/* ------------------------------------------------------------------------- Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. DISCLAIMER This software is provided 'as is' with no explcit or implied warranties in respect of any properties, including, but not limited to, correctness and fitness for purpose. ------------------------------------------------------------------------- Issue Date: 21/01/2002 This file contains the code for implementing the key schedule for AES (Rijndael) for block and key sizes of 16, 20, 24, 28 and 32 bytes. */ #include "aesopt.h" /* Subroutine to set the block size (if variable) in bytes, legal values being 16, 24 and 32. */ #if !defined(BLOCK_SIZE) && defined(SET_BLOCK_LENGTH) /* Subroutine to set the block size (if variable) in bytes, legal values being 16, 24 and 32. */ aes_rval aes_blk_len(unsigned int blen, aes_ctx cx[1]) { #if !defined(FIXED_TABLES) if(!tab_init) gen_tabs(); #endif if((blen & 3) || blen < 16 || blen > 32) { cx->n_blk = 0; return aes_bad; } cx->n_blk = blen; return aes_good; } #endif /* Initialise the key schedule from the user supplied key. The key length is now specified in bytes - 16, 24 or 32 as appropriate. This corresponds to bit lengths of 128, 192 and 256 bits, and to Nk values of 4, 6 and 8 respectively. The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_blk and nk value is: nk = 4 5 6 7 8 ------------------------------ cx->n_blk = 4 10 9 8 7 7 cx->n_blk = 5 14 11 10 9 9 cx->n_blk = 6 19 15 12 11 11 cx->n_blk = 7 21 19 16 13 14 cx->n_blk = 8 29 23 19 17 14 */ /* Initialise the key schedule from the user supplied key. The key length is now specified in bytes - 16, 20, 24, 28 or 32 as appropriate. This corresponds to bit lengths of 128, 160, 192, 224 and 256 bits, and to Nk values of 4, 5, 6, 7 & 8 respectively. */ #define mx(t,f) (*t++ = inv_mcol(*f),f++) #define cp(t,f) *t++ = *f++ #if BLOCK_SIZE == 16 #define cpy(d,s) cp(d,s); cp(d,s); cp(d,s); cp(d,s) #define mix(d,s) mx(d,s); mx(d,s); mx(d,s); mx(d,s) #elif BLOCK_SIZE == 20 #define cpy(d,s) cp(d,s); cp(d,s); cp(d,s); cp(d,s); \ cp(d,s) #define mix(d,s) mx(d,s); mx(d,s); mx(d,s); mx(d,s); \ mx(d,s) #elif BLOCK_SIZE == 24 #define cpy(d,s) cp(d,s); cp(d,s); cp(d,s); cp(d,s); \ cp(d,s); cp(d,s) #define mix(d,s) mx(d,s); mx(d,s); mx(d,s); mx(d,s); \ mx(d,s); mx(d,s) #elif BLOCK_SIZE == 28 #define cpy(d,s) cp(d,s); cp(d,s); cp(d,s); cp(d,s); \ cp(d,s); cp(d,s); cp(d,s) #define mix(d,s) mx(d,s); mx(d,s); mx(d,s); mx(d,s); \ mx(d,s); mx(d,s); mx(d,s) #elif BLOCK_SIZE == 32 #define cpy(d,s) cp(d,s); cp(d,s); cp(d,s); cp(d,s); \ cp(d,s); cp(d,s); cp(d,s); cp(d,s) #define mix(d,s) mx(d,s); mx(d,s); mx(d,s); mx(d,s); \ mx(d,s); mx(d,s); mx(d,s); mx(d,s) #else #define cpy(d,s) \ switch(nc) \ { case 8: cp(d,s); \ case 7: cp(d,s); \ case 6: cp(d,s); \ case 5: cp(d,s); \ case 4: cp(d,s); cp(d,s); \ cp(d,s); cp(d,s); \ } #define mix(d,s) \ switch(nc) \ { case 8: mx(d,s); \ case 7: mx(d,s); \ case 6: mx(d,s); \ case 5: mx(d,s); \ case 4: mx(d,s); mx(d,s); \ mx(d,s); mx(d,s); \ } #endif /* The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_blk and nk value is: nk = 4 5 6 7 8 ----------------------- cx->n_blk = 4 10 9 8 7 7 cx->n_blk = 5 14 11 10 9 9 cx->n_blk = 6 19 15 12 11 11 cx->n_blk = 7 21 19 16 13 14 cx->n_blk = 8 29 23 19 17 14 */ #define ks4(i) \ { p ^= ls_box(s,3) ^ rcon_tab[i]; q ^= p; r ^= q; s ^= r; \ cx->k_sch[4*(i)+4] = p; \ cx->k_sch[4*(i)+5] = q; \ cx->k_sch[4*(i)+6] = r; \ cx->k_sch[4*(i)+7] = s; \ } #define ks5(i) \ { p ^= ls_box(t,3) ^ rcon_tab[i]; q ^= p; \ r ^= q; s ^= r; t ^= s; \ cx->k_sch[5*(i)+ 5] = p; \ cx->k_sch[5*(i)+ 6] = q; \ cx->k_sch[5*(i)+ 7] = r; \ cx->k_sch[5*(i)+ 8] = s; \ cx->k_sch[5*(i)+ 9] = t; \ } #define ks6(i) \ { p ^= ls_box(u,3) ^ rcon_tab[i]; q ^= p; \ r ^= q; s ^= r; t ^= s; u ^= t; \ cx->k_sch[6*(i)+ 6] = p; \ cx->k_sch[6*(i)+ 7] = q; \ cx->k_sch[6*(i)+ 8] = r; \ cx->k_sch[6*(i)+ 9] = s; \ cx->k_sch[6*(i)+10] = t; \ cx->k_sch[6*(i)+11] = u; \ } #define ks7(i) \ { p ^= ls_box(v,3) ^ rcon_tab[i]; q ^= p; r ^= q; s ^= r; \ t ^= ls_box(s,0); u ^= t; v ^= u; \ cx->k_sch[7*(i)+ 7] = p; \ cx->k_sch[7*(i)+ 8] = q; \ cx->k_sch[7*(i)+ 9] = r; \ cx->k_sch[7*(i)+10] = s; \ cx->k_sch[7*(i)+11] = t; \ cx->k_sch[7*(i)+12] = u; \ cx->k_sch[7*(i)+13] = v; \ } #define ks8(i) \ { p ^= ls_box(w,3) ^ rcon_tab[i]; q ^= p; r ^= q; s ^= r; \ t ^= ls_box(s,0); u ^= t; v ^= u; w ^= v; \ cx->k_sch[8*(i)+ 8] = p; \ cx->k_sch[8*(i)+ 9] = q; \ cx->k_sch[8*(i)+10] = r; \ cx->k_sch[8*(i)+11] = s; \ cx->k_sch[8*(i)+12] = t; \ cx->k_sch[8*(i)+13] = u; \ cx->k_sch[8*(i)+14] = v; \ cx->k_sch[8*(i)+15] = w; \ } #if defined(ENCRYPTION_KEY_SCHEDULE) aes_rval aes_enc_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]) { uint32_t i,p,q,r,s,t,u,v,w; #if !defined(FIXED_TABLES) if(!tab_init) gen_tabs(); #endif #if !defined(BLOCK_SIZE) if(!cx->n_blk) cx->n_blk = 16; #else cx->n_blk = BLOCK_SIZE; #endif cx->n_blk = (cx->n_blk & ~3) | 1; cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; cx->k_sch[0] = p = word_in(in_key ); cx->k_sch[1] = q = word_in(in_key + 4); cx->k_sch[2] = r = word_in(in_key + 8); cx->k_sch[3] = s = word_in(in_key + 12); #if BLOCK_SIZE == 16 && defined(UNROLL) switch(klen >> 2) { case 4: ks4(0); ks4(1); ks4(2); ks4(3); ks4(4); ks4(5); ks4(6); ks4(7); ks4(8); ks4(9); cx->n_rnd = 10; break; case 5: cx->k_sch[4] = t = word_in(in_key + 16); ks5(0); ks5(1); ks5(2); ks5(3); ks5(4); ks5(5); ks5(6); ks5(7); ks5(8); cx->n_rnd = 11; break; case 6: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); ks6(0); ks6(1); ks6(2); ks6(3); ks6(4); ks6(5); ks6(6); ks6(7); cx->n_rnd = 12; break; case 7: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); ks7(0); ks7(1); ks7(2); ks7(3); ks7(4); ks7(5); ks7(6); cx->n_rnd = 13; break; case 8: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); cx->k_sch[7] = w = word_in(in_key + 28); ks8(0); ks8(1); ks8(2); ks8(3); ks8(4); ks8(5); ks8(6); cx->n_rnd = 14; break; default:cx->n_rnd = 0; return aes_bad; } #else cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; { uint32_t l = (nc * (cx->n_rnd + 1) - 1) / (klen >> 2); switch(klen >> 2) { case 4: for(i = 0; i < l; ++i) ks4(i); break; case 5: cx->k_sch[4] = t = word_in(in_key + 16); for(i = 0; i < l; ++i) ks5(i); break; case 6: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); for(i = 0; i < l; ++i) ks6(i); break; case 7: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); for(i = 0; i < l; ++i) ks7(i); break; case 8: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); cx->k_sch[7] = w = word_in(in_key + 28); for(i = 0; i < l; ++i) ks8(i); break; } } #endif return aes_good; } #endif #if defined(DECRYPTION_KEY_SCHEDULE) aes_rval aes_dec_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]) { uint32_t i,p,q,r,s,t,u,v,w; dec_imvars #if !defined(FIXED_TABLES) if(!tab_init) gen_tabs(); #endif #if !defined(BLOCK_SIZE) if(!cx->n_blk) cx->n_blk = 16; #else cx->n_blk = BLOCK_SIZE; #endif cx->n_blk = (cx->n_blk & ~3) | 2; cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; cx->k_sch[0] = p = word_in(in_key ); cx->k_sch[1] = q = word_in(in_key + 4); cx->k_sch[2] = r = word_in(in_key + 8); cx->k_sch[3] = s = word_in(in_key + 12); #if BLOCK_SIZE == 16 && defined(UNROLL) switch(klen >> 2) { case 4: ks4(0); ks4(1); ks4(2); ks4(3); ks4(4); ks4(5); ks4(6); ks4(7); ks4(8); ks4(9); cx->n_rnd = 10; break; case 5: cx->k_sch[4] = t = word_in(in_key + 16); ks5(0); ks5(1); ks5(2); ks5(3); ks5(4); ks5(5); ks5(6); ks5(7); ks5(8); cx->n_rnd = 11; break; case 6: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); ks6(0); ks6(1); ks6(2); ks6(3); ks6(4); ks6(5); ks6(6); ks6(7); cx->n_rnd = 12; break; case 7: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); ks7(0); ks7(1); ks7(2); ks7(3); ks7(4); ks7(5); ks7(6); cx->n_rnd = 13; break; case 8: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); cx->k_sch[7] = w = word_in(in_key + 28); ks8(0); ks8(1); ks8(2); ks8(3); ks8(4); ks8(5); ks8(6); cx->n_rnd = 14; break; default:cx->n_rnd = 0; return aes_bad; } #else cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; { uint32_t l = (nc * (cx->n_rnd + 1) - 1) / (klen >> 2); switch(klen >> 2) { case 4: for(i = 0; i < l; ++i) ks4(i); break; case 5: cx->k_sch[4] = t = word_in(in_key + 16); for(i = 0; i < l; ++i) ks5(i); break; case 6: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); for(i = 0; i < l; ++i) ks6(i); break; case 7: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); for(i = 0; i < l; ++i) ks7(i); break; case 8: cx->k_sch[4] = t = word_in(in_key + 16); cx->k_sch[5] = u = word_in(in_key + 20); cx->k_sch[6] = v = word_in(in_key + 24); cx->k_sch[7] = w = word_in(in_key + 28); for(i = 0; i < l; ++i) ks8(i); break; } } #endif #if (DEC_ROUND != NO_TABLES) for(i = nc; i < nc * cx->n_rnd; ++i) cx->k_sch[i] = inv_mcol(cx->k_sch[i]); #endif return aes_good; } #endif