/* * Copyright (c) 2001, Dr Brian Gladman , Worcester, UK. * All rights reserved. * * LICENSE TERMS * * The free distribution and use of this software in both source and binary * form is allowed (with or without changes) provided that: * * 1. distributions of this source code include the above copyright * notice, this list of conditions and the following disclaimer; * * 2. distributions in binary form include the above copyright * notice, this list of conditions and the following disclaimer * in the documentation and/or other associated materials; * * 3. the copyright holder's name is not used to endorse products * built using this software without specific written permission. * * DISCLAIMER * * This software is provided 'as is' with no explcit or implied warranties * in respect of any properties, including, but not limited to, correctness * and fitness for purpose. */ /* * Issue Date: 21/01/2002 * * This file contains the code for implementing the key schedule for AES * (Rijndael) for block and key sizes of 16, 24, and 32 bytes. */ #include "aesopt.h" #if defined(BLOCK_SIZE) && (BLOCK_SIZE & 7) #error An illegal block size has been specified. #endif /* Subroutine to set the block size (if variable) in bytes, legal values being 16, 24 and 32. */ #if !defined(BLOCK_SIZE) && defined(SET_BLOCK_LENGTH) aes_rval aes_blk_len(unsigned int blen, aes_ctx cx[1]) { #if !defined(FIXED_TABLES) if(!tab_init) gen_tabs(); #endif if((blen & 7) || blen < 16 || blen > 32) { cx->n_blk = 0; return aes_bad; } cx->n_blk = blen; return aes_good; } #endif /* Initialise the key schedule from the user supplied key. The key length is now specified in bytes - 16, 24 or 32 as appropriate. This corresponds to bit lengths of 128, 192 and 256 bits, and to Nk values of 4, 6 and 8 respectively. The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_col and nk value is: nk = 4 5 6 7 8 ------------------------------ cx->n_col = 4 10 9 8 7 7 cx->n_col = 5 14 11 10 9 9 cx->n_col = 6 19 15 12 11 11 cx->n_col = 7 21 19 16 13 14 cx->n_col = 8 29 23 19 17 14 */ #if defined(ENCRYPTION_KEY_SCHEDULE) #define ke4(k,i) \ { k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ } #define kel4(k,i) \ { k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ } #define ke6(k,i) \ { k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ k[6*(i)+10] = ss[4] ^= ss[3]; k[6*(i)+11] = ss[5] ^= ss[4]; \ } #define kel6(k,i) \ { k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; k[6*(i)+ 9] = ss[3] ^= ss[2]; \ } #define ke8(k,i) \ { k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); k[8*(i)+13] = ss[5] ^= ss[4]; \ k[8*(i)+14] = ss[6] ^= ss[5]; k[8*(i)+15] = ss[7] ^= ss[6]; \ } #define kel8(k,i) \ { k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; k[8*(i)+11] = ss[3] ^= ss[2]; \ } aes_rval aes_enc_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]) { uint32_t ss[8]; #if !defined(FIXED_TABLES) if(!tab_init) gen_tabs(); #endif #if !defined(BLOCK_SIZE) if(!cx->n_blk) cx->n_blk = 16; #else cx->n_blk = BLOCK_SIZE; #endif cx->n_blk = (cx->n_blk & ~3U) | 1; cx->k_sch[0] = ss[0] = word_in(in_key ); cx->k_sch[1] = ss[1] = word_in(in_key + 4); cx->k_sch[2] = ss[2] = word_in(in_key + 8); cx->k_sch[3] = ss[3] = word_in(in_key + 12); #if (BLOCK_SIZE == 16) && (ENC_UNROLL != NONE) switch(klen) { case 16: ke4(cx->k_sch, 0); ke4(cx->k_sch, 1); ke4(cx->k_sch, 2); ke4(cx->k_sch, 3); ke4(cx->k_sch, 4); ke4(cx->k_sch, 5); ke4(cx->k_sch, 6); ke4(cx->k_sch, 7); ke4(cx->k_sch, 8); kel4(cx->k_sch, 9); cx->n_rnd = 10; break; case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); ke6(cx->k_sch, 0); ke6(cx->k_sch, 1); ke6(cx->k_sch, 2); ke6(cx->k_sch, 3); ke6(cx->k_sch, 4); ke6(cx->k_sch, 5); ke6(cx->k_sch, 6); kel6(cx->k_sch, 7); cx->n_rnd = 12; break; case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); cx->k_sch[6] = ss[6] = word_in(in_key + 24); cx->k_sch[7] = ss[7] = word_in(in_key + 28); ke8(cx->k_sch, 0); ke8(cx->k_sch, 1); ke8(cx->k_sch, 2); ke8(cx->k_sch, 3); ke8(cx->k_sch, 4); ke8(cx->k_sch, 5); kel8(cx->k_sch, 6); cx->n_rnd = 14; break; default: cx->n_rnd = 0; return aes_bad; } #else { uint32_t i, l; cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; l = (nc * cx->n_rnd + nc - 1) / (klen >> 2); switch(klen) { case 16: for(i = 0; i < l; ++i) ke4(cx->k_sch, i); break; case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); for(i = 0; i < l; ++i) ke6(cx->k_sch, i); break; case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); cx->k_sch[6] = ss[6] = word_in(in_key + 24); cx->k_sch[7] = ss[7] = word_in(in_key + 28); for(i = 0; i < l; ++i) ke8(cx->k_sch, i); break; default: cx->n_rnd = 0; return aes_bad; } } #endif return aes_good; } #endif #if defined(DECRYPTION_KEY_SCHEDULE) #if (DEC_ROUND != NO_TABLES) #define d_vars dec_imvars #define ff(x) inv_mcol(x) #else #define ff(x) (x) #define d_vars #endif #if 1 #define kdf4(k,i) \ { ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; ss[1] = ss[1] ^ ss[3]; ss[2] = ss[2] ^ ss[3]; ss[3] = ss[3]; \ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \ ss[4] ^= k[4*(i)]; k[4*(i)+4] = ff(ss[4]); ss[4] ^= k[4*(i)+1]; k[4*(i)+5] = ff(ss[4]); \ ss[4] ^= k[4*(i)+2]; k[4*(i)+6] = ff(ss[4]); ss[4] ^= k[4*(i)+3]; k[4*(i)+7] = ff(ss[4]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ k[4*(i)+4] = ss[4] ^= k[4*(i)]; k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ } #define kdl4(k,i) \ { ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; ss[i % 4] ^= ss[4]; \ k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; k[4*(i)+5] = ss[1] ^ ss[3]; \ k[4*(i)+6] = ss[0]; k[4*(i)+7] = ss[1]; \ } #else #define kdf4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ff(ss[0]); ss[1] ^= ss[0]; k[4*(i)+ 5] = ff(ss[1]); \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ff(ss[2]); ss[3] ^= ss[2]; k[4*(i)+ 7] = ff(ss[3]); \ } #define kd4(k,i) \ { ss[4] = ls_box(ss[3],3) ^ rcon_tab[i]; \ ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[4*(i)+ 4] = ss[4] ^= k[4*(i)]; \ ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[4] ^= k[4*(i)+ 1]; \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[4] ^= k[4*(i)+ 2]; \ ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[4] ^= k[4*(i)+ 3]; \ } #define kdl4(k,i) \ { ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; k[4*(i)+ 4] = ss[0]; ss[1] ^= ss[0]; k[4*(i)+ 5] = ss[1]; \ ss[2] ^= ss[1]; k[4*(i)+ 6] = ss[2]; ss[3] ^= ss[2]; k[4*(i)+ 7] = ss[3]; \ } #endif #define kdf6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ff(ss[0]); ss[1] ^= ss[0]; k[6*(i)+ 7] = ff(ss[1]); \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ff(ss[2]); ss[3] ^= ss[2]; k[6*(i)+ 9] = ff(ss[3]); \ ss[4] ^= ss[3]; k[6*(i)+10] = ff(ss[4]); ss[5] ^= ss[4]; k[6*(i)+11] = ff(ss[5]); \ } #define kd6(k,i) \ { ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ ss[4] ^= ss[3]; k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ ss[5] ^= ss[4]; k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ } #define kdl6(k,i) \ { ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; k[6*(i)+ 6] = ss[0]; ss[1] ^= ss[0]; k[6*(i)+ 7] = ss[1]; \ ss[2] ^= ss[1]; k[6*(i)+ 8] = ss[2]; ss[3] ^= ss[2]; k[6*(i)+ 9] = ss[3]; \ } #define kdf8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ff(ss[0]); ss[1] ^= ss[0]; k[8*(i)+ 9] = ff(ss[1]); \ ss[2] ^= ss[1]; k[8*(i)+10] = ff(ss[2]); ss[3] ^= ss[2]; k[8*(i)+11] = ff(ss[3]); \ ss[4] ^= ls_box(ss[3],0); k[8*(i)+12] = ff(ss[4]); ss[5] ^= ss[4]; k[8*(i)+13] = ff(ss[5]); \ ss[6] ^= ss[5]; k[8*(i)+14] = ff(ss[6]); ss[7] ^= ss[6]; k[8*(i)+15] = ff(ss[7]); \ } #define kd8(k,i) \ { uint32_t g = ls_box(ss[7],3) ^ rcon_tab[i]; \ ss[0] ^= g; g = ff(g); k[8*(i)+ 8] = g ^= k[8*(i)]; \ ss[1] ^= ss[0]; k[8*(i)+ 9] = g ^= k[8*(i)+ 1]; \ ss[2] ^= ss[1]; k[8*(i)+10] = g ^= k[8*(i)+ 2]; \ ss[3] ^= ss[2]; k[8*(i)+11] = g ^= k[8*(i)+ 3]; \ g = ls_box(ss[3],0); \ ss[4] ^= g; g = ff(g); k[8*(i)+12] = g ^= k[8*(i)+ 4]; \ ss[5] ^= ss[4]; k[8*(i)+13] = g ^= k[8*(i)+ 5]; \ ss[6] ^= ss[5]; k[8*(i)+14] = g ^= k[8*(i)+ 6]; \ ss[7] ^= ss[6]; k[8*(i)+15] = g ^= k[8*(i)+ 7]; \ } #define kdl8(k,i) \ { ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; k[8*(i)+ 8] = ss[0]; ss[1] ^= ss[0]; k[8*(i)+ 9] = ss[1]; \ ss[2] ^= ss[1]; k[8*(i)+10] = ss[2]; ss[3] ^= ss[2]; k[8*(i)+11] = ss[3]; \ } aes_rval aes_dec_key(const unsigned char in_key[], unsigned int klen, aes_ctx cx[1]) { uint32_t ss[8]; d_vars #if !defined(FIXED_TABLES) if(!tab_init) gen_tabs(); #endif #if !defined(BLOCK_SIZE) if(!cx->n_blk) cx->n_blk = 16; #else cx->n_blk = BLOCK_SIZE; #endif cx->n_blk = (cx->n_blk & ~3U) | 2; cx->k_sch[0] = ss[0] = word_in(in_key ); cx->k_sch[1] = ss[1] = word_in(in_key + 4); cx->k_sch[2] = ss[2] = word_in(in_key + 8); cx->k_sch[3] = ss[3] = word_in(in_key + 12); #if (BLOCK_SIZE == 16) && (DEC_UNROLL != NONE) switch(klen) { case 16: kdf4(cx->k_sch, 0); kd4(cx->k_sch, 1); kd4(cx->k_sch, 2); kd4(cx->k_sch, 3); kd4(cx->k_sch, 4); kd4(cx->k_sch, 5); kd4(cx->k_sch, 6); kd4(cx->k_sch, 7); kd4(cx->k_sch, 8); kdl4(cx->k_sch, 9); cx->n_rnd = 10; break; case 24: ss[4] = word_in(in_key + 16); cx->k_sch[4] = ff(ss[4]); ss[5] = word_in(in_key + 20); cx->k_sch[5] = ff(ss[5]); kdf6(cx->k_sch, 0); kd6(cx->k_sch, 1); kd6(cx->k_sch, 2); kd6(cx->k_sch, 3); kd6(cx->k_sch, 4); kd6(cx->k_sch, 5); kd6(cx->k_sch, 6); kdl6(cx->k_sch, 7); cx->n_rnd = 12; break; case 32: ss[4] = word_in(in_key + 16); cx->k_sch[4] = ff(ss[4]); ss[5] = word_in(in_key + 20); cx->k_sch[5] = ff(ss[5]); ss[6] = word_in(in_key + 24); cx->k_sch[6] = ff(ss[6]); ss[7] = word_in(in_key + 28); cx->k_sch[7] = ff(ss[7]); kdf8(cx->k_sch, 0); kd8(cx->k_sch, 1); kd8(cx->k_sch, 2); kd8(cx->k_sch, 3); kd8(cx->k_sch, 4); kd8(cx->k_sch, 5); kdl8(cx->k_sch, 6); cx->n_rnd = 14; break; default: cx->n_rnd = 0; return aes_bad; } #else { uint32_t i, l; cx->n_rnd = ((klen >> 2) > nc ? (klen >> 2) : nc) + 6; l = (nc * cx->n_rnd + nc - 1) / (klen >> 2); switch(klen) { case 16: for(i = 0; i < l; ++i) ke4(cx->k_sch, i); break; case 24: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); for(i = 0; i < l; ++i) ke6(cx->k_sch, i); break; case 32: cx->k_sch[4] = ss[4] = word_in(in_key + 16); cx->k_sch[5] = ss[5] = word_in(in_key + 20); cx->k_sch[6] = ss[6] = word_in(in_key + 24); cx->k_sch[7] = ss[7] = word_in(in_key + 28); for(i = 0; i < l; ++i) ke8(cx->k_sch, i); break; default: cx->n_rnd = 0; return aes_bad; } #if (DEC_ROUND != NO_TABLES) for(i = nc; i < nc * cx->n_rnd; ++i) cx->k_sch[i] = inv_mcol(cx->k_sch[i]); #endif } #endif return aes_good; } #endif