aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/fipsmodule/rsa/rsa.c
blob: 8babba1829f75b2c24c708730c3be386d87f8e6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.] */

#include <openssl/rsa.h>

#include <assert.h>
#include <limits.h>
#include <string.h>

#include <openssl/bn.h>
#include <openssl/digest.h>
#include <openssl/engine.h>
#include <openssl/err.h>
#include <openssl/ex_data.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/sha.h>
#include <openssl/thread.h>

#include "../bn/internal.h"
#include "../delocate.h"
#include "../../internal.h"
#include "internal.h"


// RSA_R_BLOCK_TYPE_IS_NOT_02 is part of the legacy SSLv23 padding scheme.
// Cryptography.io depends on this error code.
OPENSSL_DECLARE_ERROR_REASON(RSA, BLOCK_TYPE_IS_NOT_02)

DEFINE_STATIC_EX_DATA_CLASS(g_rsa_ex_data_class)

static int bn_dup_into(BIGNUM **dst, const BIGNUM *src) {
  if (src == NULL) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_PASSED_NULL_PARAMETER);
    return 0;
  }

  BN_free(*dst);
  *dst = BN_dup(src);
  return *dst != NULL;
}

RSA *RSA_new_public_key(const BIGNUM *n, const BIGNUM *e) {
  RSA *rsa = RSA_new();
  if (rsa == NULL ||               //
      !bn_dup_into(&rsa->n, n) ||  //
      !bn_dup_into(&rsa->e, e) ||  //
      !RSA_check_key(rsa)) {
    RSA_free(rsa);
    return NULL;
  }

  return rsa;
}

RSA *RSA_new_private_key(const BIGNUM *n, const BIGNUM *e, const BIGNUM *d,
                         const BIGNUM *p, const BIGNUM *q, const BIGNUM *dmp1,
                         const BIGNUM *dmq1, const BIGNUM *iqmp) {
  RSA *rsa = RSA_new();
  if (rsa == NULL ||                     //
      !bn_dup_into(&rsa->n, n) ||        //
      !bn_dup_into(&rsa->e, e) ||        //
      !bn_dup_into(&rsa->d, d) ||        //
      !bn_dup_into(&rsa->p, p) ||        //
      !bn_dup_into(&rsa->q, q) ||        //
      !bn_dup_into(&rsa->dmp1, dmp1) ||  //
      !bn_dup_into(&rsa->dmq1, dmq1) ||  //
      !bn_dup_into(&rsa->iqmp, iqmp) ||  //
      !RSA_check_key(rsa)) {
    RSA_free(rsa);
    return NULL;
  }

  return rsa;
}

RSA *RSA_new_private_key_no_crt(const BIGNUM *n, const BIGNUM *e,
                                const BIGNUM *d) {
  RSA *rsa = RSA_new();
  if (rsa == NULL ||               //
      !bn_dup_into(&rsa->n, n) ||  //
      !bn_dup_into(&rsa->e, e) ||  //
      !bn_dup_into(&rsa->d, d) ||  //
      !RSA_check_key(rsa)) {
    RSA_free(rsa);
    return NULL;
  }

  return rsa;
}

RSA *RSA_new_private_key_no_e(const BIGNUM *n, const BIGNUM *d) {
  RSA *rsa = RSA_new();
  if (rsa == NULL) {
    return NULL;
  }

  rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT;
  if (!bn_dup_into(&rsa->n, n) ||  //
      !bn_dup_into(&rsa->d, d) ||  //
      !RSA_check_key(rsa)) {
    RSA_free(rsa);
    return NULL;
  }

  return rsa;
}

RSA *RSA_new_public_key_large_e(const BIGNUM *n, const BIGNUM *e) {
  RSA *rsa = RSA_new();
  if (rsa == NULL) {
    return NULL;
  }

  rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT;
  if (!bn_dup_into(&rsa->n, n) ||  //
      !bn_dup_into(&rsa->e, e) ||  //
      !RSA_check_key(rsa)) {
    RSA_free(rsa);
    return NULL;
  }

  return rsa;
}

RSA *RSA_new_private_key_large_e(const BIGNUM *n, const BIGNUM *e,
                                 const BIGNUM *d, const BIGNUM *p,
                                 const BIGNUM *q, const BIGNUM *dmp1,
                                 const BIGNUM *dmq1, const BIGNUM *iqmp) {
  RSA *rsa = RSA_new();
  if (rsa == NULL) {
    return NULL;
  }

  rsa->flags |= RSA_FLAG_LARGE_PUBLIC_EXPONENT;
  if (!bn_dup_into(&rsa->n, n) ||        //
      !bn_dup_into(&rsa->e, e) ||        //
      !bn_dup_into(&rsa->d, d) ||        //
      !bn_dup_into(&rsa->p, p) ||        //
      !bn_dup_into(&rsa->q, q) ||        //
      !bn_dup_into(&rsa->dmp1, dmp1) ||  //
      !bn_dup_into(&rsa->dmq1, dmq1) ||  //
      !bn_dup_into(&rsa->iqmp, iqmp) ||  //
      !RSA_check_key(rsa)) {
    RSA_free(rsa);
    return NULL;
  }

  return rsa;
}

RSA *RSA_new(void) { return RSA_new_method(NULL); }

RSA *RSA_new_method(const ENGINE *engine) {
  RSA *rsa = OPENSSL_zalloc(sizeof(RSA));
  if (rsa == NULL) {
    return NULL;
  }

  if (engine) {
    rsa->meth = ENGINE_get_RSA_method(engine);
  }

  if (rsa->meth == NULL) {
    rsa->meth = (RSA_METHOD *) RSA_default_method();
  }
  METHOD_ref(rsa->meth);

  rsa->references = 1;
  rsa->flags = rsa->meth->flags;
  CRYPTO_MUTEX_init(&rsa->lock);
  CRYPTO_new_ex_data(&rsa->ex_data);

  if (rsa->meth->init && !rsa->meth->init(rsa)) {
    CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data);
    CRYPTO_MUTEX_cleanup(&rsa->lock);
    METHOD_unref(rsa->meth);
    OPENSSL_free(rsa);
    return NULL;
  }

  return rsa;
}

RSA *RSA_new_method_no_e(const ENGINE *engine, const BIGNUM *n) {
  RSA *rsa = RSA_new_method(engine);
  if (rsa == NULL ||
      !bn_dup_into(&rsa->n, n)) {
    RSA_free(rsa);
    return NULL;
  }
  rsa->flags |= RSA_FLAG_NO_PUBLIC_EXPONENT;
  return rsa;
}

void RSA_free(RSA *rsa) {
  if (rsa == NULL) {
    return;
  }

  if (!CRYPTO_refcount_dec_and_test_zero(&rsa->references)) {
    return;
  }

  if (rsa->meth->finish) {
    rsa->meth->finish(rsa);
  }
  METHOD_unref(rsa->meth);

  CRYPTO_free_ex_data(g_rsa_ex_data_class_bss_get(), rsa, &rsa->ex_data);

  BN_free(rsa->n);
  BN_free(rsa->e);
  BN_free(rsa->d);
  BN_free(rsa->p);
  BN_free(rsa->q);
  BN_free(rsa->dmp1);
  BN_free(rsa->dmq1);
  BN_free(rsa->iqmp);
  rsa_invalidate_key(rsa);
  CRYPTO_MUTEX_cleanup(&rsa->lock);
  OPENSSL_free(rsa);
}

int RSA_up_ref(RSA *rsa) {
  CRYPTO_refcount_inc(&rsa->references);
  return 1;
}

unsigned RSA_bits(const RSA *rsa) { return BN_num_bits(rsa->n); }

const BIGNUM *RSA_get0_n(const RSA *rsa) { return rsa->n; }

const BIGNUM *RSA_get0_e(const RSA *rsa) { return rsa->e; }

const BIGNUM *RSA_get0_d(const RSA *rsa) { return rsa->d; }

const BIGNUM *RSA_get0_p(const RSA *rsa) { return rsa->p; }

const BIGNUM *RSA_get0_q(const RSA *rsa) { return rsa->q; }

const BIGNUM *RSA_get0_dmp1(const RSA *rsa) { return rsa->dmp1; }

const BIGNUM *RSA_get0_dmq1(const RSA *rsa) { return rsa->dmq1; }

const BIGNUM *RSA_get0_iqmp(const RSA *rsa) { return rsa->iqmp; }

void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n, const BIGNUM **out_e,
                  const BIGNUM **out_d) {
  if (out_n != NULL) {
    *out_n = rsa->n;
  }
  if (out_e != NULL) {
    *out_e = rsa->e;
  }
  if (out_d != NULL) {
    *out_d = rsa->d;
  }
}

void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p,
                      const BIGNUM **out_q) {
  if (out_p != NULL) {
    *out_p = rsa->p;
  }
  if (out_q != NULL) {
    *out_q = rsa->q;
  }
}

const RSA_PSS_PARAMS *RSA_get0_pss_params(const RSA *rsa) {
  // We do not support the id-RSASSA-PSS key encoding. If we add support later,
  // the |maskHash| field should be filled in for OpenSSL compatibility.
  return NULL;
}

void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1,
                         const BIGNUM **out_dmq1, const BIGNUM **out_iqmp) {
  if (out_dmp1 != NULL) {
    *out_dmp1 = rsa->dmp1;
  }
  if (out_dmq1 != NULL) {
    *out_dmq1 = rsa->dmq1;
  }
  if (out_iqmp != NULL) {
    *out_iqmp = rsa->iqmp;
  }
}

int RSA_set0_key(RSA *rsa, BIGNUM *n, BIGNUM *e, BIGNUM *d) {
  if ((rsa->n == NULL && n == NULL) ||
      (rsa->e == NULL && e == NULL)) {
    return 0;
  }

  if (n != NULL) {
    BN_free(rsa->n);
    rsa->n = n;
  }
  if (e != NULL) {
    BN_free(rsa->e);
    rsa->e = e;
  }
  if (d != NULL) {
    BN_free(rsa->d);
    rsa->d = d;
  }

  rsa_invalidate_key(rsa);
  return 1;
}

int RSA_set0_factors(RSA *rsa, BIGNUM *p, BIGNUM *q) {
  if ((rsa->p == NULL && p == NULL) ||
      (rsa->q == NULL && q == NULL)) {
    return 0;
  }

  if (p != NULL) {
    BN_free(rsa->p);
    rsa->p = p;
  }
  if (q != NULL) {
    BN_free(rsa->q);
    rsa->q = q;
  }

  rsa_invalidate_key(rsa);
  return 1;
}

int RSA_set0_crt_params(RSA *rsa, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp) {
  if ((rsa->dmp1 == NULL && dmp1 == NULL) ||
      (rsa->dmq1 == NULL && dmq1 == NULL) ||
      (rsa->iqmp == NULL && iqmp == NULL)) {
    return 0;
  }

  if (dmp1 != NULL) {
    BN_free(rsa->dmp1);
    rsa->dmp1 = dmp1;
  }
  if (dmq1 != NULL) {
    BN_free(rsa->dmq1);
    rsa->dmq1 = dmq1;
  }
  if (iqmp != NULL) {
    BN_free(rsa->iqmp);
    rsa->iqmp = iqmp;
  }

  rsa_invalidate_key(rsa);
  return 1;
}

static int rsa_sign_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out,
                                     size_t max_out, const uint8_t *in,
                                     size_t in_len, int padding) {
  if (rsa->meth->sign_raw) {
    return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
  }

  return rsa_default_sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
}

int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
                 const uint8_t *in, size_t in_len, int padding) {
  boringssl_ensure_rsa_self_test();
  return rsa_sign_raw_no_self_test(rsa, out_len, out, max_out, in, in_len,
                                   padding);
}

unsigned RSA_size(const RSA *rsa) {
  size_t ret = rsa->meth->size ? rsa->meth->size(rsa) : rsa_default_size(rsa);
  // RSA modulus sizes are bounded by |BIGNUM|, which must fit in |unsigned|.
  //
  // TODO(https://crbug.com/boringssl/516): Should we make this return |size_t|?
  assert(ret < UINT_MAX);
  return (unsigned)ret;
}

int RSA_is_opaque(const RSA *rsa) {
  return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE);
}

int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
                         CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) {
  int index;
  if (!CRYPTO_get_ex_new_index(g_rsa_ex_data_class_bss_get(), &index, argl,
                               argp, free_func)) {
    return -1;
  }
  return index;
}

int RSA_set_ex_data(RSA *rsa, int idx, void *arg) {
  return CRYPTO_set_ex_data(&rsa->ex_data, idx, arg);
}

void *RSA_get_ex_data(const RSA *rsa, int idx) {
  return CRYPTO_get_ex_data(&rsa->ex_data, idx);
}

// SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's
// the length of an MD5 and SHA1 hash.
static const unsigned SSL_SIG_LENGTH = 36;

// pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is
// to be signed with PKCS#1.
struct pkcs1_sig_prefix {
  // nid identifies the hash function.
  int nid;
  // hash_len is the expected length of the hash function.
  uint8_t hash_len;
  // len is the number of bytes of |bytes| which are valid.
  uint8_t len;
  // bytes contains the DER bytes.
  uint8_t bytes[19];
};

// kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with
// different hash functions.
static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = {
    {
     NID_md5,
     MD5_DIGEST_LENGTH,
     18,
     {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
      0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
    },
    {
     NID_sha1,
     SHA_DIGEST_LENGTH,
     15,
     {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
      0x00, 0x04, 0x14},
    },
    {
     NID_sha224,
     SHA224_DIGEST_LENGTH,
     19,
     {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
      0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
    },
    {
     NID_sha256,
     SHA256_DIGEST_LENGTH,
     19,
     {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
      0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
    },
    {
     NID_sha384,
     SHA384_DIGEST_LENGTH,
     19,
     {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
      0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
    },
    {
     NID_sha512,
     SHA512_DIGEST_LENGTH,
     19,
     {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
      0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
    },
    {
     NID_undef, 0, 0, {0},
    },
};

static int rsa_check_digest_size(int hash_nid, size_t digest_len) {
  if (hash_nid == NID_md5_sha1) {
    if (digest_len != SSL_SIG_LENGTH) {
      OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
      return 0;
    }
    return 1;
  }

  for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
    const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
    if (sig_prefix->nid == hash_nid) {
      if (digest_len != sig_prefix->hash_len) {
        OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
        return 0;
      }
      return 1;
    }
  }

  OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE);
  return 0;

}

int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len,
                         int *is_alloced, int hash_nid, const uint8_t *digest,
                         size_t digest_len) {
  if (!rsa_check_digest_size(hash_nid, digest_len)) {
    return 0;
  }

  if (hash_nid == NID_md5_sha1) {
    // The length should already have been checked.
    assert(digest_len == SSL_SIG_LENGTH);
    *out_msg = (uint8_t *)digest;
    *out_msg_len = digest_len;
    *is_alloced = 0;
    return 1;
  }

  for (size_t i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
    const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
    if (sig_prefix->nid != hash_nid) {
      continue;
    }

    // The length should already have been checked.
    assert(digest_len == sig_prefix->hash_len);
    const uint8_t* prefix = sig_prefix->bytes;
    size_t prefix_len = sig_prefix->len;
    size_t signed_msg_len = prefix_len + digest_len;
    if (signed_msg_len < prefix_len) {
      OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_LONG);
      return 0;
    }

    uint8_t *signed_msg = OPENSSL_malloc(signed_msg_len);
    if (!signed_msg) {
      return 0;
    }

    OPENSSL_memcpy(signed_msg, prefix, prefix_len);
    OPENSSL_memcpy(signed_msg + prefix_len, digest, digest_len);

    *out_msg = signed_msg;
    *out_msg_len = signed_msg_len;
    *is_alloced = 1;

    return 1;
  }

  OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE);
  return 0;
}

int rsa_sign_no_self_test(int hash_nid, const uint8_t *digest,
                          size_t digest_len, uint8_t *out, unsigned *out_len,
                          RSA *rsa) {
  if (rsa->meth->sign) {
    if (!rsa_check_digest_size(hash_nid, digest_len)) {
      return 0;
    }
    // All supported digest lengths fit in |unsigned|.
    assert(digest_len <= EVP_MAX_MD_SIZE);
    static_assert(EVP_MAX_MD_SIZE <= UINT_MAX, "digest too long");
    return rsa->meth->sign(hash_nid, digest, (unsigned)digest_len, out, out_len,
                           rsa);
  }

  const unsigned rsa_size = RSA_size(rsa);
  int ret = 0;
  uint8_t *signed_msg = NULL;
  size_t signed_msg_len = 0;
  int signed_msg_is_alloced = 0;
  size_t size_t_out_len;
  if (!RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
                            &signed_msg_is_alloced, hash_nid, digest,
                            digest_len) ||
      !rsa_sign_raw_no_self_test(rsa, &size_t_out_len, out, rsa_size,
                                 signed_msg, signed_msg_len,
                                 RSA_PKCS1_PADDING)) {
    goto err;
  }

  if (size_t_out_len > UINT_MAX) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_OVERFLOW);
    goto err;
  }

  *out_len = (unsigned)size_t_out_len;
  ret = 1;

err:
  if (signed_msg_is_alloced) {
    OPENSSL_free(signed_msg);
  }
  return ret;
}

int RSA_sign(int hash_nid, const uint8_t *digest, size_t digest_len,
             uint8_t *out, unsigned *out_len, RSA *rsa) {
  boringssl_ensure_rsa_self_test();

  return rsa_sign_no_self_test(hash_nid, digest, digest_len, out, out_len, rsa);
}

int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
                      const uint8_t *digest, size_t digest_len,
                      const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len) {
  if (digest_len != EVP_MD_size(md)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
    return 0;
  }

  size_t padded_len = RSA_size(rsa);
  uint8_t *padded = OPENSSL_malloc(padded_len);
  if (padded == NULL) {
    return 0;
  }

  int ret = RSA_padding_add_PKCS1_PSS_mgf1(rsa, padded, digest, md, mgf1_md,
                                           salt_len) &&
            RSA_sign_raw(rsa, out_len, out, max_out, padded, padded_len,
                         RSA_NO_PADDING);
  OPENSSL_free(padded);
  return ret;
}

int rsa_verify_no_self_test(int hash_nid, const uint8_t *digest,
                            size_t digest_len, const uint8_t *sig,
                            size_t sig_len, RSA *rsa) {
  if (rsa->n == NULL || rsa->e == NULL) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
    return 0;
  }

  const size_t rsa_size = RSA_size(rsa);
  uint8_t *buf = NULL;
  int ret = 0;
  uint8_t *signed_msg = NULL;
  size_t signed_msg_len = 0, len;
  int signed_msg_is_alloced = 0;

  if (hash_nid == NID_md5_sha1 && digest_len != SSL_SIG_LENGTH) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
    return 0;
  }

  buf = OPENSSL_malloc(rsa_size);
  if (!buf) {
    return 0;
  }

  if (!rsa_verify_raw_no_self_test(rsa, &len, buf, rsa_size, sig, sig_len,
                                   RSA_PKCS1_PADDING) ||
      !RSA_add_pkcs1_prefix(&signed_msg, &signed_msg_len,
                            &signed_msg_is_alloced, hash_nid, digest,
                            digest_len)) {
    goto out;
  }

  // Check that no other information follows the hash value (FIPS 186-4 Section
  // 5.5) and it matches the expected hash.
  if (len != signed_msg_len || OPENSSL_memcmp(buf, signed_msg, len) != 0) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE);
    goto out;
  }

  ret = 1;

out:
  OPENSSL_free(buf);
  if (signed_msg_is_alloced) {
    OPENSSL_free(signed_msg);
  }
  return ret;
}

int RSA_verify(int hash_nid, const uint8_t *digest, size_t digest_len,
               const uint8_t *sig, size_t sig_len, RSA *rsa) {
  boringssl_ensure_rsa_self_test();
  return rsa_verify_no_self_test(hash_nid, digest, digest_len, sig, sig_len,
                                 rsa);
}

int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *digest, size_t digest_len,
                        const EVP_MD *md, const EVP_MD *mgf1_md, int salt_len,
                        const uint8_t *sig, size_t sig_len) {
  if (digest_len != EVP_MD_size(md)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_INVALID_MESSAGE_LENGTH);
    return 0;
  }

  size_t em_len = RSA_size(rsa);
  uint8_t *em = OPENSSL_malloc(em_len);
  if (em == NULL) {
    return 0;
  }

  int ret = 0;
  if (!RSA_verify_raw(rsa, &em_len, em, em_len, sig, sig_len, RSA_NO_PADDING)) {
    goto err;
  }

  if (em_len != RSA_size(rsa)) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    goto err;
  }

  ret = RSA_verify_PKCS1_PSS_mgf1(rsa, digest, md, mgf1_md, em, salt_len);

err:
  OPENSSL_free(em);
  return ret;
}

static int check_mod_inverse(int *out_ok, const BIGNUM *a, const BIGNUM *ainv,
                             const BIGNUM *m, unsigned m_min_bits,
                             BN_CTX *ctx) {
  if (BN_is_negative(ainv) || BN_cmp(ainv, m) >= 0) {
    *out_ok = 0;
    return 1;
  }

  // Note |bn_mul_consttime| and |bn_div_consttime| do not scale linearly, but
  // checking |ainv| is in range bounds the running time, assuming |m|'s bounds
  // were checked by the caller.
  BN_CTX_start(ctx);
  BIGNUM *tmp = BN_CTX_get(ctx);
  int ret = tmp != NULL &&
            bn_mul_consttime(tmp, a, ainv, ctx) &&
            bn_div_consttime(NULL, tmp, tmp, m, m_min_bits, ctx);
  if (ret) {
    *out_ok = BN_is_one(tmp);
  }
  BN_CTX_end(ctx);
  return ret;
}

int RSA_check_key(const RSA *key) {
  // TODO(davidben): RSA key initialization is spread across
  // |rsa_check_public_key|, |RSA_check_key|, |freeze_private_key|, and
  // |BN_MONT_CTX_set_locked| as a result of API issues. See
  // https://crbug.com/boringssl/316. As a result, we inconsistently check RSA
  // invariants. We should fix this and integrate that logic.

  if (RSA_is_opaque(key)) {
    // Opaque keys can't be checked.
    return 1;
  }

  if (!rsa_check_public_key(key)) {
    return 0;
  }

  if ((key->p != NULL) != (key->q != NULL)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
    return 0;
  }

  // |key->d| must be bounded by |key->n|. This ensures bounds on |RSA_bits|
  // translate to bounds on the running time of private key operations.
  if (key->d != NULL &&
      (BN_is_negative(key->d) || BN_cmp(key->d, key->n) >= 0)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_D_OUT_OF_RANGE);
    return 0;
  }

  if (key->d == NULL || key->p == NULL) {
    // For a public key, or without p and q, there's nothing that can be
    // checked.
    return 1;
  }

  BN_CTX *ctx = BN_CTX_new();
  if (ctx == NULL) {
    return 0;
  }

  BIGNUM tmp, de, pm1, qm1, dmp1, dmq1;
  int ok = 0;
  BN_init(&tmp);
  BN_init(&de);
  BN_init(&pm1);
  BN_init(&qm1);
  BN_init(&dmp1);
  BN_init(&dmq1);

  // Check that p * q == n. Before we multiply, we check that p and q are in
  // bounds, to avoid a DoS vector in |bn_mul_consttime| below. Note that
  // n was bound by |rsa_check_public_key|. This also implicitly checks p and q
  // are odd, which is a necessary condition for Montgomery reduction.
  if (BN_is_negative(key->p) || BN_cmp(key->p, key->n) >= 0 ||
      BN_is_negative(key->q) || BN_cmp(key->q, key->n) >= 0) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q);
    goto out;
  }
  if (!bn_mul_consttime(&tmp, key->p, key->q, ctx)) {
    OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
    goto out;
  }
  if (BN_cmp(&tmp, key->n) != 0) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_N_NOT_EQUAL_P_Q);
    goto out;
  }

  // d must be an inverse of e mod the Carmichael totient, lcm(p-1, q-1), but it
  // may be unreduced because other implementations use the Euler totient. We
  // simply check that d * e is one mod p-1 and mod q-1. Note d and e were bound
  // by earlier checks in this function.
  if (!bn_usub_consttime(&pm1, key->p, BN_value_one()) ||
      !bn_usub_consttime(&qm1, key->q, BN_value_one())) {
    OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
    goto out;
  }
  const unsigned pm1_bits = BN_num_bits(&pm1);
  const unsigned qm1_bits = BN_num_bits(&qm1);
  if (!bn_mul_consttime(&de, key->d, key->e, ctx) ||
      !bn_div_consttime(NULL, &tmp, &de, &pm1, pm1_bits, ctx) ||
      !bn_div_consttime(NULL, &de, &de, &qm1, qm1_bits, ctx)) {
    OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
    goto out;
  }

  if (!BN_is_one(&tmp) || !BN_is_one(&de)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_D_E_NOT_CONGRUENT_TO_1);
    goto out;
  }

  int has_crt_values = key->dmp1 != NULL;
  if (has_crt_values != (key->dmq1 != NULL) ||
      has_crt_values != (key->iqmp != NULL)) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
    goto out;
  }

  if (has_crt_values) {
    int dmp1_ok, dmq1_ok, iqmp_ok;
    if (!check_mod_inverse(&dmp1_ok, key->e, key->dmp1, &pm1, pm1_bits, ctx) ||
        !check_mod_inverse(&dmq1_ok, key->e, key->dmq1, &qm1, qm1_bits, ctx) ||
        // |p| is odd, so |pm1| and |p| have the same bit width. If they didn't,
        // we only need a lower bound anyway.
        !check_mod_inverse(&iqmp_ok, key->q, key->iqmp, key->p, pm1_bits,
                           ctx)) {
      OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
      goto out;
    }

    if (!dmp1_ok || !dmq1_ok || !iqmp_ok) {
      OPENSSL_PUT_ERROR(RSA, RSA_R_CRT_VALUES_INCORRECT);
      goto out;
    }
  }

  ok = 1;

out:
  BN_free(&tmp);
  BN_free(&de);
  BN_free(&pm1);
  BN_free(&qm1);
  BN_free(&dmp1);
  BN_free(&dmq1);
  BN_CTX_free(ctx);

  return ok;
}


// This is the product of the 132 smallest odd primes, from 3 to 751.
static const BN_ULONG kSmallFactorsLimbs[] = {
    TOBN(0xc4309333, 0x3ef4e3e1), TOBN(0x71161eb6, 0xcd2d655f),
    TOBN(0x95e2238c, 0x0bf94862), TOBN(0x3eb233d3, 0x24f7912b),
    TOBN(0x6b55514b, 0xbf26c483), TOBN(0x0a84d817, 0x5a144871),
    TOBN(0x77d12fee, 0x9b82210a), TOBN(0xdb5b93c2, 0x97f050b3),
    TOBN(0x4acad6b9, 0x4d6c026b), TOBN(0xeb7751f3, 0x54aec893),
    TOBN(0xdba53368, 0x36bc85c4), TOBN(0xd85a1b28, 0x7f5ec78e),
    TOBN(0x2eb072d8, 0x6b322244), TOBN(0xbba51112, 0x5e2b3aea),
    TOBN(0x36ed1a6c, 0x0e2486bf), TOBN(0x5f270460, 0xec0c5727),
    0x000017b1
};

DEFINE_LOCAL_DATA(BIGNUM, g_small_factors) {
  out->d = (BN_ULONG *) kSmallFactorsLimbs;
  out->width = OPENSSL_ARRAY_SIZE(kSmallFactorsLimbs);
  out->dmax = out->width;
  out->neg = 0;
  out->flags = BN_FLG_STATIC_DATA;
}

int RSA_check_fips(RSA *key) {
  if (RSA_is_opaque(key)) {
    // Opaque keys can't be checked.
    OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED);
    return 0;
  }

  if (!RSA_check_key(key)) {
    return 0;
  }

  BN_CTX *ctx = BN_CTX_new();
  if (ctx == NULL) {
    return 0;
  }

  BIGNUM small_gcd;
  BN_init(&small_gcd);

  int ret = 1;

  // Perform partial public key validation of RSA keys (SP 800-89 5.3.3).
  // Although this is not for primality testing, SP 800-89 cites an RSA
  // primality testing algorithm, so we use |BN_prime_checks_for_generation| to
  // match. This is only a plausibility test and we expect the value to be
  // composite, so too few iterations will cause us to reject the key, not use
  // an implausible one.
  enum bn_primality_result_t primality_result;
  if (BN_num_bits(key->e) <= 16 ||
      BN_num_bits(key->e) > 256 ||
      !BN_is_odd(key->n) ||
      !BN_is_odd(key->e) ||
      !BN_gcd(&small_gcd, key->n, g_small_factors(), ctx) ||
      !BN_is_one(&small_gcd) ||
      !BN_enhanced_miller_rabin_primality_test(&primality_result, key->n,
                                               BN_prime_checks_for_generation,
                                               ctx, NULL) ||
      primality_result != bn_non_prime_power_composite) {
    OPENSSL_PUT_ERROR(RSA, RSA_R_PUBLIC_KEY_VALIDATION_FAILED);
    ret = 0;
  }

  BN_free(&small_gcd);
  BN_CTX_free(ctx);

  if (!ret || key->d == NULL || key->p == NULL) {
    // On a failure or on only a public key, there's nothing else can be
    // checked.
    return ret;
  }

  // FIPS pairwise consistency test (FIPS 140-2 4.9.2). Per FIPS 140-2 IG,
  // section 9.9, it is not known whether |rsa| will be used for signing or
  // encryption, so either pair-wise consistency self-test is acceptable. We
  // perform a signing test.
  uint8_t data[32] = {0};
  unsigned sig_len = RSA_size(key);
  uint8_t *sig = OPENSSL_malloc(sig_len);
  if (sig == NULL) {
    return 0;
  }

  if (!RSA_sign(NID_sha256, data, sizeof(data), sig, &sig_len, key)) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    ret = 0;
    goto cleanup;
  }
  if (boringssl_fips_break_test("RSA_PWCT")) {
    data[0] = ~data[0];
  }
  if (!RSA_verify(NID_sha256, data, sizeof(data), sig, sig_len, key)) {
    OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
    ret = 0;
  }

cleanup:
  OPENSSL_free(sig);

  return ret;
}

int rsa_private_transform_no_self_test(RSA *rsa, uint8_t *out,
                                       const uint8_t *in, size_t len) {
  if (rsa->meth->private_transform) {
    return rsa->meth->private_transform(rsa, out, in, len);
  }

  return rsa_default_private_transform(rsa, out, in, len);
}

int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
                          size_t len) {
  boringssl_ensure_rsa_self_test();
  return rsa_private_transform_no_self_test(rsa, out, in, len);
}

int RSA_flags(const RSA *rsa) { return rsa->flags; }

int RSA_test_flags(const RSA *rsa, int flags) { return rsa->flags & flags; }

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx) {
  return 1;
}