aboutsummaryrefslogtreecommitdiff
path: root/src/lib/crypto/krb/combine_keys.c
blob: a6cea2eed7f35de8f1ac9e691729b9f0491b0076 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/* -*- mode: c; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
 * Copyright (c) 2002 Naval Research Laboratory (NRL/CCS)
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the software,
 * derivative works or modified versions, and any portions thereof.
 *
 * NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
 * DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
 * RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Key combination function.
 *
 * If Key1 and Key2 are two keys to be combined, the algorithm to combine
 * them is as follows.
 *
 * Definitions:
 *
 * k-truncate is defined as truncating to the key size the input.
 *
 * DR is defined as the generate "random" data from a key
 * (defined in crypto draft)
 *
 * DK is defined as the key derivation function (krb5int_derive_key())
 *
 * (note: | means "concatenate")
 *
 * Combine key algorithm:
 *
 * R1 = DR(Key1, n-fold(Key2)) [ Output is length of Key1 ]
 * R2 = DR(Key2, n-fold(Key1)) [ Output is length of Key2 ]
 *
 * rnd = n-fold(R1 | R2) [ Note: output size of nfold must be appropriately
 *                         sized for random-to-key function ]
 * tkey = random-to-key(rnd)
 * Combine-Key(Key1, Key2) = DK(tkey, CombineConstant)
 *
 * CombineConstant is defined as the byte string:
 *
 * { 0x63 0x6f 0x6d 0x62 0x69 0x6e 0x65 }, which corresponds to the
 * ASCII encoding of the string "combine"
 */

#include "k5-int.h"
#include "etypes.h"
#include "dk.h"

static krb5_error_code dr(const struct krb5_enc_provider *enc,
                          const krb5_keyblock *inkey, unsigned char *outdata,
                          const krb5_data *in_constant);

/*
 * We only support this combine_keys algorithm for des and 3des keys.
 * Everything else should use the PRF defined in the crypto framework.
 * We don't implement that yet.
 */

static krb5_boolean
enctype_ok(krb5_enctype e)
{
    switch (e) {
    case ENCTYPE_DES_CBC_CRC:
    case ENCTYPE_DES_CBC_MD4:
    case ENCTYPE_DES_CBC_MD5:
    case ENCTYPE_DES3_CBC_SHA1:
        return TRUE;
    default:
        return FALSE;
    }
}

krb5_error_code
krb5int_c_combine_keys(krb5_context context, krb5_keyblock *key1,
                       krb5_keyblock *key2, krb5_keyblock *outkey)
{
    unsigned char *r1 = NULL, *r2 = NULL, *combined = NULL, *rnd = NULL;
    unsigned char *output = NULL;
    size_t keybytes, keylength;
    const struct krb5_enc_provider *enc;
    krb5_data input, randbits;
    krb5_keyblock tkeyblock;
    krb5_key tkey = NULL;
    krb5_error_code ret;
    const struct krb5_keytypes *ktp;
    krb5_boolean myalloc = FALSE;

    if (!enctype_ok(key1->enctype) || !enctype_ok(key2->enctype))
        return KRB5_CRYPTO_INTERNAL;

    if (key1->length != key2->length || key1->enctype != key2->enctype)
        return KRB5_CRYPTO_INTERNAL;

    /* Find our encryption algorithm. */
    ktp = find_enctype(key1->enctype);
    if (ktp == NULL)
        return KRB5_BAD_ENCTYPE;
    enc = ktp->enc;

    keybytes = enc->keybytes;
    keylength = enc->keylength;

    /* Allocate and set up buffers. */
    r1 = k5alloc(keybytes, &ret);
    if (ret)
        goto cleanup;
    r2 = k5alloc(keybytes, &ret);
    if (ret)
        goto cleanup;
    rnd = k5alloc(keybytes, &ret);
    if (ret)
        goto cleanup;
    combined = k5alloc(keybytes * 2, &ret);
    if (ret)
        goto cleanup;
    output = k5alloc(keylength, &ret);
    if (ret)
        goto cleanup;

    /*
     * Get R1 and R2 (by running the input keys through the DR algorithm.
     * Note this is most of derive-key, but not all.
     */

    input.length = key2->length;
    input.data = (char *) key2->contents;
    ret = dr(enc, key1, r1, &input);
    if (ret)
        goto cleanup;

    input.length = key1->length;
    input.data = (char *) key1->contents;
    ret = dr(enc, key2, r2, &input);
    if (ret)
        goto cleanup;

    /*
     * Concatenate the two keys together, and then run them through
     * n-fold to reduce them to a length appropriate for the random-to-key
     * operation.  Note here that krb5int_nfold() takes sizes in bits, hence
     * the multiply by 8.
     */

    memcpy(combined, r1, keybytes);
    memcpy(combined + keybytes, r2, keybytes);

    krb5int_nfold((keybytes * 2) * 8, combined, keybytes * 8, rnd);

    /*
     * Run the "random" bits through random-to-key to produce a encryption
     * key.
     */

    randbits.length = keybytes;
    randbits.data = (char *) rnd;
    tkeyblock.length = keylength;
    tkeyblock.contents = output;

    ret = (*enc->make_key)(&randbits, &tkeyblock);
    if (ret)
        goto cleanup;

    ret = krb5_k_create_key(NULL, &tkeyblock, &tkey);
    if (ret)
        goto cleanup;

    /*
     * Run through derive-key one more time to produce the final key.
     * Note that the input to derive-key is the ASCII string "combine".
     */

    input.length = 7;
    input.data = "combine";

    /*
     * Just FYI: _if_ we have space here in the key, then simply use it
     * without modification.  But if the key is blank (no allocated storage)
     * then allocate some memory for it.  This allows programs to use one of
     * the existing keys as the output key, _or_ pass in a blank keyblock
     * for us to allocate.  It's easier for us to allocate it since we already
     * know the crypto library internals
     */

    if (outkey->length == 0 || outkey->contents == NULL) {
        outkey->contents = k5alloc(keylength, &ret);
        if (ret)
            goto cleanup;
        outkey->length = keylength;
        outkey->enctype = key1->enctype;
        myalloc = TRUE;
    }

    ret = krb5int_derive_keyblock(enc, tkey, outkey, &input, DERIVE_RFC3961);
    if (ret) {
        if (myalloc) {
            free(outkey->contents);
            outkey->contents = NULL;
        }
        goto cleanup;
    }

cleanup:
    zapfree(r1, keybytes);
    zapfree(r2, keybytes);
    zapfree(rnd, keybytes);
    zapfree(combined, keybytes * 2);
    zapfree(output, keylength);
    krb5_k_free_key(NULL, tkey);
    return ret;
}

/* Our DR function, a simple wrapper around krb5int_derive_random(). */
static krb5_error_code
dr(const struct krb5_enc_provider *enc, const krb5_keyblock *inkey,
   unsigned char *out, const krb5_data *in_constant)
{
    krb5_data outdata = make_data(out, enc->keybytes);
    krb5_key key = NULL;
    krb5_error_code ret;

    ret = krb5_k_create_key(NULL, inkey, &key);
    if (ret != 0)
        return ret;
    ret = krb5int_derive_random(enc, key, &outdata, in_constant,
                                DERIVE_RFC3961);
    krb5_k_free_key(NULL, key);
    return ret;
}