aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorZhengxun Li <zhengxunli@mxic.com.tw>2021-09-14 13:43:51 +0800
committerTom Rini <trini@konsulko.com>2021-10-12 16:48:38 -0400
commit0892a7e5fa5ce38f58e0e6636ae56c6f60c080e0 (patch)
treeca816ad8f45b89f554c3d59bd453b8df2b545344
parent5f9338ad56e6b1168905e73ecfcd5e1b7b1a32e2 (diff)
downloadu-boot-0892a7e5fa5ce38f58e0e6636ae56c6f60c080e0.zip
u-boot-0892a7e5fa5ce38f58e0e6636ae56c6f60c080e0.tar.gz
u-boot-0892a7e5fa5ce38f58e0e6636ae56c6f60c080e0.tar.bz2
mtd: rawnand: Add Macronix raw NAND controller driver
Add a driver for Macronix raw NAND controller. This patch referred from linux mxic_nand.c. The difference from the linux version is described here. 1. In order to adapt to the uboot nand framework, add function binding (cmdfunc, read_byte, read_buf, write_buf). 2. Added parsing command format to use hardware correctly. 3. Remove the incompatible functions of Uboot. Signed-off-by: Zhengxun Li <zhengxunli@mxic.com.tw>
-rw-r--r--drivers/mtd/nand/raw/Kconfig6
-rw-r--r--drivers/mtd/nand/raw/Makefile1
-rw-r--r--drivers/mtd/nand/raw/mxic_nand.c603
3 files changed, 610 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 790ee34..332f9d7 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -398,6 +398,12 @@ config NAND_MXS_USE_MINIMUM_ECC
endif
+config NAND_MXIC
+ bool "Macronix raw NAND controller"
+ select SYS_NAND_SELF_INIT
+ help
+ This selects the Macronix raw NAND controller driver.
+
config NAND_ZYNQ
bool "Support for Zynq Nand controller"
select SYS_NAND_SELF_INIT
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index a5ed2c5..6ec3581 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -67,6 +67,7 @@ obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o
obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o
obj-$(CONFIG_NAND_PLAT) += nand_plat.o
obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o
+obj-$(CONFIG_NAND_MXIC) += mxic_nand.o
obj-$(CONFIG_NAND_ZYNQ) += zynq_nand.o
obj-$(CONFIG_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_CORTINA_NAND) += cortina_nand.o
diff --git a/drivers/mtd/nand/raw/mxic_nand.c b/drivers/mtd/nand/raw/mxic_nand.c
new file mode 100644
index 0000000..e54df46
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxic_nand.c
@@ -0,0 +1,603 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2021 Macronix International Co., Ltd.
+ *
+ * Author:
+ * Zhengxun Li <zhengxunli@mxic.com.tw>
+ */
+
+#include <common.h>
+#include <clk.h>
+#include <dm.h>
+#include <malloc.h>
+#include <nand.h>
+#include <asm/io.h>
+#include <asm/arch/hardware.h>
+#include <dm/device_compat.h>
+#include <linux/bug.h>
+#include <linux/errno.h>
+#include <linux/iopoll.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/delay.h>
+
+#define HC_CFG 0x0
+#define HC_CFG_IF_CFG(x) ((x) << 27)
+#define HC_CFG_DUAL_SLAVE BIT(31)
+#define HC_CFG_INDIVIDUAL BIT(30)
+#define HC_CFG_NIO(x) (((x) / 4) << 27)
+#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
+#define HC_CFG_TYPE_SPI_NOR 0
+#define HC_CFG_TYPE_SPI_NAND 1
+#define HC_CFG_TYPE_SPI_RAM 2
+#define HC_CFG_TYPE_RAW_NAND 3
+#define HC_CFG_SLV_ACT(x) ((x) << 21)
+#define HC_CFG_CLK_PH_EN BIT(20)
+#define HC_CFG_CLK_POL_INV BIT(19)
+#define HC_CFG_BIG_ENDIAN BIT(18)
+#define HC_CFG_DATA_PASS BIT(17)
+#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
+#define HC_CFG_MAN_START_EN BIT(3)
+#define HC_CFG_MAN_START BIT(2)
+#define HC_CFG_MAN_CS_EN BIT(1)
+#define HC_CFG_MAN_CS_ASSERT BIT(0)
+
+#define INT_STS 0x4
+#define INT_STS_EN 0x8
+#define INT_SIG_EN 0xc
+#define INT_STS_ALL GENMASK(31, 0)
+#define INT_RDY_PIN BIT(26)
+#define INT_RDY_SR BIT(25)
+#define INT_LNR_SUSP BIT(24)
+#define INT_ECC_ERR BIT(17)
+#define INT_CRC_ERR BIT(16)
+#define INT_LWR_DIS BIT(12)
+#define INT_LRD_DIS BIT(11)
+#define INT_SDMA_INT BIT(10)
+#define INT_DMA_FINISH BIT(9)
+#define INT_RX_NOT_FULL BIT(3)
+#define INT_RX_NOT_EMPTY BIT(2)
+#define INT_TX_NOT_FULL BIT(1)
+#define INT_TX_EMPTY BIT(0)
+
+#define HC_EN 0x10
+#define HC_EN_BIT BIT(0)
+
+#define TXD(x) (0x14 + ((x) * 4))
+#define RXD 0x24
+
+#define SS_CTRL(s) (0x30 + ((s) * 4))
+#define LRD_CFG 0x44
+#define LWR_CFG 0x80
+#define RWW_CFG 0x70
+#define OP_READ BIT(23)
+#define OP_DUMMY_CYC(x) ((x) << 17)
+#define OP_ADDR_BYTES(x) ((x) << 14)
+#define OP_CMD_BYTES(x) (((x) - 1) << 13)
+#define OP_OCTA_CRC_EN BIT(12)
+#define OP_DQS_EN BIT(11)
+#define OP_ENHC_EN BIT(10)
+#define OP_PREAMBLE_EN BIT(9)
+#define OP_DATA_DDR BIT(8)
+#define OP_DATA_BUSW(x) ((x) << 6)
+#define OP_ADDR_DDR BIT(5)
+#define OP_ADDR_BUSW(x) ((x) << 3)
+#define OP_CMD_DDR BIT(2)
+#define OP_CMD_BUSW(x) (x)
+#define OP_BUSW_1 0
+#define OP_BUSW_2 1
+#define OP_BUSW_4 2
+#define OP_BUSW_8 3
+
+#define OCTA_CRC 0x38
+#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
+#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
+#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
+
+#define ONFI_DIN_CNT(s) (0x3c + (s))
+
+#define LRD_CTRL 0x48
+#define RWW_CTRL 0x74
+#define LWR_CTRL 0x84
+#define LMODE_EN BIT(31)
+#define LMODE_SLV_ACT(x) ((x) << 21)
+#define LMODE_CMD1(x) ((x) << 8)
+#define LMODE_CMD0(x) (x)
+
+#define LRD_ADDR 0x4c
+#define LWR_ADDR 0x88
+#define LRD_RANGE 0x50
+#define LWR_RANGE 0x8c
+
+#define AXI_SLV_ADDR 0x54
+
+#define DMAC_RD_CFG 0x58
+#define DMAC_WR_CFG 0x94
+#define DMAC_CFG_PERIPH_EN BIT(31)
+#define DMAC_CFG_ALLFLUSH_EN BIT(30)
+#define DMAC_CFG_LASTFLUSH_EN BIT(29)
+#define DMAC_CFG_QE(x) (((x) + 1) << 16)
+#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
+#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
+#define DMAC_CFG_DIR_READ BIT(1)
+#define DMAC_CFG_START BIT(0)
+
+#define DMAC_RD_CNT 0x5c
+#define DMAC_WR_CNT 0x98
+
+#define SDMA_ADDR 0x60
+
+#define DMAM_CFG 0x64
+#define DMAM_CFG_START BIT(31)
+#define DMAM_CFG_CONT BIT(30)
+#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
+#define DMAM_CFG_DIR_READ BIT(1)
+#define DMAM_CFG_EN BIT(0)
+
+#define DMAM_CNT 0x68
+
+#define LNR_TIMER_TH 0x6c
+
+#define RDM_CFG0 0x78
+#define RDM_CFG0_POLY(x) (x)
+
+#define RDM_CFG1 0x7c
+#define RDM_CFG1_RDM_EN BIT(31)
+#define RDM_CFG1_SEED(x) (x)
+
+#define LWR_SUSP_CTRL 0x90
+#define LWR_SUSP_CTRL_EN BIT(31)
+
+#define DMAS_CTRL 0x9c
+#define DMAS_CTRL_EN BIT(31)
+#define DMAS_CTRL_DIR_READ BIT(30)
+
+#define DATA_STROB 0xa0
+#define DATA_STROB_EDO_EN BIT(2)
+#define DATA_STROB_INV_POL BIT(1)
+#define DATA_STROB_DELAY_2CYC BIT(0)
+
+#define IDLY_CODE(x) (0xa4 + ((x) * 4))
+#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
+
+#define GPIO 0xc4
+#define GPIO_PT(x) BIT(3 + ((x) * 16))
+#define GPIO_RESET(x) BIT(2 + ((x) * 16))
+#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
+#define GPIO_WPB(x) BIT((x) * 16)
+
+#define HC_VER 0xd0
+
+#define HW_TEST(x) (0xe0 + ((x) * 4))
+
+#define MXIC_NFC_MAX_CLK_HZ 50000000
+#define IRQ_TIMEOUT 1000
+
+struct mxic_nand_ctrl {
+ struct clk *send_clk;
+ struct clk *send_dly_clk;
+ void __iomem *regs;
+ struct nand_chip nand_chip;
+};
+
+/*
+ * struct mxic_nfc_command_format - Defines NAND flash command format
+ * @start_cmd: First cycle command (Start command)
+ * @end_cmd: Second cycle command (Last command)
+ * @addr_len: Number of address cycles required to send the address
+ * @read: Direction of command
+ */
+
+struct mxic_nfc_command_format {
+ int start_cmd;
+ int end_cmd;
+ u8 addr_len;
+ bool read;
+};
+
+/* The NAND flash operations command format */
+static const struct mxic_nfc_command_format mxic_nand_commands[] = {
+ {NAND_CMD_READ0, NAND_CMD_READSTART, 5, 1 },
+ {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, 1 },
+ {NAND_CMD_READID, NAND_CMD_NONE, 1, 1 },
+ {NAND_CMD_STATUS, NAND_CMD_NONE, 0, 1 },
+ {NAND_CMD_SEQIN, NAND_CMD_NONE, 5, 0 },
+ {NAND_CMD_PAGEPROG, NAND_CMD_NONE, 0, 0 },
+ {NAND_CMD_CACHEDPROG, NAND_CMD_NONE, 0, 0 },
+ {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0 },
+ {NAND_CMD_ERASE1, NAND_CMD_NONE, 3, 0 },
+ {NAND_CMD_ERASE2, NAND_CMD_NONE, 0, 0 },
+ {NAND_CMD_RESET, NAND_CMD_NONE, 0, 0 },
+ {NAND_CMD_PARAM, NAND_CMD_NONE, 1, 1 },
+ {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 1 },
+ {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0 },
+ {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0 },
+};
+
+static int mxic_nfc_clk_enable(struct mxic_nand_ctrl *nfc)
+{
+ int ret;
+
+ ret = clk_prepare_enable(nfc->send_clk);
+ if (ret)
+ return ret;
+
+ ret = clk_prepare_enable(nfc->send_dly_clk);
+ if (ret)
+ goto err_send_dly_clk;
+
+ return ret;
+
+err_send_dly_clk:
+ clk_disable_unprepare(nfc->send_clk);
+
+ return ret;
+}
+
+static void mxic_nfc_clk_disable(struct mxic_nand_ctrl *nfc)
+{
+ clk_disable_unprepare(nfc->send_clk);
+ clk_disable_unprepare(nfc->send_dly_clk);
+}
+
+static void mxic_nfc_set_input_delay(struct mxic_nand_ctrl *nfc, u8 idly_code)
+{
+ writel(IDLY_CODE_VAL(0, idly_code) |
+ IDLY_CODE_VAL(1, idly_code) |
+ IDLY_CODE_VAL(2, idly_code) |
+ IDLY_CODE_VAL(3, idly_code),
+ nfc->regs + IDLY_CODE(0));
+ writel(IDLY_CODE_VAL(4, idly_code) |
+ IDLY_CODE_VAL(5, idly_code) |
+ IDLY_CODE_VAL(6, idly_code) |
+ IDLY_CODE_VAL(7, idly_code),
+ nfc->regs + IDLY_CODE(1));
+}
+
+static int mxic_nfc_clk_setup(struct mxic_nand_ctrl *nfc, unsigned long freq)
+{
+ int ret;
+
+ ret = clk_set_rate(nfc->send_clk, freq);
+ if (ret)
+ return ret;
+
+ ret = clk_set_rate(nfc->send_dly_clk, freq);
+ if (ret)
+ return ret;
+
+ /*
+ * A constant delay range from 0x0 ~ 0x1F for input delay,
+ * the unit is 78 ps, the max input delay is 2.418 ns.
+ */
+ mxic_nfc_set_input_delay(nfc, 0xf);
+
+ return 0;
+}
+
+static int mxic_nfc_set_freq(struct mxic_nand_ctrl *nfc, unsigned long freq)
+{
+ int ret;
+
+ if (freq > MXIC_NFC_MAX_CLK_HZ)
+ freq = MXIC_NFC_MAX_CLK_HZ;
+
+ mxic_nfc_clk_disable(nfc);
+ ret = mxic_nfc_clk_setup(nfc, freq);
+ if (ret)
+ return ret;
+
+ ret = mxic_nfc_clk_enable(nfc);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static void mxic_nfc_hw_init(struct mxic_nand_ctrl *nfc)
+{
+ writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
+ HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
+ HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
+ writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
+ writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
+ writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
+ writel(0, nfc->regs + LRD_CFG);
+ writel(0, nfc->regs + LRD_CTRL);
+ writel(0x0, nfc->regs + HC_EN);
+}
+
+static void mxic_nfc_cs_enable(struct mxic_nand_ctrl *nfc)
+{
+ writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
+ nfc->regs + HC_CFG);
+ writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
+ nfc->regs + HC_CFG);
+}
+
+static void mxic_nfc_cs_disable(struct mxic_nand_ctrl *nfc)
+{
+ writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
+ nfc->regs + HC_CFG);
+}
+
+static int mxic_nfc_data_xfer(struct mxic_nand_ctrl *nfc, const void *txbuf,
+ void *rxbuf, unsigned int len)
+{
+ unsigned int pos = 0;
+
+ while (pos < len) {
+ unsigned int nbytes = len - pos;
+ u32 data = 0xffffffff;
+ u32 sts;
+ int ret;
+
+ if (nbytes > 4)
+ nbytes = 4;
+
+ if (txbuf)
+ memcpy(&data, txbuf + pos, nbytes);
+
+ ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+ sts & INT_TX_EMPTY, 1000000);
+ if (ret)
+ return ret;
+
+ writel(data, nfc->regs + TXD(nbytes % 4));
+
+ ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+ sts & INT_TX_EMPTY, 1000000);
+ if (ret)
+ return ret;
+
+ ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+ sts & INT_RX_NOT_EMPTY, 1000000);
+ if (ret)
+ return ret;
+
+ data = readl(nfc->regs + RXD);
+ if (rxbuf) {
+ data >>= (8 * (4 - nbytes));
+ memcpy(rxbuf + pos, &data, nbytes);
+ }
+
+ WARN_ON(readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY);
+
+ pos += nbytes;
+ }
+
+ return 0;
+}
+
+static uint8_t mxic_nfc_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
+ u8 data;
+
+ writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
+ writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+ OP_READ, nfc->regs + SS_CTRL(0));
+
+ mxic_nfc_data_xfer(nfc, NULL, &data, 1);
+
+ return data;
+}
+
+static void mxic_nfc_read_buf(struct mtd_info *mtd, uint8_t *rxbuf, int rlen)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
+
+ writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
+ writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+ OP_READ, nfc->regs + SS_CTRL(0));
+
+ mxic_nfc_data_xfer(nfc, NULL, rxbuf, rlen);
+}
+
+static void mxic_nfc_write_buf(struct mtd_info *mtd, const uint8_t *txbuf,
+ int wlen)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
+
+ writel(wlen, nfc->regs + ONFI_DIN_CNT(0));
+ writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
+ nfc->regs + SS_CTRL(0));
+
+ mxic_nfc_data_xfer(nfc, txbuf, NULL, wlen);
+}
+
+static void mxic_nfc_cmd_function(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
+ const struct mxic_nfc_command_format *cmd = NULL;
+ u32 sts;
+ u8 index, addr[5];
+
+ /* Emulate NAND_CMD_READOOB */
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->writesize;
+ command = NAND_CMD_READ0;
+ }
+
+ /* Get the command format */
+ for (index = 0; index < ARRAY_SIZE(mxic_nand_commands); index++)
+ if (command == mxic_nand_commands[index].start_cmd)
+ break;
+
+ cmd = &mxic_nand_commands[index];
+
+ if (!(command == NAND_CMD_PAGEPROG ||
+ command == NAND_CMD_CACHEDPROG ||
+ command == NAND_CMD_ERASE2))
+ mxic_nfc_cs_disable(nfc);
+
+ mxic_nfc_cs_enable(nfc);
+
+ if (column != -1) {
+ addr[0] = column;
+ addr[1] = column >> 8;
+
+ if (page_addr != -1) {
+ addr[2] = page_addr;
+ addr[3] = page_addr >> 8;
+ addr[4] = page_addr >> 16;
+ }
+ } else if (page_addr != -1) {
+ addr[0] = page_addr;
+ addr[1] = page_addr >> 8;
+ addr[2] = page_addr >> 16;
+ }
+
+ writel(0, nfc->regs + HC_EN);
+ writel(HC_EN_BIT, nfc->regs + HC_EN);
+ writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | OP_CMD_BYTES(0),
+ nfc->regs + SS_CTRL(0));
+
+ mxic_nfc_data_xfer(nfc, &cmd->start_cmd, NULL, 1);
+
+ if (cmd->addr_len) {
+ writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+ OP_ADDR_BYTES(cmd->addr_len), nfc->regs + SS_CTRL(0));
+
+ mxic_nfc_data_xfer(nfc, &addr, NULL, cmd->addr_len);
+ }
+
+ if (cmd->end_cmd != NAND_CMD_NONE) {
+ writel(0, nfc->regs + HC_EN);
+ writel(HC_EN_BIT, nfc->regs + HC_EN);
+ writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+ OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
+
+ mxic_nfc_data_xfer(nfc, &cmd->end_cmd, NULL, 1);
+ }
+
+ readl_poll_timeout(nfc->regs + INT_STS, sts, sts & INT_RDY_PIN,
+ 1000000);
+
+ if (command == NAND_CMD_PAGEPROG ||
+ command == NAND_CMD_CACHEDPROG ||
+ command == NAND_CMD_ERASE2 ||
+ command == NAND_CMD_RESET) {
+ mxic_nfc_cs_disable(nfc);
+ }
+}
+
+static int mxic_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *sdr;
+ unsigned long freq;
+ int ret;
+
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ freq = 1000000000 / (sdr->tRC_min / 1000);
+
+ ret = mxic_nfc_set_freq(nfc, freq);
+ if (ret)
+ WARN_ON("Set freq failed\n");
+
+ if (sdr->tRC_min < 30000)
+ writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
+
+ return 0;
+}
+
+/* Dummy implementation: we don't support multiple chips */
+static void mxic_nfc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ switch (chipnr) {
+ case -1:
+ case 0:
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+static int mxic_nfc_probe(struct udevice *dev)
+{
+ struct mxic_nand_ctrl *nfc = dev_get_priv(dev);
+ struct nand_chip *nand_chip = &nfc->nand_chip;
+ struct mtd_info *mtd;
+ ofnode child;
+ int err;
+
+ nfc->regs = (void *)dev_read_addr(dev);
+
+ nfc->send_clk = devm_clk_get(dev, "send");
+ if (IS_ERR(nfc->send_clk))
+ return PTR_ERR(nfc->send_clk);
+
+ nfc->send_dly_clk = devm_clk_get(dev, "send_dly");
+ if (IS_ERR(nfc->send_dly_clk))
+ return PTR_ERR(nfc->send_dly_clk);
+
+ mtd = nand_to_mtd(nand_chip);
+
+ ofnode_for_each_subnode(child, dev_ofnode(dev))
+ nand_set_flash_node(nand_chip, child);
+
+ nand_set_controller_data(nand_chip, nfc);
+
+ nand_chip->select_chip = mxic_nfc_select_chip;
+ nand_chip->setup_data_interface = mxic_nfc_setup_data_interface;
+ nand_chip->cmdfunc = mxic_nfc_cmd_function;
+ nand_chip->read_byte = mxic_nfc_read_byte;
+ nand_chip->read_buf = mxic_nfc_read_buf;
+ nand_chip->write_buf = mxic_nfc_write_buf;
+
+ mxic_nfc_hw_init(nfc);
+
+ err = nand_scan(mtd, 1);
+ if (err)
+ return err;
+
+ err = nand_register(0, mtd);
+ if (err) {
+ dev_err(dev, "Failed to register MTD: %d\n", err);
+ return err;
+ }
+
+ return 0;
+}
+
+static const struct udevice_id mxic_nfc_of_ids[] = {
+ { .compatible = "mxic,multi-itfc-v009-nand-controller" },
+ { /* Sentinel */ }
+};
+
+U_BOOT_DRIVER(mxic_nfc) = {
+ .name = "mxic_nfc",
+ .id = UCLASS_MTD,
+ .of_match = mxic_nfc_of_ids,
+ .probe = mxic_nfc_probe,
+ .priv_auto = sizeof(struct mxic_nand_ctrl),
+};
+
+void board_nand_init(void)
+{
+ struct udevice *dev;
+ int ret;
+
+ ret = uclass_get_device_by_driver(UCLASS_MTD,
+ DM_DRIVER_GET(mxic_nfc), &dev);
+ if (ret && ret != -ENODEV)
+ pr_err("Failed to initialize %s. (error %d)\n", dev->name,
+ ret);
+}