aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/fipsmodule/ec/ec.c
blob: 61ecc1f337a893dd56cde6074b955a0b054e6fed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
/* Originally written by Bodo Moeller for the OpenSSL project.
 * ====================================================================
 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 *
 * Portions of the attached software ("Contribution") are developed by
 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
 *
 * The Contribution is licensed pursuant to the OpenSSL open source
 * license provided above.
 *
 * The elliptic curve binary polynomial software is originally written by
 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
 * Laboratories. */

#include <openssl/ec.h>

#include <assert.h>
#include <string.h>

#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>

#include "internal.h"
#include "../../internal.h"
#include "../bn/internal.h"
#include "../delocate.h"


static void ec_point_free(EC_POINT *point, int free_group);

static const uint8_t kP224Params[6 * 28] = {
    // p = 2^224 - 2^96 + 1
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x01,
    // a
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFE,
    // b
    0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56,
    0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43,
    0x23, 0x55, 0xFF, 0xB4,
    // x
    0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9,
    0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6,
    0x11, 0x5C, 0x1D, 0x21,
    // y
    0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6,
    0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99,
    0x85, 0x00, 0x7e, 0x34,
    // order
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, 0x13, 0xDD, 0x29, 0x45,
    0x5C, 0x5C, 0x2A, 0x3D,
};

static const uint8_t kP256Params[6 * 32] = {
    // p = 2^256 - 2^224 + 2^192 + 2^96 - 1
    0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    // a
    0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC,
    // b
    0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55,
    0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6,
    0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B,
    // x
    0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5,
    0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0,
    0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96,
    // y
    0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a,
    0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
    0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
    // order
    0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
    0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51,
};

static const uint8_t kP384Params[6 * 48] = {
    // p = 2^384 - 2^128 - 2^96 + 2^32 - 1
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
    // a
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC,
    // b
    0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B,
    0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
    0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
    0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF,
    // x
    0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E,
    0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
    0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
    0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7,
    // y
    0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf,
    0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c,
    0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce,
    0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f,
    // order
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2,
    0x48, 0xB0, 0xA7, 0x7A, 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73,
};

static const uint8_t kP521Params[6 * 66] = {
    // p = 2^521 - 1
    0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    // a
    0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC,
    // b
    0x00, 0x51, 0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F, 0x92, 0x9A,
    0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE, 0xA2, 0xDA, 0x72, 0x5B, 0x99, 0xB3,
    0x15, 0xF3, 0xB8, 0xB4, 0x89, 0x91, 0x8E, 0xF1, 0x09, 0xE1, 0x56, 0x19,
    0x39, 0x51, 0xEC, 0x7E, 0x93, 0x7B, 0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1,
    0xBF, 0x07, 0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1, 0xEF, 0x45,
    0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00,
    // x
    0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, 0x9E, 0x3E,
    0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F,
    0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B,
    0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF,
    0xA8, 0xDE, 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E,
    0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66,
    // y
    0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a,
    0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
    0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee,
    0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
    0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe,
    0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50,
    // order
    0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86,
    0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09,
    0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F,
    0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09,
};

DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) {
  // 1.3.132.0.35
  static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23};
  out->curves[0].nid = NID_secp521r1;
  out->curves[0].oid = kOIDP521;
  out->curves[0].oid_len = sizeof(kOIDP521);
  out->curves[0].comment = "NIST P-521";
  out->curves[0].param_len = 66;
  out->curves[0].params = kP521Params;
  out->curves[0].method = EC_GFp_mont_method();

  // 1.3.132.0.34
  static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22};
  out->curves[1].nid = NID_secp384r1;
  out->curves[1].oid = kOIDP384;
  out->curves[1].oid_len = sizeof(kOIDP384);
  out->curves[1].comment = "NIST P-384";
  out->curves[1].param_len = 48;
  out->curves[1].params = kP384Params;
  out->curves[1].method = EC_GFp_mont_method();

  // 1.2.840.10045.3.1.7
  static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce,
                                     0x3d, 0x03, 0x01, 0x07};
  out->curves[2].nid = NID_X9_62_prime256v1;
  out->curves[2].oid = kOIDP256;
  out->curves[2].oid_len = sizeof(kOIDP256);
  out->curves[2].comment = "NIST P-256";
  out->curves[2].param_len = 32;
  out->curves[2].params = kP256Params;
  out->curves[2].method =
#if !defined(OPENSSL_NO_ASM) && \
    (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) &&   \
    !defined(OPENSSL_SMALL)
      EC_GFp_nistz256_method();
#else
      EC_GFp_nistp256_method();
#endif

  // 1.3.132.0.33
  static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21};
  out->curves[3].nid = NID_secp224r1;
  out->curves[3].oid = kOIDP224;
  out->curves[3].oid_len = sizeof(kOIDP224);
  out->curves[3].comment = "NIST P-224";
  out->curves[3].param_len = 28;
  out->curves[3].params = kP224Params;
  out->curves[3].method =
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
      EC_GFp_nistp224_method();
#else
      EC_GFp_mont_method();
#endif
}

EC_GROUP *ec_group_new(const EC_METHOD *meth) {
  EC_GROUP *ret;

  if (meth == NULL) {
    OPENSSL_PUT_ERROR(EC, EC_R_SLOT_FULL);
    return NULL;
  }

  if (meth->group_init == 0) {
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return NULL;
  }

  ret = OPENSSL_malloc(sizeof(EC_GROUP));
  if (ret == NULL) {
    return NULL;
  }
  OPENSSL_memset(ret, 0, sizeof(EC_GROUP));

  ret->references = 1;
  ret->meth = meth;
  BN_init(&ret->order);

  if (!meth->group_init(ret)) {
    OPENSSL_free(ret);
    return NULL;
  }

  return ret;
}

static int ec_group_set_generator(EC_GROUP *group, const EC_AFFINE *generator,
                                  const BIGNUM *order) {
  assert(group->generator == NULL);

  if (!BN_copy(&group->order, order)) {
    return 0;
  }
  // Store the order in minimal form, so it can be used with |BN_ULONG| arrays.
  bn_set_minimal_width(&group->order);

  BN_MONT_CTX_free(group->order_mont);
  group->order_mont = BN_MONT_CTX_new_for_modulus(&group->order, NULL);
  if (group->order_mont == NULL) {
    return 0;
  }

  group->field_greater_than_order = BN_cmp(&group->field, order) > 0;
  if (group->field_greater_than_order) {
    BIGNUM tmp;
    BN_init(&tmp);
    int ok =
        BN_sub(&tmp, &group->field, order) &&
        bn_copy_words(group->field_minus_order.words, group->field.width, &tmp);
    BN_free(&tmp);
    if (!ok) {
      return 0;
    }
  }

  group->generator = EC_POINT_new(group);
  if (group->generator == NULL) {
    return 0;
  }
  ec_affine_to_jacobian(group, &group->generator->raw, generator);
  assert(ec_felem_equal(group, &group->one, &group->generator->raw.Z));

  // Avoid a reference cycle. |group->generator| does not maintain an owning
  // pointer to |group|.
  int is_zero = CRYPTO_refcount_dec_and_test_zero(&group->references);

  assert(!is_zero);
  (void)is_zero;
  return 1;
}

EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a,
                                 const BIGNUM *b, BN_CTX *ctx) {
  if (BN_num_bytes(p) > EC_MAX_BYTES) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
    return NULL;
  }

  BN_CTX *new_ctx = NULL;
  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return NULL;
    }
  }

  // Historically, |a| and |b| were not required to be fully reduced.
  // TODO(davidben): Can this be removed?
  EC_GROUP *ret = NULL;
  BN_CTX_start(ctx);
  BIGNUM *a_reduced = BN_CTX_get(ctx);
  BIGNUM *b_reduced = BN_CTX_get(ctx);
  if (a_reduced == NULL || b_reduced == NULL ||
      !BN_nnmod(a_reduced, a, p, ctx) ||
      !BN_nnmod(b_reduced, b, p, ctx)) {
    goto err;
  }

  ret = ec_group_new(EC_GFp_mont_method());
  if (ret == NULL ||
      !ret->meth->group_set_curve(ret, p, a_reduced, b_reduced, ctx)) {
    EC_GROUP_free(ret);
    ret = NULL;
    goto err;
  }

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  return ret;
}

int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
                           const BIGNUM *order, const BIGNUM *cofactor) {
  if (group->curve_name != NID_undef || group->generator != NULL ||
      generator->group != group) {
    // |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by
    // |EC_GROUP_new_curve_GFp| and may only used once on each group.
    // |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a
    // copy, so that |generator->group->generator| is set correctly.
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  if (BN_num_bytes(order) > EC_MAX_BYTES) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
    return 0;
  }

  // Require a cofactor of one for custom curves, which implies prime order.
  if (!BN_is_one(cofactor)) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR);
    return 0;
  }

  // Require that p < 2×order. This simplifies some ECDSA operations.
  //
  // Note any curve which did not satisfy this must have been invalid or use a
  // tiny prime (less than 17). See the proof in |field_element_to_scalar| in
  // the ECDSA implementation.
  int ret = 0;
  BIGNUM *tmp = BN_new();
  if (tmp == NULL ||
      !BN_lshift1(tmp, order)) {
    goto err;
  }
  if (BN_cmp(tmp, &group->field) <= 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
    goto err;
  }

  EC_AFFINE affine;
  if (!ec_jacobian_to_affine(group, &affine, &generator->raw) ||
      !ec_group_set_generator(group, &affine, order)) {
    goto err;
  }

  ret = 1;

err:
  BN_free(tmp);
  return ret;
}

static EC_GROUP *ec_group_new_from_data(const struct built_in_curve *curve) {
  EC_GROUP *group = NULL;
  BIGNUM *p = NULL, *a = NULL, *b = NULL, *order = NULL;
  int ok = 0;

  BN_CTX *ctx = BN_CTX_new();
  if (ctx == NULL) {
    goto err;
  }

  const unsigned param_len = curve->param_len;
  const uint8_t *params = curve->params;

  if (!(p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) ||
      !(a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) ||
      !(b = BN_bin2bn(params + 2 * param_len, param_len, NULL)) ||
      !(order = BN_bin2bn(params + 5 * param_len, param_len, NULL))) {
    OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
    goto err;
  }

  group = ec_group_new(curve->method);
  if (group == NULL ||
      !group->meth->group_set_curve(group, p, a, b, ctx)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB);
    goto err;
  }

  EC_AFFINE G;
  EC_FELEM x, y;
  if (!ec_felem_from_bytes(group, &x, params + 3 * param_len, param_len) ||
      !ec_felem_from_bytes(group, &y, params + 4 * param_len, param_len) ||
      !ec_point_set_affine_coordinates(group, &G, &x, &y)) {
    goto err;
  }

  if (!ec_group_set_generator(group, &G, order)) {
    goto err;
  }

  ok = 1;

err:
  if (!ok) {
    EC_GROUP_free(group);
    group = NULL;
  }
  BN_CTX_free(ctx);
  BN_free(p);
  BN_free(a);
  BN_free(b);
  BN_free(order);
  return group;
}

// Built-in groups are allocated lazily and static once allocated.
// TODO(davidben): Make these actually static. https://crbug.com/boringssl/20.
struct built_in_groups_st {
  EC_GROUP *groups[OPENSSL_NUM_BUILT_IN_CURVES];
};
DEFINE_BSS_GET(struct built_in_groups_st, built_in_groups)
DEFINE_STATIC_MUTEX(built_in_groups_lock)

EC_GROUP *EC_GROUP_new_by_curve_name(int nid) {
  struct built_in_groups_st *groups = built_in_groups_bss_get();
  EC_GROUP **group_ptr = NULL;
  const struct built_in_curves *const curves = OPENSSL_built_in_curves();
  const struct built_in_curve *curve = NULL;
  for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) {
    if (curves->curves[i].nid == nid) {
      curve = &curves->curves[i];
      group_ptr = &groups->groups[i];
      break;
    }
  }

  if (curve == NULL) {
    OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP);
    return NULL;
  }

  CRYPTO_STATIC_MUTEX_lock_read(built_in_groups_lock_bss_get());
  EC_GROUP *ret = *group_ptr;
  CRYPTO_STATIC_MUTEX_unlock_read(built_in_groups_lock_bss_get());
  if (ret != NULL) {
    return ret;
  }

  ret = ec_group_new_from_data(curve);
  if (ret == NULL) {
    return NULL;
  }

  EC_GROUP *to_free = NULL;
  CRYPTO_STATIC_MUTEX_lock_write(built_in_groups_lock_bss_get());
  if (*group_ptr == NULL) {
    *group_ptr = ret;
    // Filling in |ret->curve_name| makes |EC_GROUP_free| and |EC_GROUP_dup|
    // into no-ops. At this point, |ret| is considered static.
    ret->curve_name = nid;
  } else {
    to_free = ret;
    ret = *group_ptr;
  }
  CRYPTO_STATIC_MUTEX_unlock_write(built_in_groups_lock_bss_get());

  EC_GROUP_free(to_free);
  return ret;
}

void EC_GROUP_free(EC_GROUP *group) {
  if (group == NULL ||
      // Built-in curves are static.
      group->curve_name != NID_undef ||
      !CRYPTO_refcount_dec_and_test_zero(&group->references)) {
    return;
  }

  if (group->meth->group_finish != NULL) {
    group->meth->group_finish(group);
  }

  ec_point_free(group->generator, 0 /* don't free group */);
  BN_free(&group->order);
  BN_MONT_CTX_free(group->order_mont);

  OPENSSL_free(group);
}

EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) {
  if (a == NULL ||
      // Built-in curves are static.
      a->curve_name != NID_undef) {
    return (EC_GROUP *)a;
  }

  // Groups are logically immutable (but for |EC_GROUP_set_generator| which must
  // be called early on), so we simply take a reference.
  EC_GROUP *group = (EC_GROUP *)a;
  CRYPTO_refcount_inc(&group->references);
  return group;
}

int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) {
  // Note this function returns 0 if equal and non-zero otherwise.
  if (a == b) {
    return 0;
  }
  if (a->curve_name != b->curve_name) {
    return 1;
  }
  if (a->curve_name != NID_undef) {
    // Built-in curves may be compared by curve name alone.
    return 0;
  }

  // |a| and |b| are both custom curves. We compare the entire curve
  // structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes,
  // custom curve construction is sadly done in two parts) but otherwise not the
  // same object, we consider them always unequal.
  return a->meth != b->meth ||
         a->generator == NULL ||
         b->generator == NULL ||
         BN_cmp(&a->order, &b->order) != 0 ||
         BN_cmp(&a->field, &b->field) != 0 ||
         !ec_felem_equal(a, &a->a, &b->a) ||
         !ec_felem_equal(a, &a->b, &b->b) ||
         !ec_GFp_simple_points_equal(a, &a->generator->raw, &b->generator->raw);
}

const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) {
  return group->generator;
}

const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) {
  assert(!BN_is_zero(&group->order));
  return &group->order;
}

int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) {
  if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) {
    return 0;
  }
  return 1;
}

int EC_GROUP_order_bits(const EC_GROUP *group) {
  return BN_num_bits(&group->order);
}

int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor,
                          BN_CTX *ctx) {
  // All |EC_GROUP|s have cofactor 1.
  return BN_set_word(cofactor, 1);
}

int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a,
                           BIGNUM *out_b, BN_CTX *ctx) {
  return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b);
}

int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; }

unsigned EC_GROUP_get_degree(const EC_GROUP *group) {
  return BN_num_bits(&group->field);
}

const char *EC_curve_nid2nist(int nid) {
  switch (nid) {
    case NID_secp224r1:
      return "P-224";
    case NID_X9_62_prime256v1:
      return "P-256";
    case NID_secp384r1:
      return "P-384";
    case NID_secp521r1:
      return "P-521";
  }
  return NULL;
}

int EC_curve_nist2nid(const char *name) {
  if (strcmp(name, "P-224") == 0) {
    return NID_secp224r1;
  }
  if (strcmp(name, "P-256") == 0) {
    return NID_X9_62_prime256v1;
  }
  if (strcmp(name, "P-384") == 0) {
    return NID_secp384r1;
  }
  if (strcmp(name, "P-521") == 0) {
    return NID_secp521r1;
  }
  return NID_undef;
}

EC_POINT *EC_POINT_new(const EC_GROUP *group) {
  if (group == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    return NULL;
  }

  EC_POINT *ret = OPENSSL_malloc(sizeof *ret);
  if (ret == NULL) {
    return NULL;
  }

  ret->group = EC_GROUP_dup(group);
  ec_GFp_simple_point_init(&ret->raw);
  return ret;
}

static void ec_point_free(EC_POINT *point, int free_group) {
  if (!point) {
    return;
  }
  if (free_group) {
    EC_GROUP_free(point->group);
  }
  OPENSSL_free(point);
}

void EC_POINT_free(EC_POINT *point) {
  ec_point_free(point, 1 /* free group */);
}

void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); }

int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) {
  if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  if (dest == src) {
    return 1;
  }
  ec_GFp_simple_point_copy(&dest->raw, &src->raw);
  return 1;
}

EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) {
  if (a == NULL) {
    return NULL;
  }

  EC_POINT *ret = EC_POINT_new(group);
  if (ret == NULL ||
      !EC_POINT_copy(ret, a)) {
    EC_POINT_free(ret);
    return NULL;
  }

  return ret;
}

int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) {
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  ec_GFp_simple_point_set_to_infinity(group, &point->raw);
  return 1;
}

int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  return ec_GFp_simple_is_at_infinity(group, &point->raw);
}

int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
                         BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  return ec_GFp_simple_is_on_curve(group, &point->raw);
}

int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
                 BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, a->group, NULL) != 0 ||
      EC_GROUP_cmp(group, b->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return -1;
  }

  // Note |EC_POINT_cmp| returns zero for equality and non-zero for inequality.
  return ec_GFp_simple_points_equal(group, &a->raw, &b->raw) ? 0 : 1;
}

int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
                                        const EC_POINT *point, BIGNUM *x,
                                        BIGNUM *y, BN_CTX *ctx) {
  if (group->meth->point_get_affine_coordinates == 0) {
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  EC_FELEM x_felem, y_felem;
  if (!group->meth->point_get_affine_coordinates(group, &point->raw,
                                                 x == NULL ? NULL : &x_felem,
                                                 y == NULL ? NULL : &y_felem) ||
      (x != NULL && !ec_felem_to_bignum(group, x, &x_felem)) ||
      (y != NULL && !ec_felem_to_bignum(group, y, &y_felem))) {
    return 0;
  }
  return 1;
}

int EC_POINT_get_affine_coordinates(const EC_GROUP *group,
                                    const EC_POINT *point, BIGNUM *x, BIGNUM *y,
                                    BN_CTX *ctx) {
  return EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx);
}

void ec_affine_to_jacobian(const EC_GROUP *group, EC_RAW_POINT *out,
                           const EC_AFFINE *p) {
  out->X = p->X;
  out->Y = p->Y;
  out->Z = group->one;
}

int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out,
                          const EC_RAW_POINT *p) {
  return group->meth->point_get_affine_coordinates(group, p, &out->X, &out->Y);
}

int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out,
                                const EC_RAW_POINT *in, size_t num) {
  if (group->meth->jacobian_to_affine_batch == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }
  return group->meth->jacobian_to_affine_batch(group, out, in, num);
}

int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out,
                                    const EC_FELEM *x, const EC_FELEM *y) {
  void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
                          const EC_FELEM *b) = group->meth->felem_mul;
  void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
      group->meth->felem_sqr;

  // Check if the point is on the curve.
  EC_FELEM lhs, rhs;
  felem_sqr(group, &lhs, y);                   // lhs = y^2
  felem_sqr(group, &rhs, x);                   // rhs = x^2
  ec_felem_add(group, &rhs, &rhs, &group->a);  // rhs = x^2 + a
  felem_mul(group, &rhs, &rhs, x);             // rhs = x^3 + ax
  ec_felem_add(group, &rhs, &rhs, &group->b);  // rhs = x^3 + ax + b
  if (!ec_felem_equal(group, &lhs, &rhs)) {
    OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE);
    // In the event of an error, defend against the caller not checking the
    // return value by setting a known safe value. Note this may not be possible
    // if the caller is in the process of constructing an arbitrary group and
    // the generator is missing.
    if (group->generator != NULL) {
      assert(ec_felem_equal(group, &group->one, &group->generator->raw.Z));
      out->X = group->generator->raw.X;
      out->Y = group->generator->raw.Y;
    }
    return 0;
  }

  out->X = *x;
  out->Y = *y;
  return 1;
}

int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
                                        const BIGNUM *x, const BIGNUM *y,
                                        BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }

  if (x == NULL || y == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    return 0;
  }

  EC_FELEM x_felem, y_felem;
  EC_AFFINE affine;
  if (!ec_bignum_to_felem(group, &x_felem, x) ||
      !ec_bignum_to_felem(group, &y_felem, y) ||
      !ec_point_set_affine_coordinates(group, &affine, &x_felem, &y_felem)) {
    // In the event of an error, defend against the caller not checking the
    // return value by setting a known safe value.
    ec_set_to_safe_point(group, &point->raw);
    return 0;
  }

  ec_affine_to_jacobian(group, &point->raw, &affine);
  return 1;
}

int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
                                    const BIGNUM *x, const BIGNUM *y,
                                    BN_CTX *ctx) {
  return EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx);
}

int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                 const EC_POINT *b, BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
      EC_GROUP_cmp(group, a->group, NULL) != 0 ||
      EC_GROUP_cmp(group, b->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  group->meth->add(group, &r->raw, &a->raw, &b->raw);
  return 1;
}

int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                 BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
      EC_GROUP_cmp(group, a->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  group->meth->dbl(group, &r->raw, &a->raw);
  return 1;
}


int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) {
  if (EC_GROUP_cmp(group, a->group, NULL) != 0) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }
  ec_GFp_simple_invert(group, &a->raw);
  return 1;
}

static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
                                      const BIGNUM *in, BN_CTX *ctx) {
  if (ec_bignum_to_scalar(group, out, in)) {
    return 1;
  }

  ERR_clear_error();

  // This is an unusual input, so we do not guarantee constant-time processing.
  const BIGNUM *order = &group->order;
  BN_CTX_start(ctx);
  BIGNUM *tmp = BN_CTX_get(ctx);
  int ok = tmp != NULL &&
           BN_nnmod(tmp, in, order, ctx) &&
           ec_bignum_to_scalar(group, out, tmp);
  BN_CTX_end(ctx);
  return ok;
}

int ec_point_mul_no_self_test(const EC_GROUP *group, EC_POINT *r,
                              const BIGNUM *g_scalar, const EC_POINT *p,
                              const BIGNUM *p_scalar, BN_CTX *ctx) {
  // Previously, this function set |r| to the point at infinity if there was
  // nothing to multiply. But, nobody should be calling this function with
  // nothing to multiply in the first place.
  if ((g_scalar == NULL && p_scalar == NULL) ||
      (p == NULL) != (p_scalar == NULL))  {
    OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    return 0;
  }

  if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
      (p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) {
    OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
    return 0;
  }

  int ret = 0;
  BN_CTX *new_ctx = NULL;
  if (ctx == NULL) {
    new_ctx = BN_CTX_new();
    if (new_ctx == NULL) {
      goto err;
    }
    ctx = new_ctx;
  }

  // If both |g_scalar| and |p_scalar| are non-NULL,
  // |ec_point_mul_scalar_public| would share the doublings between the two
  // products, which would be more efficient. However, we conservatively assume
  // the caller needs a constant-time operation. (ECDSA verification does not
  // use this function.)
  //
  // Previously, the low-level constant-time multiplication function aligned
  // with this function's calling convention, but this was misleading. Curves
  // which combined the two multiplications did not avoid the doubling case
  // in the incomplete addition formula and were not constant-time.

  if (g_scalar != NULL) {
    EC_SCALAR scalar;
    if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) ||
        !ec_point_mul_scalar_base(group, &r->raw, &scalar)) {
      goto err;
    }
  }

  if (p_scalar != NULL) {
    EC_SCALAR scalar;
    EC_RAW_POINT tmp;
    if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) ||
        !ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) {
      goto err;
    }
    if (g_scalar == NULL) {
      OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_RAW_POINT));
    } else {
      group->meth->add(group, &r->raw, &r->raw, &tmp);
    }
  }

  ret = 1;

err:
  BN_CTX_free(new_ctx);
  return ret;
}

int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
                 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
  boringssl_ensure_ecc_self_test();

  return ec_point_mul_no_self_test(group, r, g_scalar, p, p_scalar, ctx);
}

int ec_point_mul_scalar_public(const EC_GROUP *group, EC_RAW_POINT *r,
                               const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
                               const EC_SCALAR *p_scalar) {
  if (g_scalar == NULL || p_scalar == NULL || p == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    return 0;
  }

  if (group->meth->mul_public == NULL) {
    return group->meth->mul_public_batch(group, r, g_scalar, p, p_scalar, 1);
  }

  group->meth->mul_public(group, r, g_scalar, p, p_scalar);
  return 1;
}

int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_RAW_POINT *r,
                                     const EC_SCALAR *g_scalar,
                                     const EC_RAW_POINT *points,
                                     const EC_SCALAR *scalars, size_t num) {
  if (group->meth->mul_public_batch == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  return group->meth->mul_public_batch(group, r, g_scalar, points, scalars,
                                       num);
}

int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r,
                        const EC_RAW_POINT *p, const EC_SCALAR *scalar) {
  if (p == NULL || scalar == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    return 0;
  }

  group->meth->mul(group, r, p, scalar);

  // Check the result is on the curve to defend against fault attacks or bugs.
  // This has negligible cost compared to the multiplication.
  if (!ec_GFp_simple_is_on_curve(group, r)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  return 1;
}

int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r,
                             const EC_SCALAR *scalar) {
  if (scalar == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
    return 0;
  }

  group->meth->mul_base(group, r, scalar);

  // Check the result is on the curve to defend against fault attacks or bugs.
  // This has negligible cost compared to the multiplication.
  if (!ec_GFp_simple_is_on_curve(group, r)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  return 1;
}

int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_RAW_POINT *r,
                              const EC_RAW_POINT *p0, const EC_SCALAR *scalar0,
                              const EC_RAW_POINT *p1, const EC_SCALAR *scalar1,
                              const EC_RAW_POINT *p2,
                              const EC_SCALAR *scalar2) {
  if (group->meth->mul_batch == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  group->meth->mul_batch(group, r, p0, scalar0, p1, scalar1, p2, scalar2);

  // Check the result is on the curve to defend against fault attacks or bugs.
  // This has negligible cost compared to the multiplication.
  if (!ec_GFp_simple_is_on_curve(group, r)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  return 1;
}

int ec_init_precomp(const EC_GROUP *group, EC_PRECOMP *out,
                    const EC_RAW_POINT *p) {
  if (group->meth->init_precomp == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  return group->meth->init_precomp(group, out, p);
}

int ec_point_mul_scalar_precomp(const EC_GROUP *group, EC_RAW_POINT *r,
                                const EC_PRECOMP *p0, const EC_SCALAR *scalar0,
                                const EC_PRECOMP *p1, const EC_SCALAR *scalar1,
                                const EC_PRECOMP *p2,
                                const EC_SCALAR *scalar2) {
  if (group->meth->mul_precomp == NULL) {
    OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }

  group->meth->mul_precomp(group, r, p0, scalar0, p1, scalar1, p2, scalar2);

  // Check the result is on the curve to defend against fault attacks or bugs.
  // This has negligible cost compared to the multiplication.
  if (!ec_GFp_simple_is_on_curve(group, r)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    return 0;
  }

  return 1;
}

void ec_point_select(const EC_GROUP *group, EC_RAW_POINT *out, BN_ULONG mask,
                      const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
  ec_felem_select(group, &out->X, mask, &a->X, &b->X);
  ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y);
  ec_felem_select(group, &out->Z, mask, &a->Z, &b->Z);
}

void ec_affine_select(const EC_GROUP *group, EC_AFFINE *out, BN_ULONG mask,
                      const EC_AFFINE *a, const EC_AFFINE *b) {
  ec_felem_select(group, &out->X, mask, &a->X, &b->X);
  ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y);
}

void ec_precomp_select(const EC_GROUP *group, EC_PRECOMP *out, BN_ULONG mask,
                       const EC_PRECOMP *a, const EC_PRECOMP *b) {
  static_assert(sizeof(out->comb) == sizeof(*out),
                "out->comb does not span the entire structure");
  for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(out->comb); i++) {
    ec_affine_select(group, &out->comb[i], mask, &a->comb[i], &b->comb[i]);
  }
}

int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
                        const EC_SCALAR *r) {
  return group->meth->cmp_x_coordinate(group, p, r);
}

int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out,
                                  const EC_RAW_POINT *p) {
  uint8_t bytes[EC_MAX_BYTES];
  size_t len;
  if (!ec_get_x_coordinate_as_bytes(group, bytes, &len, sizeof(bytes), p)) {
    return 0;
  }

  // The x-coordinate is bounded by p, but we need a scalar, bounded by the
  // order. These may not have the same size. However, we must have p < 2×order,
  // assuming p is not tiny (p >= 17).
  //
  // Thus |bytes| will fit in |order.width + 1| words, and we can reduce by
  // performing at most one subtraction.
  //
  // Proof: We only work with prime order curves, so the number of points on
  // the curve is the order. Thus Hasse's theorem gives:
  //
  //     |order - (p + 1)| <= 2×sqrt(p)
  //         p + 1 - order <= 2×sqrt(p)
  //     p + 1 - 2×sqrt(p) <= order
  //       p + 1 - 2×(p/4)  < order       (p/4 > sqrt(p) for p >= 17)
  //         p/2 < p/2 + 1  < order
  //                     p  < 2×order
  //
  // Additionally, one can manually check this property for built-in curves. It
  // is enforced for legacy custom curves in |EC_GROUP_set_generator|.
  const BIGNUM *order = &group->order;
  BN_ULONG words[EC_MAX_WORDS + 1] = {0};
  bn_big_endian_to_words(words, order->width + 1, bytes, len);
  bn_reduce_once(out->words, words, /*carry=*/words[order->width], order->d,
                 order->width);
  return 1;
}

int ec_get_x_coordinate_as_bytes(const EC_GROUP *group, uint8_t *out,
                                 size_t *out_len, size_t max_out,
                                 const EC_RAW_POINT *p) {
  size_t len = BN_num_bytes(&group->field);
  assert(len <= EC_MAX_BYTES);
  if (max_out < len) {
    OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
    return 0;
  }

  EC_FELEM x;
  if (!group->meth->point_get_affine_coordinates(group, p, &x, NULL)) {
    return 0;
  }

  ec_felem_to_bytes(group, out, out_len, &x);
  *out_len = len;
  return 1;
}

void ec_set_to_safe_point(const EC_GROUP *group, EC_RAW_POINT *out) {
  if (group->generator != NULL) {
    ec_GFp_simple_point_copy(out, &group->generator->raw);
  } else {
    // The generator can be missing if the caller is in the process of
    // constructing an arbitrary group. In this case, we give up and use the
    // point at infinity.
    ec_GFp_simple_point_set_to_infinity(group, out);
  }
}

void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {}

int EC_GROUP_get_asn1_flag(const EC_GROUP *group) {
  return OPENSSL_EC_NAMED_CURVE;
}

const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) {
  // This function exists purely to give callers a way to call
  // |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of|
  // returns NULL, so return some other garbage pointer.
  return (const EC_METHOD *)0x12340000;
}

int EC_METHOD_get_field_type(const EC_METHOD *meth) {
  return NID_X9_62_prime_field;
}

void EC_GROUP_set_point_conversion_form(EC_GROUP *group,
                                        point_conversion_form_t form) {
  if (form != POINT_CONVERSION_UNCOMPRESSED) {
    abort();
  }
}

size_t EC_get_builtin_curves(EC_builtin_curve *out_curves,
                             size_t max_num_curves) {
  const struct built_in_curves *const curves = OPENSSL_built_in_curves();

  for (size_t i = 0; i < max_num_curves && i < OPENSSL_NUM_BUILT_IN_CURVES;
       i++) {
    out_curves[i].comment = curves->curves[i].comment;
    out_curves[i].nid = curves->curves[i].nid;
  }

  return OPENSSL_NUM_BUILT_IN_CURVES;
}