aboutsummaryrefslogtreecommitdiff
path: root/src/util/db2/btree/bt_seq.c
blob: c16d4a28f5f80b22baccbff35bb90286a485cbc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/*
 * Copyright (C) 2002 by the Massachusetts Institute of Technology.
 * All rights reserved.
 *
 * Export of this software from the United States of America may
 *   require a specific license from the United States Government.
 *   It is the responsibility of any person or organization contemplating
 *   export to obtain such a license before exporting.
 * 
 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 * distribute this software and its documentation for any purpose and
 * without fee is hereby granted, provided that the above copyright
 * notice appear in all copies and that both that copyright notice and
 * this permission notice appear in supporting documentation, and that
 * the name of M.I.T. not be used in advertising or publicity pertaining
 * to distribution of the software without specific, written prior
 * permission.  Furthermore if you modify this software you must label
 * your software as modified software and not distribute it in such a
 * fashion that it might be confused with the original M.I.T. software.
 * M.I.T. makes no representations about the suitability of
 * this software for any purpose.  It is provided "as is" without express
 * or implied warranty.
 */

/*-
 * Copyright (c) 1990, 1993, 1994
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Mike Olson.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#if defined(LIBC_SCCS) && !defined(lint)
static char sccsid[] = "@(#)bt_seq.c	8.9 (Berkeley) 6/20/95";
#endif /* LIBC_SCCS and not lint */

#include <sys/types.h>

#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#include "db-int.h"
#include "btree.h"

static int __bt_first __P((BTREE *, const DBT *, EPG *, int *));
static int __bt_seqadv __P((BTREE *, EPG *, int));
static int __bt_seqset __P((BTREE *, EPG *, DBT *, int));

/*
 * Sequential scan support.
 *
 * The tree can be scanned sequentially, starting from either end of the
 * tree or from any specific key.  A scan request before any scanning is
 * done is initialized as starting from the least node.
 */

/*
 * __bt_seq --
 *	Btree sequential scan interface.
 *
 * Parameters:
 *	dbp:	pointer to access method
 *	key:	key for positioning and return value
 *	data:	data return value
 *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
 */
int
__bt_seq(dbp, key, data, flags)
	const DB *dbp;
	DBT *key, *data;
	u_int flags;
{
	BTREE *t;
	EPG e;
	int status;

	t = dbp->internal;

	/* Toss any page pinned across calls. */
	if (t->bt_pinned != NULL) {
		mpool_put(t->bt_mp, t->bt_pinned, 0);
		t->bt_pinned = NULL;
	}

	/*
	 * If scan unitialized as yet, or starting at a specific record, set
	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
	 * the page the cursor references if they're successful.
	 */
	switch (flags) {
	case R_NEXT:
	case R_PREV:
		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
			status = __bt_seqadv(t, &e, flags);
			break;
		}
		/* FALLTHROUGH */
	case R_FIRST:
	case R_LAST:
	case R_CURSOR:
		status = __bt_seqset(t, &e, key, flags);
		break;
	default:
		errno = EINVAL;
		return (RET_ERROR);
	}

	if (status == RET_SUCCESS) {
		__bt_setcur(t, e.page->pgno, e.index);

		status =
		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);

		/*
		 * If the user is doing concurrent access, we copied the
		 * key/data, toss the page.
		 */
		if (F_ISSET(t, B_DB_LOCK))
			mpool_put(t->bt_mp, e.page, 0);
		else
			t->bt_pinned = e.page;
	}
	return (status);
}

/*
 * __bt_seqset --
 *	Set the sequential scan to a specific key.
 *
 * Parameters:
 *	t:	tree
 *	ep:	storage for returned key
 *	key:	key for initial scan position
 *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
 *
 * Side effects:
 *	Pins the page the cursor references.
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
 */
static int
__bt_seqset(t, ep, key, flags)
	BTREE *t;
	EPG *ep;
	DBT *key;
	int flags;
{
	PAGE *h;
	db_pgno_t pg;
	int exact;

	/*
	 * Find the first, last or specific key in the tree and point the
	 * cursor at it.  The cursor may not be moved until a new key has
	 * been found.
	 */
	switch (flags) {
	case R_CURSOR:				/* Keyed scan. */
		/*
		 * Find the first instance of the key or the smallest key
		 * which is greater than or equal to the specified key.
		 */
		if (key->data == NULL || key->size == 0) {
			errno = EINVAL;
			return (RET_ERROR);
		}
		return (__bt_first(t, key, ep, &exact));
	case R_FIRST:				/* First record. */
	case R_NEXT:
		/* Walk down the left-hand side of the tree. */
		for (pg = P_ROOT;;) {
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);

			/* Check for an empty tree. */
			if (NEXTINDEX(h) == 0) {
				mpool_put(t->bt_mp, h, 0);
				return (RET_SPECIAL);
			}

			if (h->flags & (P_BLEAF | P_RLEAF))
				break;
			pg = GETBINTERNAL(h, 0)->pgno;
			mpool_put(t->bt_mp, h, 0);
		}
		ep->page = h;
		ep->index = 0;
		break;
	case R_LAST:				/* Last record. */
	case R_PREV:
		/* Walk down the right-hand side of the tree. */
		for (pg = P_ROOT;;) {
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);

			/* Check for an empty tree. */
			if (NEXTINDEX(h) == 0) {
				mpool_put(t->bt_mp, h, 0);
				return (RET_SPECIAL);
			}

			if (h->flags & (P_BLEAF | P_RLEAF))
				break;
			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
			mpool_put(t->bt_mp, h, 0);
		}

		ep->page = h;
		ep->index = NEXTINDEX(h) - 1;
		break;
	}
	return (RET_SUCCESS);
}

/*
 * __bt_seqadvance --
 *	Advance the sequential scan.
 *
 * Parameters:
 *	t:	tree
 *	flags:	R_NEXT, R_PREV
 *
 * Side effects:
 *	Pins the page the new key/data record is on.
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
 */
static int
__bt_seqadv(t, ep, flags)
	BTREE *t;
	EPG *ep;
	int flags;
{
	CURSOR *c;
	PAGE *h;
	indx_t index;
	db_pgno_t pg;
	int exact, rval;

	/*
	 * There are a couple of states that we can be in.  The cursor has
	 * been initialized by the time we get here, but that's all we know.
	 */
	c = &t->bt_cursor;

	/*
	 * The cursor was deleted and there weren't any duplicate records,
	 * so the cursor's key was saved.  Find out where that key would
	 * be in the current tree.  If the returned key is an exact match,
	 * it means that a key/data pair was inserted into the tree after
	 * the delete.  We could reasonably return the key, but the problem
	 * is that this is the access pattern we'll see if the user is
	 * doing seq(..., R_NEXT)/put(..., 0) pairs, i.e. the put deletes
	 * the cursor record and then replaces it, so the cursor was saved,
	 * and we'll simply return the same "new" record until the user
	 * notices and doesn't do a put() of it.  Since the key is an exact
	 * match, we could as easily put the new record before the cursor,
	 * and we've made no guarantee to return it.  So, move forward or
	 * back a record if it's an exact match.
	 *
	 * XXX
	 * In the current implementation, put's to the cursor are done with
	 * delete/add pairs.  This has two consequences.  First, it means
	 * that seq(..., R_NEXT)/put(..., R_CURSOR) pairs are going to exhibit
	 * the same behavior as above.  Second, you can return the same key
	 * twice if you have duplicate records.  The scenario is that the
	 * cursor record is deleted, moving the cursor forward or backward
	 * to a duplicate.  The add then inserts the new record at a location
	 * ahead of the cursor because duplicates aren't sorted in any way,
	 * and the new record is later returned.  This has to be fixed at some
	 * point.
	 */
	if (F_ISSET(c, CURS_ACQUIRE)) {
		if ((rval = __bt_first(t, &c->key, ep, &exact)) == RET_ERROR)
			return (RET_ERROR);
		if (!exact)
			return (rval);
		/*
		 * XXX
		 * Kluge -- get, release, get the page.
		 */
		c->pg.pgno = ep->page->pgno;
		c->pg.index = ep->index;
		mpool_put(t->bt_mp, ep->page, 0);
	}

	/* Get the page referenced by the cursor. */
	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
		return (RET_ERROR);

	/*
 	 * Find the next/previous record in the tree and point the cursor at
	 * it.  The cursor may not be moved until a new key has been found.
	 */
	switch (flags) {
	case R_NEXT:			/* Next record. */
		/*
		 * The cursor was deleted in duplicate records, and moved
		 * forward to a record that has yet to be returned.  Clear
		 * that flag, and return the record.
		 */
		if (F_ISSET(c, CURS_AFTER))
			goto usecurrent;
		index = c->pg.index;
		if (++index == NEXTINDEX(h)) {
			pg = h->nextpg;
			mpool_put(t->bt_mp, h, 0);
			if (pg == P_INVALID)
				return (RET_SPECIAL);
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);
			index = 0;
		}
		break;
	case R_PREV:			/* Previous record. */
		/*
		 * The cursor was deleted in duplicate records, and moved
		 * backward to a record that has yet to be returned.  Clear
		 * that flag, and return the record.
		 */
		if (F_ISSET(c, CURS_BEFORE)) {
usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
			ep->page = h;
			ep->index = c->pg.index;
			return (RET_SUCCESS);
		}
		index = c->pg.index;
		if (index == 0) {
			pg = h->prevpg;
			mpool_put(t->bt_mp, h, 0);
			if (pg == P_INVALID)
				return (RET_SPECIAL);
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);
			index = NEXTINDEX(h) - 1;
		} else
			--index;
		break;
	}

	ep->page = h;
	ep->index = index;
	return (RET_SUCCESS);
}

/*
 * __bt_first --
 *	Find the first entry.
 *
 * Parameters:
 *	t:	the tree
 *    key:	the key
 *  erval:	return EPG
 * exactp:	pointer to exact match flag
 *
 * Returns:
 *	The first entry in the tree greater than or equal to key,
 *	or RET_SPECIAL if no such key exists.
 */
static int
__bt_first(t, key, erval, exactp)
	BTREE *t;
	const DBT *key;
	EPG *erval;
	int *exactp;
{
	PAGE *h;
	EPG *ep, save;
	db_pgno_t pg;

	/*
	 * Find any matching record; __bt_search pins the page.
	 *
	 * If it's an exact match and duplicates are possible, walk backwards
	 * in the tree until we find the first one.  Otherwise, make sure it's
	 * a valid key (__bt_search may return an index just past the end of a
	 * page) and return it.
	 */
	if ((ep = __bt_search(t, key, exactp)) == NULL)
		return (RET_SPECIAL);
	if (*exactp) {
		if (F_ISSET(t, B_NODUPS)) {
			*erval = *ep;
			return (RET_SUCCESS);
		}
			
		/*
		 * Walk backwards, as long as the entry matches and there are
		 * keys left in the tree.  Save a copy of each match in case
		 * we go too far.
		 */
		save = *ep;
		h = ep->page;
		do {
			if (save.page->pgno != ep->page->pgno) {
				mpool_put(t->bt_mp, save.page, 0);
				save = *ep;
			} else
				save.index = ep->index;

			/*
			 * Don't unpin the page the last (or original) match
			 * was on, but make sure it's unpinned if an error
			 * occurs.
			 */
			if (ep->index == 0) {
				if (h->prevpg == P_INVALID)
					break;
				if (h->pgno != save.page->pgno)
					mpool_put(t->bt_mp, h, 0);
				if ((h = mpool_get(t->bt_mp,
				    h->prevpg, 0)) == NULL) {
					if (h->pgno == save.page->pgno)
						mpool_put(t->bt_mp,
						    save.page, 0);
					return (RET_ERROR);
				}
				ep->page = h;
				ep->index = NEXTINDEX(h);
			}
			--ep->index;
		} while (__bt_cmp(t, key, ep) == 0);

		/*
		 * Reach here with the last page that was looked at pinned,
		 * which may or may not be the same as the last (or original)
		 * match page.  If it's not useful, release it.
		 */
		if (h->pgno != save.page->pgno)
			mpool_put(t->bt_mp, h, 0);

		*erval = save;
		return (RET_SUCCESS);
	}

	/* If at the end of a page, find the next entry. */
	if (ep->index == NEXTINDEX(ep->page)) {
		h = ep->page;
		pg = h->nextpg;
		mpool_put(t->bt_mp, h, 0);
		if (pg == P_INVALID)
			return (RET_SPECIAL);
		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
			return (RET_ERROR);
		ep->index = 0;
		ep->page = h;
	}
	*erval = *ep;
	return (RET_SUCCESS);
}

/*
 * __bt_setcur --
 *	Set the cursor to an entry in the tree.
 *
 * Parameters:
 *	t:	the tree
 *   pgno:	page number
 *  index:	page index
 */
void
__bt_setcur(t, pgno, index)
	BTREE *t;
	db_pgno_t pgno;
	u_int index;
{
	/* Lose any already deleted key. */
	if (t->bt_cursor.key.data != NULL) {
		free(t->bt_cursor.key.data);
		t->bt_cursor.key.size = 0;
		t->bt_cursor.key.data = NULL;
	}
	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);

	/* Update the cursor. */
	t->bt_cursor.pg.pgno = pgno;
	t->bt_cursor.pg.index = index;
	F_SET(&t->bt_cursor, CURS_INIT);
}

/* Recursive descent cursor. */
typedef struct rcursor_ {
	CURSOR	cursor;
	size_t	ssize;
	EPGNO	*stack;
	EPGNO	*sp;
} RCURSOR;
#define RCURSOR_MINSS	64

static int	 bt_rcinit(void **);
static void	 bt_rcdestroy(void **);
static int	 bt_rcpush(RCURSOR *, db_pgno_t, u_int);
static EPGNO	*bt_rcpop(RCURSOR *);
static void	 bt_rcclr(RCURSOR *);
static int	 bt_rcgrowstk(RCURSOR *);
static int	 bt_rseqset(BTREE *, EPG *, DBT *, RCURSOR *, int);
static int	 bt_rseqadv(BTREE *, EPG *, RCURSOR *, int);

static int
bt_rcinit(curs)
	void **curs;
{
	RCURSOR *rc;

	rc = *curs = malloc(sizeof(RCURSOR));
	if (rc == NULL) {
		errno = ENOMEM;
		return RET_ERROR;
	}
	memset(rc, 0, sizeof(*rc));

	rc->ssize = RCURSOR_MINSS;
	rc->stack = malloc(rc->ssize * sizeof(EPGNO));
	if (rc->stack == NULL) {
		free(rc);
		errno = ENOMEM;
		return RET_ERROR;
	}
	bt_rcclr(rc);
	return RET_SUCCESS;
}

static void
bt_rcdestroy(curs)
	void **curs;
{
	RCURSOR *rc;

	rc = *curs;
	free(rc->stack);
	free(rc);
	*curs = NULL;
}

static int
bt_rcpush(rc, p, i)
	RCURSOR *rc;
	db_pgno_t p;
	u_int i;
{
	int status;

	rc->sp->pgno = p;
	rc->sp->index = i;
	if (++rc->sp > rc->stack + rc->ssize) {
		status = bt_rcgrowstk(rc);
		if (status != RET_SUCCESS)
			return status;
	}
	return RET_SUCCESS;
}

static EPGNO *
bt_rcpop(rc)
	RCURSOR *rc;
{
	return (rc->sp == rc->stack) ? NULL : --rc->sp;
}

static void
bt_rcclr(rc)
	RCURSOR *rc;
{
	rc->sp = rc->stack;
}

static int
bt_rcgrowstk(rc)
	RCURSOR *rc;
{
	size_t osize;
	EPGNO *e;

	osize = rc->ssize;
	rc->ssize *= 2;
	e = realloc(rc->stack, rc->ssize * sizeof(EPGNO));
	if (e == NULL) {
		rc->ssize = osize;
		errno = ENOMEM;
		return RET_ERROR;
	}
	rc->stack = e;
	return RET_SUCCESS;
}

/*
 * bt_rseq --
 *	Like __bt_seq but does recursive descent tree traversal
 *	instead of using the prev/next pointers.
 */
int
bt_rseq(dbp, key, data, curs, flags)
	const DB *dbp;
	DBT *key, *data;
	void **curs;
	u_int flags;
{
	RCURSOR *rc;
	BTREE *t;
	EPG e;
	int status;

	t = dbp->internal;

	/* Toss any page pinned across calls. */
	if (t->bt_pinned != NULL) {
		mpool_put(t->bt_mp, t->bt_pinned, 0);
		t->bt_pinned = NULL;
	}

	if (curs == NULL) {
		errno = EINVAL;
		return RET_ERROR;
	}
	if (*curs == NULL) {
		status = bt_rcinit(curs);
		if (status != RET_SUCCESS)
			return RET_ERROR;
	}
	rc = *curs;

	/*
	 * If scan unitialized as yet, or starting at a specific record, set
	 * the scan to a specific key.  Both bt_rseqset and bt_rseqadv pin
	 * the page the cursor references if they're successful.
	 */
	switch (flags) {
	case R_NEXT:
	case R_PREV:
		if (F_ISSET(&rc->cursor, CURS_INIT)) {
			status = bt_rseqadv(t, &e, rc, flags);
			break;
		}
		/* FALLTHROUGH */
	case R_FIRST:
	case R_LAST:
	case R_CURSOR:
		status = bt_rseqset(t, &e, key, rc, flags);
		break;
	default:
		errno = EINVAL;
		return (RET_ERROR);
	}

	if (status == RET_SUCCESS) {
		status =
		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);

		/*
		 * If the user is doing concurrent access, we copied the
		 * key/data, toss the page.
		 */
		if (F_ISSET(t, B_DB_LOCK))
			mpool_put(t->bt_mp, e.page, 0);
		else
			t->bt_pinned = e.page;
	} else if (status == RET_SPECIAL)
		bt_rcdestroy(curs);
	return (status);
}

/*
 * bt_rseqset --
 *	Set the sequential scan to a specific key.
 *
 * Parameters:
 *	t:	tree
 *	ep:	storage for returned key
 *	key:	key for initial scan position
 *	rc:	recursion cursor
 *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
 *
 * Side effects:
 *	Pins the page the cursor references.
 *	Updates rc's stack and cursor.
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
 */
static int
bt_rseqset(t, ep, key, rc, flags)
	BTREE *t;
	EPG *ep;
	DBT *key;
	RCURSOR *rc;
	int flags;
{
	PAGE *h;
	db_pgno_t pg;
	int status;

	/*
	 * Find the first, last or specific key in the tree and point the
	 * cursor at it.  The cursor may not be moved until a new key has
	 * been found.
	 */
	switch (flags) {
	case R_CURSOR:		/* Not implemented. */
		errno = EINVAL;
		return RET_ERROR;
	case R_FIRST:				/* First record. */
	case R_NEXT:
		bt_rcclr(rc);
		/* Walk down the left-hand side of the tree. */
		for (pg = P_ROOT;;) {
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);

			/* Check for an empty tree. */
			if (NEXTINDEX(h) == 0) {
				mpool_put(t->bt_mp, h, 0);
				return (RET_SPECIAL);
			}

			if (h->flags & (P_BLEAF | P_RLEAF))
				break;
			pg = GETBINTERNAL(h, 0)->pgno;
			status = bt_rcpush(rc, h->pgno, 0);
			mpool_put(t->bt_mp, h, 0);
			if (status != RET_SUCCESS)
				return status;
		}
		ep->page = h;
		ep->index = 0;
		break;
	case R_LAST:				/* Last record. */
	case R_PREV:
		bt_rcclr(rc);
		/* Walk down the right-hand side of the tree. */
		for (pg = P_ROOT;;) {
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);

			/* Check for an empty tree. */
			if (NEXTINDEX(h) == 0) {
				mpool_put(t->bt_mp, h, 0);
				return (RET_SPECIAL);
			}

			if (h->flags & (P_BLEAF | P_RLEAF))
				break;
			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
			status = bt_rcpush(rc, h->pgno, NEXTINDEX(h) - 1);
			mpool_put(t->bt_mp, h, 0);
			if (status != RET_SUCCESS)
				return status;
		}
		ep->page = h;
		ep->index = NEXTINDEX(h) - 1;
		break;
	}
	rc->cursor.pg.pgno = ep->page->pgno;
	rc->cursor.pg.index = ep->index;
	F_CLR(&rc->cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
	F_SET(&rc->cursor, CURS_INIT);
	return (RET_SUCCESS);
}

/*
 * bt_rseqadvance --
 *	Advance the sequential scan.
 *
 * Parameters:
 *	t:	tree
 *	ep:	return page
 *	rc:	recursion cursor
 *	flags:	R_NEXT, R_PREV
 *
 * Side effects:
 *	Pins the page the new key/data record is on.
 *	Updates rc's stack and cursor.
 *
 * Returns:
 *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
 */
static int
bt_rseqadv(t, ep, rc, flags)
	BTREE *t;
	EPG *ep;
	RCURSOR *rc;
	int flags;
{
	CURSOR *c;
	PAGE *h;
	indx_t idx;
	db_pgno_t pg;
	int status;
	EPGNO *e;

	/*
	 * There are a couple of states that we can be in.  The cursor has
	 * been initialized by the time we get here, but that's all we know.
	 */
	c = &rc->cursor;

	/* Get the page referenced by the cursor. */
	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
		return (RET_ERROR);

	/*
 	 * Find the next/previous record in the tree and point the cursor at
	 * it.  The cursor may not be moved until a new key has been found.
	 */
	switch (flags) {
	case R_NEXT:			/* Next record. */
		idx = c->pg.index;
		while (++idx == NEXTINDEX(h)) {
			/* Crawl up if we hit the right edge. */
			e = bt_rcpop(rc);
			mpool_put(t->bt_mp, h, 0);
			if (e == NULL) /* Hit the right edge of root. */
				return RET_SPECIAL;
			idx = e->index;
			pg = e->pgno;
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);
		}
		while (!(h->flags & (P_BLEAF | P_RLEAF))) {
			/* Crawl down the left until we hit a leaf. */
			status = bt_rcpush(rc, h->pgno, idx);
			pg = GETBINTERNAL(h, idx)->pgno;
			mpool_put(t->bt_mp, h, 0);
			if (status != RET_SUCCESS)
				return status;
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);
			idx = 0;
		}
		break;
	case R_PREV:			/* Previous record. */
		idx = c->pg.index;
		while (!idx) {
			/* Crawl up if we hit the left edge. */
			e = bt_rcpop(rc);
			mpool_put(t->bt_mp, h, 0);
			if (e == NULL) /* Hit the left edge of root. */
				return RET_SPECIAL;
			idx = e->index;
			pg = e->pgno;
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);
		}
		idx--;
		while (!(h->flags & (P_BLEAF | P_RLEAF))) {
			/* Crawl down the right until we hit a leaf. */
			status = bt_rcpush(rc, h->pgno, idx);
			pg = GETBINTERNAL(h, idx)->pgno;
			mpool_put(t->bt_mp, h, 0);
			if (status != RET_SUCCESS)
				return status;
			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
				return (RET_ERROR);
			idx = NEXTINDEX(h) - 1;
		}
		break;
	}

	ep->page = h;
	ep->index = idx;
	c->pg.pgno = h->pgno;
	c->pg.index = idx;
	F_CLR(c, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
	F_SET(c, CURS_INIT);
	return (RET_SUCCESS);
}