aboutsummaryrefslogtreecommitdiff
path: root/arch/sandbox
diff options
context:
space:
mode:
authormario.six@gdsys.cc <mario.six@gdsys.cc>2016-05-25 15:15:23 +0200
committerYork Sun <york.sun@nxp.com>2016-06-03 22:14:20 -0700
commit743268f5146e3fd93abb8b6142ef6a259a0656c5 (patch)
treed28611bc6504378b0316582e62bf8f7f3132c219 /arch/sandbox
parent51781783c59ad0080621d777579eb8acd14aa0ed (diff)
downloadu-boot-743268f5146e3fd93abb8b6142ef6a259a0656c5.zip
u-boot-743268f5146e3fd93abb8b6142ef6a259a0656c5.tar.gz
u-boot-743268f5146e3fd93abb8b6142ef6a259a0656c5.tar.bz2
dm: test: Add GPIO open drain tests
Add some tests for the new open drain setting feature of the GPIO uclass, and extend the capabilities of the sandbox GPIO driver accordingly. Signed-off-by: Mario Six <mario.six@gdsys.cc> Reviewed-by: Simon Glass <sjg@chromium.org> Reviewed-by: York Sun <york.sun@nxp.com>
Diffstat (limited to 'arch/sandbox')
-rw-r--r--arch/sandbox/include/asm/gpio.h20
1 files changed, 20 insertions, 0 deletions
diff --git a/arch/sandbox/include/asm/gpio.h b/arch/sandbox/include/asm/gpio.h
index 8317db1..427af2c 100644
--- a/arch/sandbox/include/asm/gpio.h
+++ b/arch/sandbox/include/asm/gpio.h
@@ -41,6 +41,26 @@ int sandbox_gpio_get_value(struct udevice *dev, unsigned int offset);
int sandbox_gpio_set_value(struct udevice *dev, unsigned int offset, int value);
/**
+ * Set or reset the simulated open drain mode of a GPIO (used only in sandbox
+ * test code)
+ *
+ * @param gp GPIO number
+ * @param value value to set (0 for enabled open drain mode, non-zero for
+ * disabled)
+ * @return -1 on error, 0 if ok
+ */
+int sandbox_gpio_set_open_drain(struct udevice *dev, unsigned offset, int value);
+
+/**
+ * Return the state of the simulated open drain mode of a GPIO (used only in
+ * sandbox test code)
+ *
+ * @param gp GPIO number
+ * @return -1 on error, 0 if GPIO is input, >0 if output
+ */
+int sandbox_gpio_get_open_drain(struct udevice *dev, unsigned offset);
+
+/**
* Return the simulated direction of a GPIO (used only in sandbox test code)
*
* @param gp GPIO number
d='n3081' href='#n3081'>3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
/*
 * QEMU System Emulator
 *
 * Copyright (c) 2003-2008 Fabrice Bellard
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#include <zlib.h>

/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"

#ifndef _WIN32
#include <libgen.h>
#include <pwd.h>
#include <sys/times.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <dirent.h>
#include <netdb.h>
#include <sys/select.h>
#ifdef CONFIG_BSD
#include <sys/stat.h>
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
#include <libutil.h>
#else
#include <util.h>
#endif
#else
#ifdef __linux__
#include <pty.h>
#include <malloc.h>
#include <linux/rtc.h>
#include <sys/prctl.h>

/* For the benefit of older linux systems which don't supply it,
   we use a local copy of hpet.h. */
/* #include <linux/hpet.h> */
#include "hpet.h"

#include <linux/ppdev.h>
#include <linux/parport.h>
#endif
#ifdef __sun__
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
/* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
   discussion about Solaris header problems */
extern int madvise(caddr_t, size_t, int);
#endif
#endif
#endif

#if defined(__OpenBSD__)
#include <util.h>
#endif

#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif

#ifdef _WIN32
#include <windows.h>
#include <mmsystem.h>
#endif

#ifdef CONFIG_SDL
#if defined(__APPLE__) || defined(main)
#include <SDL.h>
int qemu_main(int argc, char **argv, char **envp);
int main(int argc, char **argv)
{
    return qemu_main(argc, argv, NULL);
}
#undef main
#define main qemu_main
#endif
#endif /* CONFIG_SDL */

#ifdef CONFIG_COCOA
#undef main
#define main qemu_main
#endif /* CONFIG_COCOA */

#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/pc.h"
#include "hw/audiodev.h"
#include "hw/isa.h"
#include "hw/baum.h"
#include "hw/bt.h"
#include "hw/watchdog.h"
#include "hw/smbios.h"
#include "hw/xen.h"
#include "hw/qdev.h"
#include "hw/loader.h"
#include "bt-host.h"
#include "net.h"
#include "net/slirp.h"
#include "monitor.h"
#include "console.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "cache-utils.h"
#include "block.h"
#include "block_int.h"
#include "block-migration.h"
#include "dma.h"
#include "audio/audio.h"
#include "migration.h"
#include "kvm.h"
#include "balloon.h"
#include "qemu-option.h"
#include "qemu-config.h"
#include "qemu-objects.h"

#include "disas.h"

#include "exec-all.h"

#include "qemu_socket.h"

#include "slirp/libslirp.h"

#include "qemu-queue.h"

//#define DEBUG_NET
//#define DEBUG_SLIRP

#define DEFAULT_RAM_SIZE 128

static const char *data_dir;
const char *bios_name = NULL;
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
   to store the VM snapshots */
struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
static DisplayState *display_state;
DisplayType display_type = DT_DEFAULT;
const char* keyboard_layout = NULL;
ram_addr_t ram_size;
int nb_nics;
NICInfo nd_table[MAX_NICS];
int vm_running;
int autostart;
static int rtc_utc = 1;
static int rtc_date_offset = -1; /* -1 means no change */
QEMUClock *rtc_clock;
int vga_interface_type = VGA_NONE;
#ifdef TARGET_SPARC
int graphic_width = 1024;
int graphic_height = 768;
int graphic_depth = 8;
#else
int graphic_width = 800;
int graphic_height = 600;
int graphic_depth = 15;
#endif
static int full_screen = 0;
#ifdef CONFIG_SDL
static int no_frame = 0;
#endif
int no_quit = 0;
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
#ifdef TARGET_I386
int win2k_install_hack = 0;
int rtc_td_hack = 0;
#endif
int usb_enabled = 0;
int singlestep = 0;
int smp_cpus = 1;
int max_cpus = 0;
int smp_cores = 1;
int smp_threads = 1;
const char *vnc_display;
int acpi_enabled = 1;
int no_hpet = 0;
int fd_bootchk = 1;
int no_reboot = 0;
int no_shutdown = 0;
int cursor_hide = 1;
int graphic_rotate = 0;
uint8_t irq0override = 1;
#ifndef _WIN32
int daemonize = 0;
#endif
const char *watchdog;
const char *option_rom[MAX_OPTION_ROMS];
int nb_option_roms;
int semihosting_enabled = 0;
#ifdef TARGET_ARM
int old_param = 0;
#endif
const char *qemu_name;
int alt_grab = 0;
int ctrl_grab = 0;
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
unsigned int nb_prom_envs = 0;
const char *prom_envs[MAX_PROM_ENVS];
#endif
int boot_menu;

int nb_numa_nodes;
uint64_t node_mem[MAX_NODES];
uint64_t node_cpumask[MAX_NODES];

static CPUState *cur_cpu;
static CPUState *next_cpu;
static int timer_alarm_pending = 1;
/* Conversion factor from emulated instructions to virtual clock ticks.  */
static int icount_time_shift;
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
#define MAX_ICOUNT_SHIFT 10
/* Compensate for varying guest execution speed.  */
static int64_t qemu_icount_bias;
static QEMUTimer *icount_rt_timer;
static QEMUTimer *icount_vm_timer;
static QEMUTimer *nographic_timer;

uint8_t qemu_uuid[16];

static QEMUBootSetHandler *boot_set_handler;
static void *boot_set_opaque;

static int default_serial = 1;
static int default_parallel = 1;
static int default_virtcon = 1;
static int default_monitor = 1;
static int default_vga = 1;
static int default_floppy = 1;
static int default_cdrom = 1;
static int default_sdcard = 1;

static struct {
    const char *driver;
    int *flag;
} default_list[] = {
    { .driver = "isa-serial",           .flag = &default_serial    },
    { .driver = "isa-parallel",         .flag = &default_parallel  },
    { .driver = "isa-fdc",              .flag = &default_floppy    },
    { .driver = "ide-drive",            .flag = &default_cdrom     },
    { .driver = "virtio-console-pci",   .flag = &default_virtcon   },
    { .driver = "virtio-console-s390",  .flag = &default_virtcon   },
    { .driver = "VGA",                  .flag = &default_vga       },
    { .driver = "cirrus-vga",           .flag = &default_vga       },
    { .driver = "vmware-svga",          .flag = &default_vga       },
};

static int default_driver_check(QemuOpts *opts, void *opaque)
{
    const char *driver = qemu_opt_get(opts, "driver");
    int i;

    if (!driver)
        return 0;
    for (i = 0; i < ARRAY_SIZE(default_list); i++) {
        if (strcmp(default_list[i].driver, driver) != 0)
            continue;
        *(default_list[i].flag) = 0;
    }
    return 0;
}

/***********************************************************/
/* x86 ISA bus support */

target_phys_addr_t isa_mem_base = 0;
PicState2 *isa_pic;

/***********************************************************/
void hw_error(const char *fmt, ...)
{
    va_list ap;
    CPUState *env;

    va_start(ap, fmt);
    fprintf(stderr, "qemu: hardware error: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else
        cpu_dump_state(env, stderr, fprintf, 0);
#endif
    }
    va_end(ap);
    abort();
}

static void set_proc_name(const char *s)
{
#if defined(__linux__) && defined(PR_SET_NAME)
    char name[16];
    if (!s)
        return;
    name[sizeof(name) - 1] = 0;
    strncpy(name, s, sizeof(name));
    /* Could rewrite argv[0] too, but that's a bit more complicated.
       This simple way is enough for `top'. */
    prctl(PR_SET_NAME, name);
#endif    	
}
 
/***************/
/* ballooning */

static QEMUBalloonEvent *qemu_balloon_event;
void *qemu_balloon_event_opaque;

void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
{
    qemu_balloon_event = func;
    qemu_balloon_event_opaque = opaque;
}

void qemu_balloon(ram_addr_t target)
{
    if (qemu_balloon_event)
        qemu_balloon_event(qemu_balloon_event_opaque, target);
}

ram_addr_t qemu_balloon_status(void)
{
    if (qemu_balloon_event)
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
    return 0;
}


/***********************************************************/
/* real time host monotonic timer */

/* compute with 96 bit intermediate result: (a*b)/c */
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
    union {
        uint64_t ll;
        struct {
#ifdef HOST_WORDS_BIGENDIAN
            uint32_t high, low;
#else
            uint32_t low, high;
#endif
        } l;
    } u, res;
    uint64_t rl, rh;

    u.ll = a;
    rl = (uint64_t)u.l.low * (uint64_t)b;
    rh = (uint64_t)u.l.high * (uint64_t)b;
    rh += (rl >> 32);
    res.l.high = rh / c;
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
    return res.ll;
}

static int64_t get_clock_realtime(void)
{
    struct timeval tv;

    gettimeofday(&tv, NULL);
    return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
}

#ifdef WIN32

static int64_t clock_freq;

static void init_get_clock(void)
{
    LARGE_INTEGER freq;
    int ret;
    ret = QueryPerformanceFrequency(&freq);
    if (ret == 0) {
        fprintf(stderr, "Could not calibrate ticks\n");
        exit(1);
    }
    clock_freq = freq.QuadPart;
}

static int64_t get_clock(void)
{
    LARGE_INTEGER ti;
    QueryPerformanceCounter(&ti);
    return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
}

#else

static int use_rt_clock;

static void init_get_clock(void)
{
    use_rt_clock = 0;
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
    || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
    {
        struct timespec ts;
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
            use_rt_clock = 1;
        }
    }
#endif
}

static int64_t get_clock(void)
{
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
	|| defined(__DragonFly__) || defined(__FreeBSD_kernel__)
    if (use_rt_clock) {
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
    } else
#endif
    {
        /* XXX: using gettimeofday leads to problems if the date
           changes, so it should be avoided. */
        return get_clock_realtime();
    }
}
#endif

/* Return the virtual CPU time, based on the instruction counter.  */
static int64_t cpu_get_icount(void)
{
    int64_t icount;
    CPUState *env = cpu_single_env;;
    icount = qemu_icount;
    if (env) {
        if (!can_do_io(env))
            fprintf(stderr, "Bad clock read\n");
        icount -= (env->icount_decr.u16.low + env->icount_extra);
    }
    return qemu_icount_bias + (icount << icount_time_shift);
}

/***********************************************************/
/* guest cycle counter */

typedef struct TimersState {
    int64_t cpu_ticks_prev;
    int64_t cpu_ticks_offset;
    int64_t cpu_clock_offset;
    int32_t cpu_ticks_enabled;
    int64_t dummy;
} TimersState;

TimersState timers_state;

/* return the host CPU cycle counter and handle stop/restart */
int64_t cpu_get_ticks(void)
{
    if (use_icount) {
        return cpu_get_icount();
    }
    if (!timers_state.cpu_ticks_enabled) {
        return timers_state.cpu_ticks_offset;
    } else {
        int64_t ticks;
        ticks = cpu_get_real_ticks();
        if (timers_state.cpu_ticks_prev > ticks) {
            /* Note: non increasing ticks may happen if the host uses
               software suspend */
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
        }
        timers_state.cpu_ticks_prev = ticks;
        return ticks + timers_state.cpu_ticks_offset;
    }
}

/* return the host CPU monotonic timer and handle stop/restart */
static int64_t cpu_get_clock(void)
{
    int64_t ti;
    if (!timers_state.cpu_ticks_enabled) {
        return timers_state.cpu_clock_offset;
    } else {
        ti = get_clock();
        return ti + timers_state.cpu_clock_offset;
    }
}

/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
    if (!timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
        timers_state.cpu_clock_offset -= get_clock();
        timers_state.cpu_ticks_enabled = 1;
    }
}

/* disable cpu_get_ticks() : the clock is stopped. You must not call
   cpu_get_ticks() after that.  */
void cpu_disable_ticks(void)
{
    if (timers_state.cpu_ticks_enabled) {
        timers_state.cpu_ticks_offset = cpu_get_ticks();
        timers_state.cpu_clock_offset = cpu_get_clock();
        timers_state.cpu_ticks_enabled = 0;
    }
}

/***********************************************************/
/* timers */

#define QEMU_CLOCK_REALTIME 0
#define QEMU_CLOCK_VIRTUAL  1
#define QEMU_CLOCK_HOST     2

struct QEMUClock {
    int type;
    /* XXX: add frequency */
};

struct QEMUTimer {
    QEMUClock *clock;
    int64_t expire_time;
    QEMUTimerCB *cb;
    void *opaque;
    struct QEMUTimer *next;
};

struct qemu_alarm_timer {
    char const *name;
    unsigned int flags;

    int (*start)(struct qemu_alarm_timer *t);
    void (*stop)(struct qemu_alarm_timer *t);
    void (*rearm)(struct qemu_alarm_timer *t);
    void *priv;
};

#define ALARM_FLAG_DYNTICKS  0x1
#define ALARM_FLAG_EXPIRED   0x2

static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
{
    return t && (t->flags & ALARM_FLAG_DYNTICKS);
}

static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
{
    if (!alarm_has_dynticks(t))
        return;

    t->rearm(t);
}

/* TODO: MIN_TIMER_REARM_US should be optimized */
#define MIN_TIMER_REARM_US 250

static struct qemu_alarm_timer *alarm_timer;

#ifdef _WIN32

struct qemu_alarm_win32 {
    MMRESULT timerId;
    unsigned int period;
} alarm_win32_data = {0, -1};

static int win32_start_timer(struct qemu_alarm_timer *t);
static void win32_stop_timer(struct qemu_alarm_timer *t);
static void win32_rearm_timer(struct qemu_alarm_timer *t);

#else

static int unix_start_timer(struct qemu_alarm_timer *t);
static void unix_stop_timer(struct qemu_alarm_timer *t);

#ifdef __linux__

static int dynticks_start_timer(struct qemu_alarm_timer *t);
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);

static int hpet_start_timer(struct qemu_alarm_timer *t);
static void hpet_stop_timer(struct qemu_alarm_timer *t);

static int rtc_start_timer(struct qemu_alarm_timer *t);
static void rtc_stop_timer(struct qemu_alarm_timer *t);

#endif /* __linux__ */

#endif /* _WIN32 */

/* Correlation between real and virtual time is always going to be
   fairly approximate, so ignore small variation.
   When the guest is idle real and virtual time will be aligned in
   the IO wait loop.  */
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)

static void icount_adjust(void)
{
    int64_t cur_time;
    int64_t cur_icount;
    int64_t delta;
    static int64_t last_delta;
    /* If the VM is not running, then do nothing.  */
    if (!vm_running)
        return;

    cur_time = cpu_get_clock();
    cur_icount = qemu_get_clock(vm_clock);
    delta = cur_icount - cur_time;
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
    if (delta > 0
        && last_delta + ICOUNT_WOBBLE < delta * 2
        && icount_time_shift > 0) {
        /* The guest is getting too far ahead.  Slow time down.  */
        icount_time_shift--;
    }
    if (delta < 0
        && last_delta - ICOUNT_WOBBLE > delta * 2
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
        /* The guest is getting too far behind.  Speed time up.  */
        icount_time_shift++;
    }
    last_delta = delta;
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
}

static void icount_adjust_rt(void * opaque)
{
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock(rt_clock) + 1000);
    icount_adjust();
}

static void icount_adjust_vm(void * opaque)
{
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
    icount_adjust();
}

static void init_icount_adjust(void)
{
    /* Have both realtime and virtual time triggers for speed adjustment.
       The realtime trigger catches emulated time passing too slowly,
       the virtual time trigger catches emulated time passing too fast.
       Realtime triggers occur even when idle, so use them less frequently
       than VM triggers.  */
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
    qemu_mod_timer(icount_rt_timer,
                   qemu_get_clock(rt_clock) + 1000);
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
    qemu_mod_timer(icount_vm_timer,
                   qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
}

static struct qemu_alarm_timer alarm_timers[] = {
#ifndef _WIN32
#ifdef __linux__
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
    /* HPET - if available - is preferred */
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
    /* ...otherwise try RTC */
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
#endif
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
#else
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
    {"win32", 0, win32_start_timer,
     win32_stop_timer, NULL, &alarm_win32_data},
#endif
    {NULL, }
};

static void show_available_alarms(void)
{
    int i;

    printf("Available alarm timers, in order of precedence:\n");
    for (i = 0; alarm_timers[i].name; i++)
        printf("%s\n", alarm_timers[i].name);
}

static void configure_alarms(char const *opt)
{
    int i;
    int cur = 0;
    int count = ARRAY_SIZE(alarm_timers) - 1;
    char *arg;
    char *name;
    struct qemu_alarm_timer tmp;

    if (!strcmp(opt, "?")) {
        show_available_alarms();
        exit(0);
    }

    arg = qemu_strdup(opt);

    /* Reorder the array */
    name = strtok(arg, ",");
    while (name) {
        for (i = 0; i < count && alarm_timers[i].name; i++) {
            if (!strcmp(alarm_timers[i].name, name))
                break;
        }

        if (i == count) {
            fprintf(stderr, "Unknown clock %s\n", name);
            goto next;
        }

        if (i < cur)
            /* Ignore */
            goto next;

	/* Swap */
        tmp = alarm_timers[i];
        alarm_timers[i] = alarm_timers[cur];
        alarm_timers[cur] = tmp;

        cur++;
next:
        name = strtok(NULL, ",");
    }

    qemu_free(arg);

    if (cur) {
        /* Disable remaining timers */
        for (i = cur; i < count; i++)
            alarm_timers[i].name = NULL;
    } else {
        show_available_alarms();
        exit(1);
    }
}

#define QEMU_NUM_CLOCKS 3

QEMUClock *rt_clock;
QEMUClock *vm_clock;
QEMUClock *host_clock;

static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];

static QEMUClock *qemu_new_clock(int type)
{
    QEMUClock *clock;
    clock = qemu_mallocz(sizeof(QEMUClock));
    clock->type = type;
    return clock;
}

QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
{
    QEMUTimer *ts;

    ts = qemu_mallocz(sizeof(QEMUTimer));
    ts->clock = clock;
    ts->cb = cb;
    ts->opaque = opaque;
    return ts;
}

void qemu_free_timer(QEMUTimer *ts)
{
    qemu_free(ts);
}

/* stop a timer, but do not dealloc it */
void qemu_del_timer(QEMUTimer *ts)
{
    QEMUTimer **pt, *t;

    /* NOTE: this code must be signal safe because
       qemu_timer_expired() can be called from a signal. */
    pt = &active_timers[ts->clock->type];
    for(;;) {
        t = *pt;
        if (!t)
            break;
        if (t == ts) {
            *pt = t->next;
            break;
        }
        pt = &t->next;
    }
}

/* modify the current timer so that it will be fired when current_time
   >= expire_time. The corresponding callback will be called. */
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
{
    QEMUTimer **pt, *t;

    qemu_del_timer(ts);

    /* add the timer in the sorted list */
    /* NOTE: this code must be signal safe because
       qemu_timer_expired() can be called from a signal. */
    pt = &active_timers[ts->clock->type];
    for(;;) {
        t = *pt;
        if (!t)
            break;
        if (t->expire_time > expire_time)
            break;
        pt = &t->next;
    }
    ts->expire_time = expire_time;
    ts->next = *pt;
    *pt = ts;

    /* Rearm if necessary  */
    if (pt == &active_timers[ts->clock->type]) {
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
            qemu_rearm_alarm_timer(alarm_timer);
        }
        /* Interrupt execution to force deadline recalculation.  */
        if (use_icount)
            qemu_notify_event();
    }
}

int qemu_timer_pending(QEMUTimer *ts)
{
    QEMUTimer *t;
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
        if (t == ts)
            return 1;
    }
    return 0;
}

int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
{
    if (!timer_head)
        return 0;
    return (timer_head->expire_time <= current_time);
}

static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
{
    QEMUTimer *ts;

    for(;;) {
        ts = *ptimer_head;
        if (!ts || ts->expire_time > current_time)
            break;
        /* remove timer from the list before calling the callback */
        *ptimer_head = ts->next;
        ts->next = NULL;

        /* run the callback (the timer list can be modified) */
        ts->cb(ts->opaque);
    }
}

int64_t qemu_get_clock(QEMUClock *clock)
{
    switch(clock->type) {
    case QEMU_CLOCK_REALTIME:
        return get_clock() / 1000000;
    default:
    case QEMU_CLOCK_VIRTUAL:
        if (use_icount) {
            return cpu_get_icount();
        } else {
            return cpu_get_clock();
        }
    case QEMU_CLOCK_HOST:
        return get_clock_realtime();
    }
}

static void init_clocks(void)
{
    init_get_clock();
    rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
    vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
    host_clock = qemu_new_clock(QEMU_CLOCK_HOST);

    rtc_clock = host_clock;
}

/* save a timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
    uint64_t expire_time;

    if (qemu_timer_pending(ts)) {
        expire_time = ts->expire_time;
    } else {
        expire_time = -1;
    }
    qemu_put_be64(f, expire_time);
}

void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
    uint64_t expire_time;

    expire_time = qemu_get_be64(f);
    if (expire_time != -1) {
        qemu_mod_timer(ts, expire_time);
    } else {
        qemu_del_timer(ts);
    }
}

static const VMStateDescription vmstate_timers = {
    .name = "timer",
    .version_id = 2,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .fields      = (VMStateField []) {
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
        VMSTATE_INT64(dummy, TimersState),
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
        VMSTATE_END_OF_LIST()
    }
};

static void qemu_event_increment(void);

#ifdef _WIN32
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
                                        DWORD_PTR dwUser, DWORD_PTR dw1,
                                        DWORD_PTR dw2)
#else
static void host_alarm_handler(int host_signum)
#endif
{
#if 0
#define DISP_FREQ 1000
    {
        static int64_t delta_min = INT64_MAX;
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
        static int count;
        ti = qemu_get_clock(vm_clock);
        if (last_clock != 0) {
            delta = ti - last_clock;
            if (delta < delta_min)
                delta_min = delta;
            if (delta > delta_max)
                delta_max = delta;
            delta_cum += delta;
            if (++count == DISP_FREQ) {
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
                       muldiv64(delta_min, 1000000, get_ticks_per_sec()),
                       muldiv64(delta_max, 1000000, get_ticks_per_sec()),
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
                       (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
                count = 0;
                delta_min = INT64_MAX;
                delta_max = 0;
                delta_cum = 0;
            }
        }
        last_clock = ti;
    }
#endif
    if (alarm_has_dynticks(alarm_timer) ||
        (!use_icount &&
            qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
                               qemu_get_clock(vm_clock))) ||
        qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
                           qemu_get_clock(rt_clock)) ||
        qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
                           qemu_get_clock(host_clock))) {
        qemu_event_increment();
        if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;

#ifndef CONFIG_IOTHREAD
        if (next_cpu) {
            /* stop the currently executing cpu because a timer occured */
            cpu_exit(next_cpu);
        }
#endif
        timer_alarm_pending = 1;
        qemu_notify_event();
    }
}

static int64_t qemu_next_deadline(void)
{
    /* To avoid problems with overflow limit this to 2^32.  */
    int64_t delta = INT32_MAX;

    if (active_timers[QEMU_CLOCK_VIRTUAL]) {
        delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
                     qemu_get_clock(vm_clock);
    }
    if (active_timers[QEMU_CLOCK_HOST]) {
        int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
                 qemu_get_clock(host_clock);
        if (hdelta < delta)
            delta = hdelta;
    }

    if (delta < 0)
        delta = 0;

    return delta;
}

#if defined(__linux__)
static uint64_t qemu_next_deadline_dyntick(void)
{
    int64_t delta;
    int64_t rtdelta;

    if (use_icount)
        delta = INT32_MAX;
    else
        delta = (qemu_next_deadline() + 999) / 1000;

    if (active_timers[QEMU_CLOCK_REALTIME]) {
        rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
                 qemu_get_clock(rt_clock))*1000;
        if (rtdelta < delta)
            delta = rtdelta;
    }

    if (delta < MIN_TIMER_REARM_US)
        delta = MIN_TIMER_REARM_US;

    return delta;
}
#endif

#ifndef _WIN32

/* Sets a specific flag */
static int fcntl_setfl(int fd, int flag)
{
    int flags;

    flags = fcntl(fd, F_GETFL);
    if (flags == -1)
        return -errno;

    if (fcntl(fd, F_SETFL, flags | flag) == -1)
        return -errno;

    return 0;
}

#if defined(__linux__)

#define RTC_FREQ 1024

static void enable_sigio_timer(int fd)
{
    struct sigaction act;

    /* timer signal */
    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGIO, &act, NULL);
    fcntl_setfl(fd, O_ASYNC);
    fcntl(fd, F_SETOWN, getpid());
}

static int hpet_start_timer(struct qemu_alarm_timer *t)
{
    struct hpet_info info;
    int r, fd;

    fd = qemu_open("/dev/hpet", O_RDONLY);
    if (fd < 0)
        return -1;

    /* Set frequency */
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
    if (r < 0) {
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
                "error, but for better emulation accuracy type:\n"
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
        goto fail;
    }

    /* Check capabilities */
    r = ioctl(fd, HPET_INFO, &info);
    if (r < 0)
        goto fail;

    /* Enable periodic mode */
    r = ioctl(fd, HPET_EPI, 0);
    if (info.hi_flags && (r < 0))
        goto fail;

    /* Enable interrupt */
    r = ioctl(fd, HPET_IE_ON, 0);
    if (r < 0)
        goto fail;

    enable_sigio_timer(fd);
    t->priv = (void *)(long)fd;

    return 0;
fail:
    close(fd);
    return -1;
}

static void hpet_stop_timer(struct qemu_alarm_timer *t)
{
    int fd = (long)t->priv;

    close(fd);
}

static int rtc_start_timer(struct qemu_alarm_timer *t)
{
    int rtc_fd;
    unsigned long current_rtc_freq = 0;

    TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
    if (rtc_fd < 0)
        return -1;
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
    if (current_rtc_freq != RTC_FREQ &&
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
        goto fail;
    }
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
    fail:
        close(rtc_fd);
        return -1;
    }

    enable_sigio_timer(rtc_fd);

    t->priv = (void *)(long)rtc_fd;

    return 0;
}

static void rtc_stop_timer(struct qemu_alarm_timer *t)
{
    int rtc_fd = (long)t->priv;

    close(rtc_fd);
}

static int dynticks_start_timer(struct qemu_alarm_timer *t)
{
    struct sigevent ev;
    timer_t host_timer;
    struct sigaction act;

    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGALRM, &act, NULL);

    /* 
     * Initialize ev struct to 0 to avoid valgrind complaining
     * about uninitialized data in timer_create call
     */
    memset(&ev, 0, sizeof(ev));
    ev.sigev_value.sival_int = 0;
    ev.sigev_notify = SIGEV_SIGNAL;
    ev.sigev_signo = SIGALRM;

    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
        perror("timer_create");

        /* disable dynticks */
        fprintf(stderr, "Dynamic Ticks disabled\n");

        return -1;
    }

    t->priv = (void *)(long)host_timer;

    return 0;
}

static void dynticks_stop_timer(struct qemu_alarm_timer *t)
{
    timer_t host_timer = (timer_t)(long)t->priv;

    timer_delete(host_timer);
}

static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
{
    timer_t host_timer = (timer_t)(long)t->priv;
    struct itimerspec timeout;
    int64_t nearest_delta_us = INT64_MAX;
    int64_t current_us;

    if (!active_timers[QEMU_CLOCK_REALTIME] &&
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
        !active_timers[QEMU_CLOCK_HOST])
        return;

    nearest_delta_us = qemu_next_deadline_dyntick();

    /* check whether a timer is already running */
    if (timer_gettime(host_timer, &timeout)) {
        perror("gettime");
        fprintf(stderr, "Internal timer error: aborting\n");
        exit(1);
    }
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
    if (current_us && current_us <= nearest_delta_us)
        return;

    timeout.it_interval.tv_sec = 0;
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
        perror("settime");
        fprintf(stderr, "Internal timer error: aborting\n");
        exit(1);
    }
}

#endif /* defined(__linux__) */

static int unix_start_timer(struct qemu_alarm_timer *t)
{
    struct sigaction act;
    struct itimerval itv;
    int err;

    /* timer signal */
    sigfillset(&act.sa_mask);
    act.sa_flags = 0;
    act.sa_handler = host_alarm_handler;

    sigaction(SIGALRM, &act, NULL);

    itv.it_interval.tv_sec = 0;
    /* for i386 kernel 2.6 to get 1 ms */
    itv.it_interval.tv_usec = 999;
    itv.it_value.tv_sec = 0;
    itv.it_value.tv_usec = 10 * 1000;

    err = setitimer(ITIMER_REAL, &itv, NULL);
    if (err)
        return -1;

    return 0;
}

static void unix_stop_timer(struct qemu_alarm_timer *t)
{
    struct itimerval itv;

    memset(&itv, 0, sizeof(itv));
    setitimer(ITIMER_REAL, &itv, NULL);
}

#endif /* !defined(_WIN32) */


#ifdef _WIN32

static int win32_start_timer(struct qemu_alarm_timer *t)
{
    TIMECAPS tc;
    struct qemu_alarm_win32 *data = t->priv;
    UINT flags;

    memset(&tc, 0, sizeof(tc));
    timeGetDevCaps(&tc, sizeof(tc));

    if (data->period < tc.wPeriodMin)
        data->period = tc.wPeriodMin;

    timeBeginPeriod(data->period);

    flags = TIME_CALLBACK_FUNCTION;
    if (alarm_has_dynticks(t))
        flags |= TIME_ONESHOT;
    else
        flags |= TIME_PERIODIC;

    data->timerId = timeSetEvent(1,         // interval (ms)
                        data->period,       // resolution
                        host_alarm_handler, // function
                        (DWORD)t,           // parameter
                        flags);

    if (!data->timerId) {
        fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
                GetLastError());
        timeEndPeriod(data->period);
        return -1;
    }

    return 0;
}

static void win32_stop_timer(struct qemu_alarm_timer *t)
{
    struct qemu_alarm_win32 *data = t->priv;

    timeKillEvent(data->timerId);
    timeEndPeriod(data->period);
}

static void win32_rearm_timer(struct qemu_alarm_timer *t)
{
    struct qemu_alarm_win32 *data = t->priv;

    if (!active_timers[QEMU_CLOCK_REALTIME] &&
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
        !active_timers[QEMU_CLOCK_HOST])
        return;

    timeKillEvent(data->timerId);

    data->timerId = timeSetEvent(1,
                        data->period,
                        host_alarm_handler,
                        (DWORD)t,
                        TIME_ONESHOT | TIME_PERIODIC);

    if (!data->timerId) {
        fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
                GetLastError());

        timeEndPeriod(data->period);
        exit(1);
    }
}

#endif /* _WIN32 */

static int init_timer_alarm(void)
{
    struct qemu_alarm_timer *t = NULL;
    int i, err = -1;

    for (i = 0; alarm_timers[i].name; i++) {
        t = &alarm_timers[i];

        err = t->start(t);
        if (!err)
            break;
    }

    if (err) {
        err = -ENOENT;
        goto fail;
    }

    alarm_timer = t;

    return 0;

fail:
    return err;
}

static void quit_timers(void)
{
    alarm_timer->stop(alarm_timer);
    alarm_timer = NULL;
}

/***********************************************************/
/* host time/date access */
void qemu_get_timedate(struct tm *tm, int offset)
{
    time_t ti;
    struct tm *ret;

    time(&ti);
    ti += offset;
    if (rtc_date_offset == -1) {
        if (rtc_utc)
            ret = gmtime(&ti);
        else
            ret = localtime(&ti);
    } else {
        ti -= rtc_date_offset;
        ret = gmtime(&ti);
    }

    memcpy(tm, ret, sizeof(struct tm));
}

int qemu_timedate_diff(struct tm *tm)
{
    time_t seconds;

    if (rtc_date_offset == -1)
        if (rtc_utc)
            seconds = mktimegm(tm);
        else
            seconds = mktime(tm);
    else
        seconds = mktimegm(tm) + rtc_date_offset;

    return seconds - time(NULL);
}

static void configure_rtc_date_offset(const char *startdate, int legacy)
{
    time_t rtc_start_date;
    struct tm tm;

    if (!strcmp(startdate, "now") && legacy) {
        rtc_date_offset = -1;
    } else {
        if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
                   &tm.tm_year,
                   &tm.tm_mon,
                   &tm.tm_mday,
                   &tm.tm_hour,
                   &tm.tm_min,
                   &tm.tm_sec) == 6) {
            /* OK */
        } else if (sscanf(startdate, "%d-%d-%d",
                          &tm.tm_year,
                          &tm.tm_mon,
                          &tm.tm_mday) == 3) {
            tm.tm_hour = 0;
            tm.tm_min = 0;
            tm.tm_sec = 0;
        } else {
            goto date_fail;
        }
        tm.tm_year -= 1900;
        tm.tm_mon--;
        rtc_start_date = mktimegm(&tm);
        if (rtc_start_date == -1) {
        date_fail:
            fprintf(stderr, "Invalid date format. Valid formats are:\n"
                            "'2006-06-17T16:01:21' or '2006-06-17'\n");
            exit(1);
        }
        rtc_date_offset = time(NULL) - rtc_start_date;
    }
}

static void configure_rtc(QemuOpts *opts)
{
    const char *value;

    value = qemu_opt_get(opts, "base");
    if (value) {
        if (!strcmp(value, "utc")) {
            rtc_utc = 1;
        } else if (!strcmp(value, "localtime")) {
            rtc_utc = 0;
        } else {
            configure_rtc_date_offset(value, 0);
        }
    }
    value = qemu_opt_get(opts, "clock");
    if (value) {
        if (!strcmp(value, "host")) {
            rtc_clock = host_clock;
        } else if (!strcmp(value, "vm")) {
            rtc_clock = vm_clock;
        } else {
            fprintf(stderr, "qemu: invalid option value '%s'\n", value);
            exit(1);
        }
    }
#ifdef CONFIG_TARGET_I386
    value = qemu_opt_get(opts, "driftfix");
    if (value) {
        if (!strcmp(buf, "slew")) {
            rtc_td_hack = 1;
        } else if (!strcmp(buf, "none")) {
            rtc_td_hack = 0;
        } else {
            fprintf(stderr, "qemu: invalid option value '%s'\n", value);
            exit(1);
        }
    }
#endif
}

#ifdef _WIN32
static void socket_cleanup(void)
{
    WSACleanup();
}

static int socket_init(void)
{
    WSADATA Data;
    int ret, err;

    ret = WSAStartup(MAKEWORD(2,2), &Data);
    if (ret != 0) {
        err = WSAGetLastError();
        fprintf(stderr, "WSAStartup: %d\n", err);
        return -1;
    }
    atexit(socket_cleanup);
    return 0;
}
#endif

/***********************************************************/
/* Bluetooth support */
static int nb_hcis;
static int cur_hci;
static struct HCIInfo *hci_table[MAX_NICS];

static struct bt_vlan_s {
    struct bt_scatternet_s net;
    int id;
    struct bt_vlan_s *next;
} *first_bt_vlan;

/* find or alloc a new bluetooth "VLAN" */
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
{
    struct bt_vlan_s **pvlan, *vlan;
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
        if (vlan->id == id)
            return &vlan->net;
    }
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
    vlan->id = id;
    pvlan = &first_bt_vlan;
    while (*pvlan != NULL)
        pvlan = &(*pvlan)->next;
    *pvlan = vlan;
    return &vlan->net;
}

static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
{
}

static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
{
    return -ENOTSUP;
}

static struct HCIInfo null_hci = {
    .cmd_send = null_hci_send,
    .sco_send = null_hci_send,
    .acl_send = null_hci_send,
    .bdaddr_set = null_hci_addr_set,
};

struct HCIInfo *qemu_next_hci(void)
{
    if (cur_hci == nb_hcis)
        return &null_hci;

    return hci_table[cur_hci++];
}

static struct HCIInfo *hci_init(const char *str)
{
    char *endp;
    struct bt_scatternet_s *vlan = 0;

    if (!strcmp(str, "null"))
        /* null */
        return &null_hci;
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
        /* host[:hciN] */
        return bt_host_hci(str[4] ? str + 5 : "hci0");
    else if (!strncmp(str, "hci", 3)) {
        /* hci[,vlan=n] */
        if (str[3]) {
            if (!strncmp(str + 3, ",vlan=", 6)) {
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
                if (*endp)
                    vlan = 0;
            }
        } else
            vlan = qemu_find_bt_vlan(0);
        if (vlan)
           return bt_new_hci(vlan);
    }

    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);

    return 0;
}

static int bt_hci_parse(const char *str)
{
    struct HCIInfo *hci;
    bdaddr_t bdaddr;

    if (nb_hcis >= MAX_NICS) {
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
        return -1;
    }

    hci = hci_init(str);
    if (!hci)
        return -1;

    bdaddr.b[0] = 0x52;
    bdaddr.b[1] = 0x54;
    bdaddr.b[2] = 0x00;
    bdaddr.b[3] = 0x12;
    bdaddr.b[4] = 0x34;
    bdaddr.b[5] = 0x56 + nb_hcis;
    hci->bdaddr_set(hci, bdaddr.b);

    hci_table[nb_hcis++] = hci;

    return 0;
}

static void bt_vhci_add(int vlan_id)
{
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);

    if (!vlan->slave)
        fprintf(stderr, "qemu: warning: adding a VHCI to "
                        "an empty scatternet %i\n", vlan_id);

    bt_vhci_init(bt_new_hci(vlan));
}

static struct bt_device_s *bt_device_add(const char *opt)
{
    struct bt_scatternet_s *vlan;
    int vlan_id = 0;
    char *endp = strstr(opt, ",vlan=");
    int len = (endp ? endp - opt : strlen(opt)) + 1;
    char devname[10];

    pstrcpy(devname, MIN(sizeof(devname), len), opt);

    if (endp) {
        vlan_id = strtol(endp + 6, &endp, 0);
        if (*endp) {
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
            return 0;
        }
    }

    vlan = qemu_find_bt_vlan(vlan_id);

    if (!vlan->slave)
        fprintf(stderr, "qemu: warning: adding a slave device to "
                        "an empty scatternet %i\n", vlan_id);

    if (!strcmp(devname, "keyboard"))
        return bt_keyboard_init(vlan);

    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
    return 0;
}

static int bt_parse(const char *opt)
{
    const char *endp, *p;
    int vlan;

    if (strstart(opt, "hci", &endp)) {
        if (!*endp || *endp == ',') {
            if (*endp)
                if (!strstart(endp, ",vlan=", 0))
                    opt = endp + 1;

            return bt_hci_parse(opt);
       }
    } else if (strstart(opt, "vhci", &endp)) {
        if (!*endp || *endp == ',') {
            if (*endp) {
                if (strstart(endp, ",vlan=", &p)) {
                    vlan = strtol(p, (char **) &endp, 0);
                    if (*endp) {
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
                        return 1;
                    }
                } else {
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
                    return 1;
                }
            } else
                vlan = 0;

            bt_vhci_add(vlan);
            return 0;
        }
    } else if (strstart(opt, "device:", &endp))
        return !bt_device_add(endp);

    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
    return 1;
}

/***********************************************************/
/* QEMU Block devices */

#define HD_ALIAS "index=%d,media=disk"
#define CDROM_ALIAS "index=2,media=cdrom"
#define FD_ALIAS "index=%d,if=floppy"
#define PFLASH_ALIAS "if=pflash"
#define MTD_ALIAS "if=mtd"
#define SD_ALIAS "index=0,if=sd"

QemuOpts *drive_add(const char *file, const char *fmt, ...)
{
    va_list ap;
    char optstr[1024];
    QemuOpts *opts;

    va_start(ap, fmt);
    vsnprintf(optstr, sizeof(optstr), fmt, ap);
    va_end(ap);

    opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
    if (!opts) {
        fprintf(stderr, "%s: huh? duplicate? (%s)\n",
                __FUNCTION__, optstr);
        return NULL;
    }
    if (file)
        qemu_opt_set(opts, "file", file);
    return opts;
}

DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
{
    DriveInfo *dinfo;

    /* seek interface, bus and unit */

    QTAILQ_FOREACH(dinfo, &drives, next) {
        if (dinfo->type == type &&
	    dinfo->bus == bus &&
	    dinfo->unit == unit)
            return dinfo;
    }

    return NULL;
}

DriveInfo *drive_get_by_id(const char *id)
{
    DriveInfo *dinfo;

    QTAILQ_FOREACH(dinfo, &drives, next) {
        if (strcmp(id, dinfo->id))
            continue;
        return dinfo;
    }
    return NULL;
}

int drive_get_max_bus(BlockInterfaceType type)
{
    int max_bus;
    DriveInfo *dinfo;

    max_bus = -1;
    QTAILQ_FOREACH(dinfo, &drives, next) {
        if(dinfo->type == type &&
           dinfo->bus > max_bus)
            max_bus = dinfo->bus;
    }
    return max_bus;
}

const char *drive_get_serial(BlockDriverState *bdrv)
{
    DriveInfo *dinfo;

    QTAILQ_FOREACH(dinfo, &drives, next) {
        if (dinfo->bdrv == bdrv)
            return dinfo->serial;
    }

    return "\0";
}

BlockInterfaceErrorAction drive_get_on_error(
    BlockDriverState *bdrv, int is_read)
{
    DriveInfo *dinfo;

    QTAILQ_FOREACH(dinfo, &drives, next) {
        if (dinfo->bdrv == bdrv)
            return is_read ? dinfo->on_read_error : dinfo->on_write_error;
    }

    return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
}

static void bdrv_format_print(void *opaque, const char *name)
{
    fprintf(stderr, " %s", name);
}

void drive_uninit(DriveInfo *dinfo)
{
    qemu_opts_del(dinfo->opts);
    bdrv_delete(dinfo->bdrv);
    QTAILQ_REMOVE(&drives, dinfo, next);
    qemu_free(dinfo);
}

static int parse_block_error_action(const char *buf, int is_read)
{
    if (!strcmp(buf, "ignore")) {
        return BLOCK_ERR_IGNORE;
    } else if (!is_read && !strcmp(buf, "enospc")) {
        return BLOCK_ERR_STOP_ENOSPC;
    } else if (!strcmp(buf, "stop")) {
        return BLOCK_ERR_STOP_ANY;
    } else if (!strcmp(buf, "report")) {
        return BLOCK_ERR_REPORT;
    } else {
        fprintf(stderr, "qemu: '%s' invalid %s error action\n",
            buf, is_read ? "read" : "write");
        return -1;
    }
}

DriveInfo *drive_init(QemuOpts *opts, void *opaque,
                      int *fatal_error)
{
    const char *buf;
    const char *file = NULL;
    char devname[128];
    const char *serial;
    const char *mediastr = "";
    BlockInterfaceType type;
    enum { MEDIA_DISK, MEDIA_CDROM } media;
    int bus_id, unit_id;
    int cyls, heads, secs, translation;
    BlockDriver *drv = NULL;
    QEMUMachine *machine = opaque;
    int max_devs;
    int index;
    int cache;
    int aio = 0;
    int ro = 0;
    int bdrv_flags;
    int on_read_error, on_write_error;
    const char *devaddr;
    DriveInfo *dinfo;
    int snapshot = 0;

    *fatal_error = 1;

    translation = BIOS_ATA_TRANSLATION_AUTO;
    cache = 1;

    if (machine && machine->use_scsi) {
        type = IF_SCSI;
        max_devs = MAX_SCSI_DEVS;
        pstrcpy(devname, sizeof(devname), "scsi");
    } else {
        type = IF_IDE;
        max_devs = MAX_IDE_DEVS;
        pstrcpy(devname, sizeof(devname), "ide");
    }
    media = MEDIA_DISK;

    /* extract parameters */
    bus_id  = qemu_opt_get_number(opts, "bus", 0);
    unit_id = qemu_opt_get_number(opts, "unit", -1);
    index   = qemu_opt_get_number(opts, "index", -1);

    cyls  = qemu_opt_get_number(opts, "cyls", 0);
    heads = qemu_opt_get_number(opts, "heads", 0);
    secs  = qemu_opt_get_number(opts, "secs", 0);

    snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
    ro = qemu_opt_get_bool(opts, "readonly", 0);

    file = qemu_opt_get(opts, "file");
    serial = qemu_opt_get(opts, "serial");

    if ((buf = qemu_opt_get(opts, "if")) != NULL) {
        pstrcpy(devname, sizeof(devname), buf);
        if (!strcmp(buf, "ide")) {
	    type = IF_IDE;
            max_devs = MAX_IDE_DEVS;
        } else if (!strcmp(buf, "scsi")) {
	    type = IF_SCSI;
            max_devs = MAX_SCSI_DEVS;
        } else if (!strcmp(buf, "floppy")) {
	    type = IF_FLOPPY;
            max_devs = 0;
        } else if (!strcmp(buf, "pflash")) {
	    type = IF_PFLASH;
            max_devs = 0;
	} else if (!strcmp(buf, "mtd")) {
	    type = IF_MTD;
            max_devs = 0;
	} else if (!strcmp(buf, "sd")) {
	    type = IF_SD;
            max_devs = 0;
        } else if (!strcmp(buf, "virtio")) {
            type = IF_VIRTIO;
            max_devs = 0;
	} else if (!strcmp(buf, "xen")) {
	    type = IF_XEN;
            max_devs = 0;
	} else if (!strcmp(buf, "none")) {
	    type = IF_NONE;
            max_devs = 0;
	} else {
            fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
            return NULL;
	}
    }

    if (cyls || heads || secs) {
        if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
	    return NULL;
	}
        if (heads < 1 || (type == IF_IDE && heads > 16)) {
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
	    return NULL;
	}
        if (secs < 1 || (type == IF_IDE && secs > 63)) {
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
	    return NULL;
	}
    }

    if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
        if (!cyls) {
            fprintf(stderr,
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
                    buf);
            return NULL;
        }
        if (!strcmp(buf, "none"))
            translation = BIOS_ATA_TRANSLATION_NONE;
        else if (!strcmp(buf, "lba"))
            translation = BIOS_ATA_TRANSLATION_LBA;
        else if (!strcmp(buf, "auto"))
            translation = BIOS_ATA_TRANSLATION_AUTO;
	else {
            fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
	    return NULL;
	}
    }

    if ((buf = qemu_opt_get(opts, "media")) != NULL) {
        if (!strcmp(buf, "disk")) {
	    media = MEDIA_DISK;
	} else if (!strcmp(buf, "cdrom")) {
            if (cyls || secs || heads) {
                fprintf(stderr,
                        "qemu: '%s' invalid physical CHS format\n", buf);
	        return NULL;
            }
	    media = MEDIA_CDROM;
	} else {
	    fprintf(stderr, "qemu: '%s' invalid media\n", buf);
	    return NULL;
	}
    }

    if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
            cache = 0;
        else if (!strcmp(buf, "writethrough"))
            cache = 1;
        else if (!strcmp(buf, "writeback"))
            cache = 2;
        else {
           fprintf(stderr, "qemu: invalid cache option\n");
           return NULL;
        }
    }

#ifdef CONFIG_LINUX_AIO
    if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
        if (!strcmp(buf, "threads"))
            aio = 0;
        else if (!strcmp(buf, "native"))
            aio = 1;
        else {
           fprintf(stderr, "qemu: invalid aio option\n");
           return NULL;
        }
    }
#endif

    if ((buf = qemu_opt_get(opts, "format")) != NULL) {
       if (strcmp(buf, "?") == 0) {
            fprintf(stderr, "qemu: Supported formats:");
            bdrv_iterate_format(bdrv_format_print, NULL);
            fprintf(stderr, "\n");
	    return NULL;
        }
        drv = bdrv_find_whitelisted_format(buf);
        if (!drv) {
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
            return NULL;
        }
    }

    on_write_error = BLOCK_ERR_STOP_ENOSPC;
    if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
            fprintf(stderr, "werror is no supported by this format\n");
            return NULL;
        }

        on_write_error = parse_block_error_action(buf, 0);
        if (on_write_error < 0) {
            return NULL;
        }
    }

    on_read_error = BLOCK_ERR_REPORT;
    if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
        if (type != IF_IDE && type != IF_VIRTIO) {
            fprintf(stderr, "rerror is no supported by this format\n");
            return NULL;
        }

        on_read_error = parse_block_error_action(buf, 1);
        if (on_read_error < 0) {
            return NULL;
        }
    }

    if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
        if (type != IF_VIRTIO) {
            fprintf(stderr, "addr is not supported\n");
            return NULL;
        }
    }

    /* compute bus and unit according index */

    if (index != -1) {
        if (bus_id != 0 || unit_id != -1) {
            fprintf(stderr,
                    "qemu: index cannot be used with bus and unit\n");
            return NULL;
        }
        if (max_devs == 0)
        {
            unit_id = index;
            bus_id = 0;
        } else {
            unit_id = index % max_devs;
            bus_id = index / max_devs;
        }
    }

    /* if user doesn't specify a unit_id,
     * try to find the first free
     */

    if (unit_id == -1) {
       unit_id = 0;
       while (drive_get(type, bus_id, unit_id) != NULL) {
           unit_id++;
           if (max_devs && unit_id >= max_devs) {
               unit_id -= max_devs;
               bus_id++;
           }
       }
    }

    /* check unit id */

    if (max_devs && unit_id >= max_devs) {
        fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
                unit_id, max_devs - 1);
        return NULL;
    }

    /*
     * ignore multiple definitions
     */

    if (drive_get(type, bus_id, unit_id) != NULL) {
        *fatal_error = 0;
        return NULL;
    }

    /* init */

    dinfo = qemu_mallocz(sizeof(*dinfo));
    if ((buf = qemu_opts_id(opts)) != NULL) {
        dinfo->id = qemu_strdup(buf);
    } else {
        /* no id supplied -> create one */
        dinfo->id = qemu_mallocz(32);
        if (type == IF_IDE || type == IF_SCSI)
            mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
        if (max_devs)
            snprintf(dinfo->id, 32, "%s%i%s%i",
                     devname, bus_id, mediastr, unit_id);
        else
            snprintf(dinfo->id, 32, "%s%s%i",
                     devname, mediastr, unit_id);
    }
    dinfo->bdrv = bdrv_new(dinfo->id);
    dinfo->devaddr = devaddr;
    dinfo->type = type;
    dinfo->bus = bus_id;
    dinfo->unit = unit_id;
    dinfo->on_read_error = on_read_error;
    dinfo->on_write_error = on_write_error;
    dinfo->opts = opts;
    if (serial)
        strncpy(dinfo->serial, serial, sizeof(serial));
    QTAILQ_INSERT_TAIL(&drives, dinfo, next);

    switch(type) {
    case IF_IDE:
    case IF_SCSI:
    case IF_XEN:
    case IF_NONE:
        switch(media) {
	case MEDIA_DISK:
            if (cyls != 0) {
                bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
                bdrv_set_translation_hint(dinfo->bdrv, translation);
            }
	    break;
	case MEDIA_CDROM:
            bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
	    break;
	}
        break;
    case IF_SD:
        /* FIXME: This isn't really a floppy, but it's a reasonable
           approximation.  */
    case IF_FLOPPY:
        bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
        break;
    case IF_PFLASH:
    case IF_MTD:
        break;
    case IF_VIRTIO:
        /* add virtio block device */
        opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
        qemu_opt_set(opts, "driver", "virtio-blk-pci");
        qemu_opt_set(opts, "drive", dinfo->id);
        if (devaddr)
            qemu_opt_set(opts, "addr", devaddr);
        break;
    case IF_COUNT:
        abort();
    }
    if (!file) {
        *fatal_error = 0;
        return NULL;
    }
    bdrv_flags = 0;
    if (snapshot) {
        bdrv_flags |= BDRV_O_SNAPSHOT;
        cache = 2; /* always use write-back with snapshot */
    }
    if (cache == 0) /* no caching */
        bdrv_flags |= BDRV_O_NOCACHE;
    else if (cache == 2) /* write-back */
        bdrv_flags |= BDRV_O_CACHE_WB;

    if (aio == 1) {
        bdrv_flags |= BDRV_O_NATIVE_AIO;
    } else {
        bdrv_flags &= ~BDRV_O_NATIVE_AIO;
    }

    if (ro == 1) {
        if (type == IF_IDE) {
            fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
            return NULL;
        }
        (void)bdrv_set_read_only(dinfo->bdrv, 1);
    }

    if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
        fprintf(stderr, "qemu: could not open disk image %s: %s\n",
                        file, strerror(errno));
        return NULL;
    }

    if (bdrv_key_required(dinfo->bdrv))
        autostart = 0;
    *fatal_error = 0;
    return dinfo;
}

static int drive_init_func(QemuOpts *opts, void *opaque)
{
    QEMUMachine *machine = opaque;
    int fatal_error = 0;

    if (drive_init(opts, machine, &fatal_error) == NULL) {
        if (fatal_error)
            return 1;
    }
    return 0;
}

static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
{
    if (NULL == qemu_opt_get(opts, "snapshot")) {
        qemu_opt_set(opts, "snapshot", "on");
    }
    return 0;
}

void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
{
    boot_set_handler = func;
    boot_set_opaque = opaque;
}

int qemu_boot_set(const char *boot_devices)
{
    if (!boot_set_handler) {
        return -EINVAL;
    }
    return boot_set_handler(boot_set_opaque, boot_devices);
}

static int parse_bootdevices(char *devices)
{
    /* We just do some generic consistency checks */
    const char *p;
    int bitmap = 0;

    for (p = devices; *p != '\0'; p++) {
        /* Allowed boot devices are:
         * a-b: floppy disk drives
         * c-f: IDE disk drives
         * g-m: machine implementation dependant drives
         * n-p: network devices
         * It's up to each machine implementation to check if the given boot
         * devices match the actual hardware implementation and firmware
         * features.
         */
        if (*p < 'a' || *p > 'p') {
            fprintf(stderr, "Invalid boot device '%c'\n", *p);
            exit(1);
        }
        if (bitmap & (1 << (*p - 'a'))) {
            fprintf(stderr, "Boot device '%c' was given twice\n", *p);
            exit(1);
        }
        bitmap |= 1 << (*p - 'a');
    }
    return bitmap;
}

static void restore_boot_devices(void *opaque)
{
    char *standard_boot_devices = opaque;

    qemu_boot_set(standard_boot_devices);

    qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
    qemu_free(standard_boot_devices);
}

static void numa_add(const char *optarg)
{
    char option[128];
    char *endptr;
    unsigned long long value, endvalue;
    int nodenr;

    optarg = get_opt_name(option, 128, optarg, ',') + 1;
    if (!strcmp(option, "node")) {
        if (get_param_value(option, 128, "nodeid", optarg) == 0) {
            nodenr = nb_numa_nodes;
        } else {
            nodenr = strtoull(option, NULL, 10);
        }

        if (get_param_value(option, 128, "mem", optarg) == 0) {
            node_mem[nodenr] = 0;
        } else {
            value = strtoull(option, &endptr, 0);
            switch (*endptr) {
            case 0: case 'M': case 'm':
                value <<= 20;
                break;
            case 'G': case 'g':
                value <<= 30;
                break;
            }
            node_mem[nodenr] = value;
        }
        if (get_param_value(option, 128, "cpus", optarg) == 0) {
            node_cpumask[nodenr] = 0;
        } else {
            value = strtoull(option, &endptr, 10);
            if (value >= 64) {
                value = 63;
                fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
            } else {
                if (*endptr == '-') {
                    endvalue = strtoull(endptr+1, &endptr, 10);
                    if (endvalue >= 63) {
                        endvalue = 62;
                        fprintf(stderr,
                            "only 63 CPUs in NUMA mode supported.\n");
                    }
                    value = (1 << (endvalue + 1)) - (1 << value);
                } else {
                    value = 1 << value;
                }
            }
            node_cpumask[nodenr] = value;
        }
        nb_numa_nodes++;
    }
    return;
}

static void smp_parse(const char *optarg)
{
    int smp, sockets = 0, threads = 0, cores = 0;
    char *endptr;
    char option[128];

    smp = strtoul(optarg, &endptr, 10);
    if (endptr != optarg) {
        if (*endptr == ',') {
            endptr++;
        }
    }
    if (get_param_value(option, 128, "sockets", endptr) != 0)
        sockets = strtoull(option, NULL, 10);
    if (get_param_value(option, 128, "cores", endptr) != 0)
        cores = strtoull(option, NULL, 10);
    if (get_param_value(option, 128, "threads", endptr) != 0)
        threads = strtoull(option, NULL, 10);
    if (get_param_value(option, 128, "maxcpus", endptr) != 0)
        max_cpus = strtoull(option, NULL, 10);

    /* compute missing values, prefer sockets over cores over threads */
    if (smp == 0 || sockets == 0) {
        sockets = sockets > 0 ? sockets : 1;
        cores = cores > 0 ? cores : 1;
        threads = threads > 0 ? threads : 1;
        if (smp == 0) {
            smp = cores * threads * sockets;
        }
    } else {
        if (cores == 0) {
            threads = threads > 0 ? threads : 1;
            cores = smp / (sockets * threads);
        } else {
            if (sockets) {
                threads = smp / (cores * sockets);
            }
        }
    }
    smp_cpus = smp;
    smp_cores = cores > 0 ? cores : 1;
    smp_threads = threads > 0 ? threads : 1;
    if (max_cpus == 0)
        max_cpus = smp_cpus;
}

/***********************************************************/
/* USB devices */

static int usb_device_add(const char *devname, int is_hotplug)
{
    const char *p;
    USBDevice *dev = NULL;

    if (!usb_enabled)
        return -1;

    /* drivers with .usbdevice_name entry in USBDeviceInfo */
    dev = usbdevice_create(devname);
    if (dev)
        goto done;

    /* the other ones */
    if (strstart(devname, "host:", &p)) {
        dev = usb_host_device_open(p);
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
        dev = usb_bt_init(devname[2] ? hci_init(p) :
                        bt_new_hci(qemu_find_bt_vlan(0)));
    } else {
        return -1;
    }
    if (!dev)
        return -1;

done:
    return 0;
}

static int usb_device_del(const char *devname)
{
    int bus_num, addr;
    const char *p;

    if (strstart(devname, "host:", &p))
        return usb_host_device_close(p);

    if (!usb_enabled)
        return -1;

    p = strchr(devname, '.');
    if (!p)
        return -1;
    bus_num = strtoul(devname, NULL, 0);
    addr = strtoul(p + 1, NULL, 0);

    return usb_device_delete_addr(bus_num, addr);
}

static int usb_parse(const char *cmdline)
{
    int r;
    r = usb_device_add(cmdline, 0);
    if (r < 0) {
        fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
    }
    return r;
}

void do_usb_add(Monitor *mon, const QDict *qdict)
{
    const char *devname = qdict_get_str(qdict, "devname");
    if (usb_device_add(devname, 1) < 0) {
        qemu_error("could not add USB device '%s'\n", devname);
    }
}

void do_usb_del(Monitor *mon, const QDict *qdict)
{
    const char *devname = qdict_get_str(qdict, "devname");
    if (usb_device_del(devname) < 0) {
        qemu_error("could not delete USB device '%s'\n", devname);
    }
}

/***********************************************************/
/* PCMCIA/Cardbus */

static struct pcmcia_socket_entry_s {
    PCMCIASocket *socket;
    struct pcmcia_socket_entry_s *next;
} *pcmcia_sockets = 0;

void pcmcia_socket_register(PCMCIASocket *socket)
{
    struct pcmcia_socket_entry_s *entry;

    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
    entry->socket = socket;
    entry->next = pcmcia_sockets;
    pcmcia_sockets = entry;
}

void pcmcia_socket_unregister(PCMCIASocket *socket)
{
    struct pcmcia_socket_entry_s *entry, **ptr;

    ptr = &pcmcia_sockets;
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
        if (entry->socket == socket) {
            *ptr = entry->next;
            qemu_free(entry);
        }
}

void pcmcia_info(Monitor *mon)
{
    struct pcmcia_socket_entry_s *iter;

    if (!pcmcia_sockets)
        monitor_printf(mon, "No PCMCIA sockets\n");

    for (iter = pcmcia_sockets; iter; iter = iter->next)
        monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
                       iter->socket->attached ? iter->socket->card_string :
                       "Empty");
}

/***********************************************************/
/* register display */

struct DisplayAllocator default_allocator = {
    defaultallocator_create_displaysurface,
    defaultallocator_resize_displaysurface,
    defaultallocator_free_displaysurface
};

void register_displaystate(DisplayState *ds)
{
    DisplayState **s;
    s = &display_state;
    while (*s != NULL)
        s = &(*s)->next;
    ds->next = NULL;
    *s = ds;
}

DisplayState *get_displaystate(void)
{
    return display_state;
}

DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
{
    if(ds->allocator ==  &default_allocator) ds->allocator = da;
    return ds->allocator;
}

/* dumb display */

static void dumb_display_init(void)
{
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
    ds->allocator = &default_allocator;
    ds->surface = qemu_create_displaysurface(ds, 640, 480);
    register_displaystate(ds);
}

/***********************************************************/
/* I/O handling */

typedef struct IOHandlerRecord {
    int fd;
    IOCanRWHandler *fd_read_poll;
    IOHandler *fd_read;
    IOHandler *fd_write;
    int deleted;
    void *opaque;
    /* temporary data */
    struct pollfd *ufd;
    struct IOHandlerRecord *next;
} IOHandlerRecord;

static IOHandlerRecord *first_io_handler;

/* XXX: fd_read_poll should be suppressed, but an API change is
   necessary in the character devices to suppress fd_can_read(). */
int qemu_set_fd_handler2(int fd,
                         IOCanRWHandler *fd_read_poll,
                         IOHandler *fd_read,
                         IOHandler *fd_write,
                         void *opaque)
{
    IOHandlerRecord **pioh, *ioh;

    if (!fd_read && !fd_write) {
        pioh = &first_io_handler;
        for(;;) {
            ioh = *pioh;
            if (ioh == NULL)
                break;
            if (ioh->fd == fd) {
                ioh->deleted = 1;
                break;
            }
            pioh = &ioh->next;
        }
    } else {
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
            if (ioh->fd == fd)
                goto found;
        }
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
        ioh->next = first_io_handler;
        first_io_handler = ioh;
    found:
        ioh->fd = fd;
        ioh->fd_read_poll = fd_read_poll;
        ioh->fd_read = fd_read;
        ioh->fd_write = fd_write;
        ioh->opaque = opaque;
        ioh->deleted = 0;
    }
    return 0;
}

int qemu_set_fd_handler(int fd,
                        IOHandler *fd_read,
                        IOHandler *fd_write,
                        void *opaque)
{
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
}

#ifdef _WIN32
/***********************************************************/
/* Polling handling */

typedef struct PollingEntry {
    PollingFunc *func;
    void *opaque;
    struct PollingEntry *next;
} PollingEntry;

static PollingEntry *first_polling_entry;

int qemu_add_polling_cb(PollingFunc *func, void *opaque)
{
    PollingEntry **ppe, *pe;
    pe = qemu_mallocz(sizeof(PollingEntry));
    pe->func = func;
    pe->opaque = opaque;
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
    *ppe = pe;
    return 0;
}

void qemu_del_polling_cb(PollingFunc *func, void *opaque)
{
    PollingEntry **ppe, *pe;
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
        pe = *ppe;
        if (pe->func == func && pe->opaque == opaque) {
            *ppe = pe->next;
            qemu_free(pe);
            break;
        }
    }
}

/***********************************************************/
/* Wait objects support */
typedef struct WaitObjects {
    int num;
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
} WaitObjects;

static WaitObjects wait_objects = {0};

int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
    WaitObjects *w = &wait_objects;

    if (w->num >= MAXIMUM_WAIT_OBJECTS)
        return -1;
    w->events[w->num] = handle;
    w->func[w->num] = func;
    w->opaque[w->num] = opaque;
    w->num++;
    return 0;
}

void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
    int i, found;
    WaitObjects *w = &wait_objects;

    found = 0;
    for (i = 0; i < w->num; i++) {
        if (w->events[i] == handle)
            found = 1;
        if (found) {
            w->events[i] = w->events[i + 1];
            w->func[i] = w->func[i + 1];
            w->opaque[i] = w->opaque[i + 1];
        }
    }
    if (found)
        w->num--;
}
#endif

/***********************************************************/
/* ram save/restore */

#define RAM_SAVE_FLAG_FULL	0x01 /* Obsolete, not used anymore */
#define RAM_SAVE_FLAG_COMPRESS	0x02
#define RAM_SAVE_FLAG_MEM_SIZE	0x04
#define RAM_SAVE_FLAG_PAGE	0x08
#define RAM_SAVE_FLAG_EOS	0x10

static int is_dup_page(uint8_t *page, uint8_t ch)
{
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
    uint32_t *array = (uint32_t *)page;
    int i;

    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
        if (array[i] != val)
            return 0;
    }

    return 1;
}

static int ram_save_block(QEMUFile *f)
{
    static ram_addr_t current_addr = 0;
    ram_addr_t saved_addr = current_addr;
    ram_addr_t addr = 0;
    int found = 0;

    while (addr < last_ram_offset) {
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
            uint8_t *p;

            cpu_physical_memory_reset_dirty(current_addr,
                                            current_addr + TARGET_PAGE_SIZE,
                                            MIGRATION_DIRTY_FLAG);

            p = qemu_get_ram_ptr(current_addr);

            if (is_dup_page(p, *p)) {
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
                qemu_put_byte(f, *p);
            } else {
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
            }

            found = 1;
            break;
        }
        addr += TARGET_PAGE_SIZE;
        current_addr = (saved_addr + addr) % last_ram_offset;
    }

    return found;
}

static uint64_t bytes_transferred;

static ram_addr_t ram_save_remaining(void)
{
    ram_addr_t addr;
    ram_addr_t count = 0;

    for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
            count++;
    }

    return count;
}

uint64_t ram_bytes_remaining(void)
{
    return ram_save_remaining() * TARGET_PAGE_SIZE;
}

uint64_t ram_bytes_transferred(void)
{
    return bytes_transferred;
}

uint64_t ram_bytes_total(void)
{
    return last_ram_offset;
}

static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
{
    ram_addr_t addr;
    uint64_t bytes_transferred_last;
    double bwidth = 0;
    uint64_t expected_time = 0;

    if (stage < 0) {
        cpu_physical_memory_set_dirty_tracking(0);
        return 0;
    }

    if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
        qemu_file_set_error(f);
        return 0;
    }

    if (stage == 1) {
        bytes_transferred = 0;

        /* Make sure all dirty bits are set */
        for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
                cpu_physical_memory_set_dirty(addr);
        }

        /* Enable dirty memory tracking */
        cpu_physical_memory_set_dirty_tracking(1);

        qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
    }

    bytes_transferred_last = bytes_transferred;
    bwidth = get_clock();

    while (!qemu_file_rate_limit(f)) {
        int ret;

        ret = ram_save_block(f);
        bytes_transferred += ret * TARGET_PAGE_SIZE;
        if (ret == 0) /* no more blocks */
            break;
    }

    bwidth = get_clock() - bwidth;
    bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;

    /* if we haven't transferred anything this round, force expected_time to a
     * a very high value, but without crashing */
    if (bwidth == 0)
        bwidth = 0.000001;

    /* try transferring iterative blocks of memory */
    if (stage == 3) {
        /* flush all remaining blocks regardless of rate limiting */
        while (ram_save_block(f) != 0) {
            bytes_transferred += TARGET_PAGE_SIZE;
        }
        cpu_physical_memory_set_dirty_tracking(0);
    }

    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);

    expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;

    return (stage == 2) && (expected_time <= migrate_max_downtime());
}

static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
    ram_addr_t addr;
    int flags;

    if (version_id != 3)
        return -EINVAL;

    do {
        addr = qemu_get_be64(f);

        flags = addr & ~TARGET_PAGE_MASK;
        addr &= TARGET_PAGE_MASK;

        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
            if (addr != last_ram_offset)
                return -EINVAL;
        }

        if (flags & RAM_SAVE_FLAG_COMPRESS) {
            uint8_t ch = qemu_get_byte(f);
            memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
#ifndef _WIN32
            if (ch == 0 &&
                (!kvm_enabled() || kvm_has_sync_mmu())) {
                madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
            }
#endif
        } else if (flags & RAM_SAVE_FLAG_PAGE) {
            qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
        }
        if (qemu_file_has_error(f)) {
            return -EIO;
        }
    } while (!(flags & RAM_SAVE_FLAG_EOS));

    return 0;
}

void qemu_service_io(void)
{
    qemu_notify_event();
}

/***********************************************************/
/* machine registration */

static QEMUMachine *first_machine = NULL;
QEMUMachine *current_machine = NULL;

int qemu_register_machine(QEMUMachine *m)
{
    QEMUMachine **pm;
    pm = &first_machine;
    while (*pm != NULL)
        pm = &(*pm)->next;
    m->next = NULL;
    *pm = m;
    return 0;
}

static QEMUMachine *find_machine(const char *name)
{
    QEMUMachine *m;

    for(m = first_machine; m != NULL; m = m->next) {
        if (!strcmp(m->name, name))
            return m;
        if (m->alias && !strcmp(m->alias, name))
            return m;
    }
    return NULL;
}

static QEMUMachine *find_default_machine(void)
{
    QEMUMachine *m;

    for(m = first_machine; m != NULL; m = m->next) {
        if (m->is_default) {
            return m;
        }
    }
    return NULL;
}

/***********************************************************/
/* main execution loop */

static void gui_update(void *opaque)
{
    uint64_t interval = GUI_REFRESH_INTERVAL;
    DisplayState *ds = opaque;
    DisplayChangeListener *dcl = ds->listeners;

    dpy_refresh(ds);

    while (dcl != NULL) {
        if (dcl->gui_timer_interval &&
            dcl->gui_timer_interval < interval)
            interval = dcl->gui_timer_interval;
        dcl = dcl->next;
    }
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
}

static void nographic_update(void *opaque)
{
    uint64_t interval = GUI_REFRESH_INTERVAL;

    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
}

struct vm_change_state_entry {
    VMChangeStateHandler *cb;
    void *opaque;
    QLIST_ENTRY (vm_change_state_entry) entries;
};

static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;

VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
                                                     void *opaque)
{
    VMChangeStateEntry *e;

    e = qemu_mallocz(sizeof (*e));

    e->cb = cb;
    e->opaque = opaque;
    QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
    return e;
}

void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
{
    QLIST_REMOVE (e, entries);
    qemu_free (e);
}

static void vm_state_notify(int running, int reason)
{
    VMChangeStateEntry *e;

    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
        e->cb(e->opaque, running, reason);
    }
}

static void resume_all_vcpus(void);
static void pause_all_vcpus(void);

void vm_start(void)
{
    if (!vm_running) {
        cpu_enable_ticks();
        vm_running = 1;
        vm_state_notify(1, 0);
        qemu_rearm_alarm_timer(alarm_timer);
        resume_all_vcpus();
    }
}

/* reset/shutdown handler */

typedef struct QEMUResetEntry {
    QTAILQ_ENTRY(QEMUResetEntry) entry;
    QEMUResetHandler *func;
    void *opaque;
} QEMUResetEntry;

static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
    QTAILQ_HEAD_INITIALIZER(reset_handlers);
static int reset_requested;
static int shutdown_requested;
static int powerdown_requested;
static int debug_requested;
static int vmstop_requested;

int qemu_shutdown_requested(void)
{
    int r = shutdown_requested;
    shutdown_requested = 0;
    return r;
}

int qemu_reset_requested(void)
{
    int r = reset_requested;
    reset_requested = 0;
    return r;
}

int qemu_powerdown_requested(void)
{
    int r = powerdown_requested;
    powerdown_requested = 0;
    return r;
}

static int qemu_debug_requested(void)
{
    int r = debug_requested;
    debug_requested = 0;
    return r;
}

static int qemu_vmstop_requested(void)
{
    int r = vmstop_requested;
    vmstop_requested = 0;
    return r;
}

static void do_vm_stop(int reason)
{
    if (vm_running) {
        cpu_disable_ticks();
        vm_running = 0;
        pause_all_vcpus();
        vm_state_notify(0, reason);
    }
}

void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
    QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));

    re->func = func;
    re->opaque = opaque;
    QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
}

void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
{
    QEMUResetEntry *re;

    QTAILQ_FOREACH(re, &reset_handlers, entry) {
        if (re->func == func && re->opaque == opaque) {
            QTAILQ_REMOVE(&reset_handlers, re, entry);
            qemu_free(re);
            return;
        }
    }
}

void qemu_system_reset(void)
{
    QEMUResetEntry *re, *nre;

    /* reset all devices */
    QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
        re->func(re->opaque);
    }
}

void qemu_system_reset_request(void)
{
    if (no_reboot) {
        shutdown_requested = 1;
    } else {
        reset_requested = 1;
    }
    qemu_notify_event();
}

void qemu_system_shutdown_request(void)
{
    shutdown_requested = 1;
    qemu_notify_event();
}

void qemu_system_powerdown_request(void)
{
    powerdown_requested = 1;
    qemu_notify_event();
}

#ifdef CONFIG_IOTHREAD
static void qemu_system_vmstop_request(int reason)
{
    vmstop_requested = reason;
    qemu_notify_event();
}
#endif

#ifndef _WIN32
static int io_thread_fd = -1;

static void qemu_event_increment(void)
{
    static const char byte = 0;

    if (io_thread_fd == -1)
        return;

    write(io_thread_fd, &byte, sizeof(byte));
}

static void qemu_event_read(void *opaque)
{
    int fd = (unsigned long)opaque;
    ssize_t len;

    /* Drain the notify pipe */
    do {
        char buffer[512];
        len = read(fd, buffer, sizeof(buffer));
    } while ((len == -1 && errno == EINTR) || len > 0);
}

static int qemu_event_init(void)
{
    int err;
    int fds[2];

    err = qemu_pipe(fds);
    if (err == -1)
        return -errno;

    err = fcntl_setfl(fds[0], O_NONBLOCK);
    if (err < 0)
        goto fail;

    err = fcntl_setfl(fds[1], O_NONBLOCK);
    if (err < 0)
        goto fail;

    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
                         (void *)(unsigned long)fds[0]);

    io_thread_fd = fds[1];
    return 0;

fail:
    close(fds[0]);
    close(fds[1]);
    return err;
}
#else
HANDLE qemu_event_handle;

static void dummy_event_handler(void *opaque)
{
}

static int qemu_event_init(void)
{
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
    if (!qemu_event_handle) {
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
        return -1;
    }
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
    return 0;
}

static void qemu_event_increment(void)
{
    if (!SetEvent(qemu_event_handle)) {
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
                GetLastError());
        exit (1);
    }
}
#endif

static int cpu_can_run(CPUState *env)
{
    if (env->stop)
        return 0;
    if (env->stopped)
        return 0;
    return 1;
}

#ifndef CONFIG_IOTHREAD
static int qemu_init_main_loop(void)
{
    return qemu_event_init();
}

void qemu_init_vcpu(void *_env)
{
    CPUState *env = _env;

    env->nr_cores = smp_cores;
    env->nr_threads = smp_threads;
    if (kvm_enabled())
        kvm_init_vcpu(env);
    return;
}

int qemu_cpu_self(void *env)
{
    return 1;
}

static void resume_all_vcpus(void)
{
}

static void pause_all_vcpus(void)
{
}

void qemu_cpu_kick(void *env)
{
    return;
}

void qemu_notify_event(void)
{
    CPUState *env = cpu_single_env;

    if (env) {
        cpu_exit(env);
    }
}

void qemu_mutex_lock_iothread(void) {}
void qemu_mutex_unlock_iothread(void) {}

void vm_stop(int reason)
{
    do_vm_stop(reason);
}

#else /* CONFIG_IOTHREAD */

#include "qemu-thread.h"

QemuMutex qemu_global_mutex;
static QemuMutex qemu_fair_mutex;

static QemuThread io_thread;

static QemuThread *tcg_cpu_thread;
static QemuCond *tcg_halt_cond;

static int qemu_system_ready;
/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_system_cond;
static QemuCond qemu_pause_cond;

static void block_io_signals(void);
static void unblock_io_signals(void);
static int tcg_has_work(void);

static int qemu_init_main_loop(void)
{
    int ret;

    ret = qemu_event_init();
    if (ret)
        return ret;

    qemu_cond_init(&qemu_pause_cond);
    qemu_mutex_init(&qemu_fair_mutex);
    qemu_mutex_init(&qemu_global_mutex);
    qemu_mutex_lock(&qemu_global_mutex);

    unblock_io_signals();
    qemu_thread_self(&io_thread);

    return 0;
}

static void qemu_wait_io_event(CPUState *env)
{
    while (!tcg_has_work())
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);

    qemu_mutex_unlock(&qemu_global_mutex);

    /*
     * Users of qemu_global_mutex can be starved, having no chance
     * to acquire it since this path will get to it first.
     * So use another lock to provide fairness.
     */
    qemu_mutex_lock(&qemu_fair_mutex);
    qemu_mutex_unlock(&qemu_fair_mutex);

    qemu_mutex_lock(&qemu_global_mutex);
    if (env->stop) {
        env->stop = 0;
        env->stopped = 1;
        qemu_cond_signal(&qemu_pause_cond);
    }
}

static int qemu_cpu_exec(CPUState *env);

static void *kvm_cpu_thread_fn(void *arg)
{
    CPUState *env = arg;

    block_io_signals();
    qemu_thread_self(env->thread);
    if (kvm_enabled())
        kvm_init_vcpu(env);

    /* signal CPU creation */
    qemu_mutex_lock(&qemu_global_mutex);
    env->created = 1;
    qemu_cond_signal(&qemu_cpu_cond);

    /* and wait for machine initialization */
    while (!qemu_system_ready)
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);

    while (1) {
        if (cpu_can_run(env))
            qemu_cpu_exec(env);
        qemu_wait_io_event(env);
    }

    return NULL;
}

static void tcg_cpu_exec(void);

static void *tcg_cpu_thread_fn(void *arg)
{
    CPUState *env = arg;

    block_io_signals();
    qemu_thread_self(env->thread);

    /* signal CPU creation */
    qemu_mutex_lock(&qemu_global_mutex);
    for (env = first_cpu; env != NULL; env = env->next_cpu)
        env->created = 1;
    qemu_cond_signal(&qemu_cpu_cond);

    /* and wait for machine initialization */
    while (!qemu_system_ready)
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);

    while (1) {
        tcg_cpu_exec();
        qemu_wait_io_event(cur_cpu);
    }

    return NULL;
}

void qemu_cpu_kick(void *_env)
{
    CPUState *env = _env;
    qemu_cond_broadcast(env->halt_cond);
    if (kvm_enabled())
        qemu_thread_signal(env->thread, SIGUSR1);
}

int qemu_cpu_self(void *_env)
{
    CPUState *env = _env;
    QemuThread this;
 
    qemu_thread_self(&this);
 
    return qemu_thread_equal(&this, env->thread);
}

static void cpu_signal(int sig)
{
    if (cpu_single_env)
        cpu_exit(cpu_single_env);
}

static void block_io_signals(void)
{
    sigset_t set;
    struct sigaction sigact;

    sigemptyset(&set);
    sigaddset(&set, SIGUSR2);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGALRM);
    pthread_sigmask(SIG_BLOCK, &set, NULL);

    sigemptyset(&set);
    sigaddset(&set, SIGUSR1);
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);

    memset(&sigact, 0, sizeof(sigact));
    sigact.sa_handler = cpu_signal;
    sigaction(SIGUSR1, &sigact, NULL);
}

static void unblock_io_signals(void)
{
    sigset_t set;

    sigemptyset(&set);
    sigaddset(&set, SIGUSR2);
    sigaddset(&set, SIGIO);
    sigaddset(&set, SIGALRM);
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);

    sigemptyset(&set);
    sigaddset(&set, SIGUSR1);
    pthread_sigmask(SIG_BLOCK, &set, NULL);
}

static void qemu_signal_lock(unsigned int msecs)
{
    qemu_mutex_lock(&qemu_fair_mutex);

    while (qemu_mutex_trylock(&qemu_global_mutex)) {
        qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
        if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
            break;
    }
    qemu_mutex_unlock(&qemu_fair_mutex);
}

void qemu_mutex_lock_iothread(void)
{
    if (kvm_enabled()) {
        qemu_mutex_lock(&qemu_fair_mutex);
        qemu_mutex_lock(&qemu_global_mutex);
        qemu_mutex_unlock(&qemu_fair_mutex);
    } else
        qemu_signal_lock(100);
}

void qemu_mutex_unlock_iothread(void)
{
    qemu_mutex_unlock(&qemu_global_mutex);
}

static int all_vcpus_paused(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        if (!penv->stopped)
            return 0;
        penv = (CPUState *)penv->next_cpu;
    }

    return 1;
}

static void pause_all_vcpus(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        penv->stop = 1;
        qemu_thread_signal(penv->thread, SIGUSR1);
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }

    while (!all_vcpus_paused()) {
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
        penv = first_cpu;
        while (penv) {
            qemu_thread_signal(penv->thread, SIGUSR1);
            penv = (CPUState *)penv->next_cpu;
        }
    }
}

static void resume_all_vcpus(void)
{
    CPUState *penv = first_cpu;

    while (penv) {
        penv->stop = 0;
        penv->stopped = 0;
        qemu_thread_signal(penv->thread, SIGUSR1);
        qemu_cpu_kick(penv);
        penv = (CPUState *)penv->next_cpu;
    }
}

static void tcg_init_vcpu(void *_env)
{
    CPUState *env = _env;
    /* share a single thread for all cpus with TCG */
    if (!tcg_cpu_thread) {
        env->thread = qemu_mallocz(sizeof(QemuThread));
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
        qemu_cond_init(env->halt_cond);
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
        while (env->created == 0)
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
        tcg_cpu_thread = env->thread;
        tcg_halt_cond = env->halt_cond;
    } else {
        env->thread = tcg_cpu_thread;
        env->halt_cond = tcg_halt_cond;
    }
}

static void kvm_start_vcpu(CPUState *env)
{
    env->thread = qemu_mallocz(sizeof(QemuThread));
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
    qemu_cond_init(env->halt_cond);
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
    while (env->created == 0)
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
}

void qemu_init_vcpu(void *_env)
{
    CPUState *env = _env;

    env->nr_cores = smp_cores;
    env->nr_threads = smp_threads;
    if (kvm_enabled())
        kvm_start_vcpu(env);
    else
        tcg_init_vcpu(env);
}

void qemu_notify_event(void)
{
    qemu_event_increment();
}

void vm_stop(int reason)
{
    QemuThread me;
    qemu_thread_self(&me);

    if (!qemu_thread_equal(&me, &io_thread)) {
        qemu_system_vmstop_request(reason);
        /*
         * FIXME: should not return to device code in case
         * vm_stop() has been requested.
         */
        if (cpu_single_env) {
            cpu_exit(cpu_single_env);
            cpu_single_env->stop = 1;
        }
        return;
    }
    do_vm_stop(reason);
}

#endif


#ifdef _WIN32
static void host_main_loop_wait(int *timeout)
{
    int ret, ret2, i;
    PollingEntry *pe;


    /* XXX: need to suppress polling by better using win32 events */
    ret = 0;
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
        ret |= pe->func(pe->opaque);
    }
    if (ret == 0) {
        int err;
        WaitObjects *w = &wait_objects;

        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
            if (w->func[ret - WAIT_OBJECT_0])
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);

            /* Check for additional signaled events */
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {

                /* Check if event is signaled */
                ret2 = WaitForSingleObject(w->events[i], 0);
                if(ret2 == WAIT_OBJECT_0) {
                    if (w->func[i])
                        w->func[i](w->opaque[i]);
                } else if (ret2 == WAIT_TIMEOUT) {
                } else {
                    err = GetLastError();
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
                }
            }
        } else if (ret == WAIT_TIMEOUT) {
        } else {
            err = GetLastError();
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
        }
    }

    *timeout = 0;
}
#else
static void host_main_loop_wait(int *timeout)
{
}
#endif

void main_loop_wait(int timeout)
{
    IOHandlerRecord *ioh;
    fd_set rfds, wfds, xfds;
    int ret, nfds;
    struct timeval tv;

    qemu_bh_update_timeout(&timeout);

    host_main_loop_wait(&timeout);

    /* poll any events */
    /* XXX: separate device handlers from system ones */
    nfds = -1;
    FD_ZERO(&rfds);
    FD_ZERO(&wfds);
    FD_ZERO(&xfds);
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
        if (ioh->deleted)
            continue;
        if (ioh->fd_read &&
            (!ioh->fd_read_poll ||
             ioh->fd_read_poll(ioh->opaque) != 0)) {
            FD_SET(ioh->fd, &rfds);
            if (ioh->fd > nfds)
                nfds = ioh->fd;
        }
        if (ioh->fd_write) {
            FD_SET(ioh->fd, &wfds);
            if (ioh->fd > nfds)
                nfds = ioh->fd;
        }
    }

    tv.tv_sec = timeout / 1000;
    tv.tv_usec = (timeout % 1000) * 1000;

    slirp_select_fill(&nfds, &rfds, &wfds, &xfds);

    qemu_mutex_unlock_iothread();
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
    qemu_mutex_lock_iothread();
    if (ret > 0) {
        IOHandlerRecord **pioh;

        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
                ioh->fd_read(ioh->opaque);
            }
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
                ioh->fd_write(ioh->opaque);
            }
        }

	/* remove deleted IO handlers */
	pioh = &first_io_handler;
	while (*pioh) {
            ioh = *pioh;
            if (ioh->deleted) {
                *pioh = ioh->next;
                qemu_free(ioh);
            } else
                pioh = &ioh->next;
        }
    }

    slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));

    /* rearm timer, if not periodic */
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
        qemu_rearm_alarm_timer(alarm_timer);
    }

    /* vm time timers */
    if (vm_running) {
        if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
            qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
                            qemu_get_clock(vm_clock));
    }

    /* real time timers */
    qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
                    qemu_get_clock(rt_clock));

    qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
                    qemu_get_clock(host_clock));

    /* Check bottom-halves last in case any of the earlier events triggered
       them.  */
    qemu_bh_poll();

}

static int qemu_cpu_exec(CPUState *env)
{
    int ret;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    if (use_icount) {
        int64_t count;
        int decr;
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
        env->icount_decr.u16.low = 0;
        env->icount_extra = 0;
        count = qemu_next_deadline();
        count = (count + (1 << icount_time_shift) - 1)
                >> icount_time_shift;
        qemu_icount += count;
        decr = (count > 0xffff) ? 0xffff : count;
        count -= decr;
        env->icount_decr.u16.low = decr;
        env->icount_extra = count;
    }
    ret = cpu_exec(env);
#ifdef CONFIG_PROFILER
    qemu_time += profile_getclock() - ti;
#endif
    if (use_icount) {
        /* Fold pending instructions back into the
           instruction counter, and clear the interrupt flag.  */
        qemu_icount -= (env->icount_decr.u16.low
                        + env->icount_extra);
        env->icount_decr.u32 = 0;
        env->icount_extra = 0;
    }
    return ret;
}

static void tcg_cpu_exec(void)
{
    int ret = 0;

    if (next_cpu == NULL)
        next_cpu = first_cpu;
    for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
        CPUState *env = cur_cpu = next_cpu;

        if (!vm_running)
            break;
        if (timer_alarm_pending) {
            timer_alarm_pending = 0;
            break;
        }
        if (cpu_can_run(env))
            ret = qemu_cpu_exec(env);
        if (ret == EXCP_DEBUG) {
            gdb_set_stop_cpu(env);
            debug_requested = 1;
            break;
        }
    }
}

static int cpu_has_work(CPUState *env)
{
    if (env->stop)
        return 1;
    if (env->stopped)
        return 0;
    if (!env->halted)
        return 1;
    if (qemu_cpu_has_work(env))
        return 1;
    return 0;
}

static int tcg_has_work(void)
{
    CPUState *env;

    for (env = first_cpu; env != NULL; env = env->next_cpu)
        if (cpu_has_work(env))
            return 1;
    return 0;
}

static int qemu_calculate_timeout(void)
{
#ifndef CONFIG_IOTHREAD
    int timeout;

    if (!vm_running)
        timeout = 5000;
    else if (tcg_has_work())
        timeout = 0;
    else if (!use_icount)
        timeout = 5000;
    else {
     /* XXX: use timeout computed from timers */
        int64_t add;
        int64_t delta;
        /* Advance virtual time to the next event.  */
        if (use_icount == 1) {
            /* When not using an adaptive execution frequency
               we tend to get badly out of sync with real time,
               so just delay for a reasonable amount of time.  */
            delta = 0;
        } else {
            delta = cpu_get_icount() - cpu_get_clock();
        }
        if (delta > 0) {
            /* If virtual time is ahead of real time then just
               wait for IO.  */
            timeout = (delta / 1000000) + 1;
        } else {
            /* Wait for either IO to occur or the next
               timer event.  */
            add = qemu_next_deadline();
            /* We advance the timer before checking for IO.
               Limit the amount we advance so that early IO
               activity won't get the guest too far ahead.  */
            if (add > 10000000)
                add = 10000000;
            delta += add;
            add = (add + (1 << icount_time_shift) - 1)
                  >> icount_time_shift;
            qemu_icount += add;
            timeout = delta / 1000000;
            if (timeout < 0)
                timeout = 0;
        }
    }

    return timeout;
#else /* CONFIG_IOTHREAD */
    return 1000;
#endif