallexample

@subheading The @code{-data-list-register-values} Command
@findex -data-list-register-values

@subsubheading Synopsis

@smallexample
 -data-list-register-values
    [ @code{--skip-unavailable} ] @var{fmt} [ ( @var{regno} )*]
@end smallexample

Display the registers' contents.  The format according to which the
registers' contents are to be returned is given by @var{fmt}, followed
by an optional list of numbers specifying the registers to display.  A
missing list of numbers indicates that the contents of all the
registers must be returned.  The @code{--skip-unavailable} option
indicates that only the available registers are to be returned.

Allowed formats for @var{fmt} are:

@table @code
@item x
Hexadecimal
@item o
Octal
@item t
Binary
@item d
Decimal
@item r
Raw
@item N
Natural
@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.

@subsubheading Example

For a PPC MBX board (note: line breaks are for readability only, they
don't appear in the actual output):

@smallexample
(gdb)
-data-list-register-values r 64 65
^done,register-values=[@{number="64",value="0xfe00a300"@},
@{number="65",value="0x00029002"@}]
(gdb)
-data-list-register-values x
^done,register-values=[@{number="0",value="0xfe0043c8"@},
@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
@{number="3",value="0x0"@},@{number="4",value="0xa"@},
@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
@{number="11",value="0x1"@},@{number="12",value="0x0"@},
@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
@{number="31",value="0x0"@},@{number="32",value="0x0"@},
@{number="33",value="0x0"@},@{number="34",value="0x0"@},
@{number="35",value="0x0"@},@{number="36",value="0x0"@},
@{number="37",value="0x0"@},@{number="38",value="0x0"@},
@{number="39",value="0x0"@},@{number="40",value="0x0"@},
@{number="41",value="0x0"@},@{number="42",value="0x0"@},
@{number="43",value="0x0"@},@{number="44",value="0x0"@},
@{number="45",value="0x0"@},@{number="46",value="0x0"@},
@{number="47",value="0x0"@},@{number="48",value="0x0"@},
@{number="49",value="0x0"@},@{number="50",value="0x0"@},
@{number="51",value="0x0"@},@{number="52",value="0x0"@},
@{number="53",value="0x0"@},@{number="54",value="0x0"@},
@{number="55",value="0x0"@},@{number="56",value="0x0"@},
@{number="57",value="0x0"@},@{number="58",value="0x0"@},
@{number="59",value="0x0"@},@{number="60",value="0x0"@},
@{number="61",value="0x0"@},@{number="62",value="0x0"@},
@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
@{number="69",value="0x20002b03"@}]
(gdb)
@end smallexample


@subheading The @code{-data-read-memory} Command
@findex -data-read-memory

This command is deprecated, use @code{-data-read-memory-bytes} instead.

@subsubheading Synopsis

@smallexample
 -data-read-memory [ -o @var{byte-offset} ]
   @var{address} @var{word-format} @var{word-size}
   @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
@end smallexample

@noindent
where:

@table @samp
@item @var{address}
An expression specifying the address of the first memory word to be
read.  Complex expressions containing embedded white space should be
quoted using the C convention.

@item @var{word-format}
The format to be used to print the memory words.  The notation is the
same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
,Output Formats}).

@item @var{word-size}
The size of each memory word in bytes.

@item @var{nr-rows}
The number of rows in the output table.

@item @var{nr-cols}
The number of columns in the output table.

@item @var{aschar}
If present, indicates that each row should include an @sc{ascii} dump.  The
value of @var{aschar} is used as a padding character when a byte is not a
member of the printable @sc{ascii} character set (printable @sc{ascii}
characters are those whose code is between 32 and 126, inclusively).

@item @var{byte-offset}
An offset to add to the @var{address} before fetching memory.
@end table

This command displays memory contents as a table of @var{nr-rows} by
@var{nr-cols} words, each word being @var{word-size} bytes.  In total,
@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
(returned as @samp{total-bytes}).  Should less than the requested number
of bytes be returned by the target, the missing words are identified
using @samp{N/A}.  The number of bytes read from the target is returned
in @samp{nr-bytes} and the starting address used to read memory in
@samp{addr}.

The address of the next/previous row or page is available in
@samp{next-row} and @samp{prev-row}, @samp{next-page} and
@samp{prev-page}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{x}.  @code{gdbtk} has
@samp{gdb_get_mem} memory read command.

@subsubheading Example

Read six bytes of memory starting at @code{bytes+6} but then offset by
@code{-6} bytes.  Format as three rows of two columns.  One byte per
word.  Display each word in hex.

@smallexample
(gdb)
9-data-read-memory -o -6 -- bytes+6 x 1 3 2
9^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
prev-page="0x0000138a",memory=[
@{addr="0x00001390",data=["0x00","0x01"]@},
@{addr="0x00001392",data=["0x02","0x03"]@},
@{addr="0x00001394",data=["0x04","0x05"]@}]
(gdb)
@end smallexample

Read two bytes of memory starting at address @code{shorts + 64} and
display as a single word formatted in decimal.

@smallexample
(gdb)
5-data-read-memory shorts+64 d 2 1 1
5^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
next-row="0x00001512",prev-row="0x0000150e",
next-page="0x00001512",prev-page="0x0000150e",memory=[
@{addr="0x00001510",data=["128"]@}]
(gdb)
@end smallexample

Read thirty two bytes of memory starting at @code{bytes+16} and format
as eight rows of four columns.  Include a string encoding with @samp{x}
used as the non-printable character.

@smallexample
(gdb)
4-data-read-memory bytes+16 x 1 8 4 x
4^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
next-row="0x000013c0",prev-row="0x0000139c",
next-page="0x000013c0",prev-page="0x00001380",memory=[
@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
(gdb)
@end smallexample

@subheading The @code{-data-read-memory-bytes} Command
@findex -data-read-memory-bytes

@subsubheading Synopsis

@smallexample
 -data-read-memory-bytes [ -o @var{offset} ]
   @var{address} @var{count}
@end smallexample

@noindent
where:

@table @samp
@item @var{address}
An expression specifying the address of the first addressable memory unit
to be read.  Complex expressions containing embedded white space should be
quoted using the C convention.

@item @var{count}
The number of addressable memory units to read.  This should be an integer
literal.

@item @var{offset}
The offset relative to @var{address} at which to start reading.  This
should be an integer literal.  This option is provided so that a frontend
is not required to first evaluate address and then perform address
arithmetics itself.

@end table

This command attempts to read all accessible memory regions in the
specified range.  First, all regions marked as unreadable in the memory
map (if one is defined) will be skipped.  @xref{Memory Region
Attributes}.  Second, @value{GDBN} will attempt to read the remaining
regions.  For each one, if reading full region results in an errors,
@value{GDBN} will try to read a subset of the region.

In general, every single memory unit in the region may be readable or not,
and the only way to read every readable unit is to try a read at
every address, which is not practical.   Therefore, @value{GDBN} will
attempt to read all accessible memory units at either beginning or the end
of the region, using a binary division scheme.  This heuristic works
well for reading across a memory map boundary.  Note that if a region
has a readable range that is neither at the beginning or the end,
@value{GDBN} will not read it.

The result record (@pxref{GDB/MI Result Records}) that is output of
the command includes a field named @samp{memory} whose content is a
list of tuples.  Each tuple represent a successfully read memory block
and has the following fields:

@table @code
@item begin
The start address of the memory block, as hexadecimal literal.

@item end
The end address of the memory block, as hexadecimal literal.

@item offset
The offset of the memory block, as hexadecimal literal, relative to
the start address passed to @code{-data-read-memory-bytes}.

@item contents
The contents of the memory block, in hex.

@end table



@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{x}.

@subsubheading Example

@smallexample
(gdb)
-data-read-memory-bytes &a 10
^done,memory=[@{begin="0xbffff154",offset="0x00000000",
              end="0xbffff15e",
              contents="01000000020000000300"@}]
(gdb)
@end smallexample


@subheading The @code{-data-write-memory-bytes} Command
@findex -data-write-memory-bytes

@subsubheading Synopsis

@smallexample
 -data-write-memory-bytes @var{address} @var{contents}
 -data-write-memory-bytes @var{address} @var{contents} @r{[}@var{count}@r{]}
@end smallexample

@noindent
where:

@table @samp
@item @var{address}
An expression specifying the address of the first addressable memory unit
to be written.  Complex expressions containing embedded white space should
be quoted using the C convention.

@item @var{contents}
The hex-encoded data to write.  It is an error if @var{contents} does
not represent an integral number of addressable memory units.

@item @var{count}
Optional argument indicating the number of addressable memory units to be
written.  If @var{count} is greater than @var{contents}' length,
@value{GDBN} will repeatedly write @var{contents} until it fills
@var{count} memory units.

@end table

@subsubheading @value{GDBN} Command

There's no corresponding @value{GDBN} command.

@subsubheading Example

@smallexample
(gdb)
-data-write-memory-bytes &a "aabbccdd"
^done
(gdb)
@end smallexample

@smallexample
(gdb)
-data-write-memory-bytes &a "aabbccdd" 16e
^done
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Tracepoint Commands
@section @sc{gdb/mi} Tracepoint Commands

The commands defined in this section implement MI support for
tracepoints.  For detailed introduction, see @ref{Tracepoints}.

@subheading The @code{-trace-find} Command
@findex -trace-find

@subsubheading Synopsis

@smallexample
 -trace-find @var{mode} [@var{parameters}@dots{}]
@end smallexample

Find a trace frame using criteria defined by @var{mode} and
@var{parameters}.  The following table lists permissible
modes and their parameters.  For details of operation, see @ref{tfind}.

@table @samp

@item none
No parameters are required.  Stops examining trace frames.

@item frame-number
An integer is required as parameter.  Selects tracepoint frame with
that index.

@item tracepoint-number
An integer is required as parameter.  Finds next
trace frame that corresponds to tracepoint with the specified number.

@item pc
An address is required as parameter.  Finds
next trace frame that corresponds to any tracepoint at the specified
address.

@item pc-inside-range
Two addresses are required as parameters.  Finds next trace
frame that corresponds to a tracepoint at an address inside the
specified range.  Both bounds are considered to be inside the range.

@item pc-outside-range
Two addresses are required as parameters.  Finds
next trace frame that corresponds to a tracepoint at an address outside
the specified range.  Both bounds are considered to be inside the range.

@item line
Line specification is required as parameter.  @xref{Specify Location}.
Finds next trace frame that corresponds to a tracepoint at
the specified location.

@end table

If @samp{none} was passed as @var{mode}, the response does not
have fields.  Otherwise, the response may have the following fields:

@table @samp
@item found
This field has either @samp{0} or @samp{1} as the value, depending
on whether a matching tracepoint was found.

@item traceframe
The index of the found traceframe.  This field is present iff
the @samp{found} field has value of @samp{1}.

@item tracepoint
The index of the found tracepoint.  This field is present iff
the @samp{found} field has value of @samp{1}.

@item frame
The information about the frame corresponding to the found trace
frame.  This field is present only if a trace frame was found.
@xref{GDB/MI Frame Information}, for description of this field.

@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tfind}.

@subheading -trace-define-variable
@findex -trace-define-variable

@subsubheading Synopsis

@smallexample
 -trace-define-variable @var{name} [ @var{value} ]
@end smallexample

Create trace variable @var{name} if it does not exist.  If
@var{value} is specified, sets the initial value of the specified
trace variable to that value.  Note that the @var{name} should start
with the @samp{$} character.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tvariable}.

@subheading The @code{-trace-frame-collected} Command
@findex -trace-frame-collected

@subsubheading Synopsis

@smallexample
 -trace-frame-collected
    [--var-print-values @var{var_pval}]
    [--comp-print-values @var{comp_pval}]
    [--registers-format @var{regformat}]
    [--memory-contents]
@end smallexample

This command returns the set of collected objects, register names,
trace state variable names, memory ranges and computed expressions
that have been collected at a particular trace frame.  The optional
parameters to the command affect the output format in different ways.
See the output description table below for more details.

The reported names can be used in the normal manner to create
varobjs and inspect the objects themselves.  The items returned by
this command are categorized so that it is clear which is a variable,
which is a register, which is a trace state variable, which is a
memory range and which is a computed expression.

For instance, if the actions were
@smallexample
collect myVar, myArray[myIndex], myObj.field, myPtr->field, myCount + 2
collect *(int*)0xaf02bef0@@40
@end smallexample

@noindent
the object collected in its entirety would be @code{myVar}.  The
object @code{myArray} would be partially collected, because only the
element at index @code{myIndex} would be collected.  The remaining
objects would be computed expressions.

An example output would be:

@smallexample
(gdb)
-trace-frame-collected
^done,
  explicit-variables=[@{name="myVar",value="1"@}],
  computed-expressions=[@{name="myArray[myIndex]",value="0"@},
                        @{name="myObj.field",value="0"@},
                        @{name="myPtr->field",value="1"@},
                        @{name="myCount + 2",value="3"@},
                        @{name="$tvar1 + 1",value="43970027"@}],
  registers=[@{number="0",value="0x7fe2c6e79ec8"@},
             @{number="1",value="0x0"@},
             @{number="2",value="0x4"@},
             ...
             @{number="125",value="0x0"@}],
  tvars=[@{name="$tvar1",current="43970026"@}],
  memory=[@{address="0x0000000000602264",length="4"@},
          @{address="0x0000000000615bc0",length="4"@}]
(gdb)
@end smallexample

Where:

@table @code
@item explicit-variables
The set of objects that have been collected in their entirety (as
opposed to collecting just a few elements of an array or a few struct
members).  For each object, its name and value are printed.
The @code{--var-print-values} option affects how or whether the value
field is output.  If @var{var_pval} is 0, then print only the names;
if it is 1, print also their values; and if it is 2, print the name,
type and value for simple data types, and the name and type for
arrays, structures and unions.

@item computed-expressions
The set of computed expressions that have been collected at the
current trace frame.  The @code{--comp-print-values} option affects
this set like the @code{--var-print-values} option affects the
@code{explicit-variables} set.  See above.

@item registers
The registers that have been collected at the current trace frame.
For each register collected, the name and current value are returned.
The value is formatted according to the @code{--registers-format}
option.  See the @command{-data-list-register-values} command for a
list of the allowed formats.  The default is @samp{x}.

@item tvars
The trace state variables that have been collected at the current
trace frame.  For each trace state variable collected, the name and
current value are returned.

@item memory
The set of memory ranges that have been collected at the current trace
frame.  Its content is a list of tuples.  Each tuple represents a
collected memory range and has the following fields:

@table @code
@item address
The start address of the memory range, as hexadecimal literal.

@item length
The length of the memory range, as decimal literal.

@item contents
The contents of the memory block, in hex.  This field is only present
if the @code{--memory-contents} option is specified.

@end table

@end table

@subsubheading @value{GDBN} Command

There is no corresponding @value{GDBN} command.

@subsubheading Example

@subheading -trace-list-variables
@findex -trace-list-variables

@subsubheading Synopsis

@smallexample
 -trace-list-variables
@end smallexample

Return a table of all defined trace variables.  Each element of the
table has the following fields:

@table @samp
@item name
The name of the trace variable.  This field is always present.

@item initial
The initial value.  This is a 64-bit signed integer.  This
field is always present.

@item current
The value the trace variable has at the moment.  This is a 64-bit
signed integer.  This field is absent iff current value is
not defined, for example if the trace was never run, or is
presently running.

@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tvariables}.

@subsubheading Example

@smallexample
(gdb)
-trace-list-variables
^done,trace-variables=@{nr_rows="1",nr_cols="3",
hdr=[@{width="15",alignment="-1",col_name="name",colhdr="Name"@},
     @{width="11",alignment="-1",col_name="initial",colhdr="Initial"@},
     @{width="11",alignment="-1",col_name="current",colhdr="Current"@}],
body=[variable=@{name="$trace_timestamp",initial="0"@}
      variable=@{name="$foo",initial="10",current="15"@}]@}
(gdb)
@end smallexample

@subheading -trace-save
@findex -trace-save

@subsubheading Synopsis

@smallexample
 -trace-save [ -r ] [ -ctf ] @var{filename}
@end smallexample

Saves the collected trace data to @var{filename}.  Without the
@samp{-r} option, the data is downloaded from the target and saved
in a local file.  With the @samp{-r} option the target is asked
to perform the save.

By default, this command will save the trace in the tfile format.  You can
supply the optional @samp{-ctf} argument to save it the CTF format. See
@ref{Trace Files} for more information about CTF.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tsave}.


@subheading -trace-start
@findex -trace-start

@subsubheading Synopsis

@smallexample
 -trace-start
@end smallexample

Starts a tracing experiment.  The result of this command does not
have any fields.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tstart}.

@subheading -trace-status
@findex -trace-status

@subsubheading Synopsis

@smallexample
 -trace-status
@end smallexample

Obtains the status of a tracing experiment.  The result may include
the following fields:

@table @samp

@item supported
May have a value of either @samp{0}, when no tracing operations are
supported, @samp{1}, when all tracing operations are supported, or
@samp{file} when examining trace file.  In the latter case, examining
of trace frame is possible but new tracing experiement cannot be
started.  This field is always present.

@item running
May have a value of either @samp{0} or @samp{1} depending on whether
tracing experiement is in progress on target.  This field is present
if @samp{supported} field is not @samp{0}.

@item stop-reason
Report the reason why the tracing was stopped last time.  This field
may be absent iff tracing was never stopped on target yet.  The
value of @samp{request} means the tracing was stopped as result of
the @code{-trace-stop} command.  The value of @samp{overflow} means
the tracing buffer is full.  The value of @samp{disconnection} means
tracing was automatically stopped when @value{GDBN} has disconnected.
The value of @samp{passcount} means tracing was stopped when a
tracepoint was passed a maximal number of times for that tracepoint.
This field is present if @samp{supported} field is not @samp{0}.

@item stopping-tracepoint
The number of tracepoint whose passcount as exceeded.  This field is
present iff the @samp{stop-reason} field has the value of
@samp{passcount}.

@item frames
@itemx frames-created
The @samp{frames} field is a count of the total number of trace frames
in the trace buffer, while @samp{frames-created} is the total created
during the run, including ones that were discarded, such as when a
circular trace buffer filled up.  Both fields are optional.

@item buffer-size
@itemx buffer-free
These fields tell the current size of the tracing buffer and the
remaining space.  These fields are optional.

@item circular
The value of the circular trace buffer flag.  @code{1} means that the
trace buffer is circular and old trace frames will be discarded if
necessary to make room, @code{0} means that the trace buffer is linear
and may fill up.

@item disconnected
The value of the disconnected tracing flag.  @code{1} means that
tracing will continue after @value{GDBN} disconnects, @code{0} means
that the trace run will stop.

@item trace-file
The filename of the trace file being examined.  This field is
optional, and only present when examining a trace file.

@end table

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tstatus}.

@subheading -trace-stop
@findex -trace-stop

@subsubheading Synopsis

@smallexample
 -trace-stop
@end smallexample

Stops a tracing experiment.  The result of this command has the same
fields as @code{-trace-status}, except that the @samp{supported} and
@samp{running} fields are not output.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{tstop}.


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Symbol Query
@section @sc{gdb/mi} Symbol Query Commands


@ignore
@subheading The @code{-symbol-info-address} Command
@findex -symbol-info-address

@subsubheading Synopsis

@smallexample
 -symbol-info-address @var{symbol}
@end smallexample

Describe where @var{symbol} is stored.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info address}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-info-file} Command
@findex -symbol-info-file

@subsubheading Synopsis

@smallexample
 -symbol-info-file
@end smallexample

Show the file for the symbol.

@subsubheading @value{GDBN} Command

There's no equivalent @value{GDBN} command.  @code{gdbtk} has
@samp{gdb_find_file}.

@subsubheading Example
N.A.
@end ignore

@subheading The @code{-symbol-info-functions} Command
@findex -symbol-info-functions
@anchor{-symbol-info-functions}

@subsubheading Synopsis

@smallexample
 -symbol-info-functions [--include-nondebug]
                        [--type @var{type_regexp}]
                        [--name @var{name_regexp}]
                        [--max-results @var{limit}]
@end smallexample

@noindent
Return a list containing the names and types for all global functions
taken from the debug information.  The functions are grouped by source
file, and shown with the line number on which each function is
defined.

The @code{--include-nondebug} option causes the output to include
code symbols from the symbol table.

The options @code{--type} and @code{--name} allow the symbols returned
to be filtered based on either the name of the function, or the type
signature of the function.

The option @code{--max-results} restricts the command to return no
more than @var{limit} results.  If exactly @var{limit} results are
returned then there might be additional results available if a higher
limit is used.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info functions}.

@subsubheading Example
@smallexample
@group
(gdb)
-symbol-info-functions
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="36", name="f4", type="void (int *)",
                description="void f4(int *);"@},
               @{line="42", name="main", type="int ()",
                description="int main();"@},
               @{line="30", name="f1", type="my_int_t (int, int)",
                description="static my_int_t f1(int, int);"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      symbols=[@{line="33", name="f2", type="float (another_float_t)",
                description="float f2(another_float_t);"@},
               @{line="39", name="f3", type="int (another_int_t)",
                description="int f3(another_int_t);"@},
               @{line="27", name="f1", type="another_float_t (int)",
                description="static another_float_t f1(int);"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-functions --name f1
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="30", name="f1", type="my_int_t (int, int)",
                description="static my_int_t f1(int, int);"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      symbols=[@{line="27", name="f1", type="another_float_t (int)",
                description="static another_float_t f1(int);"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-functions --type void
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="36", name="f4", type="void (int *)",
                description="void f4(int *);"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-functions --include-nondebug
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="36", name="f4", type="void (int *)",
                description="void f4(int *);"@},
               @{line="42", name="main", type="int ()",
                description="int main();"@},
               @{line="30", name="f1", type="my_int_t (int, int)",
                description="static my_int_t f1(int, int);"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      symbols=[@{line="33", name="f2", type="float (another_float_t)",
                description="float f2(another_float_t);"@},
               @{line="39", name="f3", type="int (another_int_t)",
                description="int f3(another_int_t);"@},
               @{line="27", name="f1", type="another_float_t (int)",
                description="static another_float_t f1(int);"@}]@}],
   nondebug=
    [@{address="0x0000000000400398",name="_init"@},
     @{address="0x00000000004003b0",name="_start"@},
      ...
    ]@}
@end group
@end smallexample

@subheading The @code{-symbol-info-module-functions} Command
@findex -symbol-info-module-functions
@anchor{-symbol-info-module-functions}

@subsubheading Synopsis

@smallexample
 -symbol-info-module-functions [--module @var{module_regexp}]
                               [--name @var{name_regexp}]
                               [--type @var{type_regexp}]
@end smallexample

@noindent
Return a list containing the names of all known functions within all
know Fortran modules.  The functions are grouped by source file and
containing module, and shown with the line number on which each
function is defined.

The option @code{--module} only returns results for modules matching
@var{module_regexp}.  The option @code{--name} only returns functions
whose name matches @var{name_regexp}, and @code{--type} only returns
functions whose type matches @var{type_regexp}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info module functions}.

@subsubheading Example

@smallexample
@group
(gdb)
-symbol-info-module-functions
^done,symbols=
  [@{module="mod1",
    files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
            fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
            symbols=[@{line="21",name="mod1::check_all",type="void (void)",
                      description="void mod1::check_all(void);"@}]@}]@},
    @{module="mod2",
     files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
             fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
             symbols=[@{line="30",name="mod2::check_var_i",type="void (void)",
                       description="void mod2::check_var_i(void);"@}]@}]@},
    @{module="mod3",
     files=[@{filename="/projec/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
             fullname="/projec/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
             symbols=[@{line="21",name="mod3::check_all",type="void (void)",
                       description="void mod3::check_all(void);"@},
                      @{line="27",name="mod3::check_mod2",type="void (void)",
                       description="void mod3::check_mod2(void);"@}]@}]@},
    @{module="modmany",
     files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
             fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
             symbols=[@{line="35",name="modmany::check_some",type="void (void)",
                       description="void modmany::check_some(void);"@}]@}]@},
    @{module="moduse",
     files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
             fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
             symbols=[@{line="44",name="moduse::check_all",type="void (void)",
                       description="void moduse::check_all(void);"@},
                      @{line="49",name="moduse::check_var_x",type="void (void)",
                       description="void moduse::check_var_x(void);"@}]@}]@}]
@end group
@end smallexample

@subheading The @code{-symbol-info-module-variables} Command
@findex -symbol-info-module-variables
@anchor{-symbol-info-module-variables}

@subsubheading Synopsis

@smallexample
 -symbol-info-module-variables [--module @var{module_regexp}]
                               [--name @var{name_regexp}]
                               [--type @var{type_regexp}]
@end smallexample

@noindent
Return a list containing the names of all known variables within all
know Fortran modules.  The variables are grouped by source file and
containing module, and shown with the line number on which each
variable is defined.

The option @code{--module} only returns results for modules matching
@var{module_regexp}.  The option @code{--name} only returns variables
whose name matches @var{name_regexp}, and @code{--type} only returns
variables whose type matches @var{type_regexp}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info module variables}.

@subsubheading Example

@smallexample
@group
(gdb)
-symbol-info-module-variables
^done,symbols=
  [@{module="mod1",
    files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
            fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
            symbols=[@{line="18",name="mod1::var_const",type="integer(kind=4)",
                      description="integer(kind=4) mod1::var_const;"@},
                     @{line="17",name="mod1::var_i",type="integer(kind=4)",
                      description="integer(kind=4) mod1::var_i;"@}]@}]@},
   @{module="mod2",
    files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
            fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
            symbols=[@{line="28",name="mod2::var_i",type="integer(kind=4)",
                      description="integer(kind=4) mod2::var_i;"@}]@}]@},
   @{module="mod3",
    files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
            fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
            symbols=[@{line="18",name="mod3::mod1",type="integer(kind=4)",
                      description="integer(kind=4) mod3::mod1;"@},
                     @{line="17",name="mod3::mod2",type="integer(kind=4)",
                      description="integer(kind=4) mod3::mod2;"@},
                     @{line="19",name="mod3::var_i",type="integer(kind=4)",
                      description="integer(kind=4) mod3::var_i;"@}]@}]@},
   @{module="modmany",
    files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
            fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
            symbols=[@{line="33",name="modmany::var_a",type="integer(kind=4)",
                      description="integer(kind=4) modmany::var_a;"@},
                     @{line="33",name="modmany::var_b",type="integer(kind=4)",
                      description="integer(kind=4) modmany::var_b;"@},
                     @{line="33",name="modmany::var_c",type="integer(kind=4)",
                      description="integer(kind=4) modmany::var_c;"@},
                     @{line="33",name="modmany::var_i",type="integer(kind=4)",
                      description="integer(kind=4) modmany::var_i;"@}]@}]@},
   @{module="moduse",
    files=[@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
            fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
            symbols=[@{line="42",name="moduse::var_x",type="integer(kind=4)",
                      description="integer(kind=4) moduse::var_x;"@},
                     @{line="42",name="moduse::var_y",type="integer(kind=4)",
                      description="integer(kind=4) moduse::var_y;"@}]@}]@}]
@end group
@end smallexample

@subheading The @code{-symbol-info-modules} Command
@findex -symbol-info-modules
@anchor{-symbol-info-modules}

@subsubheading Synopsis

@smallexample
 -symbol-info-modules [--name @var{name_regexp}]
                      [--max-results @var{limit}]

@end smallexample

@noindent
Return a list containing the names of all known Fortran modules.  The
modules are grouped by source file, and shown with the line number on
which each modules is defined.

The option @code{--name} allows the modules returned to be filtered
based the name of the module.

The option @code{--max-results} restricts the command to return no
more than @var{limit} results.  If exactly @var{limit} results are
returned then there might be additional results available if a higher
limit is used.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info modules}.

@subsubheading Example
@smallexample
@group
(gdb)
-symbol-info-modules
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
      fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
      symbols=[@{line="16",name="mod1"@},
               @{line="22",name="mod2"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
      fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
      symbols=[@{line="16",name="mod3"@},
               @{line="22",name="modmany"@},
               @{line="26",name="moduse"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-modules --name mod[123]
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
      fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules-2.f90",
      symbols=[@{line="16",name="mod1"@},
               @{line="22",name="mod2"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
      fullname="/project/gdb/testsuite/gdb.mi/mi-fortran-modules.f90",
      symbols=[@{line="16",name="mod3"@}]@}]@}
@end group
@end smallexample

@subheading The @code{-symbol-info-types} Command
@findex -symbol-info-types
@anchor{-symbol-info-types}

@subsubheading Synopsis

@smallexample
 -symbol-info-types [--name @var{name_regexp}]
                    [--max-results @var{limit}]

@end smallexample

@noindent
Return a list of all defined types.  The types are grouped by source
file, and shown with the line number on which each user defined type
is defined.  Some base types are not defined in the source code but
are added to the debug information by the compiler, for example
@code{int}, @code{float}, etc.; these types do not have an associated
line number.

The option @code{--name} allows the list of types returned to be
filtered by name.

The option @code{--max-results} restricts the command to return no
more than @var{limit} results.  If exactly @var{limit} results are
returned then there might be additional results available if a higher
limit is used.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info types}.

@subsubheading Example
@smallexample
@group
(gdb)
-symbol-info-types
^done,symbols=
  @{debug=
     [@{filename="gdb.mi/mi-sym-info-1.c",
       fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
       symbols=[@{name="float"@},
                @{name="int"@},
                @{line="27",name="typedef int my_int_t;"@}]@},
      @{filename="gdb.mi/mi-sym-info-2.c",
       fullname="/project/gdb.mi/mi-sym-info-2.c",
       symbols=[@{line="24",name="typedef float another_float_t;"@},
                @{line="23",name="typedef int another_int_t;"@},
                @{name="float"@},
                @{name="int"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-types --name _int_
^done,symbols=
  @{debug=
     [@{filename="gdb.mi/mi-sym-info-1.c",
       fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
       symbols=[@{line="27",name="typedef int my_int_t;"@}]@},
      @{filename="gdb.mi/mi-sym-info-2.c",
       fullname="/project/gdb.mi/mi-sym-info-2.c",
       symbols=[@{line="23",name="typedef int another_int_t;"@}]@}]@}
@end group
@end smallexample

@subheading The @code{-symbol-info-variables} Command
@findex -symbol-info-variables
@anchor{-symbol-info-variables}

@subsubheading Synopsis

@smallexample
 -symbol-info-variables [--include-nondebug]
                        [--type @var{type_regexp}]
                        [--name @var{name_regexp}]
                        [--max-results @var{limit}]

@end smallexample

@noindent
Return a list containing the names and types for all global variables
taken from the debug information.  The variables are grouped by source
file, and shown with the line number on which each variable is
defined.

The @code{--include-nondebug} option causes the output to include
data symbols from the symbol table.

The options @code{--type} and @code{--name} allow the symbols returned
to be filtered based on either the name of the variable, or the type
of the variable.

The option @code{--max-results} restricts the command to return no
more than @var{limit} results.  If exactly @var{limit} results are
returned then there might be additional results available if a higher
limit is used.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info variables}.

@subsubheading Example
@smallexample
@group
(gdb)
-symbol-info-variables
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="25",name="global_f1",type="float",
                description="static float global_f1;"@},
               @{line="24",name="global_i1",type="int",
                description="static int global_i1;"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      symbols=[@{line="21",name="global_f2",type="int",
                description="int global_f2;"@},
               @{line="20",name="global_i2",type="int",
                description="int global_i2;"@},
               @{line="19",name="global_f1",type="float",
                description="static float global_f1;"@},
               @{line="18",name="global_i1",type="int",
                description="static int global_i1;"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-variables --name f1
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="25",name="global_f1",type="float",
                description="static float global_f1;"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      symbols=[@{line="19",name="global_f1",type="float",
                description="static float global_f1;"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-variables --type float
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="25",name="global_f1",type="float",
                description="static float global_f1;"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      symbols=[@{line="19",name="global_f1",type="float",
                description="static float global_f1;"@}]@}]@}
@end group
@group
(gdb)
-symbol-info-variables --include-nondebug
^done,symbols=
  @{debug=
    [@{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-1.c",
      symbols=[@{line="25",name="global_f1",type="float",
                description="static float global_f1;"@},
               @{line="24",name="global_i1",type="int",
                description="static int global_i1;"@}]@},
     @{filename="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      fullname="/project/gdb/testsuite/gdb.mi/mi-sym-info-2.c",
      symbols=[@{line="21",name="global_f2",type="int",
                description="int global_f2;"@},
               @{line="20",name="global_i2",type="int",
                description="int global_i2;"@},
               @{line="19",name="global_f1",type="float",
                description="static float global_f1;"@},
               @{line="18",name="global_i1",type="int",
                description="static int global_i1;"@}]@}],
   nondebug=
    [@{address="0x00000000004005d0",name="_IO_stdin_used"@},
     @{address="0x00000000004005d8",name="__dso_handle"@}
      ...
    ]@}
@end group
@end smallexample

@ignore
@subheading The @code{-symbol-info-line} Command
@findex -symbol-info-line

@subsubheading Synopsis

@smallexample
 -symbol-info-line
@end smallexample

Show the core addresses of the code for a source line.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info line}.
@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.

@subsubheading Example
N.A.


@subheading The @code{-symbol-info-symbol} Command
@findex -symbol-info-symbol

@subsubheading Synopsis

@smallexample
 -symbol-info-symbol @var{addr}
@end smallexample

Describe what symbol is at location @var{addr}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info symbol}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-list-functions} Command
@findex -symbol-list-functions

@subsubheading Synopsis

@smallexample
 -symbol-list-functions
@end smallexample

List the functions in the executable.

@subsubheading @value{GDBN} Command

@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
@samp{gdb_search} in @code{gdbtk}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-symbol-list-lines} Command
@findex -symbol-list-lines

@subsubheading Synopsis

@smallexample
 -symbol-list-lines @var{filename}
@end smallexample

Print the list of lines that contain code and their associated program
addresses for the given source filename.  The entries are sorted in
ascending PC order.

@subsubheading @value{GDBN} Command

There is no corresponding @value{GDBN} command.

@subsubheading Example
@smallexample
(gdb)
-symbol-list-lines basics.c
^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
(gdb)
@end smallexample


@ignore
@subheading The @code{-symbol-list-types} Command
@findex -symbol-list-types

@subsubheading Synopsis

@smallexample
 -symbol-list-types
@end smallexample

List all the type names.

@subsubheading @value{GDBN} Command

The corresponding commands are @samp{info types} in @value{GDBN},
@samp{gdb_search} in @code{gdbtk}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-list-variables} Command
@findex -symbol-list-variables

@subsubheading Synopsis

@smallexample
 -symbol-list-variables
@end smallexample

List all the global and static variable names.

@subsubheading @value{GDBN} Command

@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-locate} Command
@findex -symbol-locate

@subsubheading Synopsis

@smallexample
 -symbol-locate
@end smallexample

@subsubheading @value{GDBN} Command

@samp{gdb_loc} in @code{gdbtk}.

@subsubheading Example
N.A.


@subheading The @code{-symbol-type} Command
@findex -symbol-type

@subsubheading Synopsis

@smallexample
 -symbol-type @var{variable}
@end smallexample

Show type of @var{variable}.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
@samp{gdb_obj_variable}.

@subsubheading Example
N.A.
@end ignore


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI File Commands
@section @sc{gdb/mi} File Commands

This section describes the GDB/MI commands to specify executable file names
and to read in and obtain symbol table information.

@subheading The @code{-file-exec-and-symbols} Command
@findex -file-exec-and-symbols

@subsubheading Synopsis

@smallexample
 -file-exec-and-symbols @var{file}
@end smallexample

Specify the executable file to be debugged.  This file is the one from
which the symbol table is also read.  If no file is specified, the
command clears the executable and symbol information.  If breakpoints
are set when using this command with no arguments, @value{GDBN} will produce
error messages.  Otherwise, no output is produced, except a completion
notification.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{file}.

@subsubheading Example

@smallexample
(gdb)
-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
@end smallexample


@subheading The @code{-file-exec-file} Command
@findex -file-exec-file

@subsubheading Synopsis

@smallexample
 -file-exec-file @var{file}
@end smallexample

Specify the executable file to be debugged.  Unlike
@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
from this file.  If used without argument, @value{GDBN} clears the information
about the executable file.  No output is produced, except a completion
notification.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{exec-file}.

@subsubheading Example

@smallexample
(gdb)
-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
@end smallexample


@ignore
@subheading The @code{-file-list-exec-sections} Command
@findex -file-list-exec-sections

@subsubheading Synopsis

@smallexample
 -file-list-exec-sections
@end smallexample

List the sections of the current executable file.

@subsubheading @value{GDBN} Command

The @value{GDBN} command @samp{info file} shows, among the rest, the same
information as this command.  @code{gdbtk} has a corresponding command
@samp{gdb_load_info}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-file-list-exec-source-file} Command
@findex -file-list-exec-source-file

@subsubheading Synopsis

@smallexample
 -file-list-exec-source-file
@end smallexample

List the line number, the current source file, and the absolute path
to the current source file for the current executable.  The macro
information field has a value of @samp{1} or @samp{0} depending on
whether or not the file includes preprocessor macro information.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{info source}

@subsubheading Example

@smallexample
(gdb)
123-file-list-exec-source-file
123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
(gdb)
@end smallexample


@subheading The @code{-file-list-exec-source-files} Command
@findex -file-list-exec-source-files

@subsubheading Synopsis

@smallexample
 -file-list-exec-source-files
@end smallexample

List the source files for the current executable.

It will always output both the filename and fullname (absolute file
name) of a source file.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{info sources}.
@code{gdbtk} has an analogous command @samp{gdb_listfiles}.

@subsubheading Example
@smallexample
(gdb)
-file-list-exec-source-files
^done,files=[
@{file=foo.c,fullname=/home/foo.c@},
@{file=/home/bar.c,fullname=/home/bar.c@},
@{file=gdb_could_not_find_fullpath.c@}]
(gdb)
@end smallexample

@subheading The @code{-file-list-shared-libraries} Command
@findex -file-list-shared-libraries

@subsubheading Synopsis

@smallexample
 -file-list-shared-libraries [ @var{regexp} ]
@end smallexample

List the shared libraries in the program.
With a regular expression @var{regexp}, only those libraries whose
names match @var{regexp} are listed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info shared}.  The fields
have a similar meaning to the @code{=library-loaded} notification.
The @code{ranges} field specifies the multiple segments belonging to this
library.  Each range has the following fields:

@table @samp
@item from
The address defining the inclusive lower bound of the segment.
@item to
The address defining the exclusive upper bound of the segment.
@end table

@subsubheading Example
@smallexample
(gdb)
-file-list-exec-source-files
^done,shared-libraries=[
@{id="/lib/libfoo.so",target-name="/lib/libfoo.so",host-name="/lib/libfoo.so",symbols-loaded="1",thread-group="i1",ranges=[@{from="0x72815989",to="0x728162c0"@}]@},
@{id="/lib/libbar.so",target-name="/lib/libbar.so",host-name="/lib/libbar.so",symbols-loaded="1",thread-group="i1",ranges=[@{from="0x76ee48c0",to="0x76ee9160"@}]@}]
(gdb)
@end smallexample


@ignore
@subheading The @code{-file-list-symbol-files} Command
@findex -file-list-symbol-files

@subsubheading Synopsis

@smallexample
 -file-list-symbol-files
@end smallexample

List symbol files.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info file} (part of it).

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-file-symbol-file} Command
@findex -file-symbol-file

@subsubheading Synopsis

@smallexample
 -file-symbol-file @var{file}
@end smallexample

Read symbol table info from the specified @var{file} argument.  When
used without arguments, clears @value{GDBN}'s symbol table info.  No output is
produced, except for a completion notification.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{symbol-file}.

@subsubheading Example

@smallexample
(gdb)
-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
^done
(gdb)
@end smallexample

@ignore
@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Memory Overlay Commands
@section @sc{gdb/mi} Memory Overlay Commands

The memory overlay commands are not implemented.

@c @subheading -overlay-auto

@c @subheading -overlay-list-mapping-state

@c @subheading -overlay-list-overlays

@c @subheading -overlay-map

@c @subheading -overlay-off

@c @subheading -overlay-on

@c @subheading -overlay-unmap

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Signal Handling Commands
@section @sc{gdb/mi} Signal Handling Commands

Signal handling commands are not implemented.

@c @subheading -signal-handle

@c @subheading -signal-list-handle-actions

@c @subheading -signal-list-signal-types
@end ignore


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Target Manipulation
@section @sc{gdb/mi} Target Manipulation Commands


@subheading The @code{-target-attach} Command
@findex -target-attach

@subsubheading Synopsis

@smallexample
 -target-attach @var{pid} | @var{gid} | @var{file}
@end smallexample

Attach to a process @var{pid} or a file @var{file} outside of
@value{GDBN}, or a thread group @var{gid}.  If attaching to a thread
group, the id previously returned by 
@samp{-list-thread-groups --available} must be used.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{attach}.

@subsubheading Example
@smallexample
(gdb)
-target-attach 34
=thread-created,id="1"
*stopped,thread-id="1",frame=@{addr="0xb7f7e410",func="bar",args=[]@}
^done
(gdb)
@end smallexample

@ignore
@subheading The @code{-target-compare-sections} Command
@findex -target-compare-sections

@subsubheading Synopsis

@smallexample
 -target-compare-sections [ @var{section} ]
@end smallexample

Compare data of section @var{section} on target to the exec file.
Without the argument, all sections are compared.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{compare-sections}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-target-detach} Command
@findex -target-detach

@subsubheading Synopsis

@smallexample
 -target-detach [ @var{pid} | @var{gid} ]
@end smallexample

Detach from the remote target which normally resumes its execution.
If either @var{pid} or @var{gid} is specified, detaches from either
the specified process, or specified thread group.  There's no output.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{detach}.

@subsubheading Example

@smallexample
(gdb)
-target-detach
^done
(gdb)
@end smallexample


@subheading The @code{-target-disconnect} Command
@findex -target-disconnect

@subsubheading Synopsis

@smallexample
 -target-disconnect
@end smallexample

Disconnect from the remote target.  There's no output and the target is
generally not resumed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{disconnect}.

@subsubheading Example

@smallexample
(gdb)
-target-disconnect
^done
(gdb)
@end smallexample


@subheading The @code{-target-download} Command
@findex -target-download

@subsubheading Synopsis

@smallexample
 -target-download
@end smallexample

Loads the executable onto the remote target.
It prints out an update message every half second, which includes the fields:

@table @samp
@item section
The name of the section.
@item section-sent
The size of what has been sent so far for that section.
@item section-size
The size of the section.
@item total-sent
The total size of what was sent so far (the current and the previous sections).
@item total-size
The size of the overall executable to download.
@end table

@noindent
Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
@sc{gdb/mi} Output Syntax}).

In addition, it prints the name and size of the sections, as they are
downloaded.  These messages include the following fields:

@table @samp
@item section
The name of the section.
@item section-size
The size of the section.
@item total-size
The size of the overall executable to download.
@end table

@noindent
At the end, a summary is printed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{load}.

@subsubheading Example

Note: each status message appears on a single line.  Here the messages
have been broken down so that they can fit onto a page.

@smallexample
(gdb)
-target-download
+download,@{section=".text",section-size="6668",total-size="9880"@}
+download,@{section=".text",section-sent="512",section-size="6668",
total-sent="512",total-size="9880"@}
+download,@{section=".text",section-sent="1024",section-size="6668",
total-sent="1024",total-size="9880"@}
+download,@{section=".text",section-sent="1536",section-size="6668",
total-sent="1536",total-size="9880"@}
+download,@{section=".text",section-sent="2048",section-size="6668",
total-sent="2048",total-size="9880"@}
+download,@{section=".text",section-sent="2560",section-size="6668",
total-sent="2560",total-size="9880"@}
+download,@{section=".text",section-sent="3072",section-size="6668",
total-sent="3072",total-size="9880"@}
+download,@{section=".text",section-sent="3584",section-size="6668",
total-sent="3584",total-size="9880"@}
+download,@{section=".text",section-sent="4096",section-size="6668",
total-sent="4096",total-size="9880"@}
+download,@{section=".text",section-sent="4608",section-size="6668",
total-sent="4608",total-size="9880"@}
+download,@{section=".text",section-sent="5120",section-size="6668",
total-sent="5120",total-size="9880"@}
+download,@{section=".text",section-sent="5632",section-size="6668",
total-sent="5632",total-size="9880"@}
+download,@{section=".text",section-sent="6144",section-size="6668",
total-sent="6144",total-size="9880"@}
+download,@{section=".text",section-sent="6656",section-size="6668",
total-sent="6656",total-size="9880"@}
+download,@{section=".init",section-size="28",total-size="9880"@}
+download,@{section=".fini",section-size="28",total-size="9880"@}
+download,@{section=".data",section-size="3156",total-size="9880"@}
+download,@{section=".data",section-sent="512",section-size="3156",
total-sent="7236",total-size="9880"@}
+download,@{section=".data",section-sent="1024",section-size="3156",
total-sent="7748",total-size="9880"@}
+download,@{section=".data",section-sent="1536",section-size="3156",
total-sent="8260",total-size="9880"@}
+download,@{section=".data",section-sent="2048",section-size="3156",
total-sent="8772",total-size="9880"@}
+download,@{section=".data",section-sent="2560",section-size="3156",
total-sent="9284",total-size="9880"@}
+download,@{section=".data",section-sent="3072",section-size="3156",
total-sent="9796",total-size="9880"@}
^done,address="0x10004",load-size="9880",transfer-rate="6586",
write-rate="429"
(gdb)
@end smallexample


@ignore
@subheading The @code{-target-exec-status} Command
@findex -target-exec-status

@subsubheading Synopsis

@smallexample
 -target-exec-status
@end smallexample

Provide information on the state of the target (whether it is running or
not, for instance).

@subsubheading @value{GDBN} Command

There's no equivalent @value{GDBN} command.

@subsubheading Example
N.A.


@subheading The @code{-target-list-available-targets} Command
@findex -target-list-available-targets

@subsubheading Synopsis

@smallexample
 -target-list-available-targets
@end smallexample

List the possible targets to connect to.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{help target}.

@subsubheading Example
N.A.


@subheading The @code{-target-list-current-targets} Command
@findex -target-list-current-targets

@subsubheading Synopsis

@smallexample
 -target-list-current-targets
@end smallexample

Describe the current target.

@subsubheading @value{GDBN} Command

The corresponding information is printed by @samp{info file} (among
other things).

@subsubheading Example
N.A.


@subheading The @code{-target-list-parameters} Command
@findex -target-list-parameters

@subsubheading Synopsis

@smallexample
 -target-list-parameters
@end smallexample

@c ????
@end ignore

@subsubheading @value{GDBN} Command

No equivalent.

@subsubheading Example
N.A.

@subheading The @code{-target-flash-erase} Command
@findex -target-flash-erase

@subsubheading Synopsis

@smallexample
 -target-flash-erase
@end smallexample

Erases all known flash memory regions on the target.

The corresponding @value{GDBN} command is @samp{flash-erase}.

The output is a list of flash regions that have been erased, with starting
addresses and memory region sizes.

@smallexample
(gdb)
-target-flash-erase
^done,erased-regions=@{address="0x0",size="0x40000"@}
(gdb)
@end smallexample

@subheading The @code{-target-select} Command
@findex -target-select

@subsubheading Synopsis

@smallexample
 -target-select @var{type} @var{parameters @dots{}}
@end smallexample

Connect @value{GDBN} to the remote target.  This command takes two args:

@table @samp
@item @var{type}
The type of target, for instance @samp{remote}, etc.
@item @var{parameters}
Device names, host names and the like.  @xref{Target Commands, ,
Commands for Managing Targets}, for more details.
@end table

The output is a connection notification, followed by the address at
which the target program is, in the following form:

@smallexample
^connected,addr="@var{address}",func="@var{function name}",
  args=[@var{arg list}]
@end smallexample

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{target}.

@subsubheading Example

@smallexample
(gdb)
-target-select remote /dev/ttya
^connected,addr="0xfe00a300",func="??",args=[]
(gdb)
@end smallexample

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI File Transfer Commands
@section @sc{gdb/mi} File Transfer Commands


@subheading The @code{-target-file-put} Command
@findex -target-file-put

@subsubheading Synopsis

@smallexample
 -target-file-put @var{hostfile} @var{targetfile}
@end smallexample

Copy file @var{hostfile} from the host system (the machine running
@value{GDBN}) to @var{targetfile} on the target system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{remote put}.

@subsubheading Example

@smallexample
(gdb)
-target-file-put localfile remotefile
^done
(gdb)
@end smallexample


@subheading The @code{-target-file-get} Command
@findex -target-file-get

@subsubheading Synopsis

@smallexample
 -target-file-get @var{targetfile} @var{hostfile}
@end smallexample

Copy file @var{targetfile} from the target system to @var{hostfile}
on the host system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{remote get}.

@subsubheading Example

@smallexample
(gdb)
-target-file-get remotefile localfile
^done
(gdb)
@end smallexample


@subheading The @code{-target-file-delete} Command
@findex -target-file-delete

@subsubheading Synopsis

@smallexample
 -target-file-delete @var{targetfile}
@end smallexample

Delete @var{targetfile} from the target system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{remote delete}.

@subsubheading Example

@smallexample
(gdb)
-target-file-delete remotefile
^done
(gdb)
@end smallexample


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Ada Exceptions Commands
@section Ada Exceptions @sc{gdb/mi} Commands

@subheading The @code{-info-ada-exceptions} Command
@findex -info-ada-exceptions

@subsubheading Synopsis

@smallexample
 -info-ada-exceptions [ @var{regexp}]
@end smallexample

List all Ada exceptions defined within the program being debugged.
With a regular expression @var{regexp}, only those exceptions whose
names match @var{regexp} are listed.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info exceptions}.

@subsubheading Result

The result is a table of Ada exceptions.  The following columns are
defined for each exception:

@table @samp
@item name
The name of the exception.

@item address
The address of the exception.

@end table

@subsubheading Example

@smallexample
-info-ada-exceptions aint
^done,ada-exceptions=@{nr_rows="2",nr_cols="2",
hdr=[@{width="1",alignment="-1",col_name="name",colhdr="Name"@},
@{width="1",alignment="-1",col_name="address",colhdr="Address"@}],
body=[@{name="constraint_error",address="0x0000000000613da0"@},
@{name="const.aint_global_e",address="0x0000000000613b00"@}]@}
@end smallexample

@subheading Catching Ada Exceptions

The commands describing how to ask @value{GDBN} to stop when a program
raises an exception are described at @ref{Ada Exception GDB/MI
Catchpoint Commands}.


@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Support Commands
@section @sc{gdb/mi} Support Commands

Since new commands and features get regularly added to @sc{gdb/mi},
some commands are available to help front-ends query the debugger
about support for these capabilities.  Similarly, it is also possible
to query @value{GDBN} about target support of certain features.

@subheading The @code{-info-gdb-mi-command} Command
@cindex @code{-info-gdb-mi-command}
@findex -info-gdb-mi-command

@subsubheading Synopsis

@smallexample
 -info-gdb-mi-command @var{cmd_name}
@end smallexample

Query support for the @sc{gdb/mi} command named @var{cmd_name}.

Note that the dash (@code{-}) starting all @sc{gdb/mi} commands
is technically not part of the command name (@pxref{GDB/MI Input
Syntax}), and thus should be omitted in @var{cmd_name}.  However,
for ease of use, this command also accepts the form with the leading
dash.

@subsubheading @value{GDBN} Command

There is no corresponding @value{GDBN} command.

@subsubheading Result

The result is a tuple.  There is currently only one field:

@table @samp
@item exists
This field is equal to @code{"true"} if the @sc{gdb/mi} command exists,
@code{"false"} otherwise.

@end table

@subsubheading Example

Here is an example where the @sc{gdb/mi} command does not exist:

@smallexample
-info-gdb-mi-command unsupported-command
^done,command=@{exists="false"@}
@end smallexample

@noindent
And here is an example where the @sc{gdb/mi} command is known
to the debugger:

@smallexample
-info-gdb-mi-command symbol-list-lines
^done,command=@{exists="true"@}
@end smallexample

@subheading The @code{-list-features} Command
@findex -list-features
@cindex supported @sc{gdb/mi} features, list

Returns a list of particular features of the MI protocol that
this version of gdb implements.  A feature can be a command,
or a new field in an output of some command, or even an
important bugfix.  While a frontend can sometimes detect presence
of a feature at runtime, it is easier to perform detection at debugger
startup.

The command returns a list of strings, with each string naming an
available feature.  Each returned string is just a name, it does not
have any internal structure.  The list of possible feature names
is given below.

Example output:

@smallexample
(gdb) -list-features
^done,result=["feature1","feature2"]
@end smallexample

The current list of features is:

@ftable @samp
@item frozen-varobjs
Indicates support for the @code{-var-set-frozen} command, as well
as possible presence of the @code{frozen} field in the output
of @code{-varobj-create}.
@item pending-breakpoints
Indicates support for the @option{-f} option to the @code{-break-insert}
command.
@item python
Indicates Python scripting support, Python-based
pretty-printing commands, and possible presence of the
@samp{display_hint} field in the output of @code{-var-list-children}
@item thread-info
Indicates support for the @code{-thread-info} command.
@item data-read-memory-bytes
Indicates support for the @code{-data-read-memory-bytes} and the
@code{-data-write-memory-bytes} commands.
@item breakpoint-notifications
Indicates that changes to breakpoints and breakpoints created via the
CLI will be announced via async records.
@item ada-task-info
Indicates support for the @code{-ada-task-info} command.
@item language-option
Indicates that all @sc{gdb/mi} commands accept the @option{--language}
option (@pxref{Context management}).
@item info-gdb-mi-command
Indicates support for the @code{-info-gdb-mi-command} command.
@item undefined-command-error-code
Indicates support for the "undefined-command" error code in error result
records, produced when trying to execute an undefined @sc{gdb/mi} command
(@pxref{GDB/MI Result Records}).
@item exec-run-start-option
Indicates that the @code{-exec-run} command supports the @option{--start}
option (@pxref{GDB/MI Program Execution}).
@item data-disassemble-a-option
Indicates that the @code{-data-disassemble} command supports the @option{-a}
option (@pxref{GDB/MI Data Manipulation}).
@end ftable

@subheading The @code{-list-target-features} Command
@findex -list-target-features

Returns a list of particular features that are supported by the
target.  Those features affect the permitted MI commands, but 
unlike the features reported by the @code{-list-features} command, the
features depend on which target GDB is using at the moment.  Whenever
a target can change, due to commands such as @code{-target-select},
@code{-target-attach} or @code{-exec-run}, the list of target features
may change, and the frontend should obtain it again.
Example output:

@smallexample
(gdb) -list-target-features
^done,result=["async"]
@end smallexample

The current list of features is:

@table @samp
@item async
Indicates that the target is capable of asynchronous command
execution, which means that @value{GDBN} will accept further commands
while the target is running.

@item reverse
Indicates that the target is capable of reverse execution.
@xref{Reverse Execution}, for more information.

@end table

@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@node GDB/MI Miscellaneous Commands
@section Miscellaneous @sc{gdb/mi} Commands

@c @subheading -gdb-complete

@subheading The @code{-gdb-exit} Command
@findex -gdb-exit

@subsubheading Synopsis

@smallexample
 -gdb-exit
@end smallexample

Exit @value{GDBN} immediately.

@subsubheading @value{GDBN} Command

Approximately corresponds to @samp{quit}.

@subsubheading Example

@smallexample
(gdb)
-gdb-exit
^exit
@end smallexample


@ignore
@subheading The @code{-exec-abort} Command
@findex -exec-abort

@subsubheading Synopsis

@smallexample
 -exec-abort
@end smallexample

Kill the inferior running program.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{kill}.

@subsubheading Example
N.A.
@end ignore


@subheading The @code{-gdb-set} Command
@findex -gdb-set

@subsubheading Synopsis

@smallexample
 -gdb-set
@end smallexample

Set an internal @value{GDBN} variable.
@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{set}.

@subsubheading Example

@smallexample
(gdb)
-gdb-set $foo=3
^done
(gdb)
@end smallexample


@subheading The @code{-gdb-show} Command
@findex -gdb-show

@subsubheading Synopsis

@smallexample
 -gdb-show
@end smallexample

Show the current value of a @value{GDBN} variable.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{show}.

@subsubheading Example

@smallexample
(gdb)
-gdb-show annotate
^done,value="0"
(gdb)
@end smallexample

@c @subheading -gdb-source


@subheading The @code{-gdb-version} Command
@findex -gdb-version

@subsubheading Synopsis

@smallexample
 -gdb-version
@end smallexample

Show version information for @value{GDBN}.  Used mostly in testing.

@subsubheading @value{GDBN} Command

The @value{GDBN} equivalent is @samp{show version}.  @value{GDBN} by
default shows this information when you start an interactive session.

@subsubheading Example

@c This example modifies the actual output from GDB to avoid overfull
@c box in TeX.
@smallexample
(gdb)
-gdb-version
~GNU gdb 5.2.1
~Copyright 2000 Free Software Foundation, Inc.
~GDB is free software, covered by the GNU General Public License, and
~you are welcome to change it and/or distribute copies of it under
~ certain conditions.
~Type "show copying" to see the conditions.
~There is absolutely no warranty for GDB.  Type "show warranty" for
~ details.
~This GDB was configured as
 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
^done
(gdb)
@end smallexample

@subheading The @code{-list-thread-groups} Command
@findex -list-thread-groups

@subheading Synopsis

@smallexample
-list-thread-groups [ --available ] [ --recurse 1 ] [ @var{group} ... ]
@end smallexample

Lists thread groups (@pxref{Thread groups}).  When a single thread
group is passed as the argument, lists the children of that group.
When several thread group are passed, lists information about those
thread groups.  Without any parameters, lists information about all
top-level thread groups.

Normally, thread groups that are being debugged are reported.
With the @samp{--available} option, @value{GDBN} reports thread groups
available on the target.

The output of this command may have either a @samp{threads} result or
a @samp{groups} result.  The @samp{thread} result has a list of tuples
as value, with each tuple describing a thread (@pxref{GDB/MI Thread
Information}).  The @samp{groups} result has a list of tuples as value,
each tuple describing a thread group.  If top-level groups are
requested (that is, no parameter is passed), or when several groups
are passed, the output always has a @samp{groups} result.  The format
of the @samp{group} result is described below.

To reduce the number of roundtrips it's possible to list thread groups
together with their children, by passing the @samp{--recurse} option
and the recursion depth.  Presently, only recursion depth of 1 is
permitted.  If this option is present, then every reported thread group
will also include its children, either as @samp{group} or
@samp{threads} field.

In general, any combination of option and parameters is permitted, with
the following caveats:

@itemize @bullet
@item
When a single thread group is passed, the output will typically
be the @samp{threads} result.  Because threads may not contain
anything, the @samp{recurse} option will be ignored.

@item
When the @samp{--available} option is passed, limited information may
be available.  In particular, the list of threads of a process might
be inaccessible.  Further, specifying specific thread groups might
not give any performance advantage over listing all thread groups.
The frontend should assume that @samp{-list-thread-groups --available}
is always an expensive operation and cache the results.

@end itemize

The @samp{groups} result is a list of tuples, where each tuple may
have the following fields:

@table @code
@item id
Identifier of the thread group.  This field is always present.
The identifier is an opaque string; frontends should not try to
convert it to an integer, even though it might look like one.

@item type
The type of the thread group.  At present, only @samp{process} is a
valid type.

@item pid
The target-specific process identifier.  This field is only present
for thread groups of type @samp{process} and only if the process exists.

@item exit-code
The exit code of this group's last exited thread, formatted in octal.
This field is only present for thread groups of type @samp{process} and
only if the process is not running.

@item num_children
The number of children this thread group has.  This field may be
absent for an available thread group.

@item threads
This field has a list of tuples as value, each tuple describing a
thread.  It may be present if the @samp{--recurse} option is
specified, and it's actually possible to obtain the threads.

@item cores
This field is a list of integers, each identifying a core that one
thread of the group is running on.  This field may be absent if
such information is not available.

@item executable
The name of the executable file that corresponds to this thread group.
The field is only present for thread groups of type @samp{process},
and only if there is a corresponding executable file.

@end table

@subheading Example

@smallexample
@value{GDBP}
-list-thread-groups
^done,groups=[@{id="17",type="process",pid="yyy",num_children="2"@}]
-list-thread-groups 17
^done,threads=[@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
   frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},state="running"@},
@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
   frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
           file="/tmp/a.c",fullname="/tmp/a.c",line="158",arch="i386:x86_64"@},state="running"@}]]
-list-thread-groups --available
^done,groups=[@{id="17",type="process",pid="yyy",num_children="2",cores=[1,2]@}]
-list-thread-groups --available --recurse 1
 ^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
                threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
                         @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},..]
-list-thread-groups --available --recurse 1 17 18
^done,groups=[@{id="17", types="process",pid="yyy",num_children="2",cores=[1,2],
               threads=[@{id="1",target-id="Thread 0xb7e14b90",cores=[1]@},
                        @{id="2",target-id="Thread 0xb7e14b90",cores=[2]@}]@},...]
@end smallexample

@subheading The @code{-info-os} Command
@findex -info-os

@subsubheading Synopsis

@smallexample
-info-os [ @var{type} ]
@end smallexample

If no argument is supplied, the command returns a table of available
operating-system-specific information types.  If one of these types is
supplied as an argument @var{type}, then the command returns a table
of data of that type.

The types of information available depend on the target operating
system.

@subsubheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{info os}.

@subsubheading Example

When run on a @sc{gnu}/Linux system, the output will look something
like this:

@smallexample
@value{GDBP}
-info-os
^done,OSDataTable=@{nr_rows="10",nr_cols="3",
hdr=[@{width="10",alignment="-1",col_name="col0",colhdr="Type"@},
     @{width="10",alignment="-1",col_name="col1",colhdr="Description"@},
     @{width="10",alignment="-1",col_name="col2",colhdr="Title"@}],
body=[item=@{col0="cpus",col1="Listing of all cpus/cores on the system",
            col2="CPUs"@},
      item=@{col0="files",col1="Listing of all file descriptors",
            col2="File descriptors"@},
      item=@{col0="modules",col1="Listing of all loaded kernel modules",
            col2="Kernel modules"@},
      item=@{col0="msg",col1="Listing of all message queues",
            col2="Message queues"@},
      item=@{col0="processes",col1="Listing of all processes",
            col2="Processes"@},
      item=@{col0="procgroups",col1="Listing of all process groups",
            col2="Process groups"@},
      item=@{col0="semaphores",col1="Listing of all semaphores",
            col2="Semaphores"@},
      item=@{col0="shm",col1="Listing of all shared-memory regions",
            col2="Shared-memory regions"@},
      item=@{col0="sockets",col1="Listing of all internet-domain sockets",
            col2="Sockets"@},
      item=@{col0="threads",col1="Listing of all threads",
            col2="Threads"@}]
@value{GDBP}
-info-os processes
^done,OSDataTable=@{nr_rows="190",nr_cols="4",
hdr=[@{width="10",alignment="-1",col_name="col0",colhdr="pid"@},
     @{width="10",alignment="-1",col_name="col1",colhdr="user"@},
     @{width="10",alignment="-1",col_name="col2",colhdr="command"@},
     @{width="10",alignment="-1",col_name="col3",colhdr="cores"@}],
body=[item=@{col0="1",col1="root",col2="/sbin/init",col3="0"@},
      item=@{col0="2",col1="root",col2="[kthreadd]",col3="1"@},
      item=@{col0="3",col1="root",col2="[ksoftirqd/0]",col3="0"@},
      ...
      item=@{col0="26446",col1="stan",col2="bash",col3="0"@},
      item=@{col0="28152",col1="stan",col2="bash",col3="1"@}]@}
(gdb)
@end smallexample

(Note that the MI output here includes a @code{"Title"} column that
does not appear in command-line @code{info os}; this column is useful
for MI clients that want to enumerate the types of data, such as in a
popup menu, but is needless clutter on the command line, and
@code{info os} omits it.)

@subheading The @code{-add-inferior} Command
@findex -add-inferior

@subheading Synopsis

@smallexample
-add-inferior
@end smallexample

Creates a new inferior (@pxref{Inferiors Connections and Programs}).  The created
inferior is not associated with any executable.  Such association may
be established with the @samp{-file-exec-and-symbols} command
(@pxref{GDB/MI File Commands}).  The command response has a single
field, @samp{inferior}, whose value is the identifier of the
thread group corresponding to the new inferior.

@subheading Example

@smallexample
@value{GDBP}
-add-inferior
^done,inferior="i3"
@end smallexample

@subheading The @code{-interpreter-exec} Command
@findex -interpreter-exec

@subheading Synopsis

@smallexample
-interpreter-exec @var{interpreter} @var{command}
@end smallexample
@anchor{-interpreter-exec} 

Execute the specified @var{command} in the given @var{interpreter}.

@subheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{interpreter-exec}.

@subheading Example

@smallexample
(gdb)
-interpreter-exec console "break main"
&"During symbol reading, couldn't parse type; debugger out of date?.\n"
&"During symbol reading, bad structure-type format.\n"
~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
^done
(gdb)
@end smallexample

@subheading The @code{-inferior-tty-set} Command
@findex -inferior-tty-set

@subheading Synopsis

@smallexample
-inferior-tty-set /dev/pts/1
@end smallexample

Set terminal for future runs of the program being debugged.

@subheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.

@subheading Example

@smallexample
(gdb)
-inferior-tty-set /dev/pts/1
^done
(gdb)
@end smallexample

@subheading The @code{-inferior-tty-show} Command
@findex -inferior-tty-show

@subheading Synopsis

@smallexample
-inferior-tty-show
@end smallexample

Show terminal for future runs of program being debugged.

@subheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{show inferior-tty}.

@subheading Example

@smallexample
(gdb)
-inferior-tty-set /dev/pts/1
^done
(gdb)
-inferior-tty-show
^done,inferior_tty_terminal="/dev/pts/1"
(gdb)
@end smallexample

@subheading The @code{-enable-timings} Command
@findex -enable-timings

@subheading Synopsis

@smallexample
-enable-timings [yes | no]
@end smallexample

Toggle the printing of the wallclock, user and system times for an MI
command as a field in its output.  This command is to help frontend
developers optimize the performance of their code.  No argument is
equivalent to @samp{yes}.

@subheading @value{GDBN} Command

No equivalent.

@subheading Example

@smallexample
(gdb)
-enable-timings
^done
(gdb)
-break-insert main
^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
addr="0x080484ed",func="main",file="myprog.c",
fullname="/home/nickrob/myprog.c",line="73",thread-groups=["i1"],
times="0"@},
time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
(gdb)
-enable-timings no
^done
(gdb)
-exec-run
^running
(gdb)
*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
@{name="argv",value="0xbfb60364"@}],file="myprog.c",
fullname="/home/nickrob/myprog.c",line="73",arch="i386:x86_64"@}
(gdb)
@end smallexample

@subheading The @code{-complete} Command
@findex -complete

@subheading Synopsis

@smallexample
-complete @var{command}
@end smallexample

Show a list of completions for partially typed CLI @var{command}.

This command is intended for @sc{gdb/mi} frontends that cannot use two separate
CLI and MI channels --- for example: because of lack of PTYs like on Windows or
because @value{GDBN} is used remotely via a SSH connection.

@subheading Result

The result consists of two or three fields:

@table @samp
@item completion
This field contains the completed @var{command}.  If @var{command}
has no known completions, this field is omitted.

@item matches
This field contains a (possibly empty) array of matches.  It is always present.

@item max_completions_reached
This field contains @code{1} if number of known completions is above
@code{max-completions} limit (@pxref{Completion}), otherwise it contains
@code{0}.  It is always present.

@end table

@subheading @value{GDBN} Command

The corresponding @value{GDBN} command is @samp{complete}.

@subheading Example

@smallexample
(gdb)
-complete br
^done,completion="break",
      matches=["break","break-range"],
      max_completions_reached="0"
(gdb)
-complete "b ma"
^done,completion="b ma",
      matches=["b madvise","b main"],max_completions_reached="0"
(gdb)
-complete "b push_b"
^done,completion="b push_back(",
      matches=[
       "b A::push_back(void*)",
       "b std::string::push_back(char)",
       "b std::vector<int, std::allocator<int> >::push_back(int&&)"],
      max_completions_reached="0"
(gdb)
-complete "nonexist"
^done,matches=[],max_completions_reached="0"
(gdb)

@end smallexample

@node Annotations
@chapter @value{GDBN} Annotations

This chapter describes annotations in @value{GDBN}.  Annotations were
designed to interface @value{GDBN} to graphical user interfaces or other
similar programs which want to interact with @value{GDBN} at a
relatively high level.

The annotation mechanism has largely been superseded by @sc{gdb/mi}
(@pxref{GDB/MI}).

@ignore
This is Edition @value{EDITION}, @value{DATE}.
@end ignore

@menu
* Annotations Overview::  What annotations are; the general syntax.
* Server Prefix::       Issuing a command without affecting user state.
* Prompting::           Annotations marking @value{GDBN}'s need for input.
* Errors::              Annotations for error messages.
* Invalidation::        Some annotations describe things now invalid.
* Annotations for Running::
                        Whether the program is running, how it stopped, etc.
* Source Annotations::  Annotations describing source code.
@end menu

@node Annotations Overview
@section What is an Annotation?
@cindex annotations

Annotations start with a newline character, two @samp{control-z}
characters, and the name of the annotation.  If there is no additional
information associated with this annotation, the name of the annotation
is followed immediately by a newline.  If there is additional
information, the name of the annotation is followed by a space, the
additional information, and a newline.  The additional information
cannot contain newline characters.

Any output not beginning with a newline and two @samp{control-z}
characters denotes literal output from @value{GDBN}.  Currently there is
no need for @value{GDBN} to output a newline followed by two
@samp{control-z} characters, but if there was such a need, the
annotations could be extended with an @samp{escape} annotation which
means those three characters as output.

The annotation @var{level}, which is specified using the
@option{--annotate} command line option (@pxref{Mode Options}), controls
how much information @value{GDBN} prints together with its prompt,
values of expressions, source lines, and other types of output.  Level 0
is for no annotations, level 1 is for use when @value{GDBN} is run as a
subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
for programs that control @value{GDBN}, and level 2 annotations have
been made obsolete (@pxref{Limitations, , Limitations of the Annotation
Interface, annotate, GDB's Obsolete Annotations}).

@table @code
@kindex set annotate
@item set annotate @var{level}
The @value{GDBN} command @code{set annotate} sets the level of
annotations to the specified @var{level}.

@item show annotate
@kindex show annotate
Show the current annotation level.
@end table

This chapter describes level 3 annotations.

A simple example of starting up @value{GDBN} with annotations is:

@smallexample
$ @kbd{gdb --annotate=3}
GNU gdb 6.0
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it
under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty"
for details.
This GDB was configured as "i386-pc-linux-gnu"

^Z^Zpre-prompt
(@value{GDBP})
^Z^Zprompt
@kbd{quit}

^Z^Zpost-prompt
$
@end smallexample

Here @samp{quit} is input to @value{GDBN}; the rest is output from
@value{GDBN}.  The three lines beginning @samp{^Z^Z} (where @samp{^Z}
denotes a @samp{control-z} character) are annotations; the rest is
output from @value{GDBN}.

@node Server Prefix
@section The Server Prefix
@cindex server prefix

If you prefix a command with @samp{server } then it will not affect
the command history, nor will it affect @value{GDBN}'s notion of which
command to repeat if @key{RET} is pressed on a line by itself.  This
means that commands can be run behind a user's back by a front-end in
a transparent manner.

The @code{server } prefix does not affect the recording of values into
the value history; to print a value without recording it into the
value history, use the @code{output} command instead of the
@code{print} command.

Using this prefix also disables confirmation requests
(@pxref{confirmation requests}).

@node Prompting
@section Annotation for @value{GDBN} Input

@cindex annotations for prompts
When @value{GDBN} prompts for input, it annotates this fact so it is possible
to know when to send output, when the output from a given command is
over, etc.

Different kinds of input each have a different @dfn{input type}.  Each
input type has three annotations: a @code{pre-} annotation, which
denotes the beginning of any prompt which is being output, a plain
annotation, which denotes the end of the prompt, and then a @code{post-}
annotation which denotes the end of any echo which may (or may not) be
associated with the input.  For example, the @code{prompt} input type
features the following annotations:

@smallexample
^Z^Zpre-prompt
^Z^Zprompt
^Z^Zpost-prompt
@end smallexample

The input types are

@table @code
@findex pre-prompt annotation
@findex prompt annotation
@findex post-prompt annotation
@item prompt
When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).

@findex pre-commands annotation
@findex commands annotation
@findex post-commands annotation
@item commands
When @value{GDBN} prompts for a set of commands, like in the @code{commands}
command.  The annotations are repeated for each command which is input.

@findex pre-overload-choice annotation
@findex overload-choice annotation
@findex post-overload-choice annotation
@item overload-choice
When @value{GDBN} wants the user to select between various overloaded functions.

@findex pre-query annotation
@findex query annotation
@findex post-query annotation
@item query
When @value{GDBN} wants the user to confirm a potentially dangerous operation.

@findex pre-prompt-for-continue annotation
@findex prompt-for-continue annotation
@findex post-prompt-for-continue annotation
@item prompt-for-continue
When @value{GDBN} is asking the user to press return to continue.  Note: Don't
expect this to work well; instead use @code{set height 0} to disable
prompting.  This is because the counting of lines is buggy in the
presence of annotations.
@end table

@node Errors
@section Errors
@cindex annotations for errors, warnings and interrupts

@findex quit annotation
@smallexample
^Z^Zquit
@end smallexample

This annotation occurs right before @value{GDBN} responds to an interrupt.

@findex error annotation
@smallexample
^Z^Zerror
@end smallexample

This annotation occurs right before @value{GDBN} responds to an error.

Quit and error annotations indicate that any annotations which @value{GDBN} was
in the middle of may end abruptly.  For example, if a
@code{value-history-begin} annotation is followed by a @code{error}, one
cannot expect to receive the matching @code{value-history-end}.  One
cannot expect not to receive it either, however; an error annotation
does not necessarily mean that @value{GDBN} is immediately returning all the way
to the top level.

@findex error-begin annotation
A quit or error annotation may be preceded by

@smallexample
^Z^Zerror-begin
@end smallexample

Any output between that and the quit or error annotation is the error
message.

Warning messages are not yet annotated.
@c If we want to change that, need to fix warning(), type_error(),
@c range_error(), and possibly other places.

@node Invalidation
@section Invalidation Notices

@cindex annotations for invalidation messages
The following annotations say that certain pieces of state may have
changed.

@table @code
@findex frames-invalid annotation
@item ^Z^Zframes-invalid

The frames (for example, output from the @code{backtrace} command) may
have changed.

@findex breakpoints-invalid annotation
@item ^Z^Zbreakpoints-invalid

The breakpoints may have changed.  For example, the user just added or
deleted a breakpoint.
@end table

@node Annotations for Running
@section Running the Program
@cindex annotations for running programs

@findex starting annotation
@findex stopping annotation
When the program starts executing due to a @value{GDBN} command such as
@code{step} or @code{continue},

@smallexample
^Z^Zstarting
@end smallexample

is output.  When the program stops,

@smallexample
^Z^Zstopped
@end smallexample

is output.  Before the @code{stopped} annotation, a variety of
annotations describe how the program stopped.

@table @code
@findex exited annotation
@item ^Z^Zexited @var{exit-status}
The program exited, and @var{exit-status} is the exit status (zero for
successful exit, otherwise nonzero).

@findex signalled annotation
@findex signal-name annotation
@findex signal-name-end annotation
@findex signal-string annotation
@findex signal-string-end annotation
@item ^Z^Zsignalled
The program exited with a signal.  After the @code{^Z^Zsignalled}, the
annotation continues:

@smallexample
@var{intro-text}
^Z^Zsignal-name
@var{name}
^Z^Zsignal-name-end
@var{middle-text}
^Z^Zsignal-string
@var{string}
^Z^Zsignal-string-end
@var{end-text}
@end smallexample

@noindent
where @var{name} is the name of the signal, such as @code{SIGILL} or
@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
as @code{Illegal Instruction} or @code{Segmentation fault}.  The arguments
@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
user's benefit and have no particular format.

@findex signal annotation
@item ^Z^Zsignal
The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
just saying that the program received the signal, not that it was
terminated with it.

@findex breakpoint annotation
@item ^Z^Zbreakpoint @var{number}
The program hit breakpoint number @var{number}.

@findex watchpoint annotation
@item ^Z^Zwatchpoint @var{number}
The program hit watchpoint number @var{number}.
@end table

@node Source Annotations
@section Displaying Source
@cindex annotations for source display

@findex source annotation
The following annotation is used instead of displaying source code:

@smallexample
^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
@end smallexample

where @var{filename} is an absolute file name indicating which source
file, @var{line} is the line number within that file (where 1 is the
first line in the file), @var{character} is the character position
within the file (where 0 is the first character in the file) (for most
debug formats this will necessarily point to the beginning of a line),
@var{middle} is @samp{middle} if @var{addr} is in the middle of the
line, or @samp{beg} if @var{addr} is at the beginning of the line, and
@var{addr} is the address in the target program associated with the
source which is being displayed.  The @var{addr} is in the form @samp{0x}
followed by one or more lowercase hex digits (note that this does not
depend on the language).

@node JIT Interface
@chapter JIT Compilation Interface
@cindex just-in-time compilation
@cindex JIT compilation interface

This chapter documents @value{GDBN}'s @dfn{just-in-time} (JIT) compilation
interface.  A JIT compiler is a program or library that generates native
executable code at runtime and executes it, usually in order to achieve good
performance while maintaining platform independence. 

Programs that use JIT compilation are normally difficult to debug because
portions of their code are generated at runtime, instead of being loaded from
object files, which is where @value{GDBN} normally finds the program's symbols
and debug information.  In order to debug programs that use JIT compilation,
@value{GDBN} has an interface that allows the program to register in-memory
symbol files with @value{GDBN} at runtime.

If you are using @value{GDBN} to debug a program that uses this interface, then
it should work transparently so long as you have not stripped the binary.  If
you are developing a JIT compiler, then the interface is documented in the rest
of this chapter.  At this time, the only known client of this interface is the
LLVM JIT.

Broadly speaking, the JIT interface mirrors the dynamic loader interface.  The
JIT compiler communicates with @value{GDBN} by writing data into a global
variable and calling a function at a well-known symbol.  When @value{GDBN}
attaches, it reads a linked list of symbol files from the global variable to
find existing code, and puts a breakpoint in the function so that it can find
out about additional code.

@menu
* Declarations::                Relevant C struct declarations
* Registering Code::            Steps to register code
* Unregistering Code::          Steps to unregister code
* Custom Debug Info::           Emit debug information in a custom format
@end menu

@node Declarations
@section JIT Declarations

These are the relevant struct declarations that a C program should include to
implement the interface:

@smallexample
typedef enum
@{
  JIT_NOACTION = 0,
  JIT_REGISTER_FN,
  JIT_UNREGISTER_FN
@} jit_actions_t;

struct jit_code_entry
@{
  struct jit_code_entry *next_entry;
  struct jit_code_entry *prev_entry;
  const char *symfile_addr;
  uint64_t symfile_size;
@};

struct jit_descriptor
@{
  uint32_t version;
  /* This type should be jit_actions_t, but we use uint32_t
     to be explicit about the bitwidth.  */
  uint32_t action_flag;
  struct jit_code_entry *relevant_entry;
  struct jit_code_entry *first_entry;
@};

/* GDB puts a breakpoint in this function.  */
void __attribute__((noinline)) __jit_debug_register_code() @{ @};

/* Make sure to specify the version statically, because the
   debugger may check the version before we can set it.  */
struct jit_descriptor __jit_debug_descriptor = @{ 1, 0, 0, 0 @};
@end smallexample

If the JIT is multi-threaded, then it is important that the JIT synchronize any
modifications to this global data properly, which can easily be done by putting
a global mutex around modifications to these structures.

@node Registering Code
@section Registering Code

To register code with @value{GDBN}, the JIT should follow this protocol:

@itemize @bullet
@item
Generate an object file in memory with symbols and other desired debug
information.  The file must include the virtual addresses of the sections.

@item
Create a code entry for the file, which gives the start and size of the symbol
file.

@item
Add it to the linked list in the JIT descriptor.

@item
Point the relevant_entry field of the descriptor at the entry.

@item
Set @code{action_flag} to @code{JIT_REGISTER} and call
@code{__jit_debug_register_code}.
@end itemize

When @value{GDBN} is attached and the breakpoint fires, @value{GDBN} uses the
@code{relevant_entry} pointer so it doesn't have to walk the list looking for
new code.  However, the linked list must still be maintained in order to allow
@value{GDBN} to attach to a running process and still find the symbol files.

@node Unregistering Code
@section Unregistering Code

If code is freed, then the JIT should use the following protocol:

@itemize @bullet
@item
Remove the code entry corresponding to the code from the linked list.

@item
Point the @code{relevant_entry} field of the descriptor at the code entry.

@item
Set @code{action_flag} to @code{JIT_UNREGISTER} and call
@code{__jit_debug_register_code}.
@end itemize

If the JIT frees or recompiles code without unregistering it, then @value{GDBN}
and the JIT will leak the memory used for the associated symbol files.

@node Custom Debug Info
@section Custom Debug Info
@cindex custom JIT debug info
@cindex JIT debug info reader

Generating debug information in platform-native file formats (like ELF
or COFF) may be an overkill for JIT compilers; especially if all the
debug info is used for is displaying a meaningful backtrace.  The
issue can be resolved by having the JIT writers decide on a debug info
format and also provide a reader that parses the debug info generated
by the JIT compiler.  This section gives a brief overview on writing
such a parser.  More specific details can be found in the source file
@file{gdb/jit-reader.in}, which is also installed as a header at
@file{@var{includedir}/gdb/jit-reader.h} for easy inclusion.

The reader is implemented as a shared object (so this functionality is
not available on platforms which don't allow loading shared objects at
runtime).  Two @value{GDBN} commands, @code{jit-reader-load} and
@code{jit-reader-unload} are provided, to be used to load and unload
the readers from a preconfigured directory.  Once loaded, the shared
object is used the parse the debug information emitted by the JIT
compiler.

@menu
* Using JIT Debug Info Readers::       How to use supplied readers correctly
* Writing JIT Debug Info Readers::     Creating a debug-info reader
@end menu

@node Using JIT Debug Info Readers
@subsection Using JIT Debug Info Readers
@kindex jit-reader-load
@kindex jit-reader-unload

Readers can be loaded and unloaded using the @code{jit-reader-load}
and @code{jit-reader-unload} commands.

@table @code
@item jit-reader-load @var{reader}
Load the JIT reader named @var{reader}, which is a shared
object specified as either an absolute or a relative file name.  In
the latter case, @value{GDBN} will try to load the reader from a
pre-configured directory, usually @file{@var{libdir}/gdb/} on a UNIX
system (here @var{libdir} is the system library directory, often
@file{/usr/local/lib}).

Only one reader can be active at a time; trying to load a second
reader when one is already loaded will result in @value{GDBN}
reporting an error.  A new JIT reader can be loaded by first unloading
the current one using @code{jit-reader-unload} and then invoking
@code{jit-reader-load}.

@item jit-reader-unload
Unload the currently loaded JIT reader.

@end table

@node Writing JIT Debug Info Readers
@subsection Writing JIT Debug Info Readers
@cindex writing JIT debug info readers

As mentioned, a reader is essentially a shared object conforming to a
certain ABI.  This ABI is described in @file{jit-reader.h}.

@file{jit-reader.h} defines the structures, macros and functions
required to write a reader.  It is installed (along with
@value{GDBN}), in @file{@var{includedir}/gdb} where @var{includedir} is
the system include directory.

Readers need to be released under a GPL compatible license.  A reader
can be declared as released under such a license by placing the macro
@code{GDB_DECLARE_GPL_COMPATIBLE_READER} in a source file.

The entry point for readers is the symbol @code{gdb_init_reader},
which is expected to be a function with the prototype

@findex gdb_init_reader
@smallexample
extern struct gdb_reader_funcs *gdb_init_reader (void);
@end smallexample

@cindex @code{struct gdb_reader_funcs}

@code{struct gdb_reader_funcs} contains a set of pointers to callback
functions.  These functions are executed to read the debug info
generated by the JIT compiler (@code{read}), to unwind stack frames
(@code{unwind}) and to create canonical frame IDs
(@code{get_frame_id}).  It also has a callback that is called when the
reader is being unloaded (@code{destroy}).  The struct looks like this

@smallexample
struct gdb_reader_funcs
@{
  /* Must be set to GDB_READER_INTERFACE_VERSION.  */
  int reader_version;

  /* For use by the reader.  */
  void *priv_data;

  gdb_read_debug_info *read;
  gdb_unwind_frame *unwind;
  gdb_get_frame_id *get_frame_id;
  gdb_destroy_reader *destroy;
@};
@end smallexample

@cindex @code{struct gdb_symbol_callbacks}
@cindex @code{struct gdb_unwind_callbacks}

The callbacks are provided with another set of callbacks by
@value{GDBN} to do their job.  For @code{read}, these callbacks are
passed in a @code{struct gdb_symbol_callbacks} and for @code{unwind}
and @code{get_frame_id}, in a @code{struct gdb_unwind_callbacks}.
@code{struct gdb_symbol_callbacks} has callbacks to create new object
files and new symbol tables inside those object files.  @code{struct
gdb_unwind_callbacks} has callbacks to read registers off the current
frame and to write out the values of the registers in the previous
frame.  Both have a callback (@code{target_read}) to read bytes off the
target's address space.

@node In-Process Agent
@chapter In-Process Agent
@cindex debugging agent
The traditional debugging model is conceptually low-speed, but works fine,
because most bugs can be reproduced in debugging-mode execution.  However,
as multi-core or many-core processors are becoming mainstream, and
multi-threaded programs become more and more popular, there should be more
and more bugs that only manifest themselves at normal-mode execution, for
example, thread races, because debugger's interference with the program's
timing may conceal the bugs.  On the other hand, in some applications,
it is not feasible for the debugger to interrupt the program's execution
long enough for the developer to learn anything helpful about its behavior.
If the program's correctness depends on its real-time behavior, delays
introduced by a debugger might cause the program to fail, even when the
code itself is correct.  It is useful to be able to observe the program's
behavior without interrupting it.

Therefore, traditional debugging model is too intrusive to reproduce
some bugs.  In order to reduce the interference with the program, we can
reduce the number of operations performed by debugger.  The
@dfn{In-Process Agent}, a shared library, is running within the same
process with inferior, and is able to perform some debugging operations
itself.  As a result, debugger is only involved when necessary, and
performance of debugging can be improved accordingly.  Note that
interference with program can be reduced but can't be removed completely,
because the in-process agent will still stop or slow down the program.

The in-process agent can interpret and execute Agent Expressions
(@pxref{Agent Expressions}) during performing debugging operations.  The
agent expressions can be used for different purposes, such as collecting
data in tracepoints, and condition evaluation in breakpoints.

@anchor{Control Agent}
You can control whether the in-process agent is used as an aid for
debugging with the following commands:

@table @code
@kindex set agent on
@item set agent on
Causes the in-process agent to perform some operations on behalf of the
debugger.  Just which operations requested by the user will be done
by the in-process agent depends on the its capabilities.  For example,
if you request to evaluate breakpoint conditions in the in-process agent,
and the in-process agent has such capability as well, then breakpoint
conditions will be evaluated in the in-process agent.

@kindex set agent off
@item set agent off
Disables execution of debugging operations by the in-process agent.  All
of the operations will be performed by @value{GDBN}.

@kindex show agent
@item show agent
Display the current setting of execution of debugging operations by
the in-process agent.
@end table

@menu
* In-Process Agent Protocol::
@end menu

@node In-Process Agent Protocol
@section In-Process Agent Protocol
@cindex in-process agent protocol

The in-process agent is able to communicate with both @value{GDBN} and
GDBserver (@pxref{In-Process Agent}).  This section documents the protocol
used for communications between @value{GDBN} or GDBserver and the IPA.
In general, @value{GDBN} or GDBserver sends commands
(@pxref{IPA Protocol Commands}) and data to in-process agent, and then
in-process agent replies back with the return result of the command, or
some other information.  The data sent to in-process agent is composed
of primitive data types, such as 4-byte or 8-byte type, and composite
types, which are called objects (@pxref{IPA Protocol Objects}).

@menu
* IPA Protocol Objects::
* IPA Protocol Commands::
@end menu

@node IPA Protocol Objects
@subsection IPA Protocol Objects
@cindex ipa protocol objects

The commands sent to and results received from agent may contain some
complex data types called @dfn{objects}.

The in-process agent is running on the same machine with @value{GDBN}
or GDBserver, so it doesn't have to handle as much differences between
two ends as remote protocol (@pxref{Remote Protocol}) tries to handle.
However, there are still some differences of two ends in two processes:

@enumerate
@item
word size.  On some 64-bit machines, @value{GDBN} or GDBserver can be
compiled as a 64-bit executable, while in-process agent is a 32-bit one.
@item
ABI.  Some machines may have multiple types of ABI, @value{GDBN} or
GDBserver is compiled with one, and in-process agent is compiled with
the other one.
@end enumerate

Here are the IPA Protocol Objects:

@enumerate
@item
agent expression object.  It represents an agent expression
(@pxref{Agent Expressions}).
@anchor{agent expression object}
@item
tracepoint action object.  It represents a tracepoint action
(@pxref{Tracepoint Actions,,Tracepoint Action Lists}) to collect registers,
memory, static trace data and to evaluate expression.
@anchor{tracepoint action object}
@item
tracepoint object.  It represents a tracepoint (@pxref{Tracepoints}).
@anchor{tracepoint object}

@end enumerate

The following table describes important attributes of each IPA protocol
object:

@multitable @columnfractions .30 .20 .50
@headitem Name @tab Size @tab Description
@item @emph{agent expression object} @tab @tab
@item length @tab 4 @tab length of bytes code
@item byte code @tab @var{length} @tab contents of byte code
@item @emph{tracepoint action for collecting memory} @tab @tab
@item 'M' @tab 1 @tab type of tracepoint action
@item addr @tab 8 @tab if @var{basereg} is @samp{-1}, @var{addr} is the
address of the lowest byte to collect, otherwise @var{addr} is the offset
of @var{basereg} for memory collecting.
@item len @tab 8 @tab length of memory for collecting
@item basereg @tab 4 @tab the register number containing the starting
memory address for collecting.
@item @emph{tracepoint action for collecting registers} @tab @tab
@item 'R' @tab 1 @tab type of tracepoint action
@item @emph{tracepoint action for collecting static trace data} @tab @tab
@item 'L' @tab 1 @tab type of tracepoint action
@item @emph{tracepoint action for expression evaluation} @tab @tab
@item 'X' @tab 1 @tab type of tracepoint action
@item agent expression @tab length of @tab @ref{agent expression object}
@item @emph{tracepoint object} @tab @tab
@item number @tab 4 @tab number of tracepoint
@item address @tab 8 @tab address of tracepoint inserted on
@item type @tab 4 @tab type of tracepoint
@item enabled @tab 1 @tab enable or disable of tracepoint
@item step_count @tab 8 @tab step
@item pass_count @tab 8 @tab pass
@item numactions @tab 4 @tab number of tracepoint actions
@item hit count @tab 8 @tab hit count
@item trace frame usage @tab 8 @tab trace frame usage
@item compiled_cond @tab 8 @tab compiled condition
@item orig_size @tab 8 @tab orig size
@item condition @tab 4 if condition is NULL otherwise length of
@ref{agent expression object}
@tab zero if condition is NULL, otherwise is
@ref{agent expression object}
@item actions @tab variable
@tab numactions number of @ref{tracepoint action object}
@end multitable

@node IPA Protocol Commands
@subsection IPA Protocol Commands
@cindex ipa protocol commands

The spaces in each command are delimiters to ease reading this commands
specification.  They don't exist in real commands.

@table @samp

@item FastTrace:@var{tracepoint_object} @var{gdb_jump_pad_head}
Installs a new fast tracepoint described by @var{tracepoint_object}
(@pxref{tracepoint object}).  The @var{gdb_jump_pad_head}, 8-byte long, is the
head of @dfn{jumppad}, which is used to jump to data collection routine
in IPA finally.

Replies:
@table @samp
@item OK @var{target_address} @var{gdb_jump_pad_head} @var{fjump_size} @var{fjump}
@var{target_address} is address of tracepoint in the inferior.
The @var{gdb_jump_pad_head} is updated head of jumppad.  Both of
@var{target_address} and @var{gdb_jump_pad_head} are 8-byte long.
The @var{fjump} contains a sequence of instructions jump to jumppad entry.
The @var{fjump_size}, 4-byte long, is the size of @var{fjump}.
@item E @var{NN}
for an error

@end table

@item close
Closes the in-process agent.  This command is sent when @value{GDBN} or GDBserver
is about to kill inferiors.

@item qTfSTM
@xref{qTfSTM}.
@item qTsSTM
@xref{qTsSTM}.
@item qTSTMat
@xref{qTSTMat}.
@item probe_marker_at:@var{address}
Asks in-process agent to probe the marker at @var{address}.

Replies:
@table @samp
@item E @var{NN}
for an error
@end table
@item unprobe_marker_at:@var{address}
Asks in-process agent to unprobe the marker at @var{address}.
@end table

@node GDB Bugs
@chapter Reporting Bugs in @value{GDBN}
@cindex bugs in @value{GDBN}
@cindex reporting bugs in @value{GDBN}

Your bug reports play an essential role in making @value{GDBN} reliable.

Reporting a bug may help you by bringing a solution to your problem, or it
may not.  But in any case the principal function of a bug report is to help
the entire community by making the next version of @value{GDBN} work better.  Bug
reports are your contribution to the maintenance of @value{GDBN}.

In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.

@menu
* Bug Criteria::                Have you found a bug?
* Bug Reporting::               How to report bugs
@end menu

@node Bug Criteria
@section Have You Found a Bug?
@cindex bug criteria

If you are not sure whether you have found a bug, here are some guidelines:

@itemize @bullet
@cindex fatal signal
@cindex debugger crash
@cindex crash of debugger
@item
If the debugger gets a fatal signal, for any input whatever, that is a
@value{GDBN} bug.  Reliable debuggers never crash.

@cindex error on valid input
@item
If @value{GDBN} produces an error message for valid input, that is a
bug.  (Note that if you're cross debugging, the problem may also be
somewhere in the connection to the target.)

@cindex invalid input
@item
If @value{GDBN} does not produce an error message for invalid input,
that is a bug.  However, you should note that your idea of
``invalid input'' might be our idea of ``an extension'' or ``support
for traditional practice''.

@item
If you are an experienced user of debugging tools, your suggestions
for improvement of @value{GDBN} are welcome in any case.
@end itemize

@node Bug Reporting
@section How to Report Bugs
@cindex bug reports
@cindex @value{GDBN} bugs, reporting

A number of companies and individuals offer support for @sc{gnu} products.
If you obtained @value{GDBN} from a support organization, we recommend you
contact that organization first.

You can find contact information for many support companies and
individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
distribution.
@c should add a web page ref...

@ifset BUGURL
@ifset BUGURL_DEFAULT
In any event, we also recommend that you submit bug reports for
@value{GDBN}.  The preferred method is to submit them directly using
@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
page}.  Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
be used.

@strong{Do not send bug reports to @samp{info-gdb}, or to
@samp{help-gdb}, or to any newsgroups.}  Most users of @value{GDBN} do
not want to receive bug reports.  Those that do have arranged to receive
@samp{bug-gdb}.

The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
serves as a repeater.  The mailing list and the newsgroup carry exactly
the same messages.  Often people think of posting bug reports to the
newsgroup instead of mailing them.  This appears to work, but it has one
problem which can be crucial: a newsgroup posting often lacks a mail
path back to the sender.  Thus, if we need to ask for more information,
we may be unable to reach you.  For this reason, it is better to send
bug reports to the mailing list.
@end ifset
@ifclear BUGURL_DEFAULT
In any event, we also recommend that you submit bug reports for
@value{GDBN} to @value{BUGURL}.
@end ifclear
@end ifset

The fundamental principle of reporting bugs usefully is this:
@strong{report all the facts}.  If you are not sure whether to state a
fact or leave it out, state it!

Often people omit facts because they think they know what causes the
problem and assume that some details do not matter.  Thus, you might
assume that the name of the variable you use in an example does not matter.
Well, probably it does not, but one cannot be sure.  Perhaps the bug is a
stray memory reference which happens to fetch from the location where that
name is stored in memory; perhaps, if the name were different, the contents
of that location would fool the debugger into doing the right thing despite
the bug.  Play it safe and give a specific, complete example.  That is the
easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the
bug.  It may be that the bug has been reported previously, but neither
you nor we can know that unless your bug report is complete and
self-contained.

Sometimes people give a few sketchy facts and ask, ``Does this ring a
bell?''  Those bug reports are useless, and we urge everyone to
@emph{refuse to respond to them} except to chide the sender to report
bugs properly.

To enable us to fix the bug, you should include all these things:

@itemize @bullet
@item
The version of @value{GDBN}.  @value{GDBN} announces it if you start
with no arguments; you can also print it at any time using @code{show
version}.

Without this, we will not know whether there is any point in looking for
the bug in the current version of @value{GDBN}.

@item
The type of machine you are using, and the operating system name and
version number.

@item
The details of the @value{GDBN} build-time configuration.
@value{GDBN} shows these details if you invoke it with the
@option{--configuration} command-line option, or if you type
@code{show configuration} at @value{GDBN}'s prompt.

@item
What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
``@value{GCC}--2.8.1''.

@item
What compiler (and its version) was used to compile the program you are
debugging---e.g.@:  ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
C Compiler''.  For @value{NGCC}, you can say @kbd{@value{GCC} --version}
to get this information; for other compilers, see the documentation for
those compilers.

@item
The command arguments you gave the compiler to compile your example and
observe the bug.  For example, did you use @samp{-O}?  To guarantee
you will not omit something important, list them all.  A copy of the
Makefile (or the output from make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong
and then we might not encounter the bug.

@item
A complete input script, and all necessary source files, that will
reproduce the bug.

@item
A description of what behavior you observe that you believe is
incorrect.  For example, ``It gets a fatal signal.''

Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
will certainly notice it.  But if the bug is incorrect output, we might
not notice unless it is glaringly wrong.  You might as well not give us
a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still
say so explicitly.  Suppose something strange is going on, such as, your
copy of @value{GDBN} is out of synch, or you have encountered a bug in
the C library on your system.  (This has happened!)  Your copy might
crash and ours would not.  If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for
us.  If you had not told us to expect a crash, then we would not be able
to draw any conclusion from our observations.

@pindex script
@cindex recording a session script
To collect all this information, you can use a session recording program
such as @command{script}, which is available on many Unix systems.
Just run your @value{GDBN} session inside @command{script} and then
include the @file{typescript} file with your bug report.

Another way to record a @value{GDBN} session is to run @value{GDBN}
inside Emacs and then save the entire buffer to a file.

@item
If you wish to suggest changes to the @value{GDBN} source, send us context
diffs.  If you even discuss something in the @value{GDBN} source, refer to
it by context, not by line number.

The line numbers in our development sources will not match those in your
sources.  Your line numbers would convey no useful information to us.

@end itemize

Here are some things that are not necessary:

@itemize @bullet
@item
A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.

This is often time consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples.
We recommend that you save your time for something else.

Of course, if you can find a simpler example to report @emph{instead}
of the original one, that is a convenience for us.  Errors in the
output will be easier to spot, running under the debugger will take
less time, and so on.

However, simplification is not vital; if you do not want to do this,
report the bug anyway and send us the entire test case you used.

@item
A patch for the bug.

A patch for the bug does help us if it is a good one.  But do not omit
the necessary information, such as the test case, on the assumption that
a patch is all we need.  We might see problems with your patch and decide
to fix the problem another way, or we might not understand it at all.

Sometimes with a program as complicated as @value{GDBN} it is very hard to
construct an example that will make the program follow a certain path
through the code.  If you do not send us the example, we will not be able
to construct one, so we will not be able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your
patch should be an improvement, we will not install it.  A test case will
help us to understand.

@item
A guess about what the bug is or what it depends on.

Such guesses are usually wrong.  Even we cannot guess right about such
things without first using the debugger to find the facts.
@end itemize

@c The readline documentation is distributed with the readline code
@c and consists of the two following files:
@c     rluser.texi
@c     hsuser.texi
@c Use -I with makeinfo to point to the appropriate directory,
@c environment var TEXINPUTS with TeX.
@ifclear SYSTEM_READLINE
@include rluser.texi
@include hsuser.texi
@end ifclear

@node In Memoriam
@appendix In Memoriam

The @value{GDBN} project mourns the loss of the following long-time
contributors:

@table @code
@item Fred Fish
Fred was a long-standing contributor to @value{GDBN} (1991-2006), and
to Free Software in general.  Outside of @value{GDBN}, he was known in
the Amiga world for his series of Fish Disks, and the GeekGadget project.

@item Michael Snyder
Michael was one of the Global Maintainers of the @value{GDBN} project,
with contributions recorded as early as 1996, until 2011.  In addition
to his day to day participation, he was a large driving force behind
adding Reverse Debugging to @value{GDBN}.
@end table

Beyond their technical contributions to the project, they were also
enjoyable members of the Free Software Community.  We will miss them.

@node Formatting Documentation
@appendix Formatting Documentation

@cindex @value{GDBN} reference card
@cindex reference card
The @value{GDBN} 4 release includes an already-formatted reference card, ready
for printing with PostScript or Ghostscript, in the @file{gdb}
subdirectory of the main source directory@footnote{In
@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
release.}.  If you can use PostScript or Ghostscript with your printer,
you can print the reference card immediately with @file{refcard.ps}.

The release also includes the source for the reference card.  You
can format it, using @TeX{}, by typing:

@smallexample
make refcard.dvi
@end smallexample

The @value{GDBN} reference card is designed to print in @dfn{landscape}
mode on US ``letter'' size paper;
that is, on a sheet 11 inches wide by 8.5 inches
high.  You will need to specify this form of printing as an option to
your @sc{dvi} output program.

@cindex documentation

All the documentation for @value{GDBN} comes as part of the machine-readable
distribution.  The documentation is written in Texinfo format, which is
a documentation system that uses a single source file to produce both
on-line information and a printed manual.  You can use one of the Info
formatting commands to create the on-line version of the documentation
and @TeX{} (or @code{texi2roff}) to typeset the printed version.

@value{GDBN} includes an already formatted copy of the on-line Info
version of this manual in the @file{gdb} subdirectory.  The main Info
file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
subordinate files matching @samp{gdb.info*} in the same directory.  If
necessary, you can print out these files, or read them with any editor;
but they are easier to read using the @code{info} subsystem in @sc{gnu}
Emacs or the standalone @code{info} program, available as part of the
@sc{gnu} Texinfo distribution.

If you want to format these Info files yourself, you need one of the
Info formatting programs, such as @code{texinfo-format-buffer} or
@code{makeinfo}.

If you have @code{makeinfo} installed, and are in the top level
@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
version @value{GDBVN}), you can make the Info file by typing:

@smallexample
cd gdb
make gdb.info
@end smallexample

If you want to typeset and print copies of this manual, you need @TeX{},
a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
Texinfo definitions file.

@TeX{} is a typesetting program; it does not print files directly, but
produces output files called @sc{dvi} files.  To print a typeset
document, you need a program to print @sc{dvi} files.  If your system
has @TeX{} installed, chances are it has such a program.  The precise
command to use depends on your system; @kbd{lpr -d} is common; another
(for PostScript devices) is @kbd{dvips}.  The @sc{dvi} print command may
require a file name without any extension or a @samp{.dvi} extension.

@TeX{} also requires a macro definitions file called
@file{texinfo.tex}.  This file tells @TeX{} how to typeset a document
written in Texinfo format.  On its own, @TeX{} cannot either read or
typeset a Texinfo file.  @file{texinfo.tex} is distributed with GDB
and is located in the @file{gdb-@var{version-number}/texinfo}
directory.

If you have @TeX{} and a @sc{dvi} printer program installed, you can
typeset and print this manual.  First switch to the @file{gdb}
subdirectory of the main source directory (for example, to
@file{gdb-@value{GDBVN}/gdb}) and type:

@smallexample
make gdb.dvi
@end smallexample

Then give @file{gdb.dvi} to your @sc{dvi} printing program.

@node Installing GDB
@appendix Installing @value{GDBN}
@cindex installation

@menu
* Requirements::                Requirements for building @value{GDBN}
* Running Configure::           Invoking the @value{GDBN} @file{configure} script
* Separate Objdir::             Compiling @value{GDBN} in another directory
* Config Names::                Specifying names for hosts and targets
* Configure Options::           Summary of options for configure
* System-wide configuration::   Having a system-wide init file
@end menu

@node Requirements
@section Requirements for Building @value{GDBN}
@cindex building @value{GDBN}, requirements for

Building @value{GDBN} requires various tools and packages to be available.
Other packages will be used only if they are found.

@heading Tools/Packages Necessary for Building @value{GDBN}
@table @asis
@item C@t{++}11 compiler
@value{GDBN} is written in C@t{++}11.  It should be buildable with any
recent C@t{++}11 compiler, e.g.@: GCC.

@item GNU make
@value{GDBN}'s build system relies on features only found in the GNU
make program.  Other variants of @code{make} will not work.
@end table

@heading Tools/Packages Optional for Building @value{GDBN}
@table @asis
@item Expat
@anchor{Expat}
@value{GDBN} can use the Expat XML parsing library.  This library may be
included with your operating system distribution; if it is not, you
can get the latest version from @url{http://expat.sourceforge.net}.
The @file{configure} script will search for this library in several
standard locations; if it is installed in an unusual path, you can
use the @option{--with-libexpat-prefix} option to specify its location.

Expat is used for:

@itemize @bullet
@item
Remote protocol memory maps (@pxref{Memory Map Format})
@item
Target descriptions (@pxref{Target Descriptions})
@item
Remote shared library lists (@xref{Library List Format},
or alternatively @pxref{Library List Format for SVR4 Targets})
@item
MS-Windows shared libraries (@pxref{Shared Libraries})
@item
Traceframe info (@pxref{Traceframe Info Format})
@item
Branch trace (@pxref{Branch Trace Format},
@pxref{Branch Trace Configuration Format})
@end itemize

@item Guile
@value{GDBN} can be scripted using GNU Guile.  @xref{Guile}.  By
default, @value{GDBN} will be compiled if the Guile libraries are
installed and are found by @file{configure}.  You can use the
@code{--with-guile} option to request Guile, and pass either the Guile
version number or the file name of the relevant @code{pkg-config}
program to choose a particular version of Guile.

@item iconv
@value{GDBN}'s features related to character sets (@pxref{Character
Sets}) require a functioning @code{iconv} implementation.  If you are
on a GNU system, then this is provided by the GNU C Library.  Some
other systems also provide a working @code{iconv}.

If @value{GDBN} is using the @code{iconv} program which is installed
in a non-standard place, you will need to tell @value{GDBN} where to
find it.  This is done with @option{--with-iconv-bin} which specifies
the directory that contains the @code{iconv} program.  This program is
run in order to make a list of the available character sets.

On systems without @code{iconv}, you can install GNU Libiconv.  If
Libiconv is installed in a standard place, @value{GDBN} will
automatically use it if it is needed.  If you have previously
installed Libiconv in a non-standard place, you can use the
@option{--with-libiconv-prefix} option to @file{configure}.

@value{GDBN}'s top-level @file{configure} and @file{Makefile} will
arrange to build Libiconv if a directory named @file{libiconv} appears
in the top-most source directory.  If Libiconv is built this way, and
if the operating system does not provide a suitable @code{iconv}
implementation, then the just-built library will automatically be used
by @value{GDBN}.  One easy way to set this up is to download GNU
Libiconv, unpack it inside the top-level directory of the @value{GDBN}
source tree, and then rename the directory holding the Libiconv source
code to @samp{libiconv}.

@item lzma
@value{GDBN} can support debugging sections that are compressed with
the LZMA library.  @xref{MiniDebugInfo}.  If this library is not
included with your operating system, you can find it in the xz package
at @url{http://tukaani.org/xz/}.  If the LZMA library is available in
the usual place, then the @file{configure} script will use it
automatically.  If it is installed in an unusual path, you can use the
@option{--with-lzma-prefix} option to specify its location.

@item MPFR
@anchor{MPFR}
@value{GDBN} can use the GNU MPFR multiple-precision floating-point
library.  This library may be included with your operating system
distribution; if it is not, you can get the latest version from
@url{http://www.mpfr.org}.  The @file{configure} script will search
for this library in several standard locations; if it is installed
in an unusual path, you can use the @option{--with-libmpfr-prefix}
option to specify its location.

GNU MPFR is used to emulate target floating-point arithmetic during
expression evaluation when the target uses different floating-point
formats than the host.  If GNU MPFR it is not available, @value{GDBN}
will fall back to using host floating-point arithmetic.

@item Python
@value{GDBN} can be scripted using Python language.  @xref{Python}.
By default, @value{GDBN} will be compiled if the Python libraries are
installed and are found by @file{configure}.  You can use the
@code{--with-python} option to request Python, and pass either the
file name of the relevant @code{python} executable, or the name of the
directory in which Python is installed, to choose a particular
installation of Python.

@item zlib
@cindex compressed debug sections 
@value{GDBN} will use the @samp{zlib} library, if available, to read
compressed debug sections.  Some linkers, such as GNU gold, are capable
of producing binaries with compressed debug sections.  If @value{GDBN}
is compiled with @samp{zlib}, it will be able to read the debug
information in such binaries.

The @samp{zlib} library is likely included with your operating system
distribution; if it is not, you can get the latest version from
@url{http://zlib.net}.
@end table

@node Running Configure
@section Invoking the @value{GDBN} @file{configure} Script
@cindex configuring @value{GDBN}
@value{GDBN} comes with a @file{configure} script that automates the process
of preparing @value{GDBN} for installation; you can then use @code{make} to
build the @code{gdb} program.
@iftex
@c irrelevant in info file; it's as current as the code it lives with.
@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
look at the @file{README} file in the sources; we may have improved the
installation procedures since publishing this manual.}
@end iftex

The @value{GDBN} distribution includes all the source code you need for
@value{GDBN} in a single directory, whose name is usually composed by
appending the version number to @samp{gdb}.

For example, the @value{GDBN} version @value{GDBVN} distribution is in the
@file{gdb-@value{GDBVN}} directory.  That directory contains:

@table @code
@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
script for configuring @value{GDBN} and all its supporting libraries

@item gdb-@value{GDBVN}/gdb
the source specific to @value{GDBN} itself

@item gdb-@value{GDBVN}/bfd
source for the Binary File Descriptor library

@item gdb-@value{GDBVN}/include
@sc{gnu} include files

@item gdb-@value{GDBVN}/libiberty
source for the @samp{-liberty} free software library

@item gdb-@value{GDBVN}/opcodes
source for the library of opcode tables and disassemblers

@item gdb-@value{GDBVN}/readline
source for the @sc{gnu} command-line interface
@end table

There may be other subdirectories as well.

The simplest way to configure and build @value{GDBN} is to run @file{configure}
from the @file{gdb-@var{version-number}} source directory, which in
this example is the @file{gdb-@value{GDBVN}} directory.

First switch to the @file{gdb-@var{version-number}} source directory
if you are not already in it; then run @file{configure}.  Pass the
identifier for the platform on which @value{GDBN} will run as an
argument.

For example:

@smallexample
cd gdb-@value{GDBVN}
./configure
make
@end smallexample

Running @samp{configure} and then running @code{make} builds the
included supporting libraries, then @code{gdb} itself.  The configured
source files, and the binaries, are left in the corresponding source
directories.

@need 750
@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
system does not recognize this automatically when you run a different
shell, you may need to run @code{sh} on it explicitly:

@smallexample
sh configure
@end smallexample

You should run the @file{configure} script from the top directory in the
source tree, the @file{gdb-@var{version-number}} directory.  If you run
@file{configure} from one of the subdirectories, you will configure only
that subdirectory.  That is usually not what you want.  In particular,
if you run the first @file{configure} from the @file{gdb} subdirectory
of the @file{gdb-@var{version-number}} directory, you will omit the
configuration of @file{bfd}, @file{readline}, and other sibling
directories of the @file{gdb} subdirectory.  This leads to build errors
about missing include files such as @file{bfd/bfd.h}.

You can install @code{@value{GDBN}} anywhere.  The best way to do this
is to pass the @code{--prefix} option to @code{configure}, and then
install it with @code{make install}.

@node Separate Objdir
@section Compiling @value{GDBN} in Another Directory

If you want to run @value{GDBN} versions for several host or target machines,
you need a different @code{gdb} compiled for each combination of
host and target.  @file{configure} is designed to make this easy by
allowing you to generate each configuration in a separate subdirectory,
rather than in the source directory.  If your @code{make} program
handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
@code{make} in each of these directories builds the @code{gdb}
program specified there.

To build @code{gdb} in a separate directory, run @file{configure}
with the @samp{--srcdir} option to specify where to find the source.
(You also need to specify a path to find @file{configure}
itself from your working directory.  If the path to @file{configure}
would be the same as the argument to @samp{--srcdir}, you can leave out
the @samp{--srcdir} option; it is assumed.)

For example, with version @value{GDBVN}, you can build @value{GDBN} in a
separate directory for a Sun 4 like this:

@smallexample
@group
cd gdb-@value{GDBVN}
mkdir ../gdb-sun4
cd ../gdb-sun4
../gdb-@value{GDBVN}/configure
make
@end group
@end smallexample

When @file{configure} builds a configuration using a remote source
directory, it creates a tree for the binaries with the same structure
(and using the same names) as the tree under the source directory.  In
the example, you'd find the Sun 4 library @file{libiberty.a} in the
directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
@file{gdb-sun4/gdb}.

Make sure that your path to the @file{configure} script has just one
instance of @file{gdb} in it.  If your path to @file{configure} looks
like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
one subdirectory of @value{GDBN}, not the whole package.  This leads to
build errors about missing include files such as @file{bfd/bfd.h}.

One popular reason to build several @value{GDBN} configurations in separate
directories is to configure @value{GDBN} for cross-compiling (where
@value{GDBN} runs on one machine---the @dfn{host}---while debugging
programs that run on another machine---the @dfn{target}).
You specify a cross-debugging target by
giving the @samp{--target=@var{target}} option to @file{configure}.

When you run @code{make} to build a program or library, you must run
it in a configured directory---whatever directory you were in when you
called @file{configure} (or one of its subdirectories).

The @code{Makefile} that @file{configure} generates in each source
directory also runs recursively.  If you type @code{make} in a source
directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
will build all the required libraries, and then build GDB.

When you have multiple hosts or targets configured in separate
directories, you can run @code{make} on them in parallel (for example,
if they are NFS-mounted on each of the hosts); they will not interfere
with each other.

@node Config Names
@section Specifying Names for Hosts and Targets

The specifications used for hosts and targets in the @file{configure}
script are based on a three-part naming scheme, but some short predefined
aliases are also supported.  The full naming scheme encodes three pieces
of information in the following pattern:

@smallexample
@var{architecture}-@var{vendor}-@var{os}
@end smallexample

For example, you can use the alias @code{sun4} as a @var{host} argument,
or as the value for @var{target} in a @code{--target=@var{target}}
option.  The equivalent full name is @samp{sparc-sun-sunos4}.

The @file{configure} script accompanying @value{GDBN} does not provide
any query facility to list all supported host and target names or
aliases.  @file{configure} calls the Bourne shell script
@code{config.sub} to map abbreviations to full names; you can read the
script, if you wish, or you can use it to test your guesses on
abbreviations---for example:

@smallexample
% sh config.sub i386-linux
i386-pc-linux-gnu
% sh config.sub alpha-linux
alpha-unknown-linux-gnu
% sh config.sub hp9k700
hppa1.1-hp-hpux
% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub i986v
Invalid configuration `i986v': machine `i986v' not recognized
@end smallexample

@noindent
@code{config.sub} is also distributed in the @value{GDBN} source
directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).

@node Configure Options
@section @file{configure} Options

Here is a summary of the @file{configure} options and arguments that
are most often useful for building @value{GDBN}.  @file{configure}
also has several other options not listed here.  @inforef{Running
configure scripts,,autoconf.info}, for a full
explanation of @file{configure}.

@smallexample
configure @r{[}--help@r{]}
          @r{[}--prefix=@var{dir}@r{]}
          @r{[}--exec-prefix=@var{dir}@r{]}
          @r{[}--srcdir=@var{dirname}@r{]}
          @r{[}--target=@var{target}@r{]}
@end smallexample

@noindent
You may introduce options with a single @samp{-} rather than
@samp{--} if you prefer; but you may abbreviate option names if you use
@samp{--}.

@table @code
@item --help
Display a quick summary of how to invoke @file{configure}.

@item --prefix=@var{dir}
Configure the source to install programs and files under directory
@file{@var{dir}}.

@item --exec-prefix=@var{dir}
Configure the source to install programs under directory
@file{@var{dir}}.

@c avoid splitting the warning from the explanation:
@need 2000
@item --srcdir=@var{dirname}
Use this option to make configurations in directories separate from the
@value{GDBN} source directories.  Among other things, you can use this to
build (or maintain) several configurations simultaneously, in separate
directories.  @file{configure} writes configuration-specific files in
the current directory, but arranges for them to use the source in the
directory @var{dirname}.  @file{configure} creates directories under
the working directory in parallel to the source directories below
@var{dirname}.

@item --target=@var{target}
Configure @value{GDBN} for cross-debugging programs running on the specified
@var{target}.  Without this option, @value{GDBN} is configured to debug
programs that run on the same machine (@var{host}) as @value{GDBN} itself.

There is no convenient way to generate a list of all available
targets.  Also see the @code{--enable-targets} option, below.
@end table

There are many other options that are specific to @value{GDBN}.  This
lists just the most common ones; there are some very specialized
options not described here.

@table @code
@item --enable-targets=@r{[}@var{target}@r{]}@dots{}
@itemx --enable-targets=all
Configure @value{GDBN} for cross-debugging programs running on the
specified list of targets.  The special value @samp{all} configures
@value{GDBN} for debugging programs running on any target it supports.

@item --with-gdb-datadir=@var{path}
Set the @value{GDBN}-specific data directory.  @value{GDBN} will look
here for certain supporting files or scripts.  This defaults to the
@file{gdb} subdirectory of @samp{datadir} (which can be set using
@code{--datadir}).

@item --with-relocated-sources=@var{dir}
Sets up the default source path substitution rule so that directory
names recorded in debug information will be automatically adjusted for
any directory under @var{dir}.  @var{dir} should be a subdirectory of
@value{GDBN}'s configured prefix, the one mentioned in the
@code{--prefix} or @code{--exec-prefix} options to configure.  This
option is useful if GDB is supposed to be moved to a different place
after it is built.

@item --enable-64-bit-bfd
Enable 64-bit support in BFD on 32-bit hosts.

@item --disable-gdbmi
Build @value{GDBN} without the GDB/MI machine interface
(@pxref{GDB/MI}).

@item --enable-tui
Build @value{GDBN} with the text-mode full-screen user interface
(TUI).  Requires a curses library (ncurses and cursesX are also
supported).

@item --with-curses
Use the curses library instead of the termcap library, for text-mode
terminal operations.

@item --with-debuginfod
Build @value{GDBN} with libdebuginfod, the debuginfod client library.
Used to automatically fetch source files and separate debug files from
debuginfod servers using the associated executable's build ID. Enabled
by default if libdebuginfod is installed and found at configure time.
debuginfod is packaged with elfutils, starting with version 0.178. You
can get the latest version from `https://sourceware.org/elfutils/'.

@item --with-libunwind-ia64
Use the libunwind library for unwinding function call stack on ia64
target platforms.  See http://www.nongnu.org/libunwind/index.html for
details.

@item --with-system-readline
Use the readline library installed on the host, rather than the
library supplied as part of @value{GDBN}.  Readline 7 or newer is
required; this is enforced by the build system.

@item --with-system-zlib
Use the zlib library installed on the host, rather than the library
supplied as part of @value{GDBN}.

@item --with-expat
Build @value{GDBN} with Expat, a library for XML parsing.  (Done by
default if libexpat is installed and found at configure time.)  This
library is used to read XML files supplied with @value{GDBN}.  If it
is unavailable, some features, such as remote protocol memory maps,
target descriptions, and shared library lists, that are based on XML
files, will not be available in @value{GDBN}.  If your host does not
have libexpat installed, you can get the latest version from
`http://expat.sourceforge.net'.

@item --with-libiconv-prefix@r{[}=@var{dir}@r{]}

Build @value{GDBN} with GNU libiconv, a character set encoding
conversion library.  This is not done by default, as on GNU systems
the @code{iconv} that is built in to the C library is sufficient.  If
your host does not have a working @code{iconv}, you can get the latest
version of GNU iconv from `https://www.gnu.org/software/libiconv/'.

@value{GDBN}'s build system also supports building GNU libiconv as
part of the overall build.   @xref{Requirements}.

@item --with-lzma
Build @value{GDBN} with LZMA, a compression library.  (Done by default
if liblzma is installed and found at configure time.)  LZMA is used by
@value{GDBN}'s "mini debuginfo" feature, which is only useful on
platforms using the ELF object file format.  If your host does not
have liblzma installed, you can get the latest version from
`https://tukaani.org/xz/'.

@item --with-mpfr
Build @value{GDBN} with GNU MPFR, a library for multiple-precision
floating-point computation with correct rounding.  (Done by default if
GNU MPFR is installed and found at configure time.)  This library is
used to emulate target floating-point arithmetic during expression
evaluation when the target uses different floating-point formats than
the host.  If GNU MPFR is not available, @value{GDBN} will fall back
to using host floating-point arithmetic.  If your host does not have
GNU MPFR installed, you can get the latest version from
`http://www.mpfr.org'.

@item --with-python@r{[}=@var{python}@r{]}
Build @value{GDBN} with Python scripting support.  (Done by default if
libpython is present and found at configure time.)  Python makes
@value{GDBN} scripting much more powerful than the restricted CLI
scripting language.  If your host does not have Python installed, you
can find it on `http://www.python.org/download/'.  The oldest version
of Python supported by GDB is 2.6.  The optional argument @var{python}
is used to find the Python headers and libraries.  It can be either
the name of a Python executable, or the name of the directory in which
Python is installed.

@item --with-guile[=GUILE]'
Build @value{GDBN} with GNU Guile scripting support.  (Done by default
if libguile is present and found at configure time.)  If your host
does not have Guile installed, you can find it at
`https://www.gnu.org/software/guile/'.  The optional argument GUILE
can be a version number, which will cause @code{configure} to try to
use that version of Guile; or the file name of a @code{pkg-config}
executable, which will be queried to find the information needed to
compile and link against Guile.

@item --without-included-regex
Don't use the regex library included with @value{GDBN} (as part of the
libiberty library).  This is the default on hosts with version 2 of
the GNU C library.

@item --with-sysroot=@var{dir}
Use @var{dir} as the default system root directory for libraries whose
file names begin with @file{/lib}' or @file{/usr/lib'}.  (The value of
@var{dir} can be modified at run time by using the @command{set
sysroot} command.)  If @var{dir} is under the @value{GDBN} configured
prefix (set with @code{--prefix} or @code{--exec-prefix options}, the
default system root will be automatically adjusted if and when
@value{GDBN} is moved to a different location.

@item --with-system-gdbinit=@var{file}
Configure @value{GDBN} to automatically load a system-wide init file.
@var{file} should be an absolute file name.  If @var{file} is in a
directory under the configured prefix, and @value{GDBN} is moved to
another location after being built, the location of the system-wide
init file will be adjusted accordingly.

@item --with-system-gdbinit-dir=@var{directory}
Configure @value{GDBN} to automatically load init files from a
system-wide directory.  @var{directory} should be an absolute directory
name.  If @var{directory} is in a directory under the configured
prefix, and @value{GDBN} is moved to another location after being
built, the location of the system-wide init directory will be
adjusted accordingly.

@item --enable-build-warnings
When building the @value{GDBN} sources, ask the compiler to warn about
any code which looks even vaguely suspicious.  It passes many
different warning flags, depending on the exact version of the
compiler you are using.

@item --enable-werror
Treat compiler warnings as werrors.  It adds the @code{-Werror} flag
to the compiler, which will fail the compilation if the compiler
outputs any warning messages.

@item --enable-ubsan
Enable the GCC undefined behavior sanitizer.  This is disabled by
default, but passing @code{--enable-ubsan=yes} or
@code{--enable-ubsan=auto} to @code{configure} will enable it.  The
undefined behavior sanitizer checks for C@t{++} undefined behavior.
It has a performance cost, so if you are looking at @value{GDBN}'s
performance, you should disable it.  The undefined behavior sanitizer
was first introduced in GCC 4.9.
@end table

@node System-wide configuration
@section System-wide configuration and settings
@cindex system-wide init file

@value{GDBN} can be configured to have a system-wide init file and a
system-wide init file directory; this file and files in that directory
(if they have a recognized file extension) will be read and executed at
startup (@pxref{Startup, , What @value{GDBN} does during startup}).

Here are the corresponding configure options:

@table @code
@item --with-system-gdbinit=@var{file}
Specify that the default location of the system-wide init file is
@var{file}.
@item --with-system-gdbinit-dir=@var{directory}
Specify that the default location of the system-wide init file directory
is @var{directory}.
@end table

If @value{GDBN} has been configured with the option @option{--prefix=$prefix},
they may be subject to relocation.  Two possible cases:

@itemize @bullet
@item 
If the default location of this init file/directory contains @file{$prefix},
it will be subject to relocation.  Suppose that the configure options
are @option{--prefix=$prefix --with-system-gdbinit=$prefix/etc/gdbinit};
if @value{GDBN} is moved from @file{$prefix} to @file{$install}, the system
init file is looked for as @file{$install/etc/gdbinit} instead of
@file{$prefix/etc/gdbinit}.

@item
By contrast, if the default location does not contain the prefix,
it will not be relocated.  E.g.@: if @value{GDBN} has been configured with
@option{--prefix=/usr/local --with-system-gdbinit=/usr/share/gdb/gdbinit},
then @value{GDBN} will always look for @file{/usr/share/gdb/gdbinit},
wherever @value{GDBN} is installed.
@end itemize

If the configured location of the system-wide init file (as given by the
@option{--with-system-gdbinit} option at configure time) is in the
data-directory (as specified by @option{--with-gdb-datadir} at configure
time) or in one of its subdirectories, then @value{GDBN} will look for the
system-wide init file in the directory specified by the
@option{--data-directory} command-line option.
Note that the system-wide init file is only read once, during @value{GDBN}
initialization.  If the data-directory is changed after @value{GDBN} has
started with the @code{set data-directory} command, the file will not be
reread.

This applies similarly to the system-wide directory specified in
@option{--with-system-gdbinit-dir}.

Any supported scripting language can be used for these init files, as long
as the file extension matches the scripting language.  To be interpreted
as regular @value{GDBN} commands, the files needs to have a @file{.gdb}
extension.

@menu
* System-wide Configuration Scripts::  Installed System-wide Configuration Scripts
@end menu

@node System-wide Configuration Scripts
@subsection Installed System-wide Configuration Scripts
@cindex system-wide configuration scripts

The @file{system-gdbinit} directory, located inside the data-directory
(as specified by @option{--with-gdb-datadir} at configure time) contains
a number of scripts which can be used as system-wide init files.  To
automatically source those scripts at startup, @value{GDBN} should be
configured with @option{--with-system-gdbinit}.  Otherwise, any user
should be able to source them by hand as needed.

The following scripts are currently available:
@itemize @bullet

@item @file{elinos.py}
@pindex elinos.py
@cindex ELinOS system-wide configuration script
This script is useful when debugging a program on an ELinOS target.
It takes advantage of the environment variables defined in a standard
ELinOS environment in order to determine the location of the system
shared libraries, and then sets the @samp{solib-absolute-prefix}
and @samp{solib-search-path} variables appropriately.

@item @file{wrs-linux.py}
@pindex wrs-linux.py
@cindex Wind River Linux system-wide configuration script
This script is useful when debugging a program on a target running
Wind River Linux.  It expects the @env{ENV_PREFIX} to be set to
the host-side sysroot used by the target system.

@end itemize

@node Maintenance Commands
@appendix Maintenance Commands
@cindex maintenance commands
@cindex internal commands

In addition to commands intended for @value{GDBN} users, @value{GDBN}
includes a number of commands intended for @value{GDBN} developers,
that are not documented elsewhere in this manual.  These commands are
provided here for reference.  (For commands that turn on debugging
messages, see @ref{Debugging Output}.)

@table @code
@kindex maint agent
@kindex maint agent-eval
@item maint agent @r{[}-at @var{location}@r{,}@r{]} @var{expression}
@itemx maint agent-eval @r{[}-at @var{location}@r{,}@r{]} @var{expression}
Translate the given @var{expression} into remote agent bytecodes.
This command is useful for debugging the Agent Expression mechanism
(@pxref{Agent Expressions}).  The @samp{agent} version produces an
expression useful for data collection, such as by tracepoints, while
@samp{maint agent-eval} produces an expression that evaluates directly
to a result.  For instance, a collection expression for @code{globa +
globb} will include bytecodes to record four bytes of memory at each
of the addresses of @code{globa} and @code{globb}, while discarding
the result of the addition, while an evaluation expression will do the
addition and return the sum.
If @code{-at} is given, generate remote agent bytecode for @var{location}.
If not, generate remote agent bytecode for current frame PC address.

@kindex maint agent-printf
@item maint agent-printf @var{format},@var{expr},...
Translate the given format string and list of argument expressions
into remote agent bytecodes and display them as a disassembled list.
This command is useful for debugging the agent version of dynamic
printf (@pxref{Dynamic Printf}).

@kindex maint info breakpoints
@item @anchor{maint info breakpoints}maint info breakpoints
Using the same format as @samp{info breakpoints}, display both the
breakpoints you've set explicitly, and those @value{GDBN} is using for
internal purposes.  Internal breakpoints are shown with negative
breakpoint numbers.  The type column identifies what kind of breakpoint
is shown:

@table @code
@item breakpoint
Normal, explicitly set breakpoint.

@item watchpoint
Normal, explicitly set watchpoint.

@item longjmp
Internal breakpoint, used to handle correctly stepping through
@code{longjmp} calls.

@item longjmp resume
Internal breakpoint at the target of a @code{longjmp}.

@item until
Temporary internal breakpoint used by the @value{GDBN} @code{until} command.

@item finish
Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.

@item shlib events
Shared library events.

@end table

@kindex maint info btrace
@item maint info btrace
Pint information about raw branch tracing data.

@kindex maint btrace packet-history
@item maint btrace packet-history
Print the raw branch trace packets that are used to compute the
execution history for the @samp{record btrace} command.  Both the
information and the format in which it is printed depend on the btrace
recording format.

@table @code
@item bts
For the BTS recording format, print a list of blocks of sequential
code.  For each block, the following information is printed:

@table @asis
@item Block number
Newer blocks have higher numbers.  The oldest block has number zero.
@item Lowest @samp{PC}
@item Highest @samp{PC}
@end table

@item pt
For the Intel Processor Trace recording format, print a list of
Intel Processor Trace packets.  For each packet, the following
information is printed:

@table @asis
@item Packet number
Newer packets have higher numbers.  The oldest packet has number zero.
@item Trace offset
The packet's offset in the trace stream.
@item Packet opcode and payload
@end table
@end table

@kindex maint btrace clear-packet-history
@item maint btrace clear-packet-history
Discards the cached packet history printed by the @samp{maint btrace
packet-history} command.  The history will be computed again when
needed.

@kindex maint btrace clear
@item maint btrace clear
Discard the branch trace data.  The data will be fetched anew and the
branch trace will be recomputed when needed.

This implicitly truncates the branch trace to a single branch trace
buffer.  When updating branch trace incrementally, the branch trace
available to @value{GDBN} may be bigger than a single branch trace
buffer.

@kindex maint set btrace pt skip-pad
@item maint set btrace pt skip-pad
@kindex maint show btrace pt skip-pad
@item maint show btrace pt skip-pad
Control whether @value{GDBN} will skip PAD packets when computing the
packet history.

@kindex set displaced-stepping
@kindex show displaced-stepping
@cindex displaced stepping support
@cindex out-of-line single-stepping
@item set displaced-stepping
@itemx show displaced-stepping
Control whether or not @value{GDBN} will do @dfn{displaced stepping}
if the target supports it.  Displaced stepping is a way to single-step
over breakpoints without removing them from the inferior, by executing
an out-of-line copy of the instruction that was originally at the
breakpoint location.  It is also known as out-of-line single-stepping.

@table @code
@item set displaced-stepping on
If the target architecture supports it, @value{GDBN} will use
displaced stepping to step over breakpoints.

@item set displaced-stepping off
@value{GDBN} will not use displaced stepping to step over breakpoints,
even if such is supported by the target architecture.

@cindex non-stop mode, and @samp{set displaced-stepping}
@item set displaced-stepping auto
This is the default mode.  @value{GDBN} will use displaced stepping
only if non-stop mode is active (@pxref{Non-Stop Mode}) and the target
architecture supports displaced stepping.
@end table

@kindex maint check-psymtabs
@item maint check-psymtabs
Check the consistency of currently expanded psymtabs versus symtabs.
Use this to check, for example, whether a symbol is in one but not the other.

@kindex maint check-symtabs
@item maint check-symtabs
Check the consistency of currently expanded symtabs.

@kindex maint expand-symtabs
@item maint expand-symtabs [@var{regexp}]
Expand symbol tables.
If @var{regexp} is specified, only expand symbol tables for file
names matching @var{regexp}.

@kindex maint set catch-demangler-crashes
@kindex maint show catch-demangler-crashes
@cindex demangler crashes
@item maint set catch-demangler-crashes [on|off]
@itemx maint show catch-demangler-crashes
Control whether @value{GDBN} should attempt to catch crashes in the
symbol name demangler.  The default is to attempt to catch crashes.
If enabled, the first time a crash is caught, a core file is created,
the offending symbol is displayed and the user is presented with the
option to terminate the current session.

@kindex maint cplus first_component
@item maint cplus first_component @var{name}
Print the first C@t{++} class/namespace component of @var{name}.

@kindex maint cplus namespace
@item maint cplus namespace
Print the list of possible C@t{++} namespaces.

@kindex maint deprecate
@kindex maint undeprecate
@cindex deprecated commands
@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
@itemx maint undeprecate @var{command}
Deprecate or undeprecate the named @var{command}.  Deprecated commands
cause @value{GDBN} to issue a warning when you use them.  The optional
argument @var{replacement} says which newer command should be used in
favor of the deprecated one; if it is given, @value{GDBN} will mention
the replacement as part of the warning.

@kindex maint dump-me
@item maint dump-me
@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
Cause a fatal signal in the debugger and force it to dump its core.
This is supported only on systems which support aborting a program
with the @code{SIGQUIT} signal.

@kindex maint internal-error
@kindex maint internal-warning
@kindex maint demangler-warning
@cindex demangler crashes
@item maint internal-error @r{[}@var{message-text}@r{]}
@itemx maint internal-warning @r{[}@var{message-text}@r{]}
@itemx maint demangler-warning @r{[}@var{message-text}@r{]}

Cause @value{GDBN} to call the internal function @code{internal_error},
@code{internal_warning} or @code{demangler_warning} and hence behave
as though an internal problem has been detected.  In addition to
reporting the internal problem, these functions give the user the
opportunity to either quit @value{GDBN} or (for @code{internal_error}
and @code{internal_warning}) create a core file of the current
@value{GDBN} session.

These commands take an optional parameter @var{message-text} that is
used as the text of the error or warning message.

Here's an example of using @code{internal-error}:

@smallexample
(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
@dots{}/maint.c:121: internal-error: testing, 1, 2
A problem internal to GDB has been detected.  Further
debugging may prove unreliable.
Quit this debugging session? (y or n) @kbd{n}
Create a core file? (y or n) @kbd{n}
(@value{GDBP})
@end smallexample

@cindex @value{GDBN} internal error
@cindex internal errors, control of @value{GDBN} behavior
@cindex demangler crashes

@kindex maint set internal-error
@kindex maint show internal-error
@kindex maint set internal-warning
@kindex maint show internal-warning
@kindex maint set demangler-warning
@kindex maint show demangler-warning
@item maint set internal-error @var{action} [ask|yes|no]
@itemx maint show internal-error @var{action}
@itemx maint set internal-warning @var{action} [ask|yes|no]
@itemx maint show internal-warning @var{action}
@itemx maint set demangler-warning @var{action} [ask|yes|no]
@itemx maint show demangler-warning @var{action}
When @value{GDBN} reports an internal problem (error or warning) it
gives the user the opportunity to both quit @value{GDBN} and create a
core file of the current @value{GDBN} session.  These commands let you
override the default behaviour for each particular @var{action},
described in the table below.

@table @samp
@item quit
You can specify that @value{GDBN} should always (yes) or never (no)
quit.  The default is to ask the user what to do.

@item corefile
You can specify that @value{GDBN} should always (yes) or never (no)
create a core file.  The default is to ask the user what to do.  Note
that there is no @code{corefile} option for @code{demangler-warning}:
demangler warnings always create a core file and this cannot be
disabled.
@end table

@kindex maint packet
@item maint packet @var{text}
If @value{GDBN} is talking to an inferior via the serial protocol,
then this command sends the string @var{text} to the inferior, and
displays the response packet.  @value{GDBN} supplies the initial
@samp{$} character, the terminating @samp{#} character, and the
checksum.

@kindex maint print architecture
@item maint print architecture @r{[}@var{file}@r{]}
Print the entire architecture configuration.  The optional argument
@var{file} names the file where the output goes.

@kindex maint print c-tdesc @r{[}@var{file}@r{]}
@item maint print c-tdesc
Print the target description (@pxref{Target Descriptions}) as
a C source file.  By default, the target description is for the current
target, but if the optional argument @var{file} is provided, that file
is used to produce the description.  The @var{file} should be an XML
document, of the form described in @ref{Target Description Format}.
The created source file is built into @value{GDBN} when @value{GDBN} is
built again.  This command is used by developers after they add or
modify XML target descriptions.

@kindex maint check xml-descriptions
@item maint check xml-descriptions @var{dir}
Check that the target descriptions dynamically created by @value{GDBN}
equal the descriptions created from XML files found in @var{dir}.

@anchor{maint check libthread-db}
@kindex maint check libthread-db
@item maint check libthread-db
Run integrity checks on the current inferior's thread debugging
library.  This exercises all @code{libthread_db} functionality used by
@value{GDBN} on GNU/Linux systems, and by extension also exercises the
@code{proc_service} functions provided by @value{GDBN} that
@code{libthread_db} uses.  Note that parts of the test may be skipped
on some platforms when debugging core files.

@kindex maint print dummy-frames
@item maint print dummy-frames
Prints the contents of @value{GDBN}'s internal dummy-frame stack.

@smallexample
(@value{GDBP}) @kbd{b add}
@dots{}
(@value{GDBP}) @kbd{print add(2,3)}
Breakpoint 2, add (a=2, b=3) at @dots{}
58	  return (a + b);
The program being debugged stopped while in a function called from GDB.
@dots{}
(@value{GDBP}) @kbd{maint print dummy-frames}
0xa8206d8: id=@{stack=0xbfffe734,code=0xbfffe73f,!special@}, ptid=process 9353
(@value{GDBP})
@end smallexample

Takes an optional file parameter.

@kindex maint print registers
@kindex maint print raw-registers
@kindex maint print cooked-registers
@kindex maint print register-groups
@kindex maint print remote-registers
@item maint print registers @r{[}@var{file}@r{]}
@itemx maint print raw-registers @r{[}@var{file}@r{]}
@itemx maint print cooked-registers @r{[}@var{file}@r{]}
@itemx maint print register-groups @r{[}@var{file}@r{]}
@itemx maint print remote-registers @r{[}@var{file}@r{]}
Print @value{GDBN}'s internal register data structures.

The command @code{maint print raw-registers} includes the contents of
the raw register cache; the command @code{maint print
cooked-registers} includes the (cooked) value of all registers,
including registers which aren't available on the target nor visible
to user; the command @code{maint print register-groups} includes the
groups that each register is a member of; and the command @code{maint
print remote-registers} includes the remote target's register numbers
and offsets in the `G' packets.

These commands take an optional parameter, a file name to which to
write the information.

@kindex maint print reggroups
@item maint print reggroups @r{[}@var{file}@r{]}
Print @value{GDBN}'s internal register group data structures.  The
optional argument @var{file} tells to what file to write the
information.

The register groups info looks like this:

@smallexample
(@value{GDBP}) @kbd{maint print reggroups}
 Group      Type
 general    user
 float      user
 all        user
 vector     user
 system     user
 save       internal
 restore    internal
@end smallexample

@kindex flushregs
@item flushregs
This command forces @value{GDBN} to flush its internal register cache.

@kindex maint print objfiles
@cindex info for known object files
@item maint print objfiles @r{[}@var{regexp}@r{]}
Print a dump of all known object files.
If @var{regexp} is specified, only print object files whose names
match @var{regexp}.  For each object file, this command prints its name,
address in memory, and all of its psymtabs and symtabs.

@kindex maint print user-registers
@cindex user registers
@item maint print user-registers
List all currently available @dfn{user registers}.  User registers
typically provide alternate names for actual hardware registers.  They
include the four ``standard'' registers @code{$fp}, @code{$pc},
@code{$sp}, and @code{$ps}.  @xref{standard registers}.  User
registers can be used in expressions in the same way as the canonical
register names, but only the latter are listed by the @code{info
registers} and @code{maint print registers} commands.

@kindex maint print section-scripts
@cindex info for known .debug_gdb_scripts-loaded scripts
@item maint print section-scripts [@var{regexp}]
Print a dump of scripts specified in the @code{.debug_gdb_section} section.
If @var{regexp} is specified, only print scripts loaded by object files
matching @var{regexp}.
For each script, this command prints its name as specified in the objfile,
and the full path if known.
@xref{dotdebug_gdb_scripts section}.

@kindex maint print statistics
@cindex bcache statistics
@item maint print statistics
This command prints, for each object file in the program, various data
about that object file followed by the byte cache (@dfn{bcache})
statistics for the object file.  The objfile data includes the number
of minimal, partial, full, and stabs symbols, the number of types
defined by the objfile, the number of as yet unexpanded psym tables,
the number of line tables and string tables, and the amount of memory
used by the various tables.  The bcache statistics include the counts,
sizes, and counts of duplicates of all and unique objects, max,
average, and median entry size, total memory used and its overhead and
savings, and various measures of the hash table size and chain
lengths.

@kindex maint print target-stack
@cindex target stack description
@item maint print target-stack
A @dfn{target} is an interface between the debugger and a particular
kind of file or process.  Targets can be stacked in @dfn{strata},
so that more than one target can potentially respond to a request.
In particular, memory accesses will walk down the stack of targets
until they find a target that is interested in handling that particular
address.

This command prints a short description of each layer that was pushed on
the @dfn{target stack}, starting from the top layer down to the bottom one.

@kindex maint print type
@cindex type chain of a data type
@item maint print type @var{expr}
Print the type chain for a type specified by @var{expr}.  The argument
can be either a type name or a symbol.  If it is a symbol, the type of
that symbol is described.  The type chain produced by this command is
a recursive definition of the data type as stored in @value{GDBN}'s
data structures, including its flags and contained types.

@kindex maint selftest
@cindex self tests
@item maint selftest @r{[}@var{filter}@r{]}
Run any self tests that were compiled in to @value{GDBN}.  This will
print a message showing how many tests were run, and how many failed.
If a @var{filter} is passed, only the tests with @var{filter} in their
name will by ran.

@kindex maint info selftests
@cindex self tests
@item maint info selftests
List the selftests compiled in to @value{GDBN}.

@kindex maint set dwarf always-disassemble
@kindex maint show dwarf always-disassemble
@item maint set dwarf always-disassemble
@item maint show dwarf always-disassemble
Control the behavior of @code{info address} when using DWARF debugging
information.

The default is @code{off}, which means that @value{GDBN} should try to
describe a variable's location in an easily readable format.  When
@code{on}, @value{GDBN} will instead display the DWARF location
expression in an assembly-like format.  Note that some locations are
too complex for @value{GDBN} to describe simply; in this case you will
always see the disassembly form.

Here is an example of the resulting disassembly:

@smallexample
(gdb) info addr argc
Symbol "argc" is a complex DWARF expression:
     1: DW_OP_fbreg 0
@end smallexample

For more information on these expressions, see
@uref{http://www.dwarfstd.org/, the DWARF standard}.

@kindex maint set dwarf max-cache-age
@kindex maint show dwarf max-cache-age
@item maint set dwarf max-cache-age
@itemx maint show dwarf max-cache-age
Control the DWARF compilation unit cache.

@cindex DWARF compilation units cache
In object files with inter-compilation-unit references, such as those
produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF
reader needs to frequently refer to previously read compilation units.
This setting controls how long a compilation unit will remain in the
cache if it is not referenced.  A higher limit means that cached
compilation units will be stored in memory longer, and more total
memory will be used.  Setting it to zero disables caching, which will
slow down @value{GDBN} startup, but reduce memory consumption.

@kindex maint set dwarf unwinders
@kindex maint show dwarf unwinders
@item maint set dwarf unwinders
@itemx maint show dwarf unwinders
Control use of the DWARF frame unwinders.

@cindex DWARF frame unwinders
Many targets that support DWARF debugging use @value{GDBN}'s DWARF
frame unwinders to build the backtrace.  Many of these targets will
also have a second mechanism for building the backtrace for use in
cases where DWARF information is not available, this second mechanism
is often an analysis of a function's prologue.

In order to extend testing coverage of the second level stack
unwinding mechanisms it is helpful to be able to disable the DWARF
stack unwinders, this can be done with this switch.

In normal use of @value{GDBN} disabling the DWARF unwinders is not
advisable, there are cases that are better handled through DWARF than
prologue analysis, and the debug experience is likely to be better
with the DWARF frame unwinders enabled.

If DWARF frame unwinders are not supported for a particular target
architecture, then enabling this flag does not cause them to be used.

@kindex maint set worker-threads
@kindex maint show worker-threads
@item maint set worker-threads
@item maint show worker-threads
Control the number of worker threads that may be used by @value{GDBN}.
On capable hosts, @value{GDBN} may use multiple threads to speed up
certain CPU-intensive operations, such as demangling symbol names.
While the number of threads used by @value{GDBN} may vary, this
command can be used to set an upper bound on this number.  The default
is @code{unlimited}, which lets @value{GDBN} choose a reasonable
number.  Note that this only controls worker threads started by
@value{GDBN} itself; libraries used by @value{GDBN} may start threads
of their own.

@kindex maint set profile
@kindex maint show profile
@cindex profiling GDB
@item maint set profile
@itemx maint show profile
Control profiling of @value{GDBN}.

Profiling will be disabled until you use the @samp{maint set profile}
command to enable it.  When you enable profiling, the system will begin
collecting timing and execution count data; when you disable profiling or
exit @value{GDBN}, the results will be written to a log file.  Remember that
if you use profiling, @value{GDBN} will overwrite the profiling log file
(often called @file{gmon.out}).  If you have a record of important profiling
data in a @file{gmon.out} file, be sure to move it to a safe location.

Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
compiled with the @samp{-pg} compiler option.

@kindex maint set show-debug-regs
@kindex maint show show-debug-regs
@cindex hardware debug registers
@item maint set show-debug-regs
@itemx maint show show-debug-regs
Control whether to show variables that mirror the hardware debug
registers.  Use @code{on} to enable, @code{off} to disable.  If
enabled, the debug registers values are shown when @value{GDBN} inserts or
removes a hardware breakpoint or watchpoint, and when the inferior
triggers a hardware-assisted breakpoint or watchpoint.

@kindex maint set show-all-tib
@kindex maint show show-all-tib
@item maint set show-all-tib
@itemx maint show show-all-tib
Control whether to show all non zero areas within a 1k block starting
at thread local base, when using the @samp{info w32 thread-information-block}
command.

@kindex maint set target-async
@kindex maint show target-async
@item maint set target-async
@itemx maint show target-async
This controls whether @value{GDBN} targets operate in synchronous or
asynchronous mode (@pxref{Background Execution}).  Normally the
default is asynchronous, if it is available; but this can be changed
to more easily debug problems occurring only in synchronous mode.

@kindex maint set target-non-stop @var{mode} [on|off|auto]
@kindex maint show target-non-stop
@item maint set target-non-stop
@itemx maint show target-non-stop

This controls whether @value{GDBN} targets always operate in non-stop
mode even if @code{set non-stop} is @code{off} (@pxref{Non-Stop
Mode}).  The default is @code{auto}, meaning non-stop mode is enabled
if supported by the target.

@table @code
@item maint set target-non-stop auto
This is the default mode.  @value{GDBN} controls the target in
non-stop mode if the target supports it.

@item maint set target-non-stop on
@value{GDBN} controls the target in non-stop mode even if the target
does not indicate support.

@item maint set target-non-stop off
@value{GDBN} does not control the target in non-stop mode even if the
target supports it.
@end table

@kindex maint set tui-resize-message
@kindex maint show tui-resize-message
@item maint set tui-resize-message
@item maint show tui-resize-message
Control whether @value{GDBN} displays a message each time the terminal
is resized when in TUI mode.  The default is @code{off}, which means
that @value{GDBN} is silent during resizes.  When @code{on},
@value{GDBN} will display a message after a resize is completed; the
message will include a number indicating how many times the terminal
has been resized.  This setting is intended for use by the test suite,
where it would otherwise be difficult to determine when a resize and
refresh has been completed.

@kindex maint set per-command
@kindex maint show per-command
@item maint set per-command
@itemx maint show per-command
@cindex resources used by commands

@value{GDBN} can display the resources used by each command.
This is useful in debugging performance problems.

@table @code
@item maint set per-command space [on|off]
@itemx maint show per-command space
Enable or disable the printing of the memory used by GDB for each command.
If enabled, @value{GDBN} will display how much memory each command
took, following the command's own output.
This can also be requested by invoking @value{GDBN} with the
@option{--statistics} command-line switch (@pxref{Mode Options}).

@item maint set per-command time [on|off]
@itemx maint show per-command time
Enable or disable the printing of the execution time of @value{GDBN}
for each command.
If enabled, @value{GDBN} will display how much time it
took to execute each command, following the command's own output.
Both CPU time and wallclock time are printed.
Printing both is useful when trying to determine whether the cost is
CPU or, e.g., disk/network latency.
Note that the CPU time printed is for @value{GDBN} only, it does not include
the execution time of the inferior because there's no mechanism currently
to compute how much time was spent by @value{GDBN} and how much time was
spent by the program been debugged.
This can also be requested by invoking @value{GDBN} with the
@option{--statistics} command-line switch (@pxref{Mode Options}).

@item maint set per-command symtab [on|off]
@itemx maint show per-command symtab
Enable or disable the printing of basic symbol table statistics
for each command.
If enabled, @value{GDBN} will display the following information:

@enumerate a
@item
number of symbol tables
@item
number of primary symbol tables
@item
number of blocks in the blockvector
@end enumerate
@end table

@kindex maint set check-libthread-db
@kindex maint show check-libthread-db
@item maint set check-libthread-db [on|off]
@itemx maint show check-libthread-db
Control whether @value{GDBN} should run integrity checks on inferior
specific thread debugging libraries as they are loaded.  The default
is not to perform such checks.  If any check fails @value{GDBN} will
unload the library and continue searching for a suitable candidate as
described in @ref{set libthread-db-search-path}.  For more information
about the tests, see @ref{maint check libthread-db}.

@kindex maint space
@cindex memory used by commands
@item maint space @var{value}
An alias for @code{maint set per-command space}.
A non-zero value enables it, zero disables it.

@kindex maint time
@cindex time of command execution
@item maint time @var{value}
An alias for @code{maint set per-command time}.
A non-zero value enables it, zero disables it.

@kindex maint translate-address
@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
Find the symbol stored at the location specified by the address
@var{addr} and an optional section name @var{section}.  If found,
@value{GDBN} prints the name of the closest symbol and an offset from
the symbol's location to the specified address.  This is similar to
the @code{info address} command (@pxref{Symbols}), except that this
command also allows to find symbols in other sections.

If section was not specified, the section in which the symbol was found
is also printed.  For dynamically linked executables, the name of
executable or shared library containing the symbol is printed as well.

@kindex maint test-options
@item maint test-options require-delimiter
@itemx maint test-options unknown-is-error
@itemx maint test-options unknown-is-operand
These commands are used by the testsuite to validate the command
options framework.  The @code{require-delimiter} variant requires a
double-dash delimiter to indicate end of options.  The
@code{unknown-is-error} and @code{unknown-is-operand} do not.  The
@code{unknown-is-error} variant throws an error on unknown option,
while @code{unknown-is-operand} treats unknown options as the start of
the command's operands.  When run, the commands output the result of
the processed options.  When completed, the commands store the
internal result of completion in a variable exposed by the @code{maint
show test-options-completion-result} command.

@kindex maint show test-options-completion-result
@item maint show test-options-completion-result
Shows the result of completing the @code{maint test-options}
subcommands.  This is used by the testsuite to validate completion
support in the command options framework.

@kindex maint set test-settings
@kindex maint show test-settings
@item maint set test-settings @var{kind}
@itemx maint show test-settings @var{kind}
These are representative commands for each @var{kind} of setting type
@value{GDBN} supports.  They are used by the testsuite for exercising
the settings infrastructure.

@kindex maint with
@item maint with @var{setting} [@var{value}] [-- @var{command}]
Like the @code{with} command, but works with @code{maintenance set}
variables.  This is used by the testsuite to exercise the @code{with}
command's infrastructure.

@end table

The following command is useful for non-interactive invocations of
@value{GDBN}, such as in the test suite.

@table @code
@item set watchdog @var{nsec}
@kindex set watchdog
@cindex watchdog timer
@cindex timeout for commands
Set the maximum number of seconds @value{GDBN} will wait for the
target operation to finish.  If this time expires, @value{GDBN}
reports and error and the command is aborted.

@item show watchdog
Show the current setting of the target wait timeout.
@end table

@node Remote Protocol
@appendix @value{GDBN} Remote Serial Protocol

@menu
* Overview::
* Packets::
* Stop Reply Packets::
* General Query Packets::
* Architecture-Specific Protocol Details::
* Tracepoint Packets::
* Host I/O Packets::
* Interrupts::
* Notification Packets::
* Remote Non-Stop::
* Packet Acknowledgment::
* Examples::
* File-I/O Remote Protocol Extension::
* Library List Format::
* Library List Format for SVR4 Targets::
* Memory Map Format::
* Thread List Format::
* Traceframe Info Format::
* Branch Trace Format::
* Branch Trace Configuration Format::
@end menu

@node Overview
@section Overview

There may be occasions when you need to know something about the
protocol---for example, if there is only one serial port to your target
machine, you might want your program to do something special if it
recognizes a packet meant for @value{GDBN}.

In the examples below, @samp{->} and @samp{<-} are used to indicate
transmitted and received data, respectively.

@cindex protocol, @value{GDBN} remote serial
@cindex serial protocol, @value{GDBN} remote
@cindex remote serial protocol
All @value{GDBN} commands and responses (other than acknowledgments
and notifications, see @ref{Notification Packets}) are sent as a
@var{packet}.  A @var{packet} is introduced with the character
@samp{$}, the actual @var{packet-data}, and the terminating character
@samp{#} followed by a two-digit @var{checksum}:

@smallexample
@code{$}@var{packet-data}@code{#}@var{checksum}
@end smallexample
@noindent

@cindex checksum, for @value{GDBN} remote
@noindent
The two-digit @var{checksum} is computed as the modulo 256 sum of all
characters between the leading @samp{$} and the trailing @samp{#} (an
eight bit unsigned checksum).

Implementors should note that prior to @value{GDBN} 5.0 the protocol
specification also included an optional two-digit @var{sequence-id}:

@smallexample
@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
@end smallexample

@cindex sequence-id, for @value{GDBN} remote
@noindent
That @var{sequence-id} was appended to the acknowledgment.  @value{GDBN}
has never output @var{sequence-id}s.  Stubs that handle packets added
since @value{GDBN} 5.0 must not accept @var{sequence-id}.

When either the host or the target machine receives a packet, the first
response expected is an acknowledgment: either @samp{+} (to indicate
the package was received correctly) or @samp{-} (to request
retransmission):

@smallexample
-> @code{$}@var{packet-data}@code{#}@var{checksum}
<- @code{+}
@end smallexample
@noindent

The @samp{+}/@samp{-} acknowledgments can be disabled
once a connection is established.
@xref{Packet Acknowledgment}, for details.

The host (@value{GDBN}) sends @var{command}s, and the target (the
debugging stub incorporated in your program) sends a @var{response}.  In
the case of step and continue @var{command}s, the response is only sent
when the operation has completed, and the target has again stopped all
threads in all attached processes.  This is the default all-stop mode
behavior, but the remote protocol also supports @value{GDBN}'s non-stop 
execution mode; see @ref{Remote Non-Stop}, for details.

@var{packet-data} consists of a sequence of characters with the
exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
exceptions).

@cindex remote protocol, field separator
Fields within the packet should be separated using @samp{,} @samp{;} or
@samp{:}.  Except where otherwise noted all numbers are represented in
@sc{hex} with leading zeros suppressed.

Implementors should note that prior to @value{GDBN} 5.0, the character
@samp{:} could not appear as the third character in a packet (as it
would potentially conflict with the @var{sequence-id}).

@cindex remote protocol, binary data
@anchor{Binary Data}
Binary data in most packets is encoded either as two hexadecimal
digits per byte of binary data.  This allowed the traditional remote
protocol to work over connections which were only seven-bit clean.
Some packets designed more recently assume an eight-bit clean
connection, and use a more efficient encoding to send and receive
binary data.

The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
as an escape character.  Any escaped byte is transmitted as the escape
character followed by the original character XORed with @code{0x20}.
For example, the byte @code{0x7d} would be transmitted as the two
bytes @code{0x7d 0x5d}.  The bytes @code{0x23} (@sc{ascii} @samp{#}),
@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
@samp{@}}) must always be escaped.  Responses sent by the stub
must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
is not interpreted as the start of a run-length encoded sequence
(described next).

Response @var{data} can be run-length encoded to save space.
Run-length encoding replaces runs of identical characters with one
instance of the repeated character, followed by a @samp{*} and a
repeat count.  The repeat count is itself sent encoded, to avoid
binary characters in @var{data}: a value of @var{n} is sent as
@code{@var{n}+29}.  For a repeat count greater or equal to 3, this
produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
code 32) for a repeat count of 3.  (This is because run-length
encoding starts to win for counts 3 or more.)  Thus, for example,
@samp{0* } is a run-length encoding of ``0000'': the space character
after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
3}} more times.

The printable characters @samp{#} and @samp{$} or with a numeric value
greater than 126 must not be used.  Runs of six repeats (@samp{#}) or
seven repeats (@samp{$}) can be expanded using a repeat count of only
five (@samp{"}).  For example, @samp{00000000} can be encoded as
@samp{0*"00}.

The error response returned for some packets includes a two character
error number.  That number is not well defined.

@cindex empty response, for unsupported packets
For any @var{command} not supported by the stub, an empty response
(@samp{$#00}) should be returned.  That way it is possible to extend the
protocol.  A newer @value{GDBN} can tell if a packet is supported based
on that response.

At a minimum, a stub is required to support the @samp{g} and @samp{G}
commands for register access, and the @samp{m} and @samp{M} commands
for memory access.  Stubs that only control single-threaded targets
can implement run control with the @samp{c} (continue), and @samp{s}
(step) commands.  Stubs that support multi-threading targets should
support the @samp{vCont} command.  All other commands are optional.

@node Packets
@section Packets

The following table provides a complete list of all currently defined
@var{command}s and their corresponding response @var{data}.
@xref{File-I/O Remote Protocol Extension}, for details about the File
I/O extension of the remote protocol.

Each packet's description has a template showing the packet's overall
syntax, followed by an explanation of the packet's meaning.  We
include spaces in some of the templates for clarity; these are not
part of the packet's syntax.  No @value{GDBN} packet uses spaces to
separate its components.  For example, a template like @samp{foo
@var{bar} @var{baz}} describes a packet beginning with the three ASCII
bytes @samp{foo}, followed by a @var{bar}, followed directly by a
@var{baz}.  @value{GDBN} does not transmit a space character between the
@samp{foo} and the @var{bar}, or between the @var{bar} and the
@var{baz}.

@cindex @var{thread-id}, in remote protocol
@anchor{thread-id syntax} 
Several packets and replies include a @var{thread-id} field to identify
a thread.  Normally these are positive numbers with a target-specific
interpretation, formatted as big-endian hex strings.  A @var{thread-id}
can also be a literal @samp{-1} to indicate all threads, or @samp{0} to
pick any thread.

In addition, the remote protocol supports a multiprocess feature in
which the @var{thread-id} syntax is extended to optionally include both
process and thread ID fields, as @samp{p@var{pid}.@var{tid}}.
The @var{pid} (process) and @var{tid} (thread) components each have the
format described above: a positive number with target-specific
interpretation formatted as a big-endian hex string, literal @samp{-1}
to indicate all processes or threads (respectively), or @samp{0} to
indicate an arbitrary process or thread.  Specifying just a process, as
@samp{p@var{pid}}, is equivalent to @samp{p@var{pid}.-1}.  It is an
error to specify all processes but a specific thread, such as
@samp{p-1.@var{tid}}.  Note that the @samp{p} prefix is @emph{not} used
for those packets and replies explicitly documented to include a process
ID, rather than a @var{thread-id}.

The multiprocess @var{thread-id} syntax extensions are only used if both
@value{GDBN} and the stub report support for the @samp{multiprocess}
feature using @samp{qSupported}.  @xref{multiprocess extensions}, for
more information.

Note that all packet forms beginning with an upper- or lower-case
letter, other than those described here, are reserved for future use.

Here are the packet descriptions.

@table @samp

@item !
@cindex @samp{!} packet
@anchor{extended mode}
Enable extended mode.  In extended mode, the remote server is made
persistent.  The @samp{R} packet is used to restart the program being
debugged.

Reply:
@table @samp
@item OK
The remote target both supports and has enabled extended mode.
@end table

@item ?
@cindex @samp{?} packet
@anchor{? packet}
Indicate the reason the target halted.  The reply is the same as for
step and continue.  This packet has a special interpretation when the
target is in non-stop mode; see @ref{Remote Non-Stop}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item A @var{arglen},@var{argnum},@var{arg},@dots{}
@cindex @samp{A} packet
Initialized @code{argv[]} array passed into program. @var{arglen}
specifies the number of bytes in the hex encoded byte stream
@var{arg}.  See @code{gdbserver} for more details.

Reply:
@table @samp
@item OK
The arguments were set.
@item E @var{NN}
An error occurred.
@end table

@item b @var{baud}
@cindex @samp{b} packet
(Don't use this packet; its behavior is not well-defined.)
Change the serial line speed to @var{baud}.

JTC: @emph{When does the transport layer state change?  When it's
received, or after the ACK is transmitted.  In either case, there are
problems if the command or the acknowledgment packet is dropped.}

Stan: @emph{If people really wanted to add something like this, and get
it working for the first time, they ought to modify ser-unix.c to send
some kind of out-of-band message to a specially-setup stub and have the
switch happen "in between" packets, so that from remote protocol's point
of view, nothing actually happened.}

@item B @var{addr},@var{mode}
@cindex @samp{B} packet
Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
breakpoint at @var{addr}.

Don't use this packet.  Use the @samp{Z} and @samp{z} packets instead
(@pxref{insert breakpoint or watchpoint packet}).

@cindex @samp{bc} packet
@anchor{bc}
@item bc
Backward continue.  Execute the target system in reverse.  No parameter.
@xref{Reverse Execution}, for more information.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@cindex @samp{bs} packet
@anchor{bs}
@item bs
Backward single step.  Execute one instruction in reverse.  No parameter.
@xref{Reverse Execution}, for more information.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item c @r{[}@var{addr}@r{]}
@cindex @samp{c} packet
Continue at @var{addr}, which is the address to resume.  If @var{addr}
is omitted, resume at current address.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item C @var{sig}@r{[};@var{addr}@r{]}
@cindex @samp{C} packet
Continue with signal @var{sig} (hex signal number).  If
@samp{;@var{addr}} is omitted, resume at same address.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item d
@cindex @samp{d} packet
Toggle debug flag.

Don't use this packet; instead, define a general set packet
(@pxref{General Query Packets}).

@item D
@itemx D;@var{pid}
@cindex @samp{D} packet
The first form of the packet is used to detach @value{GDBN} from the 
remote system.  It is sent to the remote target
before @value{GDBN} disconnects via the @code{detach} command.

The second form, including a process ID, is used when multiprocess
protocol extensions are enabled (@pxref{multiprocess extensions}), to
detach only a specific process.  The @var{pid} is specified as a
big-endian hex string.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item F @var{RC},@var{EE},@var{CF};@var{XX}
@cindex @samp{F} packet
A reply from @value{GDBN} to an @samp{F} packet sent by the target.
This is part of the File-I/O protocol extension.  @xref{File-I/O
Remote Protocol Extension}, for the specification.

@item g
@anchor{read registers packet}
@cindex @samp{g} packet
Read general registers.

Reply:
@table @samp
@item @var{XX@dots{}}
Each byte of register data is described by two hex digits.  The bytes
with the register are transmitted in target byte order.  The size of
each register and their position within the @samp{g} packet are
determined by the @value{GDBN} internal gdbarch functions
@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}.

When reading registers from a trace frame (@pxref{Analyze Collected
Data,,Using the Collected Data}), the stub may also return a string of
literal @samp{x}'s in place of the register data digits, to indicate
that the corresponding register has not been collected, thus its value
is unavailable.  For example, for an architecture with 4 registers of
4 bytes each, the following reply indicates to @value{GDBN} that
registers 0 and 2 have not been collected, while registers 1 and 3
have been collected, and both have zero value:

@smallexample
-> @code{g}
<- @code{xxxxxxxx00000000xxxxxxxx00000000}
@end smallexample

@item E @var{NN}
for an error.
@end table

@item G @var{XX@dots{}}
@cindex @samp{G} packet
Write general registers.  @xref{read registers packet}, for a
description of the @var{XX@dots{}} data.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item H @var{op} @var{thread-id}
@cindex @samp{H} packet
Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
@samp{G}, et.al.).  Depending on the operation to be performed, @var{op}
should be @samp{c} for step and continue operations (note that this
is deprecated, supporting the @samp{vCont} command is a better
option), and @samp{g} for other operations.  The thread designator
@var{thread-id} has the format and interpretation described in
@ref{thread-id syntax}.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@c FIXME: JTC:
@c   'H': How restrictive (or permissive) is the thread model.  If a
@c        thread is selected and stopped, are other threads allowed
@c        to continue to execute?  As I mentioned above, I think the
@c        semantics of each command when a thread is selected must be
@c        described.  For example:
@c
@c        'g':    If the stub supports threads and a specific thread is
@c                selected, returns the register block from that thread;
@c                otherwise returns current registers.
@c
@c        'G'     If the stub supports threads and a specific thread is
@c                selected, sets the registers of the register block of
@c                that thread; otherwise sets current registers.

@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
@anchor{cycle step packet}
@cindex @samp{i} packet
Step the remote target by a single clock cycle.  If @samp{,@var{nnn}} is
present, cycle step @var{nnn} cycles.  If @var{addr} is present, cycle
step starting at that address.

@item I
@cindex @samp{I} packet
Signal, then cycle step.  @xref{step with signal packet}.  @xref{cycle
step packet}.

@item k
@cindex @samp{k} packet
Kill request.

The exact effect of this packet is not specified.

For a bare-metal target, it may power cycle or reset the target
system.  For that reason, the @samp{k} packet has no reply.

For a single-process target, it may kill that process if possible.

A multiple-process target may choose to kill just one process, or all
that are under @value{GDBN}'s control.  For more precise control, use
the vKill packet (@pxref{vKill packet}).

If the target system immediately closes the connection in response to
@samp{k}, @value{GDBN} does not consider the lack of packet
acknowledgment to be an error, and assumes the kill was successful.

If connected using @kbd{target extended-remote}, and the target does
not close the connection in response to a kill request, @value{GDBN}
probes the target state as if a new connection was opened
(@pxref{? packet}).

@item m @var{addr},@var{length}
@cindex @samp{m} packet
Read @var{length} addressable memory units starting at address @var{addr}
(@pxref{addressable memory unit}).  Note that @var{addr} may not be aligned to
any particular boundary.

The stub need not use any particular size or alignment when gathering
data from memory for the response; even if @var{addr} is word-aligned
and @var{length} is a multiple of the word size, the stub is free to
use byte accesses, or not.  For this reason, this packet may not be
suitable for accessing memory-mapped I/O devices.
@cindex alignment of remote memory accesses
@cindex size of remote memory accesses
@cindex memory, alignment and size of remote accesses

Reply:
@table @samp
@item @var{XX@dots{}}
Memory contents; each byte is transmitted as a two-digit hexadecimal number.
The reply may contain fewer addressable memory units than requested if the
server was able to read only part of the region of memory.
@item E @var{NN}
@var{NN} is errno
@end table

@item M @var{addr},@var{length}:@var{XX@dots{}}
@cindex @samp{M} packet
Write @var{length} addressable memory units starting at address @var{addr}
(@pxref{addressable memory unit}).  The data is given by @var{XX@dots{}}; each
byte is transmitted as a two-digit hexadecimal number.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error (this includes the case where only part of the data was
written).
@end table

@item p @var{n}
@cindex @samp{p} packet
Read the value of register @var{n}; @var{n} is in hex.
@xref{read registers packet}, for a description of how the returned
register value is encoded.

Reply:
@table @samp
@item @var{XX@dots{}}
the register's value
@item E @var{NN}
for an error
@item @w{}
Indicating an unrecognized @var{query}.
@end table

@item P @var{n@dots{}}=@var{r@dots{}}
@anchor{write register packet}
@cindex @samp{P} packet
Write register @var{n@dots{}} with value @var{r@dots{}}.  The register
number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
digits for each byte in the register (target byte order).

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item q @var{name} @var{params}@dots{}
@itemx Q @var{name} @var{params}@dots{}
@cindex @samp{q} packet
@cindex @samp{Q} packet
General query (@samp{q}) and set (@samp{Q}).  These packets are
described fully in @ref{General Query Packets}.

@item r
@cindex @samp{r} packet
Reset the entire system.

Don't use this packet; use the @samp{R} packet instead.

@item R @var{XX}
@cindex @samp{R} packet
Restart the program being debugged.  The @var{XX}, while needed, is ignored.
This packet is only available in extended mode (@pxref{extended mode}).

The @samp{R} packet has no reply.

@item s @r{[}@var{addr}@r{]}
@cindex @samp{s} packet
Single step, resuming at @var{addr}.  If
@var{addr} is omitted, resume at same address.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item S @var{sig}@r{[};@var{addr}@r{]}
@anchor{step with signal packet}
@cindex @samp{S} packet
Step with signal.  This is analogous to the @samp{C} packet, but
requests a single-step, rather than a normal resumption of execution.

This packet is deprecated for multi-threading support.  @xref{vCont
packet}.

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item t @var{addr}:@var{PP},@var{MM}
@cindex @samp{t} packet
Search backwards starting at address @var{addr} for a match with pattern
@var{PP} and mask @var{MM}, both of which are are 4 byte long.
There must be at least 3 digits in @var{addr}.

@item T @var{thread-id}
@cindex @samp{T} packet
Find out if the thread @var{thread-id} is alive.  @xref{thread-id syntax}.

Reply:
@table @samp
@item OK
thread is still alive
@item E @var{NN}
thread is dead
@end table

@item v
Packets starting with @samp{v} are identified by a multi-letter name,
up to the first @samp{;} or @samp{?} (or the end of the packet).

@item vAttach;@var{pid}
@cindex @samp{vAttach} packet
Attach to a new process with the specified process ID @var{pid}.
The process ID is a
hexadecimal integer identifying the process.  In all-stop mode, all
threads in the attached process are stopped; in non-stop mode, it may be
attached without being stopped if that is supported by the target.

@c In non-stop mode, on a successful vAttach, the stub should set the
@c current thread to a thread of the newly-attached process.  After
@c attaching, GDB queries for the attached process's thread ID with qC.
@c Also note that, from a user perspective, whether or not the 
@c target is stopped on attach in non-stop mode depends on whether you 
@c use the foreground or background version of the attach command, not 
@c on what vAttach does; GDB does the right thing with respect to either 
@c stopping or restarting threads.

This packet is only available in extended mode (@pxref{extended mode}).

Reply:
@table @samp
@item E @var{nn}
for an error
@item @r{Any stop packet}
for success in all-stop mode (@pxref{Stop Reply Packets})
@item OK
for success in non-stop mode (@pxref{Remote Non-Stop})
@end table

@item vCont@r{[};@var{action}@r{[}:@var{thread-id}@r{]]}@dots{}
@cindex @samp{vCont} packet
@anchor{vCont packet}
Resume the inferior, specifying different actions for each thread.

For each inferior thread, the leftmost action with a matching
@var{thread-id} is applied.  Threads that don't match any action
remain in their current state.  Thread IDs are specified using the
syntax described in @ref{thread-id syntax}.  If multiprocess
extensions (@pxref{multiprocess extensions}) are supported, actions
can be specified to match all threads in a process by using the
@samp{p@var{pid}.-1} form of the @var{thread-id}.  An action with no
@var{thread-id} matches all threads.  Specifying no actions is an
error.

Currently supported actions are:

@table @samp
@item c
Continue.
@item C @var{sig}
Continue with signal @var{sig}.  The signal @var{sig} should be two hex digits.
@item s
Step.
@item S @var{sig}
Step with signal @var{sig}.  The signal @var{sig} should be two hex digits.
@item t
Stop.
@item r @var{start},@var{end}
Step once, and then keep stepping as long as the thread stops at
addresses between @var{start} (inclusive) and @var{end} (exclusive).
The remote stub reports a stop reply when either the thread goes out
of the range or is stopped due to an unrelated reason, such as hitting
a breakpoint.  @xref{range stepping}.

If the range is empty (@var{start} == @var{end}), then the action
becomes equivalent to the @samp{s} action.  In other words,
single-step once, and report the stop (even if the stepped instruction
jumps to @var{start}).

(A stop reply may be sent at any point even if the PC is still within
the stepping range; for example, it is valid to implement this packet
in a degenerate way as a single instruction step operation.)

@end table

The optional argument @var{addr} normally associated with the 
@samp{c}, @samp{C}, @samp{s}, and @samp{S} packets is
not supported in @samp{vCont}.

The @samp{t} action is only relevant in non-stop mode
(@pxref{Remote Non-Stop}) and may be ignored by the stub otherwise.
A stop reply should be generated for any affected thread not already stopped.
When a thread is stopped by means of a @samp{t} action,
the corresponding stop reply should indicate that the thread has stopped with
signal @samp{0}, regardless of whether the target uses some other signal
as an implementation detail.

The server must ignore @samp{c}, @samp{C}, @samp{s}, @samp{S}, and
@samp{r} actions for threads that are already running.  Conversely,
the server must ignore @samp{t} actions for threads that are already
stopped.

@emph{Note:} In non-stop mode, a thread is considered running until
@value{GDBN} acknowledges an asynchronous stop notification for it with
the @samp{vStopped} packet (@pxref{Remote Non-Stop}).

The stub must support @samp{vCont} if it reports support for
multiprocess extensions (@pxref{multiprocess extensions}).

Reply:
@xref{Stop Reply Packets}, for the reply specifications.

@item vCont?
@cindex @samp{vCont?} packet
Request a list of actions supported by the @samp{vCont} packet.

Reply:
@table @samp
@item vCont@r{[};@var{action}@dots{}@r{]}
The @samp{vCont} packet is supported.  Each @var{action} is a supported
command in the @samp{vCont} packet.
@item @w{}
The @samp{vCont} packet is not supported.
@end table

@anchor{vCtrlC packet}
@item vCtrlC
@cindex @samp{vCtrlC} packet
Interrupt remote target as if a control-C was pressed on the remote
terminal.  This is the equivalent to reacting to the @code{^C}
(@samp{\003}, the control-C character) character in all-stop mode
while the target is running, except this works in non-stop mode.
@xref{interrupting remote targets}, for more info on the all-stop
variant.

Reply:
@table @samp
@item E @var{nn}
for an error
@item OK
for success
@end table

@item vFile:@var{operation}:@var{parameter}@dots{}
@cindex @samp{vFile} packet
Perform a file operation on the target system.  For details,
see @ref{Host I/O Packets}.

@item vFlashErase:@var{addr},@var{length}
@cindex @samp{vFlashErase} packet
Direct the stub to erase @var{length} bytes of flash starting at
@var{addr}.  The region may enclose any number of flash blocks, but
its start and end must fall on block boundaries, as indicated by the
flash block size appearing in the memory map (@pxref{Memory Map
Format}).  @value{GDBN} groups flash memory programming operations
together, and sends a @samp{vFlashDone} request after each group; the
stub is allowed to delay erase operation until the @samp{vFlashDone}
packet is received.

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item vFlashWrite:@var{addr}:@var{XX@dots{}}
@cindex @samp{vFlashWrite} packet
Direct the stub to write data to flash address @var{addr}.  The data
is passed in binary form using the same encoding as for the @samp{X}
packet (@pxref{Binary Data}).  The memory ranges specified by
@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
not overlap, and must appear in order of increasing addresses
(although @samp{vFlashErase} packets for higher addresses may already
have been received; the ordering is guaranteed only between
@samp{vFlashWrite} packets).  If a packet writes to an address that was
neither erased by a preceding @samp{vFlashErase} packet nor by some other
target-specific method, the results are unpredictable.


Reply:
@table @samp
@item OK
for success
@item E.memtype
for vFlashWrite addressing non-flash memory
@item E @var{NN}
for an error
@end table

@item vFlashDone
@cindex @samp{vFlashDone} packet
Indicate to the stub that flash programming operation is finished.
The stub is permitted to delay or batch the effects of a group of
@samp{vFlashErase} and @samp{vFlashWrite} packets until a
@samp{vFlashDone} packet is received.  The contents of the affected
regions of flash memory are unpredictable until the @samp{vFlashDone}
request is completed.

@item vKill;@var{pid}
@cindex @samp{vKill} packet
@anchor{vKill packet}
Kill the process with the specified process ID @var{pid}, which is a
hexadecimal integer identifying the process.  This packet is used in
preference to @samp{k} when multiprocess protocol extensions are
supported; see @ref{multiprocess extensions}.

Reply:
@table @samp
@item E @var{nn}
for an error
@item OK
for success
@end table

@item vMustReplyEmpty
@cindex @samp{vMustReplyEmpty} packet
The correct reply to an unknown @samp{v} packet is to return the empty
string, however, some older versions of @command{gdbserver} would
incorrectly return @samp{OK} for unknown @samp{v} packets.

The @samp{vMustReplyEmpty} is used as a feature test to check how
@command{gdbserver} handles unknown packets, it is important that this
packet be handled in the same way as other unknown @samp{v} packets.
If this packet is handled differently to other unknown @samp{v}
packets then it is possible that @value{GDBN} may run into problems in
other areas, specifically around use of @samp{vFile:setfs:}.

@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
@cindex @samp{vRun} packet
Run the program @var{filename}, passing it each @var{argument} on its
command line.  The file and arguments are hex-encoded strings.  If
@var{filename} is an empty string, the stub may use a default program
(e.g.@: the last program run).  The program is created in the stopped
state.

@c FIXME:  What about non-stop mode?

This packet is only available in extended mode (@pxref{extended mode}).

Reply:
@table @samp
@item E @var{nn}
for an error
@item @r{Any stop packet}
for success (@pxref{Stop Reply Packets})
@end table

@item vStopped
@cindex @samp{vStopped} packet
@xref{Notification Packets}.

@item X @var{addr},@var{length}:@var{XX@dots{}}
@anchor{X packet}
@cindex @samp{X} packet
Write data to memory, where the data is transmitted in binary.
Memory is specified by its address @var{addr} and number of addressable memory
units @var{length} (@pxref{addressable memory unit});
@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).

Reply:
@table @samp
@item OK
for success
@item E @var{NN}
for an error
@end table

@item z @var{type},@var{addr},@var{kind}
@itemx Z @var{type},@var{addr},@var{kind}
@anchor{insert breakpoint or watchpoint packet}
@cindex @samp{z} packet
@cindex @samp{Z} packets
Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
watchpoint starting at address @var{address} of kind @var{kind}.

Each breakpoint and watchpoint packet @var{type} is documented
separately.

@emph{Implementation notes: A remote target shall return an empty string
for an unrecognized breakpoint or watchpoint packet @var{type}.  A
remote target shall support either both or neither of a given
@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair.  To
avoid potential problems with duplicate packets, the operations should
be implemented in an idempotent way.}

@item z0,@var{addr},@var{kind}
@itemx Z0,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}@r{[};cmds:@var{persist},@var{cmd_list}@dots{}@r{]}
@cindex @samp{z0} packet
@cindex @samp{Z0} packet
Insert (@samp{Z0}) or remove (@samp{z0}) a software breakpoint at address
@var{addr} of type @var{kind}.

A software breakpoint is implemented by replacing the instruction at
@var{addr} with a software breakpoint or trap instruction.  The
@var{kind} is target-specific and typically indicates the size of the
breakpoint in bytes that should be inserted.  E.g., the @sc{arm} and
@sc{mips} can insert either a 2 or 4 byte breakpoint.  Some
architectures have additional meanings for @var{kind}
(@pxref{Architecture-Specific Protocol Details}); if no
architecture-specific value is being used, it should be @samp{0}.
@var{kind} is hex-encoded.  @var{cond_list} is an optional list of
conditional expressions in bytecode form that should be evaluated on
the target's side.  These are the conditions that should be taken into
consideration when deciding if the breakpoint trigger should be
reported back to @value{GDBN}.

See also the @samp{swbreak} stop reason (@pxref{swbreak stop reason})
for how to best report a software breakpoint event to @value{GDBN}.

The @var{cond_list} parameter is comprised of a series of expressions,
concatenated without separators. Each expression has the following form:

@table @samp

@item X @var{len},@var{expr}
@var{len} is the length of the bytecode expression and @var{expr} is the
actual conditional expression in bytecode form.

@end table

The optional @var{cmd_list} parameter introduces commands that may be
run on the target, rather than being reported back to @value{GDBN}.
The parameter starts with a numeric flag @var{persist}; if the flag is
nonzero, then the breakpoint may remain active and the commands
continue to be run even when @value{GDBN} disconnects from the target.
Following this flag is a series of expressions concatenated with no
separators.  Each expression has the following form:

@table @samp

@item X @var{len},@var{expr}
@var{len} is the length of the bytecode expression and @var{expr} is the
actual commands expression in bytecode form.

@end table

@emph{Implementation note: It is possible for a target to copy or move
code that contains software breakpoints (e.g., when implementing
overlays).  The behavior of this packet, in the presence of such a
target, is not defined.}

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z1,@var{addr},@var{kind}
@itemx Z1,@var{addr},@var{kind}@r{[};@var{cond_list}@dots{}@r{]}@r{[};cmds:@var{persist},@var{cmd_list}@dots{}@r{]}
@cindex @samp{z1} packet
@cindex @samp{Z1} packet
Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
address @var{addr}.

A hardware breakpoint is implemented using a mechanism that is not
dependent on being able to modify the target's memory.  The
@var{kind}, @var{cond_list}, and @var{cmd_list} arguments have the
same meaning as in @samp{Z0} packets.

@emph{Implementation note: A hardware breakpoint is not affected by code
movement.}

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z2,@var{addr},@var{kind}
@itemx Z2,@var{addr},@var{kind}
@cindex @samp{z2} packet
@cindex @samp{Z2} packet
Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint at @var{addr}.
The number of bytes to watch is specified by @var{kind}.

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z3,@var{addr},@var{kind}
@itemx Z3,@var{addr},@var{kind}
@cindex @samp{z3} packet
@cindex @samp{Z3} packet
Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint at @var{addr}.
The number of bytes to watch is specified by @var{kind}.

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@item z4,@var{addr},@var{kind}
@itemx Z4,@var{addr},@var{kind}
@cindex @samp{z4} packet
@cindex @samp{Z4} packet
Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint at @var{addr}.
The number of bytes to watch is specified by @var{kind}.

Reply:
@table @samp
@item OK
success
@item @w{}
not supported
@item E @var{NN}
for an error
@end table

@end table

@node Stop Reply Packets
@section Stop Reply Packets
@cindex stop reply packets

The @samp{C}, @samp{c}, @samp{S}, @samp{s}, @samp{vCont},
@samp{vAttach}, @samp{vRun}, @samp{vStopped}, and @samp{?} packets can
receive any of the below as a reply.  Except for @samp{?}
and @samp{vStopped}, that reply is only returned
when the target halts.  In the below the exact meaning of @dfn{signal
number} is defined by the header @file{include/gdb/signals.h} in the
@value{GDBN} source code.

In non-stop mode, the server will simply reply @samp{OK} to commands
such as @samp{vCont}; any stop will be the subject of a future
notification.  @xref{Remote Non-Stop}.

As in the description of request packets, we include spaces in the
reply templates for clarity; these are not part of the reply packet's
syntax.  No @value{GDBN} stop reply packet uses spaces to separate its
components.

@table @samp

@item S @var{AA}
The program received signal number @var{AA} (a two-digit hexadecimal
number).  This is equivalent to a @samp{T} response with no
@var{n}:@var{r} pairs.

@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
@cindex @samp{T} packet reply
The program received signal number @var{AA} (a two-digit hexadecimal
number).  This is equivalent to an @samp{S} response, except that the
@samp{@var{n}:@var{r}} pairs can carry values of important registers
and other information directly in the stop reply packet, reducing
round-trip latency.  Single-step and breakpoint traps are reported
this way.  Each @samp{@var{n}:@var{r}} pair is interpreted as follows:

@itemize @bullet
@item
If @var{n} is a hexadecimal number, it is a register number, and the
corresponding @var{r} gives that register's value.  The data @var{r} is a
series of bytes in target byte order, with each byte given by a
two-digit hex number.

@item
If @var{n} is @samp{thread}, then @var{r} is the @var{thread-id} of
the stopped thread, as specified in @ref{thread-id syntax}.

@item
If @var{n} is @samp{core}, then @var{r} is the hexadecimal number of
the core on which the stop event was detected.

@item
If @var{n} is a recognized @dfn{stop reason}, it describes a more
specific event that stopped the target.  The currently defined stop
reasons are listed below.  The @var{aa} should be @samp{05}, the trap
signal.  At most one stop reason should be present.

@item
Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
and go on to the next; this allows us to extend the protocol in the
future.
@end itemize

The currently defined stop reasons are:

@table @samp
@item watch
@itemx rwatch
@itemx awatch
The packet indicates a watchpoint hit, and @var{r} is the data address, in
hex.

@item syscall_entry
@itemx syscall_return
The packet indicates a syscall entry or return, and @var{r} is the
syscall number, in hex.

@cindex shared library events, remote reply
@item library
The packet indicates that the loaded libraries have changed.
@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
list of loaded libraries.  The @var{r} part is ignored.

@cindex replay log events, remote reply
@item replaylog
The packet indicates that the target cannot continue replaying 
logged execution events, because it has reached the end (or the
beginning when executing backward) of the log.  The value of @var{r}
will be either @samp{begin} or @samp{end}.  @xref{Reverse Execution}, 
for more information.

@item swbreak
@anchor{swbreak stop reason}
The packet indicates a software breakpoint instruction was executed,
irrespective of whether it was @value{GDBN} that planted the
breakpoint or the breakpoint is hardcoded in the program.  The @var{r}
part must be left empty.

On some architectures, such as x86, at the architecture level, when a
breakpoint instruction executes the program counter points at the
breakpoint address plus an offset.  On such targets, the stub is
responsible for adjusting the PC to point back at the breakpoint
address.

This packet should not be sent by default; older @value{GDBN} versions
did not support it.  @value{GDBN} requests it, by supplying an
appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
remote stub must also supply the appropriate @samp{qSupported} feature
indicating support.

This packet is required for correct non-stop mode operation.

@item hwbreak
The packet indicates the target stopped for a hardware breakpoint.
The @var{r} part must be left empty.

The same remarks about @samp{qSupported} and non-stop mode above
apply.

@cindex fork events, remote reply
@item fork
The packet indicates that @code{fork} was called, and @var{r}
is the thread ID of the new child process.  Refer to
@ref{thread-id syntax} for the format of the @var{thread-id}
field.  This packet is only applicable to targets that support
fork events.

This packet should not be sent by default; older @value{GDBN} versions
did not support it.  @value{GDBN} requests it, by supplying an
appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
remote stub must also supply the appropriate @samp{qSupported} feature
indicating support.

@cindex vfork events, remote reply
@item vfork
The packet indicates that @code{vfork} was called, and @var{r}
is the thread ID of the new child process. Refer to
@ref{thread-id syntax} for the format of the @var{thread-id}
field.  This packet is only applicable to targets that support
vfork events.

This packet should not be sent by default; older @value{GDBN} versions
did not support it.  @value{GDBN} requests it, by supplying an
appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
remote stub must also supply the appropriate @samp{qSupported} feature
indicating support.

@cindex vforkdone events, remote reply
@item vforkdone
The packet indicates that a child process created by a vfork
has either called @code{exec} or terminated, so that the
address spaces of the parent and child process are no longer
shared. The @var{r} part is ignored.  This packet is only
applicable to targets that support vforkdone events.

This packet should not be sent by default; older @value{GDBN} versions
did not support it.  @value{GDBN} requests it, by supplying an
appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
remote stub must also supply the appropriate @samp{qSupported} feature
indicating support.

@cindex exec events, remote reply
@item exec
The packet indicates that @code{execve} was called, and @var{r}
is the absolute pathname of the file that was executed, in hex.
This packet is only applicable to targets that support exec events.

This packet should not be sent by default; older @value{GDBN} versions
did not support it.  @value{GDBN} requests it, by supplying an
appropriate @samp{qSupported} feature (@pxref{qSupported}).  The
remote stub must also supply the appropriate @samp{qSupported} feature
indicating support.

@cindex thread create event, remote reply
@anchor{thread create event}
@item create
The packet indicates that the thread was just created.  The new thread
is stopped until @value{GDBN} sets it running with a resumption packet
(@pxref{vCont packet}).  This packet should not be sent by default;
@value{GDBN} requests it with the @ref{QThreadEvents} packet.  See
also the @samp{w} (@pxref{thread exit event}) remote reply below.  The
@var{r} part is ignored.

@end table

@item W @var{AA}
@itemx W @var{AA} ; process:@var{pid}
The process exited, and @var{AA} is the exit status.  This is only
applicable to certain targets.

The second form of the response, including the process ID of the
exited process, can be used only when @value{GDBN} has reported
support for multiprocess protocol extensions; see @ref{multiprocess
extensions}.  Both @var{AA} and @var{pid} are formatted as big-endian
hex strings.

@item X @var{AA}
@itemx X @var{AA} ; process:@var{pid}
The process terminated with signal @var{AA}.

The second form of the response, including the process ID of the
terminated process, can be used only when @value{GDBN} has reported
support for multiprocess protocol extensions; see @ref{multiprocess
extensions}.  Both @var{AA} and @var{pid} are formatted as big-endian
hex strings.

@anchor{thread exit event}
@cindex thread exit event, remote reply
@item w @var{AA} ; @var{tid}

The thread exited, and @var{AA} is the exit status.  This response
should not be sent by default; @value{GDBN} requests it with the
@ref{QThreadEvents} packet.  See also @ref{thread create event} above.
@var{AA} is formatted as a big-endian hex string.

@item N
There are no resumed threads left in the target.  In other words, even
though the process is alive, the last resumed thread has exited.  For
example, say the target process has two threads: thread 1 and thread
2.  The client leaves thread 1 stopped, and resumes thread 2, which
subsequently exits.  At this point, even though the process is still
alive, and thus no @samp{W} stop reply is sent, no thread is actually
executing either.  The @samp{N} stop reply thus informs the client
that it can stop waiting for stop replies.  This packet should not be
sent by default; older @value{GDBN} versions did not support it.
@value{GDBN} requests it, by supplying an appropriate
@samp{qSupported} feature (@pxref{qSupported}).  The remote stub must
also supply the appropriate @samp{qSupported} feature indicating
support.

@item O @var{XX}@dots{}
@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
written as the program's console output.  This can happen at any time
while the program is running and the debugger should continue to wait
for @samp{W}, @samp{T}, etc.  This reply is not permitted in non-stop mode.

@item F @var{call-id},@var{parameter}@dots{}
@var{call-id} is the identifier which says which host system call should
be called.  This is just the name of the function.  Translation into the
correct system call is only applicable as it's defined in @value{GDBN}.
@xref{File-I/O Remote Protocol Extension}, for a list of implemented
system calls.

@samp{@var{parameter}@dots{}} is a list of parameters as defined for
this very system call.

The target replies with this packet when it expects @value{GDBN} to
call a host system call on behalf of the target.  @value{GDBN} replies
with an appropriate @samp{F} packet and keeps up waiting for the next
reply packet from the target.  The latest @samp{C}, @samp{c}, @samp{S}
or @samp{s} action is expected to be continued.  @xref{File-I/O Remote
Protocol Extension}, for more details.

@end table

@node General Query Packets
@section General Query Packets
@cindex remote query requests

Packets starting with @samp{q} are @dfn{general query packets};
packets starting with @samp{Q} are @dfn{general set packets}.  General
query and set packets are a semi-unified form for retrieving and
sending information to and from the stub.

The initial letter of a query or set packet is followed by a name
indicating what sort of thing the packet applies to.  For example,
@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
definitions with the stub.  These packet names follow some
conventions:

@itemize @bullet
@item
The name must not contain commas, colons or semicolons.
@item
Most @value{GDBN} query and set packets have a leading upper case
letter.
@item
The names of custom vendor packets should use a company prefix, in
lower case, followed by a period.  For example, packets designed at
the Acme Corporation might begin with @samp{qacme.foo} (for querying
foos) or @samp{Qacme.bar} (for setting bars).
@end itemize

The name of a query or set packet should be separated from any
parameters by a @samp{:}; the parameters themselves should be
separated by @samp{,} or @samp{;}.  Stubs must be careful to match the
full packet name, and check for a separator or the end of the packet,
in case two packet names share a common prefix.  New packets should not begin
with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
packets predate these conventions, and have arguments without any terminator
for the packet name; we suspect they are in widespread use in places that
are difficult to upgrade.  The @samp{qC} packet has no arguments, but some
existing stubs (e.g.@: RedBoot) are known to not check for the end of the
packet.}.

Like the descriptions of the other packets, each description here
has a template showing the packet's overall syntax, followed by an
explanation of the packet's meaning.  We include spaces in some of the
templates for clarity; these are not part of the packet's syntax.  No
@value{GDBN} packet uses spaces to separate its components.

Here are the currently defined query and set packets:

@table @samp

@item QAgent:1
@itemx QAgent:0
Turn on or off the agent as a helper to perform some debugging operations
delegated from @value{GDBN} (@pxref{Control Agent}).

@item QAllow:@var{op}:@var{val}@dots{}
@cindex @samp{QAllow} packet
Specify which operations @value{GDBN} expects to request of the
target, as a semicolon-separated list of operation name and value
pairs.  Possible values for @var{op} include @samp{WriteReg},
@samp{WriteMem}, @samp{InsertBreak}, @samp{InsertTrace},
@samp{InsertFastTrace}, and @samp{Stop}. @var{val} is either 0,
indicating that @value{GDBN} will not request the operation, or 1,
indicating that it may.  (The target can then use this to set up its
own internals optimally, for instance if the debugger never expects to
insert breakpoints, it may not need to install its own trap handler.)

@item qC
@cindex current thread, remote request
@cindex @samp{qC} packet
Return the current thread ID.

Reply:
@table @samp
@item QC @var{thread-id}
Where @var{thread-id} is a thread ID as documented in 
@ref{thread-id syntax}.
@item @r{(anything else)}
Any other reply implies the old thread ID.
@end table

@item qCRC:@var{addr},@var{length}
@cindex CRC of memory block, remote request
@cindex @samp{qCRC} packet
@anchor{qCRC packet}
Compute the CRC checksum of a block of memory using CRC-32 defined in
IEEE 802.3.  The CRC is computed byte at a time, taking the most
significant bit of each byte first.  The initial pattern code
@code{0xffffffff} is used to ensure leading zeros affect the CRC.

@emph{Note:} This is the same CRC used in validating separate debug
files (@pxref{Separate Debug Files, , Debugging Information in Separate
Files}).  However the algorithm is slightly different.  When validating
separate debug files, the CRC is computed taking the @emph{least}
significant bit of each byte first, and the final result is inverted to
detect trailing zeros.

Reply:
@table @samp
@item E @var{NN}
An error (such as memory fault)
@item C @var{crc32}
The specified memory region's checksum is @var{crc32}.
@end table

@item QDisableRandomization:@var{value}
@cindex disable address space randomization, remote request
@cindex @samp{QDisableRandomization} packet
Some target operating systems will randomize the virtual address space
of the inferior process as a security feature, but provide a feature
to disable such randomization, e.g.@: to allow for a more deterministic
debugging experience.  On such systems, this packet with a @var{value}
of 1 directs the target to disable address space randomization for
processes subsequently started via @samp{vRun} packets, while a packet
with a @var{value} of 0 tells the target to enable address space
randomization.

This packet is only available in extended mode (@pxref{extended mode}).

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.

@item @w{}
An empty reply indicates that @samp{QDisableRandomization} is not supported
by the stub.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
This should only be done on targets that actually support disabling
address space randomization.

@item QStartupWithShell:@var{value}
@cindex startup with shell, remote request
@cindex @samp{QStartupWithShell} packet
On UNIX-like targets, it is possible to start the inferior using a
shell program.  This is the default behavior on both @value{GDBN} and
@command{gdbserver} (@pxref{set startup-with-shell}).  This packet is
used to inform @command{gdbserver} whether it should start the
inferior using a shell or not.

If @var{value} is @samp{0}, @command{gdbserver} will not use a shell
to start the inferior.  If @var{value} is @samp{1},
@command{gdbserver} will use a shell to start the inferior.  All other
values are considered an error.

This packet is only available in extended mode (@pxref{extended
mode}).

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).  This should only be done on targets that
actually support starting the inferior using a shell.

Use of this packet is controlled by the @code{set startup-with-shell}
command; @pxref{set startup-with-shell}.

@item QEnvironmentHexEncoded:@var{hex-value}
@anchor{QEnvironmentHexEncoded}
@cindex set environment variable, remote request
@cindex @samp{QEnvironmentHexEncoded} packet
On UNIX-like targets, it is possible to set environment variables that
will be passed to the inferior during the startup process.  This
packet is used to inform @command{gdbserver} of an environment
variable that has been defined by the user on @value{GDBN} (@pxref{set
environment}).

The packet is composed by @var{hex-value}, an hex encoded
representation of the @var{name=value} format representing an
environment variable.  The name of the environment variable is
represented by @var{name}, and the value to be assigned to the
environment variable is represented by @var{value}.  If the variable
has no value (i.e., the value is @code{null}), then @var{value} will
not be present.

This packet is only available in extended mode (@pxref{extended
mode}).

Reply:
@table @samp
@item OK
The request succeeded.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).  This should only be done on targets that
actually support passing environment variables to the starting
inferior.

This packet is related to the @code{set environment} command;
@pxref{set environment}.

@item QEnvironmentUnset:@var{hex-value}
@anchor{QEnvironmentUnset}
@cindex unset environment variable, remote request
@cindex @samp{QEnvironmentUnset} packet
On UNIX-like targets, it is possible to unset environment variables
before starting the inferior in the remote target.  This packet is
used to inform @command{gdbserver} of an environment variable that has
been unset by the user on @value{GDBN} (@pxref{unset environment}).

The packet is composed by @var{hex-value}, an hex encoded
representation of the name of the environment variable to be unset.

This packet is only available in extended mode (@pxref{extended
mode}).

Reply:
@table @samp
@item OK
The request succeeded.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).  This should only be done on targets that
actually support passing environment variables to the starting
inferior.

This packet is related to the @code{unset environment} command;
@pxref{unset environment}.

@item QEnvironmentReset
@anchor{QEnvironmentReset}
@cindex reset environment, remote request
@cindex @samp{QEnvironmentReset} packet
On UNIX-like targets, this packet is used to reset the state of
environment variables in the remote target before starting the
inferior.  In this context, reset means unsetting all environment
variables that were previously set by the user (i.e., were not
initially present in the environment).  It is sent to
@command{gdbserver} before the @samp{QEnvironmentHexEncoded}
(@pxref{QEnvironmentHexEncoded}) and the @samp{QEnvironmentUnset}
(@pxref{QEnvironmentUnset}) packets.

This packet is only available in extended mode (@pxref{extended
mode}).

Reply:
@table @samp
@item OK
The request succeeded.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).  This should only be done on targets that
actually support passing environment variables to the starting
inferior.

@item QSetWorkingDir:@r{[}@var{directory}@r{]}
@anchor{QSetWorkingDir packet}
@cindex set working directory, remote request
@cindex @samp{QSetWorkingDir} packet
This packet is used to inform the remote server of the intended
current working directory for programs that are going to be executed.

The packet is composed by @var{directory}, an hex encoded
representation of the directory that the remote inferior will use as
its current working directory.  If @var{directory} is an empty string,
the remote server should reset the inferior's current working
directory to its original, empty value.

This packet is only available in extended mode (@pxref{extended
mode}).

Reply:
@table @samp
@item OK
The request succeeded.
@end table

@item qfThreadInfo
@itemx qsThreadInfo
@cindex list active threads, remote request
@cindex @samp{qfThreadInfo} packet
@cindex @samp{qsThreadInfo} packet
Obtain a list of all active thread IDs from the target (OS).  Since there
may be too many active threads to fit into one reply packet, this query
works iteratively: it may require more than one query/reply sequence to
obtain the entire list of threads.  The first query of the sequence will
be the @samp{qfThreadInfo} query; subsequent queries in the
sequence will be the @samp{qsThreadInfo} query.

NOTE: This packet replaces the @samp{qL} query (see below).

Reply:
@table @samp
@item m @var{thread-id}
A single thread ID
@item m @var{thread-id},@var{thread-id}@dots{}
a comma-separated list of thread IDs
@item l
(lower case letter @samp{L}) denotes end of list.
@end table

In response to each query, the target will reply with a list of one or
more thread IDs, separated by commas.
@value{GDBN} will respond to each reply with a request for more thread
ids (using the @samp{qs} form of the query), until the target responds
with @samp{l} (lower-case ell, for @dfn{last}).
Refer to @ref{thread-id syntax}, for the format of the @var{thread-id}
fields.

@emph{Note: @value{GDBN} will send the @code{qfThreadInfo} query during the
initial connection with the remote target, and the very first thread ID
mentioned in the reply will be stopped by @value{GDBN} in a subsequent
message.  Therefore, the stub should ensure that the first thread ID in
the @code{qfThreadInfo} reply is suitable for being stopped by @value{GDBN}.}

@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
@cindex get thread-local storage address, remote request
@cindex @samp{qGetTLSAddr} packet
Fetch the address associated with thread local storage specified
by @var{thread-id}, @var{offset}, and @var{lm}.

@var{thread-id} is the thread ID associated with the
thread for which to fetch the TLS address.  @xref{thread-id syntax}.

@var{offset} is the (big endian, hex encoded) offset associated with the
thread local variable.  (This offset is obtained from the debug
information associated with the variable.)

@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
load module associated with the thread local storage.  For example,
a @sc{gnu}/Linux system will pass the link map address of the shared
object associated with the thread local storage under consideration. 
Other operating environments may choose to represent the load module
differently, so the precise meaning of this parameter will vary.

Reply:
@table @samp
@item @var{XX}@dots{}
Hex encoded (big endian) bytes representing the address of the thread
local storage requested.

@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.

@item @w{}
An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
@end table

@item qGetTIBAddr:@var{thread-id}
@cindex get thread information block address
@cindex @samp{qGetTIBAddr} packet
Fetch address of the Windows OS specific Thread Information Block.

@var{thread-id} is the thread ID associated with the thread.

Reply:
@table @samp
@item @var{XX}@dots{}
Hex encoded (big endian) bytes representing the linear address of the
thread information block.

@item E @var{nn}
An error occured.  This means that either the thread was not found, or the
address could not be retrieved.

@item @w{}
An empty reply indicates that @samp{qGetTIBAddr} is not supported by the stub.
@end table

@item qL @var{startflag} @var{threadcount} @var{nextthread}
Obtain thread information from RTOS.  Where: @var{startflag} (one hex
digit) is one to indicate the first query and zero to indicate a
subsequent query; @var{threadcount} (two hex digits) is the maximum
number of threads the response packet can contain; and @var{nextthread}
(eight hex digits), for subsequent queries (@var{startflag} is zero), is
returned in the response as @var{argthread}.

Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).

Reply:
@table @samp
@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
Where: @var{count} (two hex digits) is the number of threads being
returned; @var{done} (one hex digit) is zero to indicate more threads
and one indicates no further threads; @var{argthreadid} (eight hex
digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
is a sequence of thread IDs, @var{threadid} (eight hex
digits), from the target.  See @code{remote.c:parse_threadlist_response()}.
@end table

@item qOffsets
@cindex section offsets, remote request
@cindex @samp{qOffsets} packet
Get section offsets that the target used when relocating the downloaded
image.

Reply:
@table @samp
@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
Relocate the @code{Text} section by @var{xxx} from its original address.
Relocate the @code{Data} section by @var{yyy} from its original address.
If the object file format provides segment information (e.g.@: @sc{elf}
@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
segments by the supplied offsets.

@emph{Note: while a @code{Bss} offset may be included in the response,
@value{GDBN} ignores this and instead applies the @code{Data} offset
to the @code{Bss} section.}

@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
Relocate the first segment of the object file, which conventionally
contains program code, to a starting address of @var{xxx}.  If
@samp{DataSeg} is specified, relocate the second segment, which
conventionally contains modifiable data, to a starting address of
@var{yyy}.  @value{GDBN} will report an error if the object file
does not contain segment information, or does not contain at least
as many segments as mentioned in the reply.  Extra segments are
kept at fixed offsets relative to the last relocated segment.
@end table

@item qP @var{mode} @var{thread-id}
@cindex thread information, remote request
@cindex @samp{qP} packet
Returns information on @var{thread-id}.  Where: @var{mode} is a hex
encoded 32 bit mode; @var{thread-id} is a thread ID 
(@pxref{thread-id syntax}).

Don't use this packet; use the @samp{qThreadExtraInfo} query instead
(see below).

Reply: see @code{remote.c:remote_unpack_thread_info_response()}.

@item QNonStop:1
@itemx QNonStop:0
@cindex non-stop mode, remote request
@cindex @samp{QNonStop} packet
@anchor{QNonStop}
Enter non-stop (@samp{QNonStop:1}) or all-stop (@samp{QNonStop:0}) mode.
@xref{Remote Non-Stop}, for more information.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.

@item @w{}
An empty reply indicates that @samp{QNonStop} is not supported by
the stub.
@end table

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
Use of this packet is controlled by the @code{set non-stop} command; 
@pxref{Non-Stop Mode}.

@item QCatchSyscalls:1 @r{[};@var{sysno}@r{]}@dots{}
@itemx QCatchSyscalls:0
@cindex catch syscalls from inferior, remote request
@cindex @samp{QCatchSyscalls} packet
@anchor{QCatchSyscalls}
Enable (@samp{QCatchSyscalls:1}) or disable (@samp{QCatchSyscalls:0})
catching syscalls from the inferior process.

For @samp{QCatchSyscalls:1}, each listed syscall @var{sysno} (encoded
in hex) should be reported to @value{GDBN}.  If no syscall @var{sysno}
is listed, every system call should be reported.

Note that if a syscall not in the list is reported, @value{GDBN} will
still filter the event according to its own list from all corresponding
@code{catch syscall} commands.  However, it is more efficient to only
report the requested syscalls.

Multiple @samp{QCatchSyscalls:1} packets do not combine; any earlier
@samp{QCatchSyscalls:1} list is completely replaced by the new list.

If the inferior process execs, the state of @samp{QCatchSyscalls} is
kept for the new process too.  On targets where exec may affect syscall
numbers, for example with exec between 32 and 64-bit processes, the
client should send a new packet with the new syscall list.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  @var{nn} are hex digits.

@item @w{}
An empty reply indicates that @samp{QCatchSyscalls} is not supported by
the stub.
@end table

Use of this packet is controlled by the @code{set remote catch-syscalls}
command (@pxref{Remote Configuration, set remote catch-syscalls}).
This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
@cindex pass signals to inferior, remote request
@cindex @samp{QPassSignals} packet
@anchor{QPassSignals}
Each listed @var{signal} should be passed directly to the inferior process. 
Signals are numbered identically to continue packets and stop replies
(@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
strictly greater than the previous item.  These signals do not need to stop
the inferior, or be reported to @value{GDBN}.  All other signals should be
reported to @value{GDBN}.  Multiple @samp{QPassSignals} packets do not
combine; any earlier @samp{QPassSignals} list is completely replaced by the
new list.  This packet improves performance when using @samp{handle
@var{signal} nostop noprint pass}.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.

@item @w{}
An empty reply indicates that @samp{QPassSignals} is not supported by
the stub.
@end table

Use of this packet is controlled by the @code{set remote pass-signals}
command (@pxref{Remote Configuration, set remote pass-signals}).
This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item QProgramSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
@cindex signals the inferior may see, remote request
@cindex @samp{QProgramSignals} packet
@anchor{QProgramSignals}
Each listed @var{signal} may be delivered to the inferior process.
Others should be silently discarded.

In some cases, the remote stub may need to decide whether to deliver a
signal to the program or not without @value{GDBN} involvement.  One
example of that is while detaching --- the program's threads may have
stopped for signals that haven't yet had a chance of being reported to
@value{GDBN}, and so the remote stub can use the signal list specified
by this packet to know whether to deliver or ignore those pending
signals.

This does not influence whether to deliver a signal as requested by a
resumption packet (@pxref{vCont packet}).

Signals are numbered identically to continue packets and stop replies
(@pxref{Stop Reply Packets}).  Each @var{signal} list item should be
strictly greater than the previous item.  Multiple
@samp{QProgramSignals} packets do not combine; any earlier
@samp{QProgramSignals} list is completely replaced by the new list.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.

@item @w{}
An empty reply indicates that @samp{QProgramSignals} is not supported
by the stub.
@end table

Use of this packet is controlled by the @code{set remote program-signals}
command (@pxref{Remote Configuration, set remote program-signals}).
This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@anchor{QThreadEvents}
@item QThreadEvents:1
@itemx QThreadEvents:0
@cindex thread create/exit events, remote request
@cindex @samp{QThreadEvents} packet

Enable (@samp{QThreadEvents:1}) or disable (@samp{QThreadEvents:0})
reporting of thread create and exit events.  @xref{thread create
event}, for the reply specifications.  For example, this is used in
non-stop mode when @value{GDBN} stops a set of threads and
synchronously waits for the their corresponding stop replies.  Without
exit events, if one of the threads exits, @value{GDBN} would hang
forever not knowing that it should no longer expect a stop for that
same thread.  @value{GDBN} does not enable this feature unless the
stub reports that it supports it by including @samp{QThreadEvents+} in
its @samp{qSupported} reply.

Reply:
@table @samp
@item OK
The request succeeded.

@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.

@item @w{}
An empty reply indicates that @samp{QThreadEvents} is not supported by
the stub.
@end table

Use of this packet is controlled by the @code{set remote thread-events}
command (@pxref{Remote Configuration, set remote thread-events}).

@item qRcmd,@var{command}
@cindex execute remote command, remote request
@cindex @samp{qRcmd} packet
@var{command} (hex encoded) is passed to the local interpreter for
execution.  Invalid commands should be reported using the output
string.  Before the final result packet, the target may also respond
with a number of intermediate @samp{O@var{output}} console output
packets.  @emph{Implementors should note that providing access to a
stubs's interpreter may have security implications}.

Reply:
@table @samp
@item OK
A command response with no output.
@item @var{OUTPUT}
A command response with the hex encoded output string @var{OUTPUT}.
@item E @var{NN}
Indicate a badly formed request.
@item @w{}
An empty reply indicates that @samp{qRcmd} is not recognized.
@end table

(Note that the @code{qRcmd} packet's name is separated from the
command by a @samp{,}, not a @samp{:}, contrary to the naming
conventions above.  Please don't use this packet as a model for new
packets.)

@item qSearch:memory:@var{address};@var{length};@var{search-pattern}
@cindex searching memory, in remote debugging
@ifnotinfo
@cindex @samp{qSearch:memory} packet
@end ifnotinfo
@cindex @samp{qSearch memory} packet
@anchor{qSearch memory}
Search @var{length} bytes at @var{address} for @var{search-pattern}.
Both @var{address} and @var{length} are encoded in hex;
@var{search-pattern} is a sequence of bytes, also hex encoded.

Reply:
@table @samp
@item 0
The pattern was not found.
@item 1,address
The pattern was found at @var{address}.
@item E @var{NN}
A badly formed request or an error was encountered while searching memory.
@item @w{}
An empty reply indicates that @samp{qSearch:memory} is not recognized.
@end table

@item QStartNoAckMode
@cindex @samp{QStartNoAckMode} packet
@anchor{QStartNoAckMode}
Request that the remote stub disable the normal @samp{+}/@samp{-}
protocol acknowledgments (@pxref{Packet Acknowledgment}).

Reply:
@table @samp
@item OK
The stub has switched to no-acknowledgment mode.
@value{GDBN} acknowledges this response,
but neither the stub nor @value{GDBN} shall send or expect further
@samp{+}/@samp{-} acknowledgments in the current connection.
@item @w{}
An empty reply indicates that the stub does not support no-acknowledgment mode.
@end table

@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
@cindex supported packets, remote query
@cindex features of the remote protocol
@cindex @samp{qSupported} packet
@anchor{qSupported}
Tell the remote stub about features supported by @value{GDBN}, and
query the stub for features it supports.  This packet allows
@value{GDBN} and the remote stub to take advantage of each others'
features.  @samp{qSupported} also consolidates multiple feature probes
at startup, to improve @value{GDBN} performance---a single larger
packet performs better than multiple smaller probe packets on
high-latency links.  Some features may enable behavior which must not
be on by default, e.g.@: because it would confuse older clients or
stubs.  Other features may describe packets which could be
automatically probed for, but are not.  These features must be
reported before @value{GDBN} will use them.  This ``default
unsupported'' behavior is not appropriate for all packets, but it
helps to keep the initial connection time under control with new
versions of @value{GDBN} which support increasing numbers of packets.

Reply:
@table @samp
@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
The stub supports or does not support each returned @var{stubfeature},
depending on the form of each @var{stubfeature} (see below for the
possible forms).
@item @w{}
An empty reply indicates that @samp{qSupported} is not recognized,
or that no features needed to be reported to @value{GDBN}.
@end table

The allowed forms for each feature (either a @var{gdbfeature} in the
@samp{qSupported} packet, or a @var{stubfeature} in the response)
are:

@table @samp
@item @var{name}=@var{value}
The remote protocol feature @var{name} is supported, and associated
with the specified @var{value}.  The format of @var{value} depends
on the feature, but it must not include a semicolon.
@item @var{name}+
The remote protocol feature @var{name} is supported, and does not
need an associated value.
@item @var{name}-
The remote protocol feature @var{name} is not supported.
@item @var{name}?
The remote protocol feature @var{name} may be supported, and
@value{GDBN} should auto-detect support in some other way when it is
needed.  This form will not be used for @var{gdbfeature} notifications,
but may be used for @var{stubfeature} responses.
@end table

Whenever the stub receives a @samp{qSupported} request, the
supplied set of @value{GDBN} features should override any previous
request.  This allows @value{GDBN} to put the stub in a known
state, even if the stub had previously been communicating with
a different version of @value{GDBN}.

The following values of @var{gdbfeature} (for the packet sent by @value{GDBN})
are defined:  

@table @samp
@item multiprocess
This feature indicates whether @value{GDBN} supports multiprocess 
extensions to the remote protocol.  @value{GDBN} does not use such
extensions unless the stub also reports that it supports them by
including @samp{multiprocess+} in its @samp{qSupported} reply.
@xref{multiprocess extensions}, for details.

@item xmlRegisters
This feature indicates that @value{GDBN} supports the XML target
description.  If the stub sees @samp{xmlRegisters=} with target
specific strings separated by a comma, it will report register
description.

@item qRelocInsn
This feature indicates whether @value{GDBN} supports the
@samp{qRelocInsn} packet (@pxref{Tracepoint Packets,,Relocate
instruction reply packet}).

@item swbreak
This feature indicates whether @value{GDBN} supports the swbreak stop
reason in stop replies.  @xref{swbreak stop reason}, for details.

@item hwbreak
This feature indicates whether @value{GDBN} supports the hwbreak stop
reason in stop replies.  @xref{swbreak stop reason}, for details.

@item fork-events
This feature indicates whether @value{GDBN} supports fork event
extensions to the remote protocol.  @value{GDBN} does not use such
extensions unless the stub also reports that it supports them by
including @samp{fork-events+} in its @samp{qSupported} reply.

@item vfork-events
This feature indicates whether @value{GDBN} supports vfork event
extensions to the remote protocol.  @value{GDBN} does not use such
extensions unless the stub also reports that it supports them by
including @samp{vfork-events+} in its @samp{qSupported} reply.

@item exec-events
This feature indicates whether @value{GDBN} supports exec event
extensions to the remote protocol.  @value{GDBN} does not use such
extensions unless the stub also reports that it supports them by
including @samp{exec-events+} in its @samp{qSupported} reply.

@item vContSupported
This feature indicates whether @value{GDBN} wants to know the
supported actions in the reply to @samp{vCont?} packet.
@end table

Stubs should ignore any unknown values for
@var{gdbfeature}.  Any @value{GDBN} which sends a @samp{qSupported}
packet supports receiving packets of unlimited length (earlier
versions of @value{GDBN} may reject overly long responses).  Additional values
for @var{gdbfeature} may be defined in the future to let the stub take
advantage of new features in @value{GDBN}, e.g.@: incompatible
improvements in the remote protocol---the @samp{multiprocess} feature is
an example of such a feature.  The stub's reply should be independent
of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
describes all the features it supports, and then the stub replies with
all the features it supports.

Similarly, @value{GDBN} will silently ignore unrecognized stub feature
responses, as long as each response uses one of the standard forms.

Some features are flags.  A stub which supports a flag feature
should respond with a @samp{+} form response.  Other features
require values, and the stub should respond with an @samp{=}
form response.

Each feature has a default value, which @value{GDBN} will use if
@samp{qSupported} is not available or if the feature is not mentioned
in the @samp{qSupported} response.  The default values are fixed; a
stub is free to omit any feature responses that match the defaults.

Not all features can be probed, but for those which can, the probing
mechanism is useful: in some cases, a stub's internal
architecture may not allow the protocol layer to know some information
about the underlying target in advance.  This is especially common in
stubs which may be configured for multiple targets.

These are the currently defined stub features and their properties:

@multitable @columnfractions 0.35 0.2 0.12 0.2
@c NOTE: The first row should be @headitem, but we do not yet require
@c a new enough version of Texinfo (4.7) to use @headitem.
@item Feature Name
@tab Value Required
@tab Default
@tab Probe Allowed

@item @samp{PacketSize}
@tab Yes
@tab @samp{-}
@tab No

@item @samp{qXfer:auxv:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:btrace:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:btrace-conf:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:exec-file:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:features:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:libraries:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:libraries-svr4:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{augmented-libraries-svr4-read}
@tab No
@tab @samp{-}
@tab No

@item @samp{qXfer:memory-map:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:sdata:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:siginfo:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:siginfo:write}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:threads:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:traceframe-info:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:uib:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{qXfer:fdpic:read}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{Qbtrace:off}
@tab Yes
@tab @samp{-}
@tab Yes

@item @samp{Qbtrace:bts}
@tab Yes
@tab @samp{-}
@tab Yes

@item @samp{Qbtrace:pt}
@tab Yes
@tab @samp{-}
@tab Yes

@item @samp{Qbtrace-conf:bts:size}
@tab Yes
@tab @samp{-}
@tab Yes

@item @samp{Qbtrace-conf:pt:size}
@tab Yes
@tab @samp{-}
@tab Yes

@item @samp{QNonStop}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{QCatchSyscalls}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{QPassSignals}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{QStartNoAckMode}
@tab No
@tab @samp{-}
@tab Yes

@item @samp{multiprocess}
@tab No
@tab @samp{-}
@tab No

@item @samp{ConditionalBreakpoints}
@tab No
@tab @samp{-}
@tab No

@item @samp{ConditionalTracepoints}
@tab No
@tab @samp{-}
@tab No

@item @samp{ReverseContinue}
@tab No
@tab @samp{-}
@tab No

@item @samp{ReverseStep}
@tab No
@tab @samp{-}
@tab No

@item @samp{TracepointSource}
@tab No
@tab @samp{-}
@tab No

@item @samp{QAgent}
@tab No
@tab @samp{-}
@tab No

@item @samp{QAllow}
@tab No
@tab @samp{-}
@tab No

@item @samp{QDisableRandomization}
@tab No
@tab @samp{-}
@tab No

@item @samp{EnableDisableTracepoints}
@tab No
@tab @samp{-}
@tab No

@item @samp{QTBuffer:size}
@tab No
@tab @samp{-}
@tab No

@item @samp{tracenz}
@tab No
@tab @samp{-}
@tab No

@item @samp{BreakpointCommands}
@tab No
@tab @samp{-}
@tab No

@item @samp{swbreak}
@tab No
@tab @samp{-}
@tab No

@item @samp{hwbreak}
@tab No
@tab @samp{-}
@tab No

@item @samp{fork-events}
@tab No
@tab @samp{-}
@tab No

@item @samp{vfork-events}
@tab No
@tab @samp{-}
@tab No

@item @samp{exec-events}
@tab No
@tab @samp{-}
@tab No

@item @samp{QThreadEvents}
@tab No
@tab @samp{-}
@tab No

@item @samp{no-resumed}
@tab No
@tab @samp{-}
@tab No

@end multitable

These are the currently defined stub features, in more detail:

@table @samp
@cindex packet size, remote protocol
@item PacketSize=@var{bytes}
The remote stub can accept packets up to at least @var{bytes} in
length.  @value{GDBN} will send packets up to this size for bulk
transfers, and will never send larger packets.  This is a limit on the
data characters in the packet, including the frame and checksum.
There is no trailing NUL byte in a remote protocol packet; if the stub
stores packets in a NUL-terminated format, it should allow an extra
byte in its buffer for the NUL.  If this stub feature is not supported,
@value{GDBN} guesses based on the size of the @samp{g} packet response.

@item qXfer:auxv:read
The remote stub understands the @samp{qXfer:auxv:read} packet
(@pxref{qXfer auxiliary vector read}).

@item qXfer:btrace:read
The remote stub understands the @samp{qXfer:btrace:read}
packet (@pxref{qXfer btrace read}).

@item qXfer:btrace-conf:read
The remote stub understands the @samp{qXfer:btrace-conf:read}
packet (@pxref{qXfer btrace-conf read}).

@item qXfer:exec-file:read
The remote stub understands the @samp{qXfer:exec-file:read} packet
(@pxref{qXfer executable filename read}).

@item qXfer:features:read
The remote stub understands the @samp{qXfer:features:read} packet
(@pxref{qXfer target description read}).

@item qXfer:libraries:read
The remote stub understands the @samp{qXfer:libraries:read} packet
(@pxref{qXfer library list read}).

@item qXfer:libraries-svr4:read
The remote stub understands the @samp{qXfer:libraries-svr4:read} packet
(@pxref{qXfer svr4 library list read}).

@item augmented-libraries-svr4-read
The remote stub understands the augmented form of the
@samp{qXfer:libraries-svr4:read} packet
(@pxref{qXfer svr4 library list read}).

@item qXfer:memory-map:read
The remote stub understands the @samp{qXfer:memory-map:read} packet
(@pxref{qXfer memory map read}).

@item qXfer:sdata:read
The remote stub understands the @samp{qXfer:sdata:read} packet
(@pxref{qXfer sdata read}).

@item qXfer:siginfo:read
The remote stub understands the @samp{qXfer:siginfo:read} packet
(@pxref{qXfer siginfo read}).

@item qXfer:siginfo:write
The remote stub understands the @samp{qXfer:siginfo:write} packet
(@pxref{qXfer siginfo write}).

@item qXfer:threads:read
The remote stub understands the @samp{qXfer:threads:read} packet
(@pxref{qXfer threads read}).

@item qXfer:traceframe-info:read
The remote stub understands the @samp{qXfer:traceframe-info:read}
packet (@pxref{qXfer traceframe info read}).

@item qXfer:uib:read
The remote stub understands the @samp{qXfer:uib:read}
packet (@pxref{qXfer unwind info block}).

@item qXfer:fdpic:read
The remote stub understands the @samp{qXfer:fdpic:read}
packet (@pxref{qXfer fdpic loadmap read}).

@item QNonStop
The remote stub understands the @samp{QNonStop} packet
(@pxref{QNonStop}).

@item QCatchSyscalls
The remote stub understands the @samp{QCatchSyscalls} packet
(@pxref{QCatchSyscalls}).

@item QPassSignals
The remote stub understands the @samp{QPassSignals} packet
(@pxref{QPassSignals}).

@item QStartNoAckMode
The remote stub understands the @samp{QStartNoAckMode} packet and
prefers to operate in no-acknowledgment mode.  @xref{Packet Acknowledgment}.

@item multiprocess
@anchor{multiprocess extensions}
@cindex multiprocess extensions, in remote protocol
The remote stub understands the multiprocess extensions to the remote
protocol syntax.  The multiprocess extensions affect the syntax of
thread IDs in both packets and replies (@pxref{thread-id syntax}), and
add process IDs to the @samp{D} packet and @samp{W} and @samp{X}
replies.  Note that reporting this feature indicates support for the
syntactic extensions only, not that the stub necessarily supports
debugging of more than one process at a time.  The stub must not use
multiprocess extensions in packet replies unless @value{GDBN} has also
indicated it supports them in its @samp{qSupported} request.

@item qXfer:osdata:read
The remote stub understands the @samp{qXfer:osdata:read} packet
((@pxref{qXfer osdata read}).

@item ConditionalBreakpoints
The target accepts and implements evaluation of conditional expressions
defined for breakpoints.  The target will only report breakpoint triggers
when such conditions are true (@pxref{Conditions, ,Break Conditions}).

@item ConditionalTracepoints
The remote stub accepts and implements conditional expressions defined
for tracepoints (@pxref{Tracepoint Conditions}).

@item ReverseContinue
The remote stub accepts and implements the reverse continue packet
(@pxref{bc}).

@item ReverseStep
The remote stub accepts and implements the reverse step packet
(@pxref{bs}).

@item TracepointSource
The remote stub understands the @samp{QTDPsrc} packet that supplies
the source form of tracepoint definitions.

@item QAgent
The remote stub understands the @samp{QAgent} packet.

@item QAllow
The remote stub understands the @samp{QAllow} packet.

@item QDisableRandomization
The remote stub understands the @samp{QDisableRandomization} packet.

@item StaticTracepoint
@cindex static tracepoints, in remote protocol
The remote stub supports static tracepoints.

@item InstallInTrace
@anchor{install tracepoint in tracing}
The remote stub supports installing tracepoint in tracing.

@item EnableDisableTracepoints
The remote stub supports the @samp{QTEnable} (@pxref{QTEnable}) and
@samp{QTDisable} (@pxref{QTDisable}) packets that allow tracepoints
to be enabled and disabled while a trace experiment is running.

@item QTBuffer:size
The remote stub supports the @samp{QTBuffer:size} (@pxref{QTBuffer-size})
packet that allows to change the size of the trace buffer.

@item tracenz
@cindex string tracing, in remote protocol
The remote stub supports the @samp{tracenz} bytecode for collecting strings.
See @ref{Bytecode Descriptions} for details about the bytecode.

@item BreakpointCommands
@cindex breakpoint commands, in remote protocol
The remote stub supports running a breakpoint's command list itself,
rather than reporting the hit to @value{GDBN}.

@item Qbtrace:off
The remote stub understands the @samp{Qbtrace:off} packet.

@item Qbtrace:bts
The remote stub understands the @samp{Qbtrace:bts} packet.

@item Qbtrace:pt
The remote stub understands the @samp{Qbtrace:pt} packet.

@item Qbtrace-conf:bts:size
The remote stub understands the @samp{Qbtrace-conf:bts:size} packet.

@item Qbtrace-conf:pt:size
The remote stub understands the @samp{Qbtrace-conf:pt:size} packet.

@item swbreak
The remote stub reports the @samp{swbreak} stop reason for memory
breakpoints.

@item hwbreak
The remote stub reports the @samp{hwbreak} stop reason for hardware
breakpoints.

@item fork-events
The remote stub reports the @samp{fork} stop reason for fork events.

@item vfork-events
The remote stub reports the @samp{vfork} stop reason for vfork events
and vforkdone events.

@item exec-events
The remote stub reports the @samp{exec} stop reason for exec events.

@item vContSupported
The remote stub reports the supported actions in the reply to
@samp{vCont?} packet.

@item QThreadEvents
The remote stub understands the @samp{QThreadEvents} packet.

@item no-resumed
The remote stub reports the @samp{N} stop reply.

@end table

@item qSymbol::
@cindex symbol lookup, remote request
@cindex @samp{qSymbol} packet
Notify the target that @value{GDBN} is prepared to serve symbol lookup
requests.  Accept requests from the target for the values of symbols.

Reply:
@table @samp
@item OK
The target does not need to look up any (more) symbols.
@item qSymbol:@var{sym_name}
The target requests the value of symbol @var{sym_name} (hex encoded).
@value{GDBN} may provide the value by using the
@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
below.
@end table

@item qSymbol:@var{sym_value}:@var{sym_name}
Set the value of @var{sym_name} to @var{sym_value}.

@var{sym_name} (hex encoded) is the name of a symbol whose value the
target has previously requested.

@var{sym_value} (hex) is the value for symbol @var{sym_name}.  If
@value{GDBN} cannot supply a value for @var{sym_name}, then this field
will be empty.

Reply:
@table @samp
@item OK
The target does not need to look up any (more) symbols.
@item qSymbol:@var{sym_name}
The target requests the value of a new symbol @var{sym_name} (hex
encoded).  @value{GDBN} will continue to supply the values of symbols
(if available), until the target ceases to request them.
@end table

@item qTBuffer
@itemx QTBuffer
@itemx QTDisconnected
@itemx QTDP
@itemx QTDPsrc
@itemx QTDV
@itemx qTfP
@itemx qTfV
@itemx QTFrame
@itemx qTMinFTPILen

@xref{Tracepoint Packets}.

@item qThreadExtraInfo,@var{thread-id}
@cindex thread attributes info, remote request
@cindex @samp{qThreadExtraInfo} packet
Obtain from the target OS a printable string description of thread
attributes for the thread @var{thread-id}; see @ref{thread-id syntax},
for the forms of @var{thread-id}.  This
string may contain anything that the target OS thinks is interesting
for @value{GDBN} to tell the user about the thread.  The string is
displayed in @value{GDBN}'s @code{info threads} display.  Some
examples of possible thread extra info strings are @samp{Runnable}, or
@samp{Blocked on Mutex}.

Reply:
@table @samp
@item @var{XX}@dots{}
Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
comprising the printable string containing the extra information about
the thread's attributes.
@end table

(Note that the @code{qThreadExtraInfo} packet's name is separated from
the command by a @samp{,}, not a @samp{:}, contrary to the naming
conventions above.  Please don't use this packet as a model for new
packets.)

@item QTNotes
@itemx qTP
@itemx QTSave
@itemx qTsP
@itemx qTsV
@itemx QTStart    
@itemx QTStop     
@itemx QTEnable
@itemx QTDisable
@itemx QTinit     
@itemx QTro       
@itemx qTStatus   
@itemx qTV
@itemx qTfSTM
@itemx qTsSTM
@itemx qTSTMat
@xref{Tracepoint Packets}.

@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
@cindex read special object, remote request
@cindex @samp{qXfer} packet
@anchor{qXfer read}
Read uninterpreted bytes from the target's special data area
identified by the keyword @var{object}.  Request @var{length} bytes
starting at @var{offset} bytes into the data.  The content and
encoding of @var{annex} is specific to @var{object}; it can supply
additional details about what data to access.

Reply:
@table @samp
@item m @var{data}
Data @var{data} (@pxref{Binary Data}) has been read from the
target.  There may be more data at a higher address (although
it is permitted to return @samp{m} even for the last valid
block of data, as long as at least one byte of data was read).
It is possible for @var{data} to have fewer bytes than the @var{length} in the
request.

@item l @var{data}
Data @var{data} (@pxref{Binary Data}) has been read from the target.
There is no more data to be read.  It is possible for @var{data} to
have fewer bytes than the @var{length} in the request.

@item l
The @var{offset} in the request is at the end of the data.
There is no more data to be read.

@item E00
The request was malformed, or @var{annex} was invalid.

@item E @var{nn}
The offset was invalid, or there was an error encountered reading the data.
The @var{nn} part is a hex-encoded @code{errno} value.

@item @w{}
An empty reply indicates the @var{object} string was not recognized by
the stub, or that the object does not support reading.
@end table

Here are the specific requests of this form defined so far.  All the
@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
formats, listed above.

@table @samp
@item qXfer:auxv:read::@var{offset},@var{length}
@anchor{qXfer auxiliary vector read}
Access the target's @dfn{auxiliary vector}.  @xref{OS Information,
auxiliary vector}.  Note @var{annex} must be empty.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:btrace:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer btrace read}

Return a description of the current branch trace.
@xref{Branch Trace Format}.  The annex part of the generic @samp{qXfer}
packet may have one of the following values:

@table @code
@item all
Returns all available branch trace.

@item new
Returns all available branch trace if the branch trace changed since
the last read request.

@item delta
Returns the new branch trace since the last read request.  Adds a new
block to the end of the trace that begins at zero and ends at the source
location of the first branch in the trace buffer.  This extra block is
used to stitch traces together.

If the trace buffer overflowed, returns an error indicating the overflow.
@end table

This packet is not probed by default; the remote stub must request it
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:btrace-conf:read::@var{offset},@var{length}
@anchor{qXfer btrace-conf read}

Return a description of the current branch trace configuration.
@xref{Branch Trace Configuration Format}.

This packet is not probed by default; the remote stub must request it
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:exec-file:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer executable filename read}
Return the full absolute name of the file that was executed to create
a process running on the remote system.  The annex specifies the
numeric process ID of the process to query, encoded as a hexadecimal
number.  If the annex part is empty the remote stub should return the
filename corresponding to the currently executing process.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer target description read}
Access the @dfn{target description}.  @xref{Target Descriptions}.  The
annex specifies which XML document to access.  The main description is
always loaded from the @samp{target.xml} annex.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer library list read}
Access the target's list of loaded libraries.  @xref{Library List Format}.
The annex part of the generic @samp{qXfer} packet must be empty
(@pxref{qXfer read}).

Targets which maintain a list of libraries in the program's memory do
not need to implement this packet; it is designed for platforms where
the operating system manages the list of loaded libraries.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:libraries-svr4:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer svr4 library list read}
Access the target's list of loaded libraries when the target is an SVR4
platform.  @xref{Library List Format for SVR4 Targets}.  The annex part
of the generic @samp{qXfer} packet must be empty unless the remote
stub indicated it supports the augmented form of this packet
by supplying an appropriate @samp{qSupported} response
(@pxref{qXfer read}, @ref{qSupported}).

This packet is optional for better performance on SVR4 targets.  
@value{GDBN} uses memory read packets to read the SVR4 library list otherwise.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

If the remote stub indicates it supports the augmented form of this
packet then the annex part of the generic @samp{qXfer} packet may
contain a semicolon-separated list of @samp{@var{name}=@var{value}}
arguments.  The currently supported arguments are:

@table @code
@item start=@var{address}
A hexadecimal number specifying the address of the @samp{struct
link_map} to start reading the library list from.  If unset or zero
then the first @samp{struct link_map} in the library list will be
chosen as the starting point.

@item prev=@var{address}
A hexadecimal number specifying the address of the @samp{struct
link_map} immediately preceding the @samp{struct link_map}
specified by the @samp{start} argument.  If unset or zero then
the remote stub will expect that no @samp{struct link_map}
exists prior to the starting point.

@end table

Arguments that are not understood by the remote stub will be silently
ignored.

@item qXfer:memory-map:read::@var{offset},@var{length}
@anchor{qXfer memory map read}
Access the target's @dfn{memory-map}.  @xref{Memory Map Format}.  The
annex part of the generic @samp{qXfer} packet must be empty
(@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:sdata:read::@var{offset},@var{length}
@anchor{qXfer sdata read}

Read contents of the extra collected static tracepoint marker
information.  The annex part of the generic @samp{qXfer} packet must
be empty (@pxref{qXfer read}).  @xref{Tracepoint Actions,,Tracepoint
Action Lists}.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).

@item qXfer:siginfo:read::@var{offset},@var{length}
@anchor{qXfer siginfo read}
Read contents of the extra signal information on the target
system.  The annex part of the generic @samp{qXfer} packet must be
empty (@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).

@item qXfer:threads:read::@var{offset},@var{length}
@anchor{qXfer threads read}
Access the list of threads on target.  @xref{Thread List Format}.  The
annex part of the generic @samp{qXfer} packet must be empty
(@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:traceframe-info:read::@var{offset},@var{length}
@anchor{qXfer traceframe info read}

Return a description of the current traceframe's contents.
@xref{Traceframe Info Format}.  The annex part of the generic
@samp{qXfer} packet must be empty (@pxref{qXfer read}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:uib:read:@var{pc}:@var{offset},@var{length}
@anchor{qXfer unwind info block}

Return the unwind information block for @var{pc}.  This packet is used
on OpenVMS/ia64 to ask the kernel unwind information.

This packet is not probed by default.

@item qXfer:fdpic:read:@var{annex}:@var{offset},@var{length}
@anchor{qXfer fdpic loadmap read}
Read contents of @code{loadmap}s on the target system.  The
annex, either @samp{exec} or @samp{interp}, specifies which @code{loadmap},
executable @code{loadmap} or interpreter @code{loadmap} to read.

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).

@item qXfer:osdata:read::@var{offset},@var{length}
@anchor{qXfer osdata read}
Access the target's @dfn{operating system information}.
@xref{Operating System Information}.

@end table

@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
@cindex write data into object, remote request
@anchor{qXfer write}
Write uninterpreted bytes into the target's special data area
identified by the keyword @var{object}, starting at @var{offset} bytes
into the data.  The binary-encoded data (@pxref{Binary Data}) to be
written is given by @var{data}@dots{}.  The content and encoding of @var{annex}
is specific to @var{object}; it can supply additional details about what data
to access.

Reply:
@table @samp
@item @var{nn}
@var{nn} (hex encoded) is the number of bytes written.
This may be fewer bytes than supplied in the request.

@item E00
The request was malformed, or @var{annex} was invalid.

@item E @var{nn}
The offset was invalid, or there was an error encountered writing the data.
The @var{nn} part is a hex-encoded @code{errno} value.

@item @w{}
An empty reply indicates the @var{object} string was not
recognized by the stub, or that the object does not support writing.
@end table

Here are the specific requests of this form defined so far.  All the
@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
formats, listed above.

@table @samp
@item qXfer:siginfo:write::@var{offset}:@var{data}@dots{}
@anchor{qXfer siginfo write}
Write @var{data} to the extra signal information on the target system.
The annex part of the generic @samp{qXfer} packet must be
empty (@pxref{qXfer write}).

This packet is not probed by default; the remote stub must request it,
by supplying an appropriate @samp{qSupported} response
(@pxref{qSupported}).
@end table

@item qXfer:@var{object}:@var{operation}:@dots{}
Requests of this form may be added in the future.  When a stub does
not recognize the @var{object} keyword, or its support for
@var{object} does not recognize the @var{operation} keyword, the stub
must respond with an empty packet.

@item qAttached:@var{pid}
@cindex query attached, remote request
@cindex @samp{qAttached} packet
Return an indication of whether the remote server attached to an
existing process or created a new process.  When the multiprocess
protocol extensions are supported (@pxref{multiprocess extensions}),
@var{pid} is an integer in hexadecimal format identifying the target
process.  Otherwise, @value{GDBN} will omit the @var{pid} field and
the query packet will be simplified as @samp{qAttached}.

This query is used, for example, to know whether the remote process
should be detached or killed when a @value{GDBN} session is ended with
the @code{quit} command.

Reply:
@table @samp
@item 1
The remote server attached to an existing process.
@item 0
The remote server created a new process.
@item E @var{NN}
A badly formed request or an error was encountered.
@end table

@item Qbtrace:bts
Enable branch tracing for the current thread using Branch Trace Store.

Reply:
@table @samp
@item OK
Branch tracing has been enabled.
@item E.errtext
A badly formed request or an error was encountered.
@end table

@item Qbtrace:pt
Enable branch tracing for the current thread using Intel Processor Trace.

Reply:
@table @samp
@item OK
Branch tracing has been enabled.
@item E.errtext
A badly formed request or an error was encountered.
@end table

@item Qbtrace:off
Disable branch tracing for the current thread.

Reply:
@table @samp
@item OK
Branch tracing has been disabled.
@item E.errtext
A badly formed request or an error was encountered.
@end table

@item Qbtrace-conf:bts:size=@var{value}
Set the requested ring buffer size for new threads that use the
btrace recording method in bts format.

Reply:
@table @samp
@item OK
The ring buffer size has been set.
@item E.errtext
A badly formed request or an error was encountered.
@end table

@item Qbtrace-conf:pt:size=@var{value}
Set the requested ring buffer size for new threads that use the
btrace recording method in pt format.

Reply:
@table @samp
@item OK
The ring buffer size has been set.
@item E.errtext
A badly formed request or an error was encountered.
@end table

@end table

@node Architecture-Specific Protocol Details
@section Architecture-Specific Protocol Details

This section describes how the remote protocol is applied to specific
target architectures.  Also see @ref{Standard Target Features}, for
details of XML target descriptions for each architecture.

@menu
* ARM-Specific Protocol Details::
* MIPS-Specific Protocol Details::
@end menu

@node ARM-Specific Protocol Details
@subsection @acronym{ARM}-specific Protocol Details

@menu
* ARM Breakpoint Kinds::
@end menu

@node ARM Breakpoint Kinds
@subsubsection @acronym{ARM} Breakpoint Kinds
@cindex breakpoint kinds, @acronym{ARM}

These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.

@table @r

@item 2
16-bit Thumb mode breakpoint.

@item 3
32-bit Thumb mode (Thumb-2) breakpoint.

@item 4
32-bit @acronym{ARM} mode breakpoint.

@end table

@node MIPS-Specific Protocol Details
@subsection @acronym{MIPS}-specific Protocol Details

@menu
* MIPS Register packet Format::
* MIPS Breakpoint Kinds::
@end menu

@node MIPS Register packet Format
@subsubsection @acronym{MIPS} Register Packet Format
@cindex register packet format, @acronym{MIPS}

The following @code{g}/@code{G} packets have previously been defined.
In the below, some thirty-two bit registers are transferred as
sixty-four bits.  Those registers should be zero/sign extended (which?)
to fill the space allocated.  Register bytes are transferred in target
byte order.  The two nibbles within a register byte are transferred
most-significant -- least-significant.

@table @r

@item MIPS32
All registers are transferred as thirty-two bit quantities in the order:
32 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
registers; fsr; fir; fp.

@item MIPS64
All registers are transferred as sixty-four bit quantities (including
thirty-two bit registers such as @code{sr}).  The ordering is the same
as @code{MIPS32}.

@end table

@node MIPS Breakpoint Kinds
@subsubsection @acronym{MIPS} Breakpoint Kinds
@cindex breakpoint kinds, @acronym{MIPS}

These breakpoint kinds are defined for the @samp{Z0} and @samp{Z1} packets.

@table @r

@item 2
16-bit @acronym{MIPS16} mode breakpoint.

@item 3
16-bit @acronym{microMIPS} mode breakpoint.

@item 4
32-bit standard @acronym{MIPS} mode breakpoint.

@item 5
32-bit @acronym{microMIPS} mode breakpoint.

@end table

@node Tracepoint Packets
@section Tracepoint Packets
@cindex tracepoint packets
@cindex packets, tracepoint

Here we describe the packets @value{GDBN} uses to implement
tracepoints (@pxref{Tracepoints}).

@table @samp

@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}[:F@var{flen}][:X@var{len},@var{bytes}]@r{[}-@r{]}
@cindex @samp{QTDP} packet
Create a new tracepoint, number @var{n}, at @var{addr}.  If @var{ena}
is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
the tracepoint is disabled.  The @var{step} gives the tracepoint's step
count, and @var{pass} gives its pass count.  If an @samp{F} is present,
then the tracepoint is to be a fast tracepoint, and the @var{flen} is
the number of bytes that the target should copy elsewhere to make room
for the tracepoint.  If an @samp{X} is present, it introduces a
tracepoint condition, which consists of a hexadecimal length, followed
by a comma and hex-encoded bytes, in a manner similar to action
encodings as described below.  If the trailing @samp{-} is present,
further @samp{QTDP} packets will follow to specify this tracepoint's
actions.

Replies:
@table @samp
@item OK
The packet was understood and carried out.
@item qRelocInsn
@xref{Tracepoint Packets,,Relocate instruction reply packet}.
@item  @w{}
The packet was not recognized.
@end table

@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
Define actions to be taken when a tracepoint is hit.  The @var{n} and
@var{addr} must be the same as in the initial @samp{QTDP} packet for
this tracepoint.  This packet may only be sent immediately after
another @samp{QTDP} packet that ended with a @samp{-}.  If the
trailing @samp{-} is present, further @samp{QTDP} packets will follow,
specifying more actions for this tracepoint.

In the series of action packets for a given tracepoint, at most one
can have an @samp{S} before its first @var{action}.  If such a packet
is sent, it and the following packets define ``while-stepping''
actions.  Any prior packets define ordinary actions --- that is, those
taken when the tracepoint is first hit.  If no action packet has an
@samp{S}, then all the packets in the series specify ordinary
tracepoint actions.

The @samp{@var{action}@dots{}} portion of the packet is a series of
actions, concatenated without separators.  Each action has one of the
following forms:

@table @samp

@item R @var{mask}
Collect the registers whose bits are set in @var{mask},
a hexadecimal number whose @var{i}'th bit is set if register number
@var{i} should be collected.  (The least significant bit is numbered
zero.)  Note that @var{mask} may be any number of digits long; it may
not fit in a 32-bit word.

@item M @var{basereg},@var{offset},@var{len}
Collect @var{len} bytes of memory starting at the address in register
number @var{basereg}, plus @var{offset}.  If @var{basereg} is
@samp{-1}, then the range has a fixed address: @var{offset} is the
address of the lowest byte to collect.  The @var{basereg},
@var{offset}, and @var{len} parameters are all unsigned hexadecimal
values (the @samp{-1} value for @var{basereg} is a special case).

@item X @var{len},@var{expr}
Evaluate @var{expr}, whose length is @var{len}, and collect memory as
it directs.  The agent expression @var{expr} is as described in
@ref{Agent Expressions}.  Each byte of the expression is encoded as a
two-digit hex number in the packet; @var{len} is the number of bytes
in the expression (and thus one-half the number of hex digits in the
packet).

@end table

Any number of actions may be packed together in a single @samp{QTDP}
packet, as long as the packet does not exceed the maximum packet
length (400 bytes, for many stubs).  There may be only one @samp{R}
action per tracepoint, and it must precede any @samp{M} or @samp{X}
actions.  Any registers referred to by @samp{M} and @samp{X} actions
must be collected by a preceding @samp{R} action.  (The
``while-stepping'' actions are treated as if they were attached to a
separate tracepoint, as far as these restrictions are concerned.)

Replies:
@table @samp
@item OK
The packet was understood and carried out.
@item qRelocInsn
@xref{Tracepoint Packets,,Relocate instruction reply packet}.
@item  @w{}
The packet was not recognized.
@end table

@item QTDPsrc:@var{n}:@var{addr}:@var{type}:@var{start}:@var{slen}:@var{bytes}
@cindex @samp{QTDPsrc} packet
Specify a source string of tracepoint @var{n} at address @var{addr}.
This is useful to get accurate reproduction of the tracepoints
originally downloaded at the beginning of the trace run.  The @var{type}
is the name of the tracepoint part, such as @samp{cond} for the
tracepoint's conditional expression (see below for a list of types), while
@var{bytes} is the string, encoded in hexadecimal.

@var{start} is the offset of the @var{bytes} within the overall source
string, while @var{slen} is the total length of the source string.
This is intended for handling source strings that are longer than will
fit in a single packet.
@c Add detailed example when this info is moved into a dedicated
@c tracepoint descriptions section.

The available string types are @samp{at} for the location,
@samp{cond} for the conditional, and @samp{cmd} for an action command.
@value{GDBN} sends a separate packet for each command in the action
list, in the same order in which the commands are stored in the list.

The target does not need to do anything with source strings except
report them back as part of the replies to the @samp{qTfP}/@samp{qTsP}
query packets.

Although this packet is optional, and @value{GDBN} will only send it
if the target replies with @samp{TracepointSource} @xref{General
Query Packets}, it makes both disconnected tracing and trace files
much easier to use.  Otherwise the user must be careful that the
tracepoints in effect while looking at trace frames are identical to
the ones in effect during the trace run; even a small discrepancy
could cause @samp{tdump} not to work, or a particular trace frame not
be found.

@item QTDV:@var{n}:@var{value}:@var{builtin}:@var{name}
@cindex define trace state variable, remote request
@cindex @samp{QTDV} packet
Create a new trace state variable, number @var{n}, with an initial
value of @var{value}, which is a 64-bit signed integer.  Both @var{n}
and @var{value} are encoded as hexadecimal values. @value{GDBN} has
the option of not using this packet for initial values of zero; the
target should simply create the trace state variables as they are
mentioned in expressions.  The value @var{builtin} should be 1 (one)
if the trace state variable is builtin and 0 (zero) if it is not builtin.
@value{GDBN} only sets @var{builtin} to 1 if a previous @samp{qTfV} or
@samp{qTsV} packet had it set.  The contents of @var{name} is the
hex-encoded name (without the leading @samp{$}) of the trace state
variable.

@item QTFrame:@var{n}
@cindex @samp{QTFrame} packet
Select the @var{n}'th tracepoint frame from the buffer, and use the
register and memory contents recorded there to answer subsequent
request packets from @value{GDBN}.

A successful reply from the stub indicates that the stub has found the
requested frame.  The response is a series of parts, concatenated
without separators, describing the frame we selected.  Each part has
one of the following forms:

@table @samp
@item F @var{f}
The selected frame is number @var{n} in the trace frame buffer;
@var{f} is a hexadecimal number.  If @var{f} is @samp{-1}, then there
was no frame matching the criteria in the request packet.

@item T @var{t}
The selected trace frame records a hit of tracepoint number @var{t};
@var{t} is a hexadecimal number.

@end table

@item QTFrame:pc:@var{addr}
Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
currently selected frame whose PC is @var{addr};
@var{addr} is a hexadecimal number.

@item QTFrame:tdp:@var{t}
Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
currently selected frame that is a hit of tracepoint @var{t}; @var{t}
is a hexadecimal number.

@item QTFrame:range:@var{start}:@var{end}
Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
currently selected frame whose PC is between @var{start} (inclusive)
and @var{end} (inclusive); @var{start} and @var{end} are hexadecimal
numbers.

@item QTFrame:outside:@var{start}:@var{end}
Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
frame @emph{outside} the given range of addresses (exclusive).

@item qTMinFTPILen
@cindex @samp{qTMinFTPILen} packet
This packet requests the minimum length of instruction at which a fast
tracepoint (@pxref{Set Tracepoints}) may be placed.  For instance, on
the 32-bit x86 architecture, it is possible to use a 4-byte jump, but
it depends on the target system being able to create trampolines in
the first 64K of memory, which might or might not be possible for that
system.  So the reply to this packet will be 4 if it is able to
arrange for that.

Replies:

@table @samp
@item 0
The minimum instruction length is currently unknown.
@item @var{length}
The minimum instruction length is @var{length}, where @var{length}
is a hexadecimal number greater or equal to 1.  A reply
of 1 means that a fast tracepoint may be placed on any instruction
regardless of size.
@item E
An error has occurred.
@item @w{}
An empty reply indicates that the request is not supported by the stub.
@end table

@item QTStart
@cindex @samp{QTStart} packet
Begin the tracepoint experiment.  Begin collecting data from
tracepoint hits in the trace frame buffer.  This packet supports the
@samp{qRelocInsn} reply (@pxref{Tracepoint Packets,,Relocate
instruction reply packet}).

@item QTStop
@cindex @samp{QTStop} packet
End the tracepoint experiment.  Stop collecting trace frames.

@item QTEnable:@var{n}:@var{addr}
@anchor{QTEnable}
@cindex @samp{QTEnable} packet
Enable tracepoint @var{n} at address @var{addr} in a started tracepoint
experiment.  If the tracepoint was previously disabled, then collection
of data from it will resume.

@item QTDisable:@var{n}:@var{addr}
@anchor{QTDisable}
@cindex @samp{QTDisable} packet
Disable tracepoint @var{n} at address @var{addr} in a started tracepoint
experiment.  No more data will be collected from the tracepoint unless
@samp{QTEnable:@var{n}:@var{addr}} is subsequently issued.

@item QTinit
@cindex @samp{QTinit} packet
Clear the table of tracepoints, and empty the trace frame buffer.

@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
@cindex @samp{QTro} packet
Establish the given ranges of memory as ``transparent''.  The stub
will answer requests for these ranges from memory's current contents,
if they were not collected as part of the tracepoint hit.

@value{GDBN} uses this to mark read-only regions of memory, like those
containing program code.  Since these areas never change, they should
still have the same contents they did when the tracepoint was hit, so
there's no reason for the stub to refuse to provide their contents.

@item QTDisconnected:@var{value}
@cindex @samp{QTDisconnected} packet
Set the choice to what to do with the tracing run when @value{GDBN}
disconnects from the target.  A @var{value} of 1 directs the target to
continue the tracing run, while 0 tells the target to stop tracing if
@value{GDBN} is no longer in the picture.

@item qTStatus
@cindex @samp{qTStatus} packet
Ask the stub if there is a trace experiment running right now.

The reply has the form:

@table @samp

@item T@var{running}@r{[};@var{field}@r{]}@dots{}
@var{running} is a single digit @code{1} if the trace is presently
running, or @code{0} if not.  It is followed by semicolon-separated
optional fields that an agent may use to report additional status.

@end table

If the trace is not running, the agent may report any of several
explanations as one of the optional fields:

@table @samp

@item tnotrun:0
No trace has been run yet.

@item tstop[:@var{text}]:0
The trace was stopped by a user-originated stop command.  The optional
@var{text} field is a user-supplied string supplied as part of the
stop command (for instance, an explanation of why the trace was
stopped manually).  It is hex-encoded.

@item tfull:0
The trace stopped because the trace buffer filled up.

@item tdisconnected:0
The trace stopped because @value{GDBN} disconnected from the target.

@item tpasscount:@var{tpnum}
The trace stopped because tracepoint @var{tpnum} exceeded its pass count.

@item terror:@var{text}:@var{tpnum}
The trace stopped because tracepoint @var{tpnum} had an error.  The
string @var{text} is available to describe the nature of the error
(for instance, a divide by zero in the condition expression); it
is hex encoded.

@item tunknown:0
The trace stopped for some other reason.

@end table

Additional optional fields supply statistical and other information.
Although not required, they are extremely useful for users monitoring
the progress of a trace run.  If a trace has stopped, and these
numbers are reported, they must reflect the state of the just-stopped
trace.

@table @samp

@item tframes:@var{n}
The number of trace frames in the buffer.

@item tcreated:@var{n}
The total number of trace frames created during the run. This may
be larger than the trace frame count, if the buffer is circular.

@item tsize:@var{n}
The total size of the trace buffer, in bytes.

@item tfree:@var{n}
The number of bytes still unused in the buffer.

@item circular:@var{n}
The value of the circular trace buffer flag.  @code{1} means that the
trace buffer is circular and old trace frames will be discarded if
necessary to make room, @code{0} means that the trace buffer is linear
and may fill up.

@item disconn:@var{n}
The value of the disconnected tracing flag.  @code{1} means that
tracing will continue after @value{GDBN} disconnects, @code{0} means
that the trace run will stop.

@end table

@item qTP:@var{tp}:@var{addr}
@cindex tracepoint status, remote request
@cindex @samp{qTP} packet
Ask the stub for the current state of tracepoint number @var{tp} at
address @var{addr}.

Replies:
@table @samp
@item V@var{hits}:@var{usage}
The tracepoint has been hit @var{hits} times so far during the trace
run, and accounts for @var{usage} in the trace buffer.  Note that
@code{while-stepping} steps are not counted as separate hits, but the
steps' space consumption is added into the usage number.

@end table

@item qTV:@var{var}
@cindex trace state variable value, remote request
@cindex @samp{qTV} packet
Ask the stub for the value of the trace state variable number @var{var}.

Replies:
@table @samp
@item V@var{value}
The value of the variable is @var{value}.  This will be the current
value of the variable if the user is examining a running target, or a
saved value if the variable was collected in the trace frame that the
user is looking at.  Note that multiple requests may result in
different reply values, such as when requesting values while the
program is running.

@item U
The value of the variable is unknown.  This would occur, for example,
if the user is examining a trace frame in which the requested variable
was not collected.
@end table

@item qTfP
@cindex @samp{qTfP} packet
@itemx qTsP
@cindex @samp{qTsP} packet
These packets request data about tracepoints that are being used by
the target.  @value{GDBN} sends @code{qTfP} to get the first piece
of data, and multiple @code{qTsP} to get additional pieces.  Replies
to these packets generally take the form of the @code{QTDP} packets
that define tracepoints. (FIXME add detailed syntax)

@item qTfV
@cindex @samp{qTfV} packet
@itemx qTsV
@cindex @samp{qTsV} packet
These packets request data about trace state variables that are on the
target.  @value{GDBN} sends @code{qTfV} to get the first vari of data,
and multiple @code{qTsV} to get additional variables.  Replies to
these packets follow the syntax of the @code{QTDV} packets that define
trace state variables.

@item qTfSTM
@itemx qTsSTM
@anchor{qTfSTM}
@anchor{qTsSTM}
@cindex @samp{qTfSTM} packet
@cindex @samp{qTsSTM} packet
These packets request data about static tracepoint markers that exist
in the target program.  @value{GDBN} sends @code{qTfSTM} to get the
first piece of data, and multiple @code{qTsSTM} to get additional
pieces.  Replies to these packets take the following form:

Reply:
@table @samp
@item m @var{address}:@var{id}:@var{extra}
A single marker
@item m @var{address}:@var{id}:@var{extra},@var{address}:@var{id}:@var{extra}@dots{}
a comma-separated list of markers
@item l
(lower case letter @samp{L}) denotes end of list.
@item E @var{nn}
An error occurred.  The error number @var{nn} is given as hex digits.
@item @w{}
An empty reply indicates that the request is not supported by the
stub.
@end table

The @var{address} is encoded in hex;
@var{id} and @var{extra} are strings encoded in hex.

In response to each query, the target will reply with a list of one or
more markers, separated by commas.  @value{GDBN} will respond to each
reply with a request for more markers (using the @samp{qs} form of the
query), until the target responds with @samp{l} (lower-case ell, for
@dfn{last}).

@item qTSTMat:@var{address}
@anchor{qTSTMat}
@cindex @samp{qTSTMat} packet
This packets requests data about static tracepoint markers in the
target program at @var{address}.  Replies to this packet follow the
syntax of the @samp{qTfSTM} and @code{qTsSTM} packets that list static
tracepoint markers.

@item QTSave:@var{filename}
@cindex @samp{QTSave} packet
This packet directs the target to save trace data to the file name
@var{filename} in the target's filesystem.  The @var{filename} is encoded
as a hex string; the interpretation of the file name (relative vs
absolute, wild cards, etc) is up to the target.

@item qTBuffer:@var{offset},@var{len}
@cindex @samp{qTBuffer} packet
Return up to @var{len} bytes of the current contents of trace buffer,
starting at @var{offset}.  The trace buffer is treated as if it were
a contiguous collection of traceframes, as per the trace file format.
The reply consists as many hex-encoded bytes as the target can deliver
in a packet; it is not an error to return fewer than were asked for.
A reply consisting of just @code{l} indicates that no bytes are
available.

@item QTBuffer:circular:@var{value}
This packet directs the target to use a circular trace buffer if
@var{value} is 1, or a linear buffer if the value is 0.

@item QTBuffer:size:@var{size}
@anchor{QTBuffer-size}
@cindex @samp{QTBuffer size} packet
This packet directs the target to make the trace buffer be of size
@var{size} if possible.  A value of @code{-1} tells the target to
use whatever size it prefers.

@item QTNotes:@r{[}@var{type}:@var{text}@r{]}@r{[};@var{type}:@var{text}@r{]}@dots{}
@cindex @samp{QTNotes} packet
This packet adds optional textual notes to the trace run.  Allowable
types include @code{user}, @code{notes}, and @code{tstop}, the
@var{text} fields are arbitrary strings, hex-encoded.

@end table

@subsection Relocate instruction reply packet
When installing fast tracepoints in memory, the target may need to
relocate the instruction currently at the tracepoint address to a
different address in memory.  For most instructions, a simple copy is
enough, but, for example, call instructions that implicitly push the
return address on the stack, and relative branches or other
PC-relative instructions require offset adjustment, so that the effect
of executing the instruction at a different address is the same as if
it had executed in the original location.

In response to several of the tracepoint packets, the target may also
respond with a number of intermediate @samp{qRelocInsn} request
packets before the final result packet, to have @value{GDBN} handle
this relocation operation.  If a packet supports this mechanism, its
documentation will explicitly say so.  See for example the above
descriptions for the @samp{QTStart} and @samp{QTDP} packets.  The
format of the request is:

@table @samp
@item qRelocInsn:@var{from};@var{to}

This requests @value{GDBN} to copy instruction at address @var{from}
to address @var{to}, possibly adjusted so that executing the
instruction at @var{to} has the same effect as executing it at
@var{from}.  @value{GDBN} writes the adjusted instruction to target
memory starting at @var{to}.
@end table

Replies:
@table @samp
@item qRelocInsn:@var{adjusted_size}
Informs the stub the relocation is complete.  The @var{adjusted_size} is
the length in bytes of resulting relocated instruction sequence.
@item E @var{NN}
A badly formed request was detected, or an error was encountered while
relocating the instruction.
@end table

@node Host I/O Packets
@section Host I/O Packets
@cindex Host I/O, remote protocol
@cindex file transfer, remote protocol

The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
operations on the far side of a remote link.  For example, Host I/O is
used to upload and download files to a remote target with its own
filesystem.  Host I/O uses the same constant values and data structure
layout as the target-initiated File-I/O protocol.  However, the
Host I/O packets are structured differently.  The target-initiated
protocol relies on target memory to store parameters and buffers.
Host I/O requests are initiated by @value{GDBN}, and the
target's memory is not involved.  @xref{File-I/O Remote Protocol
Extension}, for more details on the target-initiated protocol.

The Host I/O request packets all encode a single operation along with
its arguments.  They have this format:

@table @samp

@item vFile:@var{operation}: @var{parameter}@dots{}
@var{operation} is the name of the particular request; the target
should compare the entire packet name up to the second colon when checking
for a supported operation.  The format of @var{parameter} depends on
the operation.  Numbers are always passed in hexadecimal.  Negative
numbers have an explicit minus sign (i.e.@: two's complement is not
used).  Strings (e.g.@: filenames) are encoded as a series of
hexadecimal bytes.  The last argument to a system call may be a
buffer of escaped binary data (@pxref{Binary Data}).

@end table

The valid responses to Host I/O packets are:

@table @samp

@item F @var{result} [, @var{errno}] [; @var{attachment}]
@var{result} is the integer value returned by this operation, usually
non-negative for success and -1 for errors.  If an error has occured,
@var{errno} will be included in the result specifying a
value defined by the File-I/O protocol (@pxref{Errno Values}).  For
operations which return data, @var{attachment} supplies the data as a
binary buffer.  Binary buffers in response packets are escaped in the
normal way (@pxref{Binary Data}).  See the individual packet
documentation for the interpretation of @var{result} and
@var{attachment}.

@item @w{}
An empty response indicates that this operation is not recognized.

@end table

These are the supported Host I/O operations:

@table @samp
@item vFile:open: @var{filename}, @var{flags}, @var{mode}
Open a file at @var{filename} and return a file descriptor for it, or
return -1 if an error occurs.  The @var{filename} is a string,
@var{flags} is an integer indicating a mask of open flags
(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
of mode bits to use if the file is created (@pxref{mode_t Values}).
@xref{open}, for details of the open flags and mode values.

@item vFile:close: @var{fd}
Close the open file corresponding to @var{fd} and return 0, or
-1 if an error occurs.

@item vFile:pread: @var{fd}, @var{count}, @var{offset}
Read data from the open file corresponding to @var{fd}.  Up to
@var{count} bytes will be read from the file, starting at @var{offset}
relative to the start of the file.  The target may read fewer bytes;
common reasons include packet size limits and an end-of-file
condition.  The number of bytes read is returned.  Zero should only be
returned for a successful read at the end of the file, or if
@var{count} was zero.

The data read should be returned as a binary attachment on success.
If zero bytes were read, the response should include an empty binary
attachment (i.e.@: a trailing semicolon).  The return value is the
number of target bytes read; the binary attachment may be longer if
some characters were escaped.

@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
Write @var{data} (a binary buffer) to the open file corresponding
to @var{fd}.  Start the write at @var{offset} from the start of the
file.  Unlike many @code{write} system calls, there is no
separate @var{count} argument; the length of @var{data} in the
packet is used.  @samp{vFile:pwrite} returns the number of bytes written,
which may be shorter than the length of @var{data}, or -1 if an
error occurred.

@item vFile:fstat: @var{fd}
Get information about the open file corresponding to @var{fd}.
On success the information is returned as a binary attachment
and the return value is the size of this attachment in bytes.
If an error occurs the return value is -1.  The format of the
returned binary attachment is as described in @ref{struct stat}.

@item vFile:unlink: @var{filename}
Delete the file at @var{filename} on the target.  Return 0,
or -1 if an error occurs.  The @var{filename} is a string.

@item vFile:readlink: @var{filename}
Read value of symbolic link @var{filename} on the target.  Return
the number of bytes read, or -1 if an error occurs.

The data read should be returned as a binary attachment on success.
If zero bytes were read, the response should include an empty binary
attachment (i.e.@: a trailing semicolon).  The return value is the
number of target bytes read; the binary attachment may be longer if
some characters were escaped.

@item vFile:setfs: @var{pid}
Select the filesystem on which @code{vFile} operations with
@var{filename} arguments will operate.  This is required for
@value{GDBN} to be able to access files on remote targets where
the remote stub does not share a common filesystem with the
inferior(s).

If @var{pid} is nonzero, select the filesystem as seen by process
@var{pid}.  If @var{pid} is zero, select the filesystem as seen by
the remote stub.  Return 0 on success, or -1 if an error occurs.
If @code{vFile:setfs:} indicates success, the selected filesystem
remains selected until the next successful @code{vFile:setfs:}
operation.

@end table

@node Interrupts
@section Interrupts
@cindex interrupts (remote protocol)
@anchor{interrupting remote targets}

In all-stop mode, when a program on the remote target is running,
@value{GDBN} may attempt to interrupt it by sending a @samp{Ctrl-C},
@code{BREAK} or a @code{BREAK} followed by @code{g}, control of which
is specified via @value{GDBN}'s @samp{interrupt-sequence}.

The precise meaning of @code{BREAK} is defined by the transport
mechanism and may, in fact, be undefined.  @value{GDBN} does not
currently define a @code{BREAK} mechanism for any of the network
interfaces except for TCP, in which case @value{GDBN} sends the
@code{telnet} BREAK sequence.

@samp{Ctrl-C}, on the other hand, is defined and implemented for all
transport mechanisms.  It is represented by sending the single byte
@code{0x03} without any of the usual packet overhead described in
the Overview section (@pxref{Overview}).  When a @code{0x03} byte is
transmitted as part of a packet, it is considered to be packet data
and does @emph{not} represent an interrupt.  E.g., an @samp{X} packet
(@pxref{X packet}), used for binary downloads, may include an unescaped
@code{0x03} as part of its packet.

@code{BREAK} followed by @code{g} is also known as Magic SysRq g.
When Linux kernel receives this sequence from serial port,
it stops execution and connects to gdb.

In non-stop mode, because packet resumptions are asynchronous
(@pxref{vCont packet}), @value{GDBN} is always free to send a remote
command to the remote stub, even when the target is running.  For that
reason, @value{GDBN} instead sends a regular packet (@pxref{vCtrlC
packet}) with the usual packet framing instead of the single byte
@code{0x03}.

Stubs are not required to recognize these interrupt mechanisms and the
precise meaning associated with receipt of the interrupt is
implementation defined.  If the target supports debugging of multiple
threads and/or processes, it should attempt to interrupt all 
currently-executing threads and processes.
If the stub is successful at interrupting the
running program, it should send one of the stop
reply packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
of successfully stopping the program in all-stop mode, and a stop reply
for each stopped thread in non-stop mode.
Interrupts received while the
program is stopped are queued and the program will be interrupted when
it is resumed next time.

@node Notification Packets
@section Notification Packets
@cindex notification packets
@cindex packets, notification

The @value{GDBN} remote serial protocol includes @dfn{notifications},
packets that require no acknowledgment.  Both the GDB and the stub
may send notifications (although the only notifications defined at
present are sent by the stub).  Notifications carry information
without incurring the round-trip latency of an acknowledgment, and so
are useful for low-impact communications where occasional packet loss
is not a problem.

A notification packet has the form @samp{% @var{data} #
@var{checksum}}, where @var{data} is the content of the notification,
and @var{checksum} is a checksum of @var{data}, computed and formatted
as for ordinary @value{GDBN} packets.  A notification's @var{data}
never contains @samp{$}, @samp{%} or @samp{#} characters.  Upon
receiving a notification, the recipient sends no @samp{+} or @samp{-}
to acknowledge the notification's receipt or to report its corruption.

Every notification's @var{data} begins with a name, which contains no
colon characters, followed by a colon character.

Recipients should silently ignore corrupted notifications and
notifications they do not understand.  Recipients should restart
timeout periods on receipt of a well-formed notification, whether or
not they understand it.

Senders should only send the notifications described here when this
protocol description specifies that they are permitted.  In the
future, we may extend the protocol to permit existing notifications in
new contexts; this rule helps older senders avoid confusing newer
recipients.

(Older versions of @value{GDBN} ignore bytes received until they see
the @samp{$} byte that begins an ordinary packet, so new stubs may
transmit notifications without fear of confusing older clients.  There
are no notifications defined for @value{GDBN} to send at the moment, but we
assume that most older stubs would ignore them, as well.)

Each notification is comprised of three parts:
@table @samp
@item @var{name}:@var{event}
The notification packet is sent by the side that initiates the
exchange (currently, only the stub does that), with @var{event}
carrying the specific information about the notification, and
@var{name} specifying the name of the notification.
@item @var{ack}
The acknowledge sent by the other side, usually @value{GDBN}, to
acknowledge the exchange and request the event.
@end table

The purpose of an asynchronous notification mechanism is to report to
@value{GDBN} that something interesting happened in the remote stub.

The remote stub may send notification @var{name}:@var{event}
at any time, but @value{GDBN} acknowledges the notification when
appropriate.  The notification event is pending before @value{GDBN}
acknowledges.  Only one notification at a time may be pending; if
additional events occur before @value{GDBN} has acknowledged the
previous notification, they must be queued by the stub for later
synchronous transmission in response to @var{ack} packets from
@value{GDBN}.  Because the notification mechanism is unreliable,
the stub is permitted to resend a notification if it believes
@value{GDBN} may not have received it.

Specifically, notifications may appear when @value{GDBN} is not
otherwise reading input from the stub, or when @value{GDBN} is
expecting to read a normal synchronous response or a
@samp{+}/@samp{-} acknowledgment to a packet it has sent.
Notification packets are distinct from any other communication from
the stub so there is no ambiguity.

After receiving a notification, @value{GDBN} shall acknowledge it by
sending a @var{ack} packet as a regular, synchronous request to the
stub.  Such acknowledgment is not required to happen immediately, as
@value{GDBN} is permitted to send other, unrelated packets to the
stub first, which the stub should process normally.

Upon receiving a @var{ack} packet, if the stub has other queued
events to report to @value{GDBN}, it shall respond by sending a
normal @var{event}.  @value{GDBN} shall then send another @var{ack}
packet to solicit further responses; again, it is permitted to send
other, unrelated packets as well which the stub should process
normally.

If the stub receives a @var{ack} packet and there are no additional
@var{event} to report, the stub shall return an @samp{OK} response.
At this point, @value{GDBN} has finished processing a notification
and the stub has completed sending any queued events.  @value{GDBN}
won't accept any new notifications until the final @samp{OK} is
received .  If further notification events occur, the stub shall send
a new notification, @value{GDBN} shall accept the notification, and
the process shall be repeated.

The process of asynchronous notification can be illustrated by the
following example:
@smallexample
<- @code{%Stop:T0505:98e7ffbf;04:4ce6ffbf;08:b1b6e54c;thread:p7526.7526;core:0;}
@code{...}
-> @code{vStopped}
<- @code{T0505:68f37db7;04:40f37db7;08:63850408;thread:p7526.7528;core:0;}
-> @code{vStopped}
<- @code{T0505:68e3fdb6;04:40e3fdb6;08:63850408;thread:p7526.7529;core:0;}
-> @code{vStopped}
<- @code{OK}
@end smallexample

The following notifications are defined:
@multitable @columnfractions 0.12 0.12 0.38 0.38

@item Notification
@tab Ack
@tab Event
@tab Description

@item Stop
@tab vStopped
@tab @var{reply}.  The @var{reply} has the form of a stop reply, as
described in @ref{Stop Reply Packets}.  Refer to @ref{Remote Non-Stop},
for information on how these notifications are acknowledged by 
@value{GDBN}.
@tab Report an asynchronous stop event in non-stop mode.

@end multitable

@node Remote Non-Stop
@section Remote Protocol Support for Non-Stop Mode

@value{GDBN}'s remote protocol supports non-stop debugging of
multi-threaded programs, as described in @ref{Non-Stop Mode}.  If the stub
supports non-stop mode, it should report that to @value{GDBN} by including
@samp{QNonStop+} in its @samp{qSupported} response (@pxref{qSupported}).

@value{GDBN} typically sends a @samp{QNonStop} packet only when
establishing a new connection with the stub.  Entering non-stop mode
does not alter the state of any currently-running threads, but targets
must stop all threads in any already-attached processes when entering
all-stop mode.  @value{GDBN} uses the @samp{?} packet as necessary to
probe the target state after a mode change.

In non-stop mode, when an attached process encounters an event that
would otherwise be reported with a stop reply, it uses the
asynchronous notification mechanism (@pxref{Notification Packets}) to
inform @value{GDBN}.  In contrast to all-stop mode, where all threads
in all processes are stopped when a stop reply is sent, in non-stop
mode only the thread reporting the stop event is stopped.  That is,
when reporting a @samp{S} or @samp{T} response to indicate completion
of a step operation, hitting a breakpoint, or a fault, only the
affected thread is stopped; any other still-running threads continue
to run.  When reporting a @samp{W} or @samp{X} response, all running
threads belonging to other attached processes continue to run.

In non-stop mode, the target shall respond to the @samp{?} packet as
follows.  First, any incomplete stop reply notification/@samp{vStopped} 
sequence in progress is abandoned.  The target must begin a new
sequence reporting stop events for all stopped threads, whether or not
it has previously reported those events to @value{GDBN}.  The first
stop reply is sent as a synchronous reply to the @samp{?} packet, and
subsequent stop replies are sent as responses to @samp{vStopped} packets
using the mechanism described above.  The target must not send
asynchronous stop reply notifications until the sequence is complete.
If all threads are running when the target receives the @samp{?} packet,
or if the target is not attached to any process, it shall respond
@samp{OK}.

If the stub supports non-stop mode, it should also support the
@samp{swbreak} stop reason if software breakpoints are supported, and
the @samp{hwbreak} stop reason if hardware breakpoints are supported
(@pxref{swbreak stop reason}).  This is because given the asynchronous
nature of non-stop mode, between the time a thread hits a breakpoint
and the time the event is finally processed by @value{GDBN}, the
breakpoint may have already been removed from the target.  Due to
this, @value{GDBN} needs to be able to tell whether a trap stop was
caused by a delayed breakpoint event, which should be ignored, as
opposed to a random trap signal, which should be reported to the user.
Note the @samp{swbreak} feature implies that the target is responsible
for adjusting the PC when a software breakpoint triggers, if
necessary, such as on the x86 architecture.

@node Packet Acknowledgment
@section Packet Acknowledgment

@cindex acknowledgment, for @value{GDBN} remote
@cindex packet acknowledgment, for @value{GDBN} remote
By default, when either the host or the target machine receives a packet,
the first response expected is an acknowledgment: either @samp{+} (to indicate
the package was received correctly) or @samp{-} (to request retransmission).
This mechanism allows the @value{GDBN} remote protocol to operate over
unreliable transport mechanisms, such as a serial line.

In cases where the transport mechanism is itself reliable (such as a pipe or
TCP connection), the @samp{+}/@samp{-} acknowledgments are redundant.
It may be desirable to disable them in that case to reduce communication
overhead, or for other reasons.  This can be accomplished by means of the
@samp{QStartNoAckMode} packet; @pxref{QStartNoAckMode}.

When in no-acknowledgment mode, neither the stub nor @value{GDBN} shall send or
expect @samp{+}/@samp{-} protocol acknowledgments.  The packet
and response format still includes the normal checksum, as described in
@ref{Overview}, but the checksum may be ignored by the receiver.

If the stub supports @samp{QStartNoAckMode} and prefers to operate in
no-acknowledgment mode, it should report that to @value{GDBN}
by including @samp{QStartNoAckMode+} in its response to @samp{qSupported};
@pxref{qSupported}.
If @value{GDBN} also supports @samp{QStartNoAckMode} and it has not been
disabled via the @code{set remote noack-packet off} command
(@pxref{Remote Configuration}),
@value{GDBN} may then send a @samp{QStartNoAckMode} packet to the stub.
Only then may the stub actually turn off packet acknowledgments.
@value{GDBN} sends a final @samp{+} acknowledgment of the stub's @samp{OK}
response, which can be safely ignored by the stub.

Note that @code{set remote noack-packet} command only affects negotiation
between @value{GDBN} and the stub when subsequent connections are made;
it does not affect the protocol acknowledgment state for any current
connection.
Since @samp{+}/@samp{-} acknowledgments are enabled by default when a
new connection is established,
there is also no protocol request to re-enable the acknowledgments
for the current connection, once disabled.

@node Examples
@section Examples

Example sequence of a target being re-started.  Notice how the restart
does not get any direct output:

@smallexample
-> @code{R00}
<- @code{+}
@emph{target restarts}
-> @code{?}
<- @code{+}
<- @code{T001:1234123412341234}
-> @code{+}
@end smallexample

Example sequence of a target being stepped by a single instruction:

@smallexample
-> @code{G1445@dots{}}
<- @code{+}
-> @code{s}
<- @code{+}
@emph{time passes}
<- @code{T001:1234123412341234}
-> @code{+}
-> @code{g}
<- @code{+}
<- @code{1455@dots{}}
-> @code{+}
@end smallexample

@node File-I/O Remote Protocol Extension
@section File-I/O Remote Protocol Extension
@cindex File-I/O remote protocol extension

@menu
* File-I/O Overview::
* Protocol Basics::
* The F Request Packet::
* The F Reply Packet::
* The Ctrl-C Message::
* Console I/O::
* List of Supported Calls::
* Protocol-specific Representation of Datatypes::
* Constants::
* File-I/O Examples::
@end menu

@node File-I/O Overview
@subsection File-I/O Overview
@cindex file-i/o overview

The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
target to use the host's file system and console I/O to perform various
system calls.  System calls on the target system are translated into a
remote protocol packet to the host system, which then performs the needed
actions and returns a response packet to the target system.
This simulates file system operations even on targets that lack file systems.

The protocol is defined to be independent of both the host and target systems.
It uses its own internal representation of datatypes and values.  Both
@value{GDBN} and the target's @value{GDBN} stub are responsible for
translating the system-dependent value representations into the internal
protocol representations when data is transmitted.

The communication is synchronous.  A system call is possible only when 
@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S} 
or @samp{s} packets.  While @value{GDBN} handles the request for a system call,
the target is stopped to allow deterministic access to the target's
memory.  Therefore File-I/O is not interruptible by target signals.  On
the other hand, it is possible to interrupt File-I/O by a user interrupt 
(@samp{Ctrl-C}) within @value{GDBN}.

The target's request to perform a host system call does not finish
the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action.  That means,
after finishing the system call, the target returns to continuing the
previous activity (continue, step).  No additional continue or step
request from @value{GDBN} is required.

@smallexample
(@value{GDBP}) continue
  <- target requests 'system call X'
  target is stopped, @value{GDBN} executes system call
  -> @value{GDBN} returns result
  ... target continues, @value{GDBN} returns to wait for the target
  <- target hits breakpoint and sends a Txx packet
@end smallexample

The protocol only supports I/O on the console and to regular files on 
the host file system.  Character or block special devices, pipes,
named pipes, sockets or any other communication method on the host
system are not supported by this protocol.

File I/O is not supported in non-stop mode.

@node Protocol Basics
@subsection Protocol Basics
@cindex protocol basics, file-i/o

The File-I/O protocol uses the @code{F} packet as the request as well
as reply packet.  Since a File-I/O system call can only occur when
@value{GDBN} is waiting for a response from the continuing or stepping target, 
the File-I/O request is a reply that @value{GDBN} has to expect as a result
of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
This @code{F} packet contains all information needed to allow @value{GDBN}
to call the appropriate host system call:

@itemize @bullet
@item
A unique identifier for the requested system call.

@item
All parameters to the system call.  Pointers are given as addresses
in the target memory address space.  Pointers to strings are given as
pointer/length pair.  Numerical values are given as they are.
Numerical control flags are given in a protocol-specific representation.

@end itemize

At this point, @value{GDBN} has to perform the following actions.

@itemize @bullet
@item
If the parameters include pointer values to data needed as input to a 
system call, @value{GDBN} requests this data from the target with a
standard @code{m} packet request.  This additional communication has to be
expected by the target implementation and is handled as any other @code{m}
packet.

@item
@value{GDBN} translates all value from protocol representation to host
representation as needed.  Datatypes are coerced into the host types.

@item
@value{GDBN} calls the system call.

@item
It then coerces datatypes back to protocol representation.

@item
If the system call is expected to return data in buffer space specified
by pointer parameters to the call, the data is transmitted to the
target using a @code{M} or @code{X} packet.  This packet has to be expected
by the target implementation and is handled as any other @code{M} or @code{X}
packet.

@end itemize

Eventually @value{GDBN} replies with another @code{F} packet which contains all
necessary information for the target to continue.  This at least contains

@itemize @bullet
@item
Return value.

@item
@code{errno}, if has been changed by the system call.

@item
``Ctrl-C'' flag.

@end itemize

After having done the needed type and value coercion, the target continues
the latest continue or step action.

@node The F Request Packet
@subsection The @code{F} Request Packet
@cindex file-i/o request packet
@cindex @code{F} request packet

The @code{F} request packet has the following format:

@table @samp
@item F@var{call-id},@var{parameter@dots{}}

@var{call-id} is the identifier to indicate the host system call to be called.
This is just the name of the function.

@var{parameter@dots{}} are the parameters to the system call.  
Parameters are hexadecimal integer values, either the actual values in case
of scalar datatypes, pointers to target buffer space in case of compound
datatypes and unspecified memory areas, or pointer/length pairs in case
of string parameters.  These are appended to the @var{call-id} as a 
comma-delimited list.  All values are transmitted in ASCII
string representation, pointer/length pairs separated by a slash.

@end table



@node The F Reply Packet
@subsection The @code{F} Reply Packet
@cindex file-i/o reply packet
@cindex @code{F} reply packet

The @code{F} reply packet has the following format:

@table @samp

@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}

@var{retcode} is the return code of the system call as hexadecimal value.

@var{errno} is the @code{errno} set by the call, in protocol-specific
representation.
This parameter can be omitted if the call was successful.

@var{Ctrl-C flag} is only sent if the user requested a break.  In this
case, @var{errno} must be sent as well, even if the call was successful.
The @var{Ctrl-C flag} itself consists of the character @samp{C}:

@smallexample
F0,0,C
@end smallexample

@noindent
or, if the call was interrupted before the host call has been performed:

@smallexample
F-1,4,C
@end smallexample

@noindent
assuming 4 is the protocol-specific representation of @code{EINTR}.

@end table


@node The Ctrl-C Message
@subsection The @samp{Ctrl-C} Message
@cindex ctrl-c message, in file-i/o protocol

If the @samp{Ctrl-C} flag is set in the @value{GDBN}
reply packet (@pxref{The F Reply Packet}),
the target should behave as if it had
gotten a break message.  The meaning for the target is ``system call
interrupted by @code{SIGINT}''.  Consequentially, the target should actually stop
(as with a break message) and return to @value{GDBN} with a @code{T02}
packet.

It's important for the target to know in which
state the system call was interrupted.  There are two possible cases:

@itemize @bullet
@item
The system call hasn't been performed on the host yet.

@item
The system call on the host has been finished.

@end itemize

These two states can be distinguished by the target by the value of the
returned @code{errno}.  If it's the protocol representation of @code{EINTR}, the system
call hasn't been performed.  This is equivalent to the @code{EINTR} handling
on POSIX systems.  In any other case, the target may presume that the
system call has been finished --- successfully or not --- and should behave
as if the break message arrived right after the system call.

@value{GDBN} must behave reliably.  If the system call has not been called
yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
@code{errno} in the packet.  If the system call on the host has been finished
before the user requests a break, the full action must be finished by
@value{GDBN}.  This requires sending @code{M} or @code{X} packets as necessary.
The @code{F} packet may only be sent when either nothing has happened
or the full action has been completed.

@node Console I/O
@subsection Console I/O
@cindex console i/o as part of file-i/o

By default and if not explicitly closed by the target system, the file
descriptors 0, 1 and 2 are connected to the @value{GDBN} console.  Output
on the @value{GDBN} console is handled as any other file output operation
(@code{write(1, @dots{})} or @code{write(2, @dots{})}).  Console input is handled
by @value{GDBN} so that after the target read request from file descriptor
0 all following typing is buffered until either one of the following
conditions is met:

@itemize @bullet
@item
The user types @kbd{Ctrl-c}.  The behaviour is as explained above, and the
@code{read}
system call is treated as finished.

@item
The user presses @key{RET}.  This is treated as end of input with a trailing
newline.

@item
The user types @kbd{Ctrl-d}.  This is treated as end of input.  No trailing
character (neither newline nor @samp{Ctrl-D}) is appended to the input.

@end itemize

If the user has typed more characters than fit in the buffer given to
the @code{read} call, the trailing characters are buffered in @value{GDBN} until
either another @code{read(0, @dots{})} is requested by the target, or debugging
is stopped at the user's request.


@node List of Supported Calls
@subsection List of Supported Calls
@cindex list of supported file-i/o calls

@menu
* open::
* close::
* read::
* write::
* lseek::
* rename::
* unlink::
* stat/fstat::
* gettimeofday::
* isatty::
* system::
@end menu

@node open
@unnumberedsubsubsec open
@cindex open, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
@end smallexample

@item Request:
@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}

@noindent
@var{flags} is the bitwise @code{OR} of the following values:

@table @code
@item O_CREAT
If the file does not exist it will be created.  The host
rules apply as far as file ownership and time stamps
are concerned.

@item O_EXCL
When used with @code{O_CREAT}, if the file already exists it is
an error and open() fails.

@item O_TRUNC
If the file already exists and the open mode allows
writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
truncated to zero length.

@item O_APPEND
The file is opened in append mode.

@item O_RDONLY
The file is opened for reading only.

@item O_WRONLY
The file is opened for writing only.

@item O_RDWR
The file is opened for reading and writing.
@end table

@noindent
Other bits are silently ignored.


@noindent
@var{mode} is the bitwise @code{OR} of the following values:

@table @code
@item S_IRUSR
User has read permission.

@item S_IWUSR
User has write permission.

@item S_IRGRP
Group has read permission.

@item S_IWGRP
Group has write permission.

@item S_IROTH
Others have read permission.

@item S_IWOTH
Others have write permission.
@end table

@noindent
Other bits are silently ignored.


@item Return value:
@code{open} returns the new file descriptor or -1 if an error
occurred.

@item Errors:

@table @code
@item EEXIST
@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.

@item EISDIR
@var{pathname} refers to a directory.

@item EACCES
The requested access is not allowed.

@item ENAMETOOLONG
@var{pathname} was too long.

@item ENOENT
A directory component in @var{pathname} does not exist.

@item ENODEV
@var{pathname} refers to a device, pipe, named pipe or socket.

@item EROFS
@var{pathname} refers to a file on a read-only filesystem and
write access was requested.

@item EFAULT
@var{pathname} is an invalid pointer value.

@item ENOSPC
No space on device to create the file.

@item EMFILE
The process already has the maximum number of files open.

@item ENFILE
The limit on the total number of files open on the system
has been reached.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node close
@unnumberedsubsubsec close
@cindex close, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int close(int fd);
@end smallexample

@item Request:
@samp{Fclose,@var{fd}}

@item Return value:
@code{close} returns zero on success, or -1 if an error occurred.

@item Errors:

@table @code
@item EBADF
@var{fd} isn't a valid open file descriptor.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node read
@unnumberedsubsubsec read
@cindex read, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int read(int fd, void *buf, unsigned int count);
@end smallexample

@item Request:
@samp{Fread,@var{fd},@var{bufptr},@var{count}}

@item Return value:
On success, the number of bytes read is returned.
Zero indicates end of file.  If count is zero, read
returns zero as well.  On error, -1 is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid file descriptor or is not open for
reading.

@item EFAULT
@var{bufptr} is an invalid pointer value.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node write
@unnumberedsubsubsec write
@cindex write, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int write(int fd, const void *buf, unsigned int count);
@end smallexample

@item Request:
@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}

@item Return value:
On success, the number of bytes written are returned.
Zero indicates nothing was written.  On error, -1
is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid file descriptor or is not open for
writing.

@item EFAULT
@var{bufptr} is an invalid pointer value.

@item EFBIG
An attempt was made to write a file that exceeds the
host-specific maximum file size allowed.

@item ENOSPC
No space on device to write the data.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node lseek
@unnumberedsubsubsec lseek
@cindex lseek, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
long lseek (int fd, long offset, int flag);
@end smallexample

@item Request:
@samp{Flseek,@var{fd},@var{offset},@var{flag}}

@var{flag} is one of:

@table @code
@item SEEK_SET
The offset is set to @var{offset} bytes.

@item SEEK_CUR
The offset is set to its current location plus @var{offset}
bytes.

@item SEEK_END
The offset is set to the size of the file plus @var{offset}
bytes.
@end table

@item Return value:
On success, the resulting unsigned offset in bytes from
the beginning of the file is returned.  Otherwise, a
value of -1 is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid open file descriptor.

@item ESPIPE
@var{fd} is associated with the @value{GDBN} console.

@item EINVAL
@var{flag} is not a proper value.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node rename
@unnumberedsubsubsec rename
@cindex rename, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int rename(const char *oldpath, const char *newpath);
@end smallexample

@item Request:
@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}

@item Return value:
On success, zero is returned.  On error, -1 is returned.

@item Errors:

@table @code
@item EISDIR
@var{newpath} is an existing directory, but @var{oldpath} is not a
directory.

@item EEXIST
@var{newpath} is a non-empty directory.

@item EBUSY
@var{oldpath} or @var{newpath} is a directory that is in use by some
process.

@item EINVAL
An attempt was made to make a directory a subdirectory
of itself.

@item ENOTDIR
A  component used as a directory in @var{oldpath} or new
path is not a directory.  Or @var{oldpath} is a directory
and @var{newpath} exists but is not a directory.

@item EFAULT
@var{oldpathptr} or @var{newpathptr} are invalid pointer values.

@item EACCES
No access to the file or the path of the file.

@item ENAMETOOLONG

@var{oldpath} or @var{newpath} was too long.

@item ENOENT
A directory component in @var{oldpath} or @var{newpath} does not exist.

@item EROFS
The file is on a read-only filesystem.

@item ENOSPC
The device containing the file has no room for the new
directory entry.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node unlink
@unnumberedsubsubsec unlink
@cindex unlink, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int unlink(const char *pathname);
@end smallexample

@item Request:
@samp{Funlink,@var{pathnameptr}/@var{len}}

@item Return value:
On success, zero is returned.  On error, -1 is returned.

@item Errors:

@table @code
@item EACCES
No access to the file or the path of the file.

@item EPERM
The system does not allow unlinking of directories.

@item EBUSY
The file @var{pathname} cannot be unlinked because it's
being used by another process.

@item EFAULT
@var{pathnameptr} is an invalid pointer value.

@item ENAMETOOLONG
@var{pathname} was too long.

@item ENOENT
A directory component in @var{pathname} does not exist.

@item ENOTDIR
A component of the path is not a directory.

@item EROFS
The file is on a read-only filesystem.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node stat/fstat
@unnumberedsubsubsec stat/fstat
@cindex fstat, file-i/o system call
@cindex stat, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int stat(const char *pathname, struct stat *buf);
int fstat(int fd, struct stat *buf);
@end smallexample

@item Request:
@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
@samp{Ffstat,@var{fd},@var{bufptr}}

@item Return value:
On success, zero is returned.  On error, -1 is returned.

@item Errors:

@table @code
@item EBADF
@var{fd} is not a valid open file.

@item ENOENT
A directory component in @var{pathname} does not exist or the
path is an empty string.

@item ENOTDIR
A component of the path is not a directory.

@item EFAULT
@var{pathnameptr} is an invalid pointer value.

@item EACCES
No access to the file or the path of the file.

@item ENAMETOOLONG
@var{pathname} was too long.

@item EINTR
The call was interrupted by the user.
@end table

@end table

@node gettimeofday
@unnumberedsubsubsec gettimeofday
@cindex gettimeofday, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int gettimeofday(struct timeval *tv, void *tz);
@end smallexample

@item Request:
@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}

@item Return value:
On success, 0 is returned, -1 otherwise.

@item Errors:

@table @code
@item EINVAL
@var{tz} is a non-NULL pointer.

@item EFAULT
@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
@end table

@end table

@node isatty
@unnumberedsubsubsec isatty
@cindex isatty, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int isatty(int fd);
@end smallexample

@item Request:
@samp{Fisatty,@var{fd}}

@item Return value:
Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.

@item Errors:

@table @code
@item EINTR
The call was interrupted by the user.
@end table

@end table

Note that the @code{isatty} call is treated as a special case: it returns
1 to the target if the file descriptor is attached
to the @value{GDBN} console, 0 otherwise.  Implementing through system calls
would require implementing @code{ioctl} and would be more complex than
needed.


@node system
@unnumberedsubsubsec system
@cindex system, file-i/o system call

@table @asis
@item Synopsis:
@smallexample
int system(const char *command);
@end smallexample

@item Request:
@samp{Fsystem,@var{commandptr}/@var{len}}

@item Return value:
If @var{len} is zero, the return value indicates whether a shell is
available.  A zero return value indicates a shell is not available.
For non-zero @var{len}, the value returned is -1 on error and the
return status of the command otherwise.  Only the exit status of the
command is returned, which is extracted from the host's @code{system}
return value by calling @code{WEXITSTATUS(retval)}.  In case
@file{/bin/sh} could not be executed, 127 is returned.

@item Errors:

@table @code
@item EINTR
The call was interrupted by the user.
@end table

@end table

@value{GDBN} takes over the full task of calling the necessary host calls 
to perform the @code{system} call.  The return value of @code{system} on 
the host is simplified before it's returned
to the target.  Any termination signal information from the child process 
is discarded, and the return value consists
entirely of the exit status of the called command.

Due to security concerns, the @code{system} call is by default refused
by @value{GDBN}.  The user has to allow this call explicitly with the
@code{set remote system-call-allowed 1} command.

@table @code
@item set remote system-call-allowed
@kindex set remote system-call-allowed
Control whether to allow the @code{system} calls in the File I/O
protocol for the remote target.  The default is zero (disabled).

@item show remote system-call-allowed
@kindex show remote system-call-allowed
Show whether the @code{system} calls are allowed in the File I/O
protocol.
@end table

@node Protocol-specific Representation of Datatypes
@subsection Protocol-specific Representation of Datatypes
@cindex protocol-specific representation of datatypes, in file-i/o protocol

@menu
* Integral Datatypes::
* Pointer Values::
* Memory Transfer::
* struct stat::
* struct timeval::
@end menu

@node Integral Datatypes
@unnumberedsubsubsec Integral Datatypes
@cindex integral datatypes, in file-i/o protocol

The integral datatypes used in the system calls are @code{int}, 
@code{unsigned int}, @code{long}, @code{unsigned long},
@code{mode_t}, and @code{time_t}.  

@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
implemented as 32 bit values in this protocol.

@code{long} and @code{unsigned long} are implemented as 64 bit types.

@xref{Limits}, for corresponding MIN and MAX values (similar to those
in @file{limits.h}) to allow range checking on host and target.

@code{time_t} datatypes are defined as seconds since the Epoch.

All integral datatypes transferred as part of a memory read or write of a
structured datatype e.g.@: a @code{struct stat} have to be given in big endian
byte order.

@node Pointer Values
@unnumberedsubsubsec Pointer Values
@cindex pointer values, in file-i/o protocol

Pointers to target data are transmitted as they are.  An exception
is made for pointers to buffers for which the length isn't
transmitted as part of the function call, namely strings.  Strings
are transmitted as a pointer/length pair, both as hex values, e.g.@:

@smallexample
@code{1aaf/12}
@end smallexample

@noindent
which is a pointer to data of length 18 bytes at position 0x1aaf.
The length is defined as the full string length in bytes, including
the trailing null byte.  For example, the string @code{"hello world"}
at address 0x123456 is transmitted as

@smallexample
@code{123456/d}
@end smallexample

@node Memory Transfer
@unnumberedsubsubsec Memory Transfer
@cindex memory transfer, in file-i/o protocol

Structured data which is transferred using a memory read or write (for
example, a @code{struct stat}) is expected to be in a protocol-specific format 
with all scalar multibyte datatypes being big endian.  Translation to
this representation needs to be done both by the target before the @code{F} 
packet is sent, and by @value{GDBN} before 
it transfers memory to the target.  Transferred pointers to structured
data should point to the already-coerced data at any time.


@node struct stat
@unnumberedsubsubsec struct stat
@cindex struct stat, in file-i/o protocol

The buffer of type @code{struct stat} used by the target and @value{GDBN} 
is defined as follows:

@smallexample
struct stat @{
    unsigned int  st_dev;      /* device */
    unsigned int  st_ino;      /* inode */
    mode_t        st_mode;     /* protection */
    unsigned int  st_nlink;    /* number of hard links */
    unsigned int  st_uid;      /* user ID of owner */
    unsigned int  st_gid;      /* group ID of owner */
    unsigned int  st_rdev;     /* device type (if inode device) */
    unsigned long st_size;     /* total size, in bytes */
    unsigned long st_blksize;  /* blocksize for filesystem I/O */
    unsigned long st_blocks;   /* number of blocks allocated */
    time_t        st_atime;    /* time of last access */
    time_t        st_mtime;    /* time of last modification */
    time_t        st_ctime;    /* time of last change */
@};
@end smallexample

The integral datatypes conform to the definitions given in the
appropriate section (see @ref{Integral Datatypes}, for details) so this
structure is of size 64 bytes.

The values of several fields have a restricted meaning and/or
range of values.

@table @code

@item st_dev
A value of 0 represents a file, 1 the console.

@item st_ino
No valid meaning for the target.  Transmitted unchanged.

@item st_mode
Valid mode bits are described in @ref{Constants}.  Any other
bits have currently no meaning for the target.

@item st_uid
@itemx st_gid
@itemx st_rdev
No valid meaning for the target.  Transmitted unchanged.

@item st_atime
@itemx st_mtime
@itemx st_ctime
These values have a host and file system dependent
accuracy.  Especially on Windows hosts, the file system may not
support exact timing values.
@end table

The target gets a @code{struct stat} of the above representation and is
responsible for coercing it to the target representation before
continuing.

Note that due to size differences between the host, target, and protocol
representations of @code{struct stat} members, these members could eventually
get truncated on the target.

@node struct timeval
@unnumberedsubsubsec struct timeval
@cindex struct timeval, in file-i/o protocol

The buffer of type @code{struct timeval} used by the File-I/O protocol
is defined as follows:

@smallexample
struct timeval @{
    time_t tv_sec;  /* second */
    long   tv_usec; /* microsecond */
@};
@end smallexample

The integral datatypes conform to the definitions given in the
appropriate section (see @ref{Integral Datatypes}, for details) so this
structure is of size 8 bytes.

@node Constants
@subsection Constants
@cindex constants, in file-i/o protocol

The following values are used for the constants inside of the
protocol.  @value{GDBN} and target are responsible for translating these
values before and after the call as needed.

@menu
* Open Flags::
* mode_t Values::
* Errno Values::
* Lseek Flags::
* Limits::
@end menu

@node Open Flags
@unnumberedsubsubsec Open Flags
@cindex open flags, in file-i/o protocol

All values are given in hexadecimal representation.

@smallexample
  O_RDONLY        0x0
  O_WRONLY        0x1
  O_RDWR          0x2
  O_APPEND        0x8
  O_CREAT       0x200
  O_TRUNC       0x400
  O_EXCL        0x800
@end smallexample

@node mode_t Values
@unnumberedsubsubsec mode_t Values
@cindex mode_t values, in file-i/o protocol

All values are given in octal representation.

@smallexample
  S_IFREG       0100000
  S_IFDIR        040000
  S_IRUSR          0400
  S_IWUSR          0200
  S_IXUSR          0100
  S_IRGRP           040
  S_IWGRP           020
  S_IXGRP           010
  S_IROTH            04
  S_IWOTH            02
  S_IXOTH            01
@end smallexample

@node Errno Values
@unnumberedsubsubsec Errno Values
@cindex errno values, in file-i/o protocol

All values are given in decimal representation.

@smallexample
  EPERM           1
  ENOENT          2
  EINTR           4
  EBADF           9
  EACCES         13
  EFAULT         14
  EBUSY          16
  EEXIST         17
  ENODEV         19
  ENOTDIR        20
  EISDIR         21
  EINVAL         22
  ENFILE         23
  EMFILE         24
  EFBIG          27
  ENOSPC         28
  ESPIPE         29
  EROFS          30
  ENAMETOOLONG   91
  EUNKNOWN       9999
@end smallexample

  @code{EUNKNOWN} is used as a fallback error value if a host system returns
  any error value not in the list of supported error numbers.

@node Lseek Flags
@unnumberedsubsubsec Lseek Flags
@cindex lseek flags, in file-i/o protocol

@smallexample
  SEEK_SET      0
  SEEK_CUR      1
  SEEK_END      2
@end smallexample

@node Limits
@unnumberedsubsubsec Limits
@cindex limits, in file-i/o protocol

All values are given in decimal representation.

@smallexample
  INT_MIN       -2147483648
  INT_MAX        2147483647
  UINT_MAX       4294967295
  LONG_MIN      -9223372036854775808
  LONG_MAX       9223372036854775807
  ULONG_MAX      18446744073709551615
@end smallexample

@node File-I/O Examples
@subsection File-I/O Examples
@cindex file-i/o examples

Example sequence of a write call, file descriptor 3, buffer is at target
address 0x1234, 6 bytes should be written:

@smallexample
<- @code{Fwrite,3,1234,6}
@emph{request memory read from target}
-> @code{m1234,6}
<- XXXXXX
@emph{return "6 bytes written"}
-> @code{F6}
@end smallexample

Example sequence of a read call, file descriptor 3, buffer is at target
address 0x1234, 6 bytes should be read:

@smallexample
<- @code{Fread,3,1234,6}
@emph{request memory write to target}
-> @code{X1234,6:XXXXXX}
@emph{return "6 bytes read"}
-> @code{F6}
@end smallexample

Example sequence of a read call, call fails on the host due to invalid
file descriptor (@code{EBADF}):

@smallexample
<- @code{Fread,3,1234,6}
-> @code{F-1,9}
@end smallexample

Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
host is called:

@smallexample
<- @code{Fread,3,1234,6}
-> @code{F-1,4,C}
<- @code{T02}
@end smallexample

Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
host is called:

@smallexample
<- @code{Fread,3,1234,6}
-> @code{X1234,6:XXXXXX}
<- @code{T02}
@end smallexample

@node Library List Format
@section Library List Format
@cindex library list format, remote protocol

On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
same process as your application to manage libraries.  In this case,
@value{GDBN} can use the loader's symbol table and normal memory
operations to maintain a list of shared libraries.  On other
platforms, the operating system manages loaded libraries.
@value{GDBN} can not retrieve the list of currently loaded libraries
through memory operations, so it uses the @samp{qXfer:libraries:read}
packet (@pxref{qXfer library list read}) instead.  The remote stub
queries the target's operating system and reports which libraries
are loaded.

The @samp{qXfer:libraries:read} packet returns an XML document which
lists loaded libraries and their offsets.  Each library has an
associated name and one or more segment or section base addresses,
which report where the library was loaded in memory.

For the common case of libraries that are fully linked binaries, the
library should have a list of segments.  If the target supports
dynamic linking of a relocatable object file, its library XML element
should instead include a list of allocated sections.  The segment or
section bases are start addresses, not relocation offsets; they do not
depend on the library's link-time base addresses.

@value{GDBN} must be linked with the Expat library to support XML
library lists.  @xref{Expat}.

A simple memory map, with one loaded library relocated by a single
offset, looks like this:

@smallexample
<library-list>
  <library name="/lib/libc.so.6">
    <segment address="0x10000000"/>
  </library>
</library-list>
@end smallexample

Another simple memory map, with one loaded library with three
allocated sections (.text, .data, .bss), looks like this:

@smallexample
<library-list>
  <library name="sharedlib.o">
    <section address="0x10000000"/>
    <section address="0x20000000"/>
    <section address="0x30000000"/>
  </library>
</library-list>
@end smallexample

The format of a library list is described by this DTD:

@smallexample
<!-- library-list: Root element with versioning -->
<!ELEMENT library-list  (library)*>
<!ATTLIST library-list  version CDATA   #FIXED  "1.0">
<!ELEMENT library       (segment*, section*)>
<!ATTLIST library       name    CDATA   #REQUIRED>
<!ELEMENT segment       EMPTY>
<!ATTLIST segment       address CDATA   #REQUIRED>
<!ELEMENT section       EMPTY>
<!ATTLIST section       address CDATA   #REQUIRED>
@end smallexample

In addition, segments and section descriptors cannot be mixed within a
single library element, and you must supply at least one segment or
section for each library.

@node Library List Format for SVR4 Targets
@section Library List Format for SVR4 Targets
@cindex library list format, remote protocol

On SVR4 platforms @value{GDBN} can use the symbol table of a dynamic loader
(e.g.@: @file{ld.so}) and normal memory operations to maintain a list of
shared libraries.  Still a special library list provided by this packet is
more efficient for the @value{GDBN} remote protocol.

The @samp{qXfer:libraries-svr4:read} packet returns an XML document which lists
loaded libraries and their SVR4 linker parameters.  For each library on SVR4
target, the following parameters are reported:

@itemize @minus
@item
@code{name}, the absolute file name from the @code{l_name} field of
@code{struct link_map}.
@item
@code{lm} with address of @code{struct link_map} used for TLS
(Thread Local Storage) access.
@item
@code{l_addr}, the displacement as read from the field @code{l_addr} of
@code{struct link_map}.  For prelinked libraries this is not an absolute
memory address.  It is a displacement of absolute memory address against
address the file was prelinked to during the library load.
@item
@code{l_ld}, which is memory address of the @code{PT_DYNAMIC} segment
@end itemize

Additionally the single @code{main-lm} attribute specifies address of
@code{struct link_map} used for the main executable.  This parameter is used
for TLS access and its presence is optional.

@value{GDBN} must be linked with the Expat library to support XML
SVR4 library lists.  @xref{Expat}.

A simple memory map, with two loaded libraries (which do not use prelink),
looks like this:

@smallexample
<library-list-svr4 version="1.0" main-lm="0xe4f8f8">
  <library name="/lib/ld-linux.so.2" lm="0xe4f51c" l_addr="0xe2d000"
           l_ld="0xe4eefc"/>
  <library name="/lib/libc.so.6" lm="0xe4fbe8" l_addr="0x154000"
           l_ld="0x152350"/>
</library-list-svr>
@end smallexample

The format of an SVR4 library list is described by this DTD:

@smallexample
<!-- library-list-svr4: Root element with versioning -->
<!ELEMENT library-list-svr4  (library)*>
<!ATTLIST library-list-svr4  version CDATA   #FIXED  "1.0">
<!ATTLIST library-list-svr4  main-lm CDATA   #IMPLIED>
<!ELEMENT library            EMPTY>
<!ATTLIST library            name    CDATA   #REQUIRED>
<!ATTLIST library            lm      CDATA   #REQUIRED>
<!ATTLIST library            l_addr  CDATA   #REQUIRED>
<!ATTLIST library            l_ld    CDATA   #REQUIRED>
@end smallexample

@node Memory Map Format
@section Memory Map Format
@cindex memory map format

To be able to write into flash memory, @value{GDBN} needs to obtain a
memory map from the target.  This section describes the format of the
memory map.

The memory map is obtained using the @samp{qXfer:memory-map:read}
(@pxref{qXfer memory map read}) packet and is an XML document that
lists memory regions.

@value{GDBN} must be linked with the Expat library to support XML
memory maps.  @xref{Expat}.

The top-level structure of the document is shown below:

@smallexample
<?xml version="1.0"?>
<!DOCTYPE memory-map
          PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
                 "http://sourceware.org/gdb/gdb-memory-map.dtd">
<memory-map>
    region...
</memory-map>
@end smallexample

Each region can be either:

@itemize

@item
A region of RAM starting at @var{addr} and extending for @var{length}
bytes from there:

@smallexample
<memory type="ram" start="@var{addr}" length="@var{length}"/>
@end smallexample


@item
A region of read-only memory:

@smallexample
<memory type="rom" start="@var{addr}" length="@var{length}"/>
@end smallexample


@item
A region of flash memory, with erasure blocks @var{blocksize}
bytes in length:

@smallexample
<memory type="flash" start="@var{addr}" length="@var{length}">
  <property name="blocksize">@var{blocksize}</property>
</memory>
@end smallexample

@end itemize

Regions must not overlap.  @value{GDBN} assumes that areas of memory not covered
by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
packets to write to addresses in such ranges.

The formal DTD for memory map format is given below:

@smallexample
<!-- ................................................... -->
<!-- Memory Map XML DTD ................................ -->
<!-- File: memory-map.dtd .............................. -->
<!-- .................................... .............. -->
<!-- memory-map.dtd -->
<!-- memory-map: Root element with versioning -->
<!ELEMENT memory-map (memory)*>
<!ATTLIST memory-map    version CDATA   #FIXED  "1.0.0">
<!ELEMENT memory (property)*>
<!-- memory: Specifies a memory region,
             and its type, or device. -->
<!ATTLIST memory        type    (ram|rom|flash) #REQUIRED
                        start   CDATA   #REQUIRED
                        length  CDATA   #REQUIRED>
<!-- property: Generic attribute tag -->
<!ELEMENT property (#PCDATA | property)*>
<!ATTLIST property      name    (blocksize) #REQUIRED>
@end smallexample

@node Thread List Format
@section Thread List Format
@cindex thread list format

To efficiently update the list of threads and their attributes,
@value{GDBN} issues the @samp{qXfer:threads:read} packet
(@pxref{qXfer threads read}) and obtains the XML document with
the following structure:

@smallexample
<?xml version="1.0"?>
<threads>
    <thread id="id" core="0" name="name">
    ... description ...
    </thread>
</threads>
@end smallexample

Each @samp{thread} element must have the @samp{id} attribute that
identifies the thread (@pxref{thread-id syntax}).  The
@samp{core} attribute, if present, specifies which processor core
the thread was last executing on.  The @samp{name} attribute, if
present, specifies the human-readable name of the thread.  The content
of the of @samp{thread} element is interpreted as human-readable
auxiliary information.  The @samp{handle} attribute, if present,
is a hex encoded representation of the thread handle.


@node Traceframe Info Format
@section Traceframe Info Format
@cindex traceframe info format

To be able to know which objects in the inferior can be examined when
inspecting a tracepoint hit, @value{GDBN} needs to obtain the list of
memory ranges, registers and trace state variables that have been
collected in a traceframe.

This list is obtained using the @samp{qXfer:traceframe-info:read}
(@pxref{qXfer traceframe info read}) packet and is an XML document.

@value{GDBN} must be linked with the Expat library to support XML
traceframe info discovery.  @xref{Expat}.

The top-level structure of the document is shown below:

@smallexample
<?xml version="1.0"?>
<!DOCTYPE traceframe-info
          PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
                 "http://sourceware.org/gdb/gdb-traceframe-info.dtd">
<traceframe-info>
   block...
</traceframe-info>
@end smallexample

Each traceframe block can be either:

@itemize

@item
A region of collected memory starting at @var{addr} and extending for
@var{length} bytes from there:

@smallexample
<memory start="@var{addr}" length="@var{length}"/>
@end smallexample

@item
A block indicating trace state variable numbered @var{number} has been
collected:

@smallexample
<tvar id="@var{number}"/>
@end smallexample

@end itemize

The formal DTD for the traceframe info format is given below:

@smallexample
<!ELEMENT traceframe-info  (memory | tvar)* >
<!ATTLIST traceframe-info  version CDATA   #FIXED  "1.0">

<!ELEMENT memory        EMPTY>
<!ATTLIST memory        start   CDATA   #REQUIRED
                        length  CDATA   #REQUIRED>
<!ELEMENT tvar>
<!ATTLIST tvar          id      CDATA   #REQUIRED>
@end smallexample

@node Branch Trace Format
@section Branch Trace Format
@cindex branch trace format

In order to display the branch trace of an inferior thread,
@value{GDBN} needs to obtain the list of branches.  This list is
represented as list of sequential code blocks that are connected via
branches.  The code in each block has been executed sequentially.

This list is obtained using the @samp{qXfer:btrace:read}
(@pxref{qXfer btrace read}) packet and is an XML document.

@value{GDBN} must be linked with the Expat library to support XML
traceframe info discovery.  @xref{Expat}.

The top-level structure of the document is shown below:

@smallexample
<?xml version="1.0"?>
<!DOCTYPE btrace
          PUBLIC "+//IDN gnu.org//DTD GDB Branch Trace V1.0//EN"
                 "http://sourceware.org/gdb/gdb-btrace.dtd">
<btrace>
   block...
</btrace>
@end smallexample

@itemize

@item
A block of sequentially executed instructions starting at @var{begin}
and ending at @var{end}:

@smallexample
<block begin="@var{begin}" end="@var{end}"/>
@end smallexample

@end itemize

The formal DTD for the branch trace format is given below:

@smallexample
<!ELEMENT btrace  (block* | pt) >
<!ATTLIST btrace  version CDATA   #FIXED "1.0">

<!ELEMENT block        EMPTY>
<!ATTLIST block        begin  CDATA   #REQUIRED
                       end    CDATA   #REQUIRED>

<!ELEMENT pt (pt-config?, raw?)>

<!ELEMENT pt-config (cpu?)>

<!ELEMENT cpu EMPTY>
<!ATTLIST cpu vendor   CDATA #REQUIRED
              family   CDATA #REQUIRED
              model    CDATA #REQUIRED
              stepping CDATA #REQUIRED>

<!ELEMENT raw (#PCDATA)>
@end smallexample

@node Branch Trace Configuration Format
@section Branch Trace Configuration Format
@cindex branch trace configuration format

For each inferior thread, @value{GDBN} can obtain the branch trace
configuration using the @samp{qXfer:btrace-conf:read}
(@pxref{qXfer btrace-conf read}) packet.

The configuration describes the branch trace format and configuration
settings for that format.  The following information is described:

@table @code
@item bts
This thread uses the @dfn{Branch Trace Store} (@acronym{BTS}) format.
@table @code
@item size
The size of the @acronym{BTS} ring buffer in bytes.
@end table
@item pt
This thread uses the @dfn{Intel Processor Trace} (@acronym{Intel
PT}) format.
@table @code
@item size
The size of the @acronym{Intel PT} ring buffer in bytes.
@end table
@end table

@value{GDBN} must be linked with the Expat library to support XML
branch trace configuration discovery.  @xref{Expat}.

The formal DTD for the branch trace configuration format is given below:

@smallexample
<!ELEMENT btrace-conf	(bts?, pt?)>
<!ATTLIST btrace-conf	version	CDATA	#FIXED "1.0">

<!ELEMENT bts	EMPTY>
<!ATTLIST bts	size	CDATA	#IMPLIED>

<!ELEMENT pt	EMPTY>
<!ATTLIST pt	size	CDATA	#IMPLIED>
@end smallexample

@include agentexpr.texi

@node Target Descriptions
@appendix Target Descriptions
@cindex target descriptions

One of the challenges of using @value{GDBN} to debug embedded systems
is that there are so many minor variants of each processor
architecture in use.  It is common practice for vendors to start with
a standard processor core --- ARM, PowerPC, or @acronym{MIPS}, for example ---
and then make changes to adapt it to a particular market niche.  Some
architectures have hundreds of variants, available from dozens of
vendors.  This leads to a number of problems:

@itemize @bullet
@item
With so many different customized processors, it is difficult for
the @value{GDBN} maintainers to keep up with the changes.
@item
Since individual variants may have short lifetimes or limited
audiences, it may not be worthwhile to carry information about every
variant in the @value{GDBN} source tree.
@item
When @value{GDBN} does support the architecture of the embedded system
at hand, the task of finding the correct architecture name to give the
@command{set architecture} command can be error-prone.
@end itemize

To address these problems, the @value{GDBN} remote protocol allows a
target system to not only identify itself to @value{GDBN}, but to
actually describe its own features.  This lets @value{GDBN} support
processor variants it has never seen before --- to the extent that the
descriptions are accurate, and that @value{GDBN} understands them.

@value{GDBN} must be linked with the Expat library to support XML
target descriptions.  @xref{Expat}.

@menu
* Retrieving Descriptions::         How descriptions are fetched from a target.
* Target Description Format::       The contents of a target description.
* Predefined Target Types::         Standard types available for target
                                    descriptions.
* Enum Target Types::               How to define enum target types.
* Standard Target Features::        Features @value{GDBN} knows about.
@end menu

@node Retrieving Descriptions
@section Retrieving Descriptions

Target descriptions can be read from the target automatically, or
specified by the user manually.  The default behavior is to read the
description from the target.  @value{GDBN} retrieves it via the remote
protocol using @samp{qXfer} requests (@pxref{General Query Packets,
qXfer}).  The @var{annex} in the @samp{qXfer} packet will be
@samp{target.xml}.  The contents of the @samp{target.xml} annex are an
XML document, of the form described in @ref{Target Description
Format}.

Alternatively, you can specify a file to read for the target description.
If a file is set, the target will not be queried.  The commands to
specify a file are:

@table @code
@cindex set tdesc filename
@item set tdesc filename @var{path}
Read the target description from @var{path}.

@cindex unset tdesc filename
@item unset tdesc filename
Do not read the XML target description from a file.  @value{GDBN}
will use the description supplied by the current target.

@cindex show tdesc filename
@item show tdesc filename
Show the filename to read for a target description, if any.
@end table


@node Target Description Format
@section Target Description Format
@cindex target descriptions, XML format

A target description annex is an @uref{http://www.w3.org/XML/, XML}
document which complies with the Document Type Definition provided in
the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}.  This
means you can use generally available tools like @command{xmllint} to
check that your feature descriptions are well-formed and valid.
However, to help people unfamiliar with XML write descriptions for
their targets, we also describe the grammar here.

Target descriptions can identify the architecture of the remote target
and (for some architectures) provide information about custom register
sets.  They can also identify the OS ABI of the remote target.
@value{GDBN} can use this information to autoconfigure for your
target, or to warn you if you connect to an unsupported target.

Here is a simple target description:

@smallexample
<target version="1.0">
  <architecture>i386:x86-64</architecture>
</target>
@end smallexample

@noindent
This minimal description only says that the target uses
the x86-64 architecture.

A target description has the following overall form, with [ ] marking
optional elements and @dots{} marking repeatable elements.  The elements
are explained further below.

@smallexample
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target version="1.0">
  @r{[}@var{architecture}@r{]}
  @r{[}@var{osabi}@r{]}
  @r{[}@var{compatible}@r{]}
  @r{[}@var{feature}@dots{}@r{]}
</target>
@end smallexample

@noindent
The description is generally insensitive to whitespace and line
breaks, under the usual common-sense rules.  The XML version
declaration and document type declaration can generally be omitted
(@value{GDBN} does not require them), but specifying them may be
useful for XML validation tools.  The @samp{version} attribute for
@samp{<target>} may also be omitted, but we recommend
including it; if future versions of @value{GDBN} use an incompatible
revision of @file{gdb-target.dtd}, they will detect and report
the version mismatch.

@subsection Inclusion
@cindex target descriptions, inclusion
@cindex XInclude
@ifnotinfo
@cindex <xi:include>
@end ifnotinfo

It can sometimes be valuable to split a target description up into
several different annexes, either for organizational purposes, or to
share files between different possible target descriptions.  You can
divide a description into multiple files by replacing any element of
the target description with an inclusion directive of the form:

@smallexample
<xi:include href="@var{document}"/>
@end smallexample

@noindent
When @value{GDBN} encounters an element of this form, it will retrieve
the named XML @var{document}, and replace the inclusion directive with
the contents of that document.  If the current description was read
using @samp{qXfer}, then so will be the included document;
@var{document} will be interpreted as the name of an annex.  If the
current description was read from a file, @value{GDBN} will look for
@var{document} as a file in the same directory where it found the
original description.

@subsection Architecture
@cindex <architecture>

An @samp{<architecture>} element has this form:

@smallexample
  <architecture>@var{arch}</architecture>
@end smallexample

@var{arch} is one of the architectures from the set accepted by
@code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).

@subsection OS ABI
@cindex @code{<osabi>}

This optional field was introduced in @value{GDBN} version 7.0.
Previous versions of @value{GDBN} ignore it.

An @samp{<osabi>} element has this form:

@smallexample
  <osabi>@var{abi-name}</osabi>
@end smallexample

@var{abi-name} is an OS ABI name from the same selection accepted by
@w{@code{set osabi}} (@pxref{ABI, ,Configuring the Current ABI}).

@subsection Compatible Architecture
@cindex @code{<compatible>}

This optional field was introduced in @value{GDBN} version 7.0.
Previous versions of @value{GDBN} ignore it.

A @samp{<compatible>} element has this form:

@smallexample
  <compatible>@var{arch}</compatible>
@end smallexample

@var{arch} is one of the architectures from the set accepted by
@code{set architecture} (@pxref{Targets, ,Specifying a Debugging Target}).

A @samp{<compatible>} element is used to specify that the target
is able to run binaries in some other than the main target architecture
given by the @samp{<architecture>} element.  For example, on the
Cell Broadband Engine, the main architecture is @code{powerpc:common}
or @code{powerpc:common64}, but the system is able to run binaries
in the @code{spu} architecture as well.  The way to describe this
capability with @samp{<compatible>} is as follows:

@smallexample
  <architecture>powerpc:common</architecture>
  <compatible>spu</compatible>
@end smallexample

@subsection Features
@cindex <feature>

Each @samp{<feature>} describes some logical portion of the target
system.  Features are currently used to describe available CPU
registers and the types of their contents.  A @samp{<feature>} element
has this form:

@smallexample
<feature name="@var{name}">
  @r{[}@var{type}@dots{}@r{]}
  @var{reg}@dots{}
</feature>
@end smallexample

@noindent
Each feature's name should be unique within the description.  The name
of a feature does not matter unless @value{GDBN} has some special
knowledge of the contents of that feature; if it does, the feature
should have its standard name.  @xref{Standard Target Features}.

@subsection Types

Any register's value is a collection of bits which @value{GDBN} must
interpret.  The default interpretation is a two's complement integer,
but other types can be requested by name in the register description.
Some predefined types are provided by @value{GDBN} (@pxref{Predefined
Target Types}), and the description can define additional composite
and enum types.

Each type element must have an @samp{id} attribute, which gives
a unique (within the containing @samp{<feature>}) name to the type.
Types must be defined before they are used.

@cindex <vector>
Some targets offer vector registers, which can be treated as arrays
of scalar elements.  These types are written as @samp{<vector>} elements,
specifying the array element type, @var{type}, and the number of elements,
@var{count}:

@smallexample
<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
@end smallexample

@cindex <union>
If a register's value is usefully viewed in multiple ways, define it
with a union type containing the useful representations.  The
@samp{<union>} element contains one or more @samp{<field>} elements,
each of which has a @var{name} and a @var{type}:

@smallexample
<union id="@var{id}">
  <field name="@var{name}" type="@var{type}"/>
  @dots{}
</union>
@end smallexample

@cindex <struct>
@cindex <flags>
If a register's value is composed from several separate values, define
it with either a structure type or a flags type.
A flags type may only contain bitfields.
A structure type may either contain only bitfields or contain no bitfields.
If the value contains only bitfields, its total size in bytes must be
specified.

Non-bitfield values have a @var{name} and @var{type}.

@smallexample
<struct id="@var{id}">
  <field name="@var{name}" type="@var{type}"/>
  @dots{}
</struct>
@end smallexample

Both @var{name} and @var{type} values are required.
No implicit padding is added.

Bitfield values have a @var{name}, @var{start}, @var{end} and @var{type}.

@smallexample
<struct id="@var{id}" size="@var{size}">
  <field name="@var{name}" start="@var{start}" end="@var{end}" type="@var{type}"/>
  @dots{}
</struct>
@end smallexample

@smallexample
<flags id="@var{id}" size="@var{size}">
  <field name="@var{name}" start="@var{start}" end="@var{end}" type="@var{type}"/>
  @dots{}
</flags>
@end smallexample

The @var{name} value is required.
Bitfield values may be named with the empty string, @samp{""},
in which case the field is ``filler'' and its value is not printed.
Not all bits need to be specified, so ``filler'' fields are optional.

The @var{start} and @var{end} values are required, and @var{type}
is optional.
The field's @var{start} must be less than or equal to its @var{end},
and zero represents the least significant bit.

The default value of @var{type} is @code{bool} for single bit fields,
and an unsigned integer otherwise.

Which to choose?  Structures or flags?

Registers defined with @samp{flags} have these advantages over
defining them with @samp{struct}:

@itemize @bullet
@item
Arithmetic may be performed on them as if they were integers.
@item
They are printed in a more readable fashion.
@end itemize

Registers defined with @samp{struct} have one advantage over
defining them with @samp{flags}:

@itemize @bullet
@item
One can fetch individual fields like in @samp{C}.

@smallexample
(gdb) print $my_struct_reg.field3
$1 = 42
@end smallexample

@end itemize

@subsection Registers
@cindex <reg>

Each register is represented as an element with this form:

@smallexample
<reg name="@var{name}"
     bitsize="@var{size}"
     @r{[}regnum="@var{num}"@r{]}
     @r{[}save-restore="@var{save-restore}"@r{]}
     @r{[}type="@var{type}"@r{]}
     @r{[}group="@var{group}"@r{]}/>
@end smallexample

@noindent
The components are as follows:

@table @var

@item name
The register's name; it must be unique within the target description.

@item bitsize
The register's size, in bits.

@item regnum
The register's number.  If omitted, a register's number is one greater
than that of the previous register (either in the current feature or in
a preceding feature); the first register in the target description
defaults to zero.  This register number is used to read or write
the register; e.g.@: it is used in the remote @code{p} and @code{P}
packets, and registers appear in the @code{g} and @code{G} packets
in order of increasing register number.

@item save-restore
Whether the register should be preserved across inferior function
calls; this must be either @code{yes} or @code{no}.  The default is
@code{yes}, which is appropriate for most registers except for
some system control registers; this is not related to the target's
ABI.

@item type
The type of the register.  It may be a predefined type, a type
defined in the current feature, or one of the special types @code{int}
and @code{float}.  @code{int} is an integer type of the correct size
for @var{bitsize}, and @code{float} is a floating point type (in the
architecture's normal floating point format) of the correct size for
@var{bitsize}.  The default is @code{int}.

@item group
The register group to which this register belongs.  It can be one of the
standard register groups @code{general}, @code{float}, @code{vector} or an
arbitrary string.  Group names should be limited to alphanumeric characters.
If a group name is made up of multiple words the words may be separated by
hyphens; e.g.@: @code{special-group} or @code{ultra-special-group}.  If no
@var{group} is specified, @value{GDBN} will not display the register in
@code{info registers}.

@end table

@node Predefined Target Types
@section Predefined Target Types
@cindex target descriptions, predefined types

Type definitions in the self-description can build up composite types
from basic building blocks, but can not define fundamental types.  Instead,
standard identifiers are provided by @value{GDBN} for the fundamental
types.  The currently supported types are:

@table @code

@item bool
Boolean type, occupying a single bit.

@item int8
@itemx int16
@itemx int24
@itemx int32
@itemx int64
@itemx int128
Signed integer types holding the specified number of bits.

@item uint8
@itemx uint16
@itemx uint24
@itemx uint32
@itemx uint64
@itemx uint128
Unsigned integer types holding the specified number of bits.

@item code_ptr
@itemx data_ptr
Pointers to unspecified code and data.  The program counter and
any dedicated return address register may be marked as code
pointers; printing a code pointer converts it into a symbolic
address.  The stack pointer and any dedicated address registers
may be marked as data pointers.

@item ieee_single
Single precision IEEE floating point.

@item ieee_double
Double precision IEEE floating point.

@item arm_fpa_ext
The 12-byte extended precision format used by ARM FPA registers.

@item i387_ext
The 10-byte extended precision format used by x87 registers.

@item i386_eflags
32bit @sc{eflags} register used by x86.

@item i386_mxcsr
32bit @sc{mxcsr} register used by x86.

@end table

@node Enum Target Types
@section Enum Target Types
@cindex target descriptions, enum types

Enum target types are useful in @samp{struct} and @samp{flags}
register descriptions.  @xref{Target Description Format}.

Enum types have a name, size and a list of name/value pairs.

@smallexample
<enum id="@var{id}" size="@var{size}">
  <evalue name="@var{name}" value="@var{value}"/>
  @dots{}
</enum>
@end smallexample

Enums must be defined before they are used.

@smallexample
<enum id="levels_type" size="4">
  <evalue name="low" value="0"/>
  <evalue name="high" value="1"/>
</enum>
<flags id="flags_type" size="4">
  <field name="X" start="0"/>
  <field name="LEVEL" start="1" end="1" type="levels_type"/>
</flags>
<reg name="flags" bitsize="32" type="flags_type"/>
@end smallexample

Given that description, a value of 3 for the @samp{flags} register
would be printed as:

@smallexample
(gdb) info register flags
flags 0x3 [ X LEVEL=high ]
@end smallexample

@node Standard Target Features
@section Standard Target Features
@cindex target descriptions, standard features

A target description must contain either no registers or all the
target's registers.  If the description contains no registers, then
@value{GDBN} will assume a default register layout, selected based on
the architecture.  If the description contains any registers, the
default layout will not be used; the standard registers must be
described in the target description, in such a way that @value{GDBN}
can recognize them.

This is accomplished by giving specific names to feature elements
which contain standard registers.  @value{GDBN} will look for features
with those names and verify that they contain the expected registers;
if any known feature is missing required registers, or if any required
feature is missing, @value{GDBN} will reject the target
description.  You can add additional registers to any of the
standard features --- @value{GDBN} will display them just as if
they were added to an unrecognized feature.

This section lists the known features and their expected contents.
Sample XML documents for these features are included in the
@value{GDBN} source tree, in the directory @file{gdb/features}.

Names recognized by @value{GDBN} should include the name of the
company or organization which selected the name, and the overall
architecture to which the feature applies; so e.g.@: the feature
containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.

The names of registers are not case sensitive for the purpose
of recognizing standard features, but @value{GDBN} will only display
registers using the capitalization used in the description.

@menu
* AArch64 Features::
* ARC Features::
* ARM Features::
* i386 Features::
* MicroBlaze Features::
* MIPS Features::
* M68K Features::
* NDS32 Features::
* Nios II Features::
* OpenRISC 1000 Features::
* PowerPC Features::
* RISC-V Features::
* RX Features::
* S/390 and System z Features::
* Sparc Features::
* TIC6x Features::
@end menu


@node AArch64 Features
@subsection AArch64 Features
@cindex target descriptions, AArch64 features

The @samp{org.gnu.gdb.aarch64.core} feature is required for AArch64
targets.  It should contain registers @samp{x0} through @samp{x30},
@samp{sp}, @samp{pc}, and @samp{cpsr}.

The @samp{org.gnu.gdb.aarch64.fpu} feature is optional.  If present,
it should contain registers @samp{v0} through @samp{v31}, @samp{fpsr},
and @samp{fpcr}.

The @samp{org.gnu.gdb.aarch64.sve} feature is optional.  If present,
it should contain registers @samp{z0} through @samp{z31}, @samp{p0}
through @samp{p15}, @samp{ffr} and @samp{vg}.

The @samp{org.gnu.gdb.aarch64.pauth} feature is optional.  If present,
it should contain registers @samp{pauth_dmask} and @samp{pauth_cmask}.

@node ARC Features
@subsection ARC Features
@cindex target descriptions, ARC Features

ARC processors are highly configurable, so even core registers and their number
are not completely predetermined.  In addition flags and PC registers which are
important to @value{GDBN} are not ``core'' registers in ARC.  It is required
that one of the core registers features is present.
@samp{org.gnu.gdb.arc.aux-minimal} feature is mandatory.

The @samp{org.gnu.gdb.arc.core.v2} feature is required for ARC EM and ARC HS
targets with a normal register file.  It should contain registers @samp{r0}
through @samp{r25}, @samp{gp}, @samp{fp}, @samp{sp}, @samp{r30}, @samp{blink},
@samp{lp_count} and @samp{pcl}.  This feature may contain register @samp{ilink}
and any of extension core registers @samp{r32} through @samp{r59/acch}.
@samp{ilink} and extension core registers are not available to read/write, when
debugging GNU/Linux applications, thus @samp{ilink} is made optional.

The @samp{org.gnu.gdb.arc.core-reduced.v2} feature is required for ARC EM and
ARC HS targets with a reduced register file.  It should contain registers
@samp{r0} through @samp{r3}, @samp{r10} through @samp{r15}, @samp{gp},
@samp{fp}, @samp{sp}, @samp{r30}, @samp{blink}, @samp{lp_count} and @samp{pcl}.
This feature may contain register @samp{ilink} and any of extension core
registers @samp{r32} through @samp{r59/acch}.

The @samp{org.gnu.gdb.arc.core.arcompact} feature is required for ARCompact
targets with a normal register file.  It should contain registers @samp{r0}
through @samp{r25}, @samp{gp}, @samp{fp}, @samp{sp}, @samp{r30}, @samp{blink},
@samp{lp_count} and @samp{pcl}.  This feature may contain registers
@samp{ilink1}, @samp{ilink2} and any of extension core registers @samp{r32}
through @samp{r59/acch}.  @samp{ilink1} and @samp{ilink2} and extension core
registers are not available when debugging GNU/Linux applications.  The only
difference with @samp{org.gnu.gdb.arc.core.v2} feature is in the names of
@samp{ilink1} and @samp{ilink2} registers and that @samp{r30} is mandatory in
ARC v2, but @samp{ilink2} is optional on ARCompact.

The @samp{org.gnu.gdb.arc.aux-minimal} feature is required for all ARC
targets.  It should contain registers @samp{pc} and @samp{status32}.

@node ARM Features
@subsection ARM Features
@cindex target descriptions, ARM features

The @samp{org.gnu.gdb.arm.core} feature is required for non-M-profile
ARM targets.
It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
@samp{lr}, @samp{pc}, and @samp{cpsr}.

For M-profile targets (e.g. Cortex-M3), the @samp{org.gnu.gdb.arm.core}
feature is replaced by @samp{org.gnu.gdb.arm.m-profile}.  It should contain
registers @samp{r0} through @samp{r13}, @samp{sp}, @samp{lr}, @samp{pc},
and @samp{xpsr}.

The @samp{org.gnu.gdb.arm.fpa} feature is optional.  If present, it
should contain registers @samp{f0} through @samp{f7} and @samp{fps}.

The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional.  If present,
it should contain at least registers @samp{wR0} through @samp{wR15} and
@samp{wCGR0} through @samp{wCGR3}.  The @samp{wCID}, @samp{wCon},