aboutsummaryrefslogtreecommitdiff
path: root/src/lib/crypto/builtin/aes/aescrypt.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/crypto/builtin/aes/aescrypt.c')
-rw-r--r--src/lib/crypto/builtin/aes/aescrypt.c507
1 files changed, 193 insertions, 314 deletions
diff --git a/src/lib/crypto/builtin/aes/aescrypt.c b/src/lib/crypto/builtin/aes/aescrypt.c
index 194f8e5..4c2b0db 100644
--- a/src/lib/crypto/builtin/aes/aescrypt.c
+++ b/src/lib/crypto/builtin/aes/aescrypt.c
@@ -1,422 +1,301 @@
/*
- * Copyright (c) 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.
- * All rights reserved.
- *
- * LICENSE TERMS
- *
- * The free distribution and use of this software in both source and binary
- * form is allowed (with or without changes) provided that:
- *
- * 1. distributions of this source code include the above copyright
- * notice, this list of conditions and the following disclaimer;
- *
- * 2. distributions in binary form include the above copyright
- * notice, this list of conditions and the following disclaimer
- * in the documentation and/or other associated materials;
- *
- * 3. the copyright holder's name is not used to endorse products
- * built using this software without specific written permission.
- *
- * DISCLAIMER
- *
- * This software is provided 'as is' with no explcit or implied warranties
- * in respect of any properties, including, but not limited to, correctness
- * and fitness for purpose.
- */
+---------------------------------------------------------------------------
+Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
-/*
- * Issue Date: 21/01/2002
- *
- * This file contains the code for implementing encryption and decryption
- * for AES (Rijndael) for block and key sizes of 16, 24 and 32 bytes. It
- * can optionally be replaced by code written in assembler using NASM.
+The redistribution and use of this software (with or without changes)
+is allowed without the payment of fees or royalties provided that:
+
+ source code distributions include the above copyright notice, this
+ list of conditions and the following disclaimer;
+
+ binary distributions include the above copyright notice, this list
+ of conditions and the following disclaimer in their documentation.
+
+This software is provided 'as is' with no explicit or implied warranties
+in respect of its operation, including, but not limited to, correctness
+and fitness for purpose.
+---------------------------------------------------------------------------
+Issue Date: 20/12/2007
*/
#include "aesopt.h"
+#include "aestab.h"
-#if defined(BLOCK_SIZE) && (BLOCK_SIZE & 7)
-#error An illegal block size has been specified.
+#if defined( USE_INTEL_AES_IF_PRESENT )
+# include "aes_ni.h"
+#else
+/* map names here to provide the external API ('name' -> 'aes_name') */
+# define aes_xi(x) aes_ ## x
#endif
-#define unused 77 /* Sunset Strip */
-
-#define si(y,x,k,c) s(y,c) = word_in(x + 4 * c) ^ k[c]
-#define so(y,x,c) word_out(y + 4 * c, s(x,c))
+#if defined(__cplusplus)
+extern "C"
+{
+#endif
-#if BLOCK_SIZE == 16
+#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
+#define so(y,x,c) word_out(y, c, s(x,c))
#if defined(ARRAYS)
#define locals(y,x) x[4],y[4]
#else
#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
- /*
- the following defines prevent the compiler requiring the declaration
- of generated but unused variables in the fwd_var and inv_var macros
- */
-#define b04 unused
-#define b05 unused
-#define b06 unused
-#define b07 unused
-#define b14 unused
-#define b15 unused
-#define b16 unused
-#define b17 unused
#endif
+
#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
s(y,2) = s(x,2); s(y,3) = s(x,3);
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
-#elif BLOCK_SIZE == 24
+#if ( FUNCS_IN_C & ENCRYPTION_IN_C )
-#if defined(ARRAYS)
-#define locals(y,x) x[6],y[6]
-#else
-#define locals(y,x) x##0,x##1,x##2,x##3,x##4,x##5, \
- y##0,y##1,y##2,y##3,y##4,y##5
-#define b06 unused
-#define b07 unused
-#define b16 unused
-#define b17 unused
-#endif
-#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
- s(y,2) = s(x,2); s(y,3) = s(x,3); \
- s(y,4) = s(x,4); s(y,5) = s(x,5);
-#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); \
- si(y,x,k,3); si(y,x,k,4); si(y,x,k,5)
-#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); \
- so(y,x,3); so(y,x,4); so(y,x,5)
-#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); \
- rm(y,x,k,3); rm(y,x,k,4); rm(y,x,k,5)
-#else
-
-#if defined(ARRAYS)
-#define locals(y,x) x[8],y[8]
-#else
-#define locals(y,x) x##0,x##1,x##2,x##3,x##4,x##5,x##6,x##7, \
- y##0,y##1,y##2,y##3,y##4,y##5,y##6,y##7
-#endif
-#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
- s(y,2) = s(x,2); s(y,3) = s(x,3); \
- s(y,4) = s(x,4); s(y,5) = s(x,5); \
- s(y,6) = s(x,6); s(y,7) = s(x,7);
-
-#if BLOCK_SIZE == 32
-
-#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3); \
- si(y,x,k,4); si(y,x,k,5); si(y,x,k,6); si(y,x,k,7)
-#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3); \
- so(y,x,4); so(y,x,5); so(y,x,6); so(y,x,7)
-#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3); \
- rm(y,x,k,4); rm(y,x,k,5); rm(y,x,k,6); rm(y,x,k,7)
-#else
-
-#define state_in(y,x,k) \
-switch(nc) \
-{ case 8: si(y,x,k,7); si(y,x,k,6); \
- case 6: si(y,x,k,5); si(y,x,k,4); \
- case 4: si(y,x,k,3); si(y,x,k,2); \
- si(y,x,k,1); si(y,x,k,0); \
-}
-
-#define state_out(y,x) \
-switch(nc) \
-{ case 8: so(y,x,7); so(y,x,6); \
- case 6: so(y,x,5); so(y,x,4); \
- case 4: so(y,x,3); so(y,x,2); \
- so(y,x,1); so(y,x,0); \
-}
-
-#if defined(FAST_VARIABLE)
-
-#define round(rm,y,x,k) \
-switch(nc) \
-{ case 8: rm(y,x,k,7); rm(y,x,k,6); \
- rm(y,x,k,5); rm(y,x,k,4); \
- rm(y,x,k,3); rm(y,x,k,2); \
- rm(y,x,k,1); rm(y,x,k,0); \
- break; \
- case 6: rm(y,x,k,5); rm(y,x,k,4); \
- rm(y,x,k,3); rm(y,x,k,2); \
- rm(y,x,k,1); rm(y,x,k,0); \
- break; \
- case 4: rm(y,x,k,3); rm(y,x,k,2); \
- rm(y,x,k,1); rm(y,x,k,0); \
- break; \
-}
-#else
-
-#define round(rm,y,x,k) \
-switch(nc) \
-{ case 8: rm(y,x,k,7); rm(y,x,k,6); \
- case 6: rm(y,x,k,5); rm(y,x,k,4); \
- case 4: rm(y,x,k,3); rm(y,x,k,2); \
- rm(y,x,k,1); rm(y,x,k,0); \
-}
-
-#endif
+/* Visual C++ .Net v7.1 provides the fastest encryption code when using
+ Pentium optimisation with small code but this is poor for decryption
+ so we need to control this with the following VC++ pragmas
+*/
+#if defined( _MSC_VER ) && !defined( _WIN64 ) && !defined( __clang__ )
+#pragma optimize( "s", on )
#endif
-#endif
-
-#if defined(ENCRYPTION)
-
-/* I am grateful to Frank Yellin for the following construction
- (and that for decryption) which, given the column (c) of the
- output state variable, gives the input state variables which
- are needed in its computation for each row (r) of the state.
-
- For the fixed block size options, compilers should be able to
- reduce this complex expression (and the equivalent one for
- decryption) to a static variable reference at compile time.
- But for variable block size code, there will be some limbs on
- which conditional clauses will be returned.
-*/
-/* y = output word, x = input word, r = row, c = column for r = 0,
- 1, 2 and 3 = column accessed for row r.
+/* Given the column (c) of the output state variable, the following
+ macros give the input state variables which are needed in its
+ computation for each row (r) of the state. All the alternative
+ macros give the same end values but expand into different ways
+ of calculating these values. In particular the complex macro
+ used for dynamically variable block sizes is designed to expand
+ to a compile time constant whenever possible but will expand to
+ conditional clauses on some branches (I am grateful to Frank
+ Yellin for this construction)
*/
-#define fwd_var(x,r,c) \
- ( r==0 ? \
- ( c==0 ? s(x,0) \
- : c==1 ? s(x,1) \
- : c==2 ? s(x,2) \
- : c==3 ? s(x,3) \
- : c==4 ? s(x,4) \
- : c==5 ? s(x,5) \
- : c==6 ? s(x,6) \
- : s(x,7)) \
- : r==1 ? \
- ( c==0 ? s(x,1) \
- : c==1 ? s(x,2) \
- : c==2 ? s(x,3) \
- : c==3 ? nc==4 ? s(x,0) : s(x,4) \
- : c==4 ? s(x,5) \
- : c==5 ? nc==8 ? s(x,6) : s(x,0) \
- : c==6 ? s(x,7) \
- : s(x,0)) \
- : r==2 ? \
- ( c==0 ? nc==8 ? s(x,3) : s(x,2) \
- : c==1 ? nc==8 ? s(x,4) : s(x,3) \
- : c==2 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \
- : c==3 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \
- : c==4 ? nc==8 ? s(x,7) : s(x,0) \
- : c==5 ? nc==8 ? s(x,0) : s(x,1) \
- : c==6 ? s(x,1) \
- : s(x,2)) \
- : \
- ( c==0 ? nc==8 ? s(x,4) : s(x,3) \
- : c==1 ? nc==4 ? s(x,0) : nc==8 ? s(x,5) : s(x,4) \
- : c==2 ? nc==4 ? s(x,1) : nc==8 ? s(x,6) : s(x,5) \
- : c==3 ? nc==4 ? s(x,2) : nc==8 ? s(x,7) : s(x,0) \
- : c==4 ? nc==8 ? s(x,0) : s(x,1) \
- : c==5 ? nc==8 ? s(x,1) : s(x,2) \
- : c==6 ? s(x,2) \
- : s(x,3)))
+#define fwd_var(x,r,c)\
+ ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
+ : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
+ : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
+ : ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
#if defined(FT4_SET)
#undef dec_fmvars
-#define dec_fmvars
-#define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,ft_tab,fwd_var,rf1,c)
+#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
#elif defined(FT1_SET)
#undef dec_fmvars
-#define dec_fmvars
-#define fwd_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,ft_tab,fwd_var,rf1,c)
+#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
#else
-#define fwd_rnd(y,x,k,c) s(y,c) = fwd_mcol(no_table(x,s_box,fwd_var,rf1,c)) ^ (k)[c]
+#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
#endif
#if defined(FL4_SET)
-#define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,fl_tab,fwd_var,rf1,c)
+#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
#elif defined(FL1_SET)
-#define fwd_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,fl_tab,fwd_var,rf1,c)
+#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
#else
-#define fwd_lrnd(y,x,k,c) s(y,c) = no_table(x,s_box,fwd_var,rf1,c) ^ (k)[c]
+#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
#endif
-aes_rval aes_enc_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])
-{ uint32_t locals(b0, b1);
- const uint32_t *kp = cx->k_sch;
- dec_fmvars /* declare variables for fwd_mcol() if needed */
+AES_RETURN aes_xi(encrypt)(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
+{ uint32_t locals(b0, b1);
+ const uint32_t *kp;
+#if defined( dec_fmvars )
+ dec_fmvars; /* declare variables for fwd_mcol() if needed */
+#endif
- if(!(cx->n_blk & 1)) return aes_bad;
+ if(cx->inf.b[0] != 10 * AES_BLOCK_SIZE && cx->inf.b[0] != 12 * AES_BLOCK_SIZE && cx->inf.b[0] != 14 * AES_BLOCK_SIZE)
+ return EXIT_FAILURE;
- state_in(b0, in_blk, kp);
+ kp = cx->ks;
+ state_in(b0, in, kp);
#if (ENC_UNROLL == FULL)
- kp += (cx->n_rnd - 9) * nc;
-
- switch(cx->n_rnd)
+ switch(cx->inf.b[0])
{
- case 14: round(fwd_rnd, b1, b0, kp - 4 * nc);
- round(fwd_rnd, b0, b1, kp - 3 * nc);
- case 12: round(fwd_rnd, b1, b0, kp - 2 * nc);
- round(fwd_rnd, b0, b1, kp - nc);
- case 10: round(fwd_rnd, b1, b0, kp );
- round(fwd_rnd, b0, b1, kp + nc);
- round(fwd_rnd, b1, b0, kp + 2 * nc);
- round(fwd_rnd, b0, b1, kp + 3 * nc);
- round(fwd_rnd, b1, b0, kp + 4 * nc);
- round(fwd_rnd, b0, b1, kp + 5 * nc);
- round(fwd_rnd, b1, b0, kp + 6 * nc);
- round(fwd_rnd, b0, b1, kp + 7 * nc);
- round(fwd_rnd, b1, b0, kp + 8 * nc);
- round(fwd_lrnd, b0, b1, kp + 9 * nc);
+ case 14 * AES_BLOCK_SIZE:
+ round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
+ round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
+ kp += 2 * N_COLS;
+ case 12 * AES_BLOCK_SIZE:
+ round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
+ round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
+ kp += 2 * N_COLS;
+ case 10 * AES_BLOCK_SIZE:
+ round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
+ round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
+ round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
+ round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
+ round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
+ round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
+ round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
+ round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
+ round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
+ round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
}
+
#else
#if (ENC_UNROLL == PARTIAL)
{ uint32_t rnd;
- for(rnd = 0; rnd < (cx->n_rnd >> 1) - 1; ++rnd)
+ for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1ul; ++rnd)
{
- kp += nc;
+ kp += N_COLS;
round(fwd_rnd, b1, b0, kp);
- kp += nc;
+ kp += N_COLS;
round(fwd_rnd, b0, b1, kp);
}
- kp += nc;
+ kp += N_COLS;
round(fwd_rnd, b1, b0, kp);
#else
- { uint32_t rnd, *p0 = b0, *p1 = b1, *pt;
- for(rnd = 0; rnd < cx->n_rnd - 1; ++rnd)
+ { uint32_t rnd;
+ for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1ul; ++rnd)
{
- kp += nc;
- round(fwd_rnd, p1, p0, kp);
- pt = p0, p0 = p1, p1 = pt;
+ kp += N_COLS;
+ round(fwd_rnd, b1, b0, kp);
+ l_copy(b0, b1);
}
#endif
- kp += nc;
+ kp += N_COLS;
round(fwd_lrnd, b0, b1, kp);
}
#endif
- state_out(out_blk, b0);
- return aes_good;
+ state_out(out, b0);
+ return EXIT_SUCCESS;
}
#endif
-#if defined(DECRYPTION)
-
-#define inv_var(x,r,c) \
- ( r==0 ? \
- ( c==0 ? s(x,0) \
- : c==1 ? s(x,1) \
- : c==2 ? s(x,2) \
- : c==3 ? s(x,3) \
- : c==4 ? s(x,4) \
- : c==5 ? s(x,5) \
- : c==6 ? s(x,6) \
- : s(x,7)) \
- : r==1 ? \
- ( c==0 ? nc==4 ? s(x,3) : nc==8 ? s(x,7) : s(x,5) \
- : c==1 ? s(x,0) \
- : c==2 ? s(x,1) \
- : c==3 ? s(x,2) \
- : c==4 ? s(x,3) \
- : c==5 ? s(x,4) \
- : c==6 ? s(x,5) \
- : s(x,6)) \
- : r==2 ? \
- ( c==0 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \
- : c==1 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \
- : c==2 ? nc==8 ? s(x,7) : s(x,0) \
- : c==3 ? nc==8 ? s(x,0) : s(x,1) \
- : c==4 ? nc==8 ? s(x,1) : s(x,2) \
- : c==5 ? nc==8 ? s(x,2) : s(x,3) \
- : c==6 ? s(x,3) \
- : s(x,4)) \
- : \
- ( c==0 ? nc==4 ? s(x,1) : nc==8 ? s(x,4) : s(x,3) \
- : c==1 ? nc==4 ? s(x,2) : nc==8 ? s(x,5) : s(x,4) \
- : c==2 ? nc==4 ? s(x,3) : nc==8 ? s(x,6) : s(x,5) \
- : c==3 ? nc==8 ? s(x,7) : s(x,0) \
- : c==4 ? nc==8 ? s(x,0) : s(x,1) \
- : c==5 ? nc==8 ? s(x,1) : s(x,2) \
- : c==6 ? s(x,2) \
- : s(x,3)))
+#if ( FUNCS_IN_C & DECRYPTION_IN_C)
+
+/* Visual C++ .Net v7.1 provides the fastest encryption code when using
+ Pentium optimisation with small code but this is poor for decryption
+ so we need to control this with the following VC++ pragmas
+*/
+
+#if defined( _MSC_VER ) && !defined( _WIN64 ) && !defined( __clang__ )
+#pragma optimize( "t", on )
+#endif
+
+/* Given the column (c) of the output state variable, the following
+ macros give the input state variables which are needed in its
+ computation for each row (r) of the state. All the alternative
+ macros give the same end values but expand into different ways
+ of calculating these values. In particular the complex macro
+ used for dynamically variable block sizes is designed to expand
+ to a compile time constant whenever possible but will expand to
+ conditional clauses on some branches (I am grateful to Frank
+ Yellin for this construction)
+*/
+
+#define inv_var(x,r,c)\
+ ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
+ : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
+ : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
+ : ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
#if defined(IT4_SET)
#undef dec_imvars
-#define dec_imvars
-#define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,it_tab,inv_var,rf1,c)
+#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
#elif defined(IT1_SET)
#undef dec_imvars
-#define dec_imvars
-#define inv_rnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,upr,it_tab,inv_var,rf1,c)
+#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
#else
-#define inv_rnd(y,x,k,c) s(y,c) = inv_mcol(no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c])
+#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
#endif
#if defined(IL4_SET)
-#define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ four_tables(x,il_tab,inv_var,rf1,c)
+#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
#elif defined(IL1_SET)
-#define inv_lrnd(y,x,k,c) s(y,c)= (k)[c] ^ one_table(x,ups,il_tab,inv_var,rf1,c)
+#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
+#else
+#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
+#endif
+
+/* This code can work with the decryption key schedule in the */
+/* order that is used for encryption (where the 1st decryption */
+/* round key is at the high end ot the schedule) or with a key */
+/* schedule that has been reversed to put the 1st decryption */
+/* round key at the low end of the schedule in memory (when */
+/* AES_REV_DKS is defined) */
+
+#ifdef AES_REV_DKS
+#define key_ofs 0
+#define rnd_key(n) (kp + n * N_COLS)
#else
-#define inv_lrnd(y,x,k,c) s(y,c) = no_table(x,inv_s_box,inv_var,rf1,c) ^ (k)[c]
+#define key_ofs 1
+#define rnd_key(n) (kp - n * N_COLS)
#endif
-aes_rval aes_dec_blk(const unsigned char in_blk[], unsigned char out_blk[], const aes_ctx cx[1])
+AES_RETURN aes_xi(decrypt)(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
{ uint32_t locals(b0, b1);
- const uint32_t *kp = cx->k_sch + nc * cx->n_rnd;
- dec_imvars /* declare variables for inv_mcol() if needed */
+#if defined( dec_imvars )
+ dec_imvars; /* declare variables for inv_mcol() if needed */
+#endif
+ const uint32_t *kp;
- if(!(cx->n_blk & 2)) return aes_bad;
+ if(cx->inf.b[0] != 10 * AES_BLOCK_SIZE && cx->inf.b[0] != 12 * AES_BLOCK_SIZE && cx->inf.b[0] != 14 * AES_BLOCK_SIZE)
+ return EXIT_FAILURE;
- state_in(b0, in_blk, kp);
+ kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
+ state_in(b0, in, kp);
#if (DEC_UNROLL == FULL)
- kp = cx->k_sch + 9 * nc;
- switch(cx->n_rnd)
+ kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
+ switch(cx->inf.b[0])
{
- case 14: round(inv_rnd, b1, b0, kp + 4 * nc);
- round(inv_rnd, b0, b1, kp + 3 * nc);
- case 12: round(inv_rnd, b1, b0, kp + 2 * nc);
- round(inv_rnd, b0, b1, kp + nc );
- case 10: round(inv_rnd, b1, b0, kp );
- round(inv_rnd, b0, b1, kp - nc);
- round(inv_rnd, b1, b0, kp - 2 * nc);
- round(inv_rnd, b0, b1, kp - 3 * nc);
- round(inv_rnd, b1, b0, kp - 4 * nc);
- round(inv_rnd, b0, b1, kp - 5 * nc);
- round(inv_rnd, b1, b0, kp - 6 * nc);
- round(inv_rnd, b0, b1, kp - 7 * nc);
- round(inv_rnd, b1, b0, kp - 8 * nc);
- round(inv_lrnd, b0, b1, kp - 9 * nc);
+ case 14 * AES_BLOCK_SIZE:
+ round(inv_rnd, b1, b0, rnd_key(-13));
+ round(inv_rnd, b0, b1, rnd_key(-12));
+ case 12 * AES_BLOCK_SIZE:
+ round(inv_rnd, b1, b0, rnd_key(-11));
+ round(inv_rnd, b0, b1, rnd_key(-10));
+ case 10 * AES_BLOCK_SIZE:
+ round(inv_rnd, b1, b0, rnd_key(-9));
+ round(inv_rnd, b0, b1, rnd_key(-8));
+ round(inv_rnd, b1, b0, rnd_key(-7));
+ round(inv_rnd, b0, b1, rnd_key(-6));
+ round(inv_rnd, b1, b0, rnd_key(-5));
+ round(inv_rnd, b0, b1, rnd_key(-4));
+ round(inv_rnd, b1, b0, rnd_key(-3));
+ round(inv_rnd, b0, b1, rnd_key(-2));
+ round(inv_rnd, b1, b0, rnd_key(-1));
+ round(inv_lrnd, b0, b1, rnd_key( 0));
}
+
#else
#if (DEC_UNROLL == PARTIAL)
{ uint32_t rnd;
- for(rnd = 0; rnd < (cx->n_rnd >> 1) - 1; ++rnd)
+ for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1ul; ++rnd)
{
- kp -= nc;
+ kp = rnd_key(1);
round(inv_rnd, b1, b0, kp);
- kp -= nc;
+ kp = rnd_key(1);
round(inv_rnd, b0, b1, kp);
}
- kp -= nc;
+ kp = rnd_key(1);
round(inv_rnd, b1, b0, kp);
#else
- { uint32_t rnd, *p0 = b0, *p1 = b1, *pt;
- for(rnd = 0; rnd < cx->n_rnd - 1; ++rnd)
+ { uint32_t rnd;
+ for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1ul; ++rnd)
{
- kp -= nc;
- round(inv_rnd, p1, p0, kp);
- pt = p0, p0 = p1, p1 = pt;
+ kp = rnd_key(1);
+ round(inv_rnd, b1, b0, kp);
+ l_copy(b0, b1);
}
#endif
- kp -= nc;
+ kp = rnd_key(1);
round(inv_lrnd, b0, b1, kp);
- }
+ }
#endif
- state_out(out_blk, b0);
- return aes_good;
+ state_out(out, b0);
+ return EXIT_SUCCESS;
}
#endif
+
+#if defined(__cplusplus)
+}
+#endif