/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include #include #include #include #include "../internal.h" struct stack_st { // num contains the number of valid pointers in |data|. size_t num; void **data; // sorted is non-zero if the values pointed to by |data| are in ascending // order, based on |comp|. int sorted; // num_alloc contains the number of pointers allocated in the buffer pointed // to by |data|, which may be larger than |num|. size_t num_alloc; // comp is an optional comparison function. OPENSSL_sk_cmp_func comp; }; // kMinSize is the number of pointers that will be initially allocated in a new // stack. static const size_t kMinSize = 4; OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) { OPENSSL_STACK *ret = OPENSSL_malloc(sizeof(OPENSSL_STACK)); if (ret == NULL) { return NULL; } OPENSSL_memset(ret, 0, sizeof(OPENSSL_STACK)); ret->data = OPENSSL_malloc(sizeof(void *) * kMinSize); if (ret->data == NULL) { goto err; } OPENSSL_memset(ret->data, 0, sizeof(void *) * kMinSize); ret->comp = comp; ret->num_alloc = kMinSize; return ret; err: OPENSSL_free(ret); return NULL; } OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); } size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) { if (sk == NULL) { return 0; } return sk->num; } void OPENSSL_sk_zero(OPENSSL_STACK *sk) { if (sk == NULL || sk->num == 0) { return; } OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num); sk->num = 0; sk->sorted = 0; } void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) { if (!sk || i >= sk->num) { return NULL; } return sk->data[i]; } void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) { if (!sk || i >= sk->num) { return NULL; } return sk->data[i] = value; } void OPENSSL_sk_free(OPENSSL_STACK *sk) { if (sk == NULL) { return; } OPENSSL_free(sk->data); OPENSSL_free(sk); } void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func, OPENSSL_sk_free_func free_func) { if (sk == NULL) { return; } for (size_t i = 0; i < sk->num; i++) { if (sk->data[i] != NULL) { call_free_func(free_func, sk->data[i]); } } OPENSSL_sk_free(sk); } // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func| // directly. This is undefined in C. Some callers called |sk_pop_free| directly, // so we must maintain a compatibility version for now. static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) { func(ptr); } void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) { OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func); } size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) { if (sk == NULL) { return 0; } if (sk->num >= INT_MAX) { OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); return 0; } if (sk->num_alloc <= sk->num + 1) { // Attempt to double the size of the array. size_t new_alloc = sk->num_alloc << 1; size_t alloc_size = new_alloc * sizeof(void *); void **data; // If the doubling overflowed, try to increment. if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { new_alloc = sk->num_alloc + 1; alloc_size = new_alloc * sizeof(void *); } // If the increment also overflowed, fail. if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) { return 0; } data = OPENSSL_realloc(sk->data, alloc_size); if (data == NULL) { return 0; } sk->data = data; sk->num_alloc = new_alloc; } if (where >= sk->num) { sk->data[sk->num] = p; } else { OPENSSL_memmove(&sk->data[where + 1], &sk->data[where], sizeof(void *) * (sk->num - where)); sk->data[where] = p; } sk->num++; sk->sorted = 0; return sk->num; } void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) { void *ret; if (!sk || where >= sk->num) { return NULL; } ret = sk->data[where]; if (where != sk->num - 1) { OPENSSL_memmove(&sk->data[where], &sk->data[where + 1], sizeof(void *) * (sk->num - where - 1)); } sk->num--; return ret; } void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) { if (sk == NULL) { return NULL; } for (size_t i = 0; i < sk->num; i++) { if (sk->data[i] == p) { return OPENSSL_sk_delete(sk, i); } } return NULL; } void OPENSSL_sk_delete_if(OPENSSL_STACK *sk, OPENSSL_sk_call_delete_if_func call_func, OPENSSL_sk_delete_if_func func, void *data) { if (sk == NULL) { return; } size_t new_num = 0; for (size_t i = 0; i < sk->num; i++) { if (!call_func(func, sk->data[i], data)) { sk->data[new_num] = sk->data[i]; new_num++; } } sk->num = new_num; } int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p, OPENSSL_sk_call_cmp_func call_cmp_func) { if (sk == NULL) { return 0; } if (sk->comp == NULL) { // Use pointer equality when no comparison function has been set. for (size_t i = 0; i < sk->num; i++) { if (sk->data[i] == p) { if (out_index) { *out_index = i; } return 1; } } return 0; } if (p == NULL) { return 0; } if (!OPENSSL_sk_is_sorted(sk)) { for (size_t i = 0; i < sk->num; i++) { if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) { if (out_index) { *out_index = i; } return 1; } } return 0; } // The stack is sorted, so binary search to find the element. // // |lo| and |hi| maintain a half-open interval of where the answer may be. All // indices such that |lo <= idx < hi| are candidates. size_t lo = 0, hi = sk->num; while (lo < hi) { // Bias |mid| towards |lo|. See the |r == 0| case below. size_t mid = lo + (hi - lo - 1) / 2; assert(lo <= mid && mid < hi); int r = call_cmp_func(sk->comp, p, sk->data[mid]); if (r > 0) { lo = mid + 1; // |mid| is too low. } else if (r < 0) { hi = mid; // |mid| is too high. } else { // |mid| matches. However, this function returns the earliest match, so we // can only return if the range has size one. if (hi - lo == 1) { if (out_index != NULL) { *out_index = mid; } return 1; } // The sample is biased towards |lo|. |mid| can only be |hi - 1| if // |hi - lo| was one, so this makes forward progress. assert(mid + 1 < hi); hi = mid + 1; } } assert(lo == hi); return 0; // Not found. } void *OPENSSL_sk_shift(OPENSSL_STACK *sk) { if (sk == NULL) { return NULL; } if (sk->num == 0) { return NULL; } return OPENSSL_sk_delete(sk, 0); } size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_insert(sk, p, sk->num); } void *OPENSSL_sk_pop(OPENSSL_STACK *sk) { if (sk == NULL) { return NULL; } if (sk->num == 0) { return NULL; } return OPENSSL_sk_delete(sk, sk->num - 1); } OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) { if (sk == NULL) { return NULL; } OPENSSL_STACK *ret = OPENSSL_malloc(sizeof(OPENSSL_STACK)); if (ret == NULL) { return NULL; } OPENSSL_memset(ret, 0, sizeof(OPENSSL_STACK)); ret->data = OPENSSL_malloc(sizeof(void *) * sk->num_alloc); if (ret->data == NULL) { goto err; } ret->num = sk->num; OPENSSL_memcpy(ret->data, sk->data, sizeof(void *) * sk->num); ret->sorted = sk->sorted; ret->num_alloc = sk->num_alloc; ret->comp = sk->comp; return ret; err: OPENSSL_sk_free(ret); return NULL; } static size_t parent_idx(size_t idx) { assert(idx > 0); return (idx - 1) / 2; } static size_t left_idx(size_t idx) { // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot // overflow. assert(idx <= PTRDIFF_MAX); static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow"); return 2 * idx + 1; } // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy // the heap property. Only the first |num| elements of |sk| are considered. static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func, size_t i, size_t num) { assert(i < num && num <= sk->num); for (;;) { size_t left = left_idx(i); if (left >= num) { break; // No left child. } // Swap |i| with the largest of its children. size_t next = i; if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) { next = left; } size_t right = left + 1; // Cannot overflow because |left < num|. if (right < num && call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) { next = right; } if (i == next) { break; // |i| is already larger than its children. } void *tmp = sk->data[i]; sk->data[i] = sk->data[next]; sk->data[next] = tmp; i = next; } } void OPENSSL_sk_sort(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func) { if (sk == NULL || sk->comp == NULL || sk->sorted) { return; } if (sk->num >= 2) { // |qsort| lacks a context parameter in the comparison function for us to // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to // the expected type, it is undefined behavior in C can trip sanitizers. // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See // https://stackoverflow.com/a/39561369 // // Use our own heap sort instead. This is not performance-sensitive, so we // optimize for simplicity and size. First, build a max-heap in place. for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) { down_heap(sk, call_cmp_func, i, sk->num); } // Iteratively remove the maximum element to populate the result in reverse. for (size_t i = sk->num - 1; i > 0; i--) { void *tmp = sk->data[0]; sk->data[0] = sk->data[i]; sk->data[i] = tmp; down_heap(sk, call_cmp_func, 0, i); } } sk->sorted = 1; } int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) { if (!sk) { return 1; } // Zero- and one-element lists are always sorted. return sk->sorted || (sk->comp != NULL && sk->num < 2); } OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_cmp_func comp) { OPENSSL_sk_cmp_func old = sk->comp; if (sk->comp != comp) { sk->sorted = 0; } sk->comp = comp; return old; } OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk, OPENSSL_sk_call_copy_func call_copy_func, OPENSSL_sk_copy_func copy_func, OPENSSL_sk_call_free_func call_free_func, OPENSSL_sk_free_func free_func) { OPENSSL_STACK *ret = OPENSSL_sk_dup(sk); if (ret == NULL) { return NULL; } for (size_t i = 0; i < ret->num; i++) { if (ret->data[i] == NULL) { continue; } ret->data[i] = call_copy_func(copy_func, ret->data[i]); if (ret->data[i] == NULL) { for (size_t j = 0; j < i; j++) { if (ret->data[j] != NULL) { call_free_func(free_func, ret->data[j]); } } OPENSSL_sk_free(ret); return NULL; } } return ret; } OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); } size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); } void *sk_value(const OPENSSL_STACK *sk, size_t i) { return OPENSSL_sk_value(sk, i); } void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); } size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); } void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); } void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func, OPENSSL_sk_free_func free_func) { OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func); }