aboutsummaryrefslogtreecommitdiff
path: root/src/lib/crypto/krb/prng_fortuna.c
blob: 017a119cc460022c48c0b0c6fd1292883c4788ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/* lib/crypto/krb/prng_fortuna.c - Fortuna PRNG implementation */
/*
 * Copyright (c) 2005 Marko Kreen
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *        notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *        notice, this list of conditions and the following disclaimer in the
 *        documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.      IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */
/*
 * Copyright (C) 2010, 2011 by the Massachusetts Institute of Technology.
 * All rights reserved.
 *
 *
 * Export of this software from the United States of America may require
 * a specific license from the United States Government.  It is the
 * responsibility of any person or organization contemplating export to
 * obtain such a license before exporting.
 *
 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 * distribute this software and its documentation for any purpose and
 * without fee is hereby granted, provided that the above copyright
 * notice appear in all copies and that both that copyright notice and
 * this permission notice appear in supporting documentation, and that
 * the name of M.I.T. not be used in advertising or publicity pertaining
 * to distribution of the software without specific, written prior
 * permission.  Furthermore if you modify this software you must label
 * your software as modified software and not distribute it in such a
 * fashion that it might be confused with the original M.I.T. software.
 * M.I.T. makes no representations about the suitability of
 * this software for any purpose.  It is provided "as is" without express
 *  or implied warranty.
 */

/*
 * This file implements the generator and accumulator parts of the Fortuna PRNG
 * as described in chapter 9 of _Cryptography Engineering_ by Ferguson,
 * Schneier, and Kohno.
 *
 * The generator, once seeded with an unguessable value, produces an unlimited
 * number of pseudo-random outputs which cannot be used to determine the
 * internal state of the generator (without an unreasonable amount of
 * computational power).  The generator protects against the case where the OS
 * random number generator is not cryptographically secure, but can produce an
 * unguessable initial seed.  Successive reseeds of the generator will not make
 * the internal state any more guessable than it was before.
 *
 * The accumulator is layered on top of the generator, and seeks to eventually
 * recover from the case where the OS random number generator did not produce
 * an unguessable initial seed.  Unreliable entropy inputs are collected into
 * 32 pools, which are used to reseed the generator when enough entropy has
 * been collected.  Each pool collects twice as much entropy between reseeds as
 * the previous one; eventually a reseed will occur involving a pool with
 * enough entropy that an attacker cannot maintain knowledge of the generator's
 * internal state.  The accumulator is only helpful for a long-running process
 * such as a KDC which can submit periodic entropy inputs to the PRNG.
 */

#include "crypto_int.h"

/* The accumulator's number of pools. */
#define NUM_POOLS 32

/* Minimum reseed interval in microseconds. */
#define RESEED_INTERVAL 100000  /* 0.1 sec */

/* For one big request, change the key after this many bytes. */
#define MAX_BYTES_PER_KEY (1 << 20)

/* Reseed if pool 0 has had this many bytes added since last reseed. */
#define MIN_POOL_LEN 64

/* AES-256 key size in bytes. */
#define AES256_KEYSIZE (256/8)

/* AES-256 block size in bytes. */
#define AES256_BLOCKSIZE (128/8)

/* SHA-256 block size in bytes. */
#define SHA256_BLOCKSIZE (512/8)

/* SHA-256 result size in bytes. */
#define SHA256_HASHSIZE (256/8)

/* Genarator - block cipher in CTR mode */
struct fortuna_state
{
    /* Generator state. */
    unsigned char counter[AES256_BLOCKSIZE];
    unsigned char key[AES256_KEYSIZE];
    aes_ctx ciph;

    /* Accumulator state. */
    SHA256_CTX pool[NUM_POOLS];
    unsigned int pool_index;
    unsigned int reseed_count;
    struct timeval last_reseed_time;
    unsigned int pool0_bytes;
};

/*
 * SHA[d]-256(m) is defined as SHA-256(SHA-256(0^512||m))--that is, hash a
 * block full of zeros followed by the input data, then re-hash the result.
 * These functions implement the SHA[d]-256 function on incremental inputs.
 */

static void
shad256_init(SHA256_CTX *ctx)
{
    unsigned char zero[SHA256_BLOCKSIZE];

    /* Initialize the inner SHA-256 context and update it with a zero block. */
    memset(zero, 0, sizeof(zero));
    k5_sha256_init(ctx);
    k5_sha256_update(ctx, zero, sizeof(zero));
}

static void
shad256_update(SHA256_CTX *ctx, const unsigned char *data, int len)
{
    /* Feed the input to the inner SHA-256 context. */
    k5_sha256_update(ctx, data, len);
}

static void
shad256_result(SHA256_CTX *ctx, unsigned char *dst)
{
    /* Finalize the inner context, then feed the result back through SHA256. */
    k5_sha256_final(dst, ctx);
    k5_sha256_init(ctx);
    k5_sha256_update(ctx, dst, SHA256_HASHSIZE);
    k5_sha256_final(dst, ctx);
}

/* Initialize state. */
static void
init_state(struct fortuna_state *st)
{
    unsigned int i;

    memset(st, 0, sizeof(*st));
    for (i = 0; i < NUM_POOLS; i++)
        shad256_init(&st->pool[i]);
}

/* Increment st->counter using least significant byte first. */
static void
inc_counter(struct fortuna_state *st)
{
    uint64_t val;

    val = load_64_le(st->counter) + 1;
    store_64_le(val, st->counter);
    if (val == 0) {
        val = load_64_le(st->counter + 8) + 1;
        store_64_le(val, st->counter + 8);
    }
}

/* Encrypt and increment st->counter in the current cipher context. */
static void
encrypt_counter(struct fortuna_state *st, unsigned char *dst)
{
    krb5int_aes_enc_blk(st->counter, dst, &st->ciph);
    inc_counter(st);
}

/* Reseed the generator based on hopefully non-guessable input. */
static void
generator_reseed(struct fortuna_state *st, const unsigned char *data,
                 size_t len)
{
    SHA256_CTX ctx;

    /* Calculate SHA[d]-256(key||s) and make that the new key.  Depend on the
     * SHA-256 hash size being the AES-256 key size. */
    shad256_init(&ctx);
    shad256_update(&ctx, st->key, AES256_KEYSIZE);
    shad256_update(&ctx, data, len);
    shad256_result(&ctx, st->key);
    zap(&ctx, sizeof(ctx));
    krb5int_aes_enc_key(st->key, AES256_KEYSIZE, &st->ciph);

    /* Increment counter. */
    inc_counter(st);
}

/* Generate two blocks in counter mode and replace the key with the result. */
static void
change_key(struct fortuna_state *st)
{
    encrypt_counter(st, st->key);
    encrypt_counter(st, st->key + AES256_BLOCKSIZE);
    krb5int_aes_enc_key(st->key, AES256_KEYSIZE, &st->ciph);
}

/* Output pseudo-random data from the generator. */
static void
generator_output(struct fortuna_state *st, unsigned char *dst, size_t len)
{
    unsigned char result[AES256_BLOCKSIZE];
    size_t n, count = 0;

    while (len > 0) {
        /* Produce bytes and copy the result into dst. */
        encrypt_counter(st, result);
        n = (len < AES256_BLOCKSIZE) ? len : AES256_BLOCKSIZE;
        memcpy(dst, result, n);
        dst += n;
        len -= n;

        /* Each time we reach MAX_BYTES_PER_KEY bytes, change the key. */
        count += AES256_BLOCKSIZE;
        if (count >= MAX_BYTES_PER_KEY) {
            change_key(st);
            count = 0;
        }
    }
    zap(result, sizeof(result));

    /* Change the key after each request. */
    change_key(st);
}

/* Reseed the generator using the accumulator pools. */
static void
accumulator_reseed(struct fortuna_state *st)
{
    unsigned int i, n;
    SHA256_CTX ctx;
    unsigned char hash_result[SHA256_HASHSIZE];

    n = ++st->reseed_count;

    /*
     * Collect entropy from pools.  We use the i-th pool only 1/(2^i) of the
     * time so that each pool collects twice as much entropy between uses as
     * the last.
     */
    shad256_init(&ctx);
    for (i = 0; i < NUM_POOLS; i++) {
        if (n % (1 << i) != 0)
            break;

        /* Harvest this pool's hash result into ctx, then reset the pool. */
        shad256_result(&st->pool[i], hash_result);
        shad256_init(&st->pool[i]);
        shad256_update(&ctx, hash_result, SHA256_HASHSIZE);
    }
    shad256_result(&ctx, hash_result);
    generator_reseed(st, hash_result, SHA256_HASHSIZE);
    zap(hash_result, SHA256_HASHSIZE);
    zap(&ctx, sizeof(ctx));

    /* Reset the count of bytes added to pool 0. */
    st->pool0_bytes = 0;
}

/* Add possibly unguessable data to the next accumulator pool. */
static void
accumulator_add_event(struct fortuna_state *st, const unsigned char *data,
                      size_t len)
{
    unsigned char lenbuf[2];
    SHA256_CTX *pool;

    /* Track how many bytes have been added to pool 0. */
    if (st->pool_index == 0 && st->pool0_bytes < MIN_POOL_LEN)
        st->pool0_bytes += len;

    /* Hash events into successive accumulator pools. */
    pool = &st->pool[st->pool_index];
    st->pool_index = (st->pool_index + 1) % NUM_POOLS;

    /*
     * Fortuna specifies that events are encoded with a source identifier byte,
     * a length byte, and the event data itself.  We do not have source
     * identifiers and they're not really important, so just encode the
     * length in two bytes instead.
     */
    store_16_be(len, lenbuf);
    shad256_update(pool, lenbuf, 2);
    shad256_update(pool, data, len);
}

/* Limit dependencies for test program. */
#ifndef TEST

/* Return true if RESEED_INTERVAL microseconds have passed since the last
 * reseed. */
static krb5_boolean
enough_time_passed(struct fortuna_state *st)
{
    struct timeval tv, *last = &st->last_reseed_time;
    krb5_boolean ok = FALSE;

    gettimeofday(&tv, NULL);

    /* Check how much time has passed. */
    if (tv.tv_sec > last->tv_sec + 1)
        ok = TRUE;
    else if (tv.tv_sec == last->tv_sec + 1) {
        if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
            ok = TRUE;
    } else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
        ok = TRUE;

    /* Update last_reseed_time if we're returning success. */
    if (ok)
        memcpy(last, &tv, sizeof(tv));

    return ok;
}

static void
accumulator_output(struct fortuna_state *st, unsigned char *dst, size_t len)
{
    /* Reseed the generator with data from pools if we have accumulated enough
     * data and enough time has passed since the last accumulator reseed. */
    if (st->pool0_bytes >= MIN_POOL_LEN && enough_time_passed(st))
        accumulator_reseed(st);

    generator_output(st, dst, len);
}

static k5_mutex_t fortuna_lock = K5_MUTEX_PARTIAL_INITIALIZER;
static struct fortuna_state main_state;
#ifdef _WIN32
static DWORD last_pid;
#else
static pid_t last_pid;
#endif
static krb5_boolean have_entropy = FALSE;

int
k5_prng_init(void)
{
    krb5_error_code ret = 0;
    unsigned char osbuf[64];

    ret = k5_mutex_finish_init(&fortuna_lock);
    if (ret)
        return ret;

    init_state(&main_state);
#ifdef _WIN32
    last_pid = GetCurrentProcessId();
#else
    last_pid = getpid();
#endif
    if (k5_get_os_entropy(osbuf, sizeof(osbuf), 0)) {
        generator_reseed(&main_state, osbuf, sizeof(osbuf));
        have_entropy = TRUE;
    }

    return 0;
}

void
k5_prng_cleanup(void)
{
    have_entropy = FALSE;
    zap(&main_state, sizeof(main_state));
    k5_mutex_destroy(&fortuna_lock);
}

krb5_error_code KRB5_CALLCONV
krb5_c_random_add_entropy(krb5_context context, unsigned int randsource,
                          const krb5_data *indata)
{
    krb5_error_code ret;

    ret = krb5int_crypto_init();
    if (ret)
        return ret;
    k5_mutex_lock(&fortuna_lock);
    if (randsource == KRB5_C_RANDSOURCE_OSRAND ||
        randsource == KRB5_C_RANDSOURCE_TRUSTEDPARTY) {
        /* These sources contain enough entropy that we should use them
         * immediately, so that they benefit the next request. */
        generator_reseed(&main_state, (unsigned char *)indata->data,
                         indata->length);
        have_entropy = TRUE;
    } else {
        /* Other sources should just go into the pools and be used according to
         * the accumulator logic. */
        accumulator_add_event(&main_state, (unsigned char *)indata->data,
                              indata->length);
    }
    k5_mutex_unlock(&fortuna_lock);
    return 0;
}

krb5_error_code KRB5_CALLCONV
krb5_c_random_make_octets(krb5_context context, krb5_data *outdata)
{
#ifdef _WIN32
    DWORD pid = GetCurrentProcessId();
#else
    pid_t pid = getpid();
#endif
    unsigned char pidbuf[4];

    k5_mutex_lock(&fortuna_lock);

    if (!have_entropy) {
        k5_mutex_unlock(&fortuna_lock);
        if (context != NULL) {
            k5_set_error(&context->err, KRB5_CRYPTO_INTERNAL,
                         _("Random number generator could not be seeded"));
        }
        return KRB5_CRYPTO_INTERNAL;
    }

    if (pid != last_pid) {
        /* We forked; make sure child's PRNG stream differs from parent's. */
        store_32_be(pid, pidbuf);
        generator_reseed(&main_state, pidbuf, 4);
        last_pid = pid;
    }

    accumulator_output(&main_state, (unsigned char *)outdata->data,
                       outdata->length);
    k5_mutex_unlock(&fortuna_lock);
    return 0;
}

krb5_error_code KRB5_CALLCONV
krb5_c_random_os_entropy(krb5_context context, int strong, int *success)
{
    krb5_error_code ret;
    krb5_data data;
    uint8_t buf[64];
    int status = 0;

    if (!k5_get_os_entropy(buf, sizeof(buf), strong))
        goto done;

    data = make_data(buf, sizeof(buf));
    ret = krb5_c_random_add_entropy(context, KRB5_C_RANDSOURCE_OSRAND, &data);
    if (ret)
        goto done;

    status = 1;

done:
    if (success != NULL)
        *success = status;
    return 0;
}

#endif /* not TEST */