aboutsummaryrefslogtreecommitdiff
path: root/enc/hash_longest_match_inc.h
blob: 3c2fbbd2abaf34744c136374bcd6ecaaa6a0fbc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* NOLINT(build/header_guard) */
/* Copyright 2010 Google Inc. All Rights Reserved.

   Distributed under MIT license.
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/

/* template parameters: FN, BUCKET_BITS, BLOCK_BITS,
                        NUM_LAST_DISTANCES_TO_CHECK */

/* A (forgetful) hash table to the data seen by the compressor, to
   help create backward references to previous data.

   This is a hash map of fixed size (BUCKET_SIZE) to a ring buffer of
   fixed size (BLOCK_SIZE). The ring buffer contains the last BLOCK_SIZE
   index positions of the given hash key in the compressed data. */

#define HashLongestMatch HASHER()

/* Number of hash buckets. */
#define BUCKET_SIZE (1 << BUCKET_BITS)

/* Only BLOCK_SIZE newest backward references are kept,
   and the older are forgotten. */
#define BLOCK_SIZE (1u << BLOCK_BITS)

/* Mask for accessing entries in a block (in a ringbuffer manner). */
#define BLOCK_MASK ((1 << BLOCK_BITS) - 1)

#define HASH_MAP_SIZE (2 << BUCKET_BITS)

static BROTLI_INLINE size_t FN(HashTypeLength)(void) { return 4; }
static BROTLI_INLINE size_t FN(StoreLookahead)(void) { return 4; }

/* HashBytes is the function that chooses the bucket to place
   the address in. The HashLongestMatch and HashLongestMatchQuickly
   classes have separate, different implementations of hashing. */
static uint32_t FN(HashBytes)(const uint8_t *data) {
  uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32;
  /* The higher bits contain more mixture from the multiplication,
     so we take our results from there. */
  return h >> (32 - BUCKET_BITS);
}

typedef struct HashLongestMatch {
  /* Number of entries in a particular bucket. */
  uint16_t num_[BUCKET_SIZE];

  /* Buckets containing BLOCK_SIZE of backward references. */
  uint32_t buckets_[BLOCK_SIZE << BUCKET_BITS];

  /* True if num_ array needs to be initialized. */
  int is_dirty_;

  size_t num_dict_lookups_;
  size_t num_dict_matches_;
} HashLongestMatch;

static void FN(Reset)(HashLongestMatch* self) {
  self->is_dirty_ = 1;
  self->num_dict_lookups_ = 0;
  self->num_dict_matches_ = 0;
}

static void FN(InitEmpty)(HashLongestMatch* self) {
  if (self->is_dirty_) {
    memset(self->num_, 0, sizeof(self->num_));
    self->is_dirty_ = 0;
  }
}

static void FN(InitForData)(HashLongestMatch* self, const uint8_t* data,
    size_t num) {
  size_t i;
  for (i = 0; i < num; ++i) {
    const uint32_t key = FN(HashBytes)(&data[i]);
    self->num_[key] = 0;
  }
  if (num != 0) {
    self->is_dirty_ = 0;
  }
}

static void FN(Init)(
    MemoryManager* m, HashLongestMatch* self, const uint8_t* data, int lgwin,
    size_t position, size_t bytes, int is_last) {
  /* Choose which init method is faster.
     Init() is about 100 times faster than InitForData(). */
  const size_t kMaxBytesForPartialHashInit = HASH_MAP_SIZE >> 7;
  BROTLI_UNUSED(m);
  BROTLI_UNUSED(lgwin);
  if (position == 0 && is_last && bytes <= kMaxBytesForPartialHashInit) {
    FN(InitForData)(self, data, bytes);
  } else {
    FN(InitEmpty)(self);
  }
}

/* Look at 4 bytes at &data[ix & mask].
   Compute a hash from these, and store the value of ix at that position. */
static BROTLI_INLINE void FN(Store)(HashLongestMatch* self, const uint8_t *data,
    const size_t mask, const size_t ix) {
  const uint32_t key = FN(HashBytes)(&data[ix & mask]);
  const size_t minor_ix = self->num_[key] & BLOCK_MASK;
  self->buckets_[minor_ix + (key << BLOCK_BITS)] = (uint32_t)ix;
  ++self->num_[key];
}

static BROTLI_INLINE void FN(StoreRange)(HashLongestMatch* self,
    const uint8_t *data, const size_t mask, const size_t ix_start,
    const size_t ix_end) {
  size_t i;
  for (i = ix_start; i < ix_end; ++i) {
    FN(Store)(self, data, mask, i);
  }
}

static BROTLI_INLINE void FN(StitchToPreviousBlock)(HashLongestMatch* self,
    size_t num_bytes, size_t position, const uint8_t* ringbuffer,
    size_t ringbuffer_mask) {
  if (num_bytes >= FN(HashTypeLength)() - 1 && position >= 3) {
    /* Prepare the hashes for three last bytes of the last write.
       These could not be calculated before, since they require knowledge
       of both the previous and the current block. */
    FN(Store)(self, ringbuffer, ringbuffer_mask, position - 3);
    FN(Store)(self, ringbuffer, ringbuffer_mask, position - 2);
    FN(Store)(self, ringbuffer, ringbuffer_mask, position - 1);
  }
}

/* Find a longest backward match of &data[cur_ix] up to the length of
   max_length and stores the position cur_ix in the hash table.

   Does not look for matches longer than max_length.
   Does not look for matches further away than max_backward.
   Writes the best found match length into best_len_out.
   Writes the index (&data[index]) offset from the start of the best match
   into best_distance_out.
   Write the score of the best match into best_score_out.
   Returns 1 when match is found, otherwise 0. */
static BROTLI_INLINE int FN(FindLongestMatch)(HashLongestMatch* self,
    const uint8_t* BROTLI_RESTRICT data, const size_t ring_buffer_mask,
    const int* BROTLI_RESTRICT distance_cache, const size_t cur_ix,
    const size_t max_length, const size_t max_backward,
    size_t* BROTLI_RESTRICT best_len_out,
    size_t* BROTLI_RESTRICT best_len_code_out,
    size_t* BROTLI_RESTRICT best_distance_out,
    double* BROTLI_RESTRICT best_score_out) {
  const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
  int is_match_found = 0;
  /* Don't accept a short copy from far away. */
  double best_score = *best_score_out;
  size_t best_len = *best_len_out;
  size_t i;
  *best_len_code_out = 0;
  *best_len_out = 0;
  /* Try last distance first. */
  for (i = 0; i < NUM_LAST_DISTANCES_TO_CHECK; ++i) {
    const size_t idx = kDistanceCacheIndex[i];
    const size_t backward =
        (size_t)(distance_cache[idx] + kDistanceCacheOffset[i]);
    size_t prev_ix = (size_t)(cur_ix - backward);
    if (prev_ix >= cur_ix) {
      continue;
    }
    if (PREDICT_FALSE(backward > max_backward)) {
      continue;
    }
    prev_ix &= ring_buffer_mask;

    if (cur_ix_masked + best_len > ring_buffer_mask ||
        prev_ix + best_len > ring_buffer_mask ||
        data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
      continue;
    }
    {
      const size_t len = FindMatchLengthWithLimit(&data[prev_ix],
                                                  &data[cur_ix_masked],
                                                  max_length);
      if (len >= 3 || (len == 2 && i < 2)) {
        /* Comparing for >= 2 does not change the semantics, but just saves for
           a few unnecessary binary logarithms in backward reference score,
           since we are not interested in such short matches. */
        double score = BackwardReferenceScoreUsingLastDistance(len, i);
        if (best_score < score) {
          best_score = score;
          best_len = len;
          *best_len_out = best_len;
          *best_len_code_out = best_len;
          *best_distance_out = backward;
          *best_score_out = best_score;
          is_match_found = 1;
        }
      }
    }
  }
  {
    const uint32_t key = FN(HashBytes)(&data[cur_ix_masked]);
    const uint32_t * BROTLI_RESTRICT const bucket =
        &self->buckets_[key << BLOCK_BITS];
    const size_t down =
        (self->num_[key] > BLOCK_SIZE) ? (self->num_[key] - BLOCK_SIZE) : 0u;
    for (i = self->num_[key]; i > down;) {
      size_t prev_ix = bucket[--i & BLOCK_MASK];
      const size_t backward = cur_ix - prev_ix;
      if (PREDICT_FALSE(backward == 0 || backward > max_backward)) {
        break;
      }
      prev_ix &= ring_buffer_mask;
      if (cur_ix_masked + best_len > ring_buffer_mask ||
          prev_ix + best_len > ring_buffer_mask ||
          data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
        continue;
      }
      {
        const size_t len = FindMatchLengthWithLimit(&data[prev_ix],
                                                    &data[cur_ix_masked],
                                                    max_length);
        if (len >= 4) {
          /* Comparing for >= 3 does not change the semantics, but just saves
             for a few unnecessary binary logarithms in backward reference
             score, since we are not interested in such short matches. */
          double score = BackwardReferenceScore(len, backward);
          if (best_score < score) {
            best_score = score;
            best_len = len;
            *best_len_out = best_len;
            *best_len_code_out = best_len;
            *best_distance_out = backward;
            *best_score_out = best_score;
            is_match_found = 1;
          }
        }
      }
    }
    self->buckets_[(key << BLOCK_BITS) + (self->num_[key] & BLOCK_MASK)] =
        (uint32_t)cur_ix;
    ++self->num_[key];
  }
  if (!is_match_found &&
      self->num_dict_matches_ >= (self->num_dict_lookups_ >> 7)) {
    size_t dict_key = Hash14(&data[cur_ix_masked]) << 1;
    int k;
    for (k = 0; k < 2; ++k, ++dict_key) {
      const uint16_t v = kStaticDictionaryHash[dict_key];
      ++self->num_dict_lookups_;
      if (v > 0) {
        const size_t len = v & 31;
        const size_t dist = v >> 5;
        const size_t offset =
            kBrotliDictionaryOffsetsByLength[len] + len * dist;
        if (len <= max_length) {
          const size_t matchlen =
              FindMatchLengthWithLimit(&data[cur_ix_masked],
                                       &kBrotliDictionary[offset], len);
          if (matchlen + kCutoffTransformsCount > len && matchlen > 0) {
            const size_t transform_id = kCutoffTransforms[len - matchlen];
            const size_t word_id = dist +
                transform_id * (1u << kBrotliDictionarySizeBitsByLength[len]);
            const size_t backward = max_backward + word_id + 1;
            double score = BackwardReferenceScore(matchlen, backward);
            if (best_score < score) {
              ++self->num_dict_matches_;
              best_score = score;
              best_len = matchlen;
              *best_len_out = best_len;
              *best_len_code_out = len;
              *best_distance_out = backward;
              *best_score_out = best_score;
              is_match_found = 1;
            }
          }
        }
      }
    }
  }
  return is_match_found;
}

#undef HASH_MAP_SIZE
#undef BLOCK_MASK
#undef BLOCK_SIZE
#undef BUCKET_SIZE

#undef HashLongestMatch