// Copyright 2015 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "parse_values.h" #include #include #include #include #include namespace bssl::der { namespace { bool ParseBoolInternal(Input in, bool *out, bool relaxed) { // According to ITU-T X.690 section 8.2, a bool is encoded as a single octet // where the octet of all zeroes is FALSE and a non-zero value for the octet // is TRUE. if (in.size() != 1) { return false; } ByteReader data(in); uint8_t byte; if (!data.ReadByte(&byte)) { return false; } if (byte == 0) { *out = false; return true; } // ITU-T X.690 section 11.1 specifies that for DER, the TRUE value must be // encoded as an octet of all ones. if (byte == 0xff || relaxed) { *out = true; return true; } return false; } // Reads a positive decimal number with |digits| digits and stores it in // |*out|. This function does not check that the type of |*out| is large // enough to hold 10^digits - 1; the caller must choose an appropriate type // based on the number of digits they wish to parse. template bool DecimalStringToUint(ByteReader &in, size_t digits, UINT *out) { UINT value = 0; for (size_t i = 0; i < digits; ++i) { uint8_t digit; if (!in.ReadByte(&digit)) { return false; } if (digit < '0' || digit > '9') { return false; } value = (value * 10) + (digit - '0'); } *out = value; return true; } // Checks that the values in a GeneralizedTime struct are valid. This involves // checking that the year is 4 digits, the month is between 1 and 12, the day // is a day that exists in that month (following current leap year rules), // hours are between 0 and 23, minutes between 0 and 59, and seconds between // 0 and 60 (to allow for leap seconds; no validation is done that a leap // second is on a day that could be a leap second). bool ValidateGeneralizedTime(const GeneralizedTime &time) { if (time.month < 1 || time.month > 12) { return false; } if (time.day < 1) { return false; } if (time.hours > 23) { return false; } if (time.minutes > 59) { return false; } // Leap seconds are allowed. if (time.seconds > 60) { return false; } // validate upper bound for day of month switch (time.month) { case 4: case 6: case 9: case 11: if (time.day > 30) { return false; } break; case 1: case 3: case 5: case 7: case 8: case 10: case 12: if (time.day > 31) { return false; } break; case 2: if (time.year % 4 == 0 && (time.year % 100 != 0 || time.year % 400 == 0)) { if (time.day > 29) { return false; } } else { if (time.day > 28) { return false; } } break; default: abort(); } return true; } // Returns the number of bytes of numeric precision in a DER encoded INTEGER // value. |in| must be a valid DER encoding of an INTEGER for this to work. // // Normally the precision of the number is exactly in.size(). However when // encoding positive numbers using DER it is possible to have a leading zero // (to prevent number from being interpreted as negative). // // For instance a 160-bit positive number might take 21 bytes to encode. This // function will return 20 in such a case. size_t GetUnsignedIntegerLength(Input in) { der::ByteReader reader(in); uint8_t first_byte; if (!reader.ReadByte(&first_byte)) { return 0; // Not valid DER as |in| was empty. } if (first_byte == 0 && in.size() > 1) { return in.size() - 1; } return in.size(); } } // namespace bool ParseBool(Input in, bool *out) { return ParseBoolInternal(in, out, false /* relaxed */); } // BER interprets any non-zero value as true, while DER requires a bool to // have either all bits zero (false) or all bits one (true). To support // malformed certs, we recognized the BER encoding instead of failing to // parse. bool ParseBoolRelaxed(Input in, bool *out) { return ParseBoolInternal(in, out, true /* relaxed */); } // ITU-T X.690 section 8.3.2 specifies that an integer value must be encoded // in the smallest number of octets. If the encoding consists of more than // one octet, then the bits of the first octet and the most significant bit // of the second octet must not be all zeroes or all ones. bool IsValidInteger(Input in, bool *negative) { CBS cbs; CBS_init(&cbs, in.data(), in.size()); int negative_int; if (!CBS_is_valid_asn1_integer(&cbs, &negative_int)) { return false; } *negative = !!negative_int; return true; } bool ParseUint64(Input in, uint64_t *out) { // Reject non-minimally encoded numbers and negative numbers. bool negative; if (!IsValidInteger(in, &negative) || negative) { return false; } // Reject (non-negative) integers whose value would overflow the output type. if (GetUnsignedIntegerLength(in) > sizeof(*out)) { return false; } ByteReader reader(in); uint8_t data; uint64_t value = 0; while (reader.ReadByte(&data)) { value <<= 8; value |= data; } *out = value; return true; } bool ParseUint8(Input in, uint8_t *out) { // TODO(eroman): Implement this more directly. uint64_t value; if (!ParseUint64(in, &value)) { return false; } if (value > 0xFF) { return false; } *out = static_cast(value); return true; } BitString::BitString(Input bytes, uint8_t unused_bits) : bytes_(bytes), unused_bits_(unused_bits) { BSSL_CHECK(unused_bits < 8); BSSL_CHECK(unused_bits == 0 || !bytes.empty()); // The unused bits must be zero. BSSL_CHECK(bytes.empty() || (bytes.back() & ((1u << unused_bits) - 1)) == 0); } bool BitString::AssertsBit(size_t bit_index) const { // Index of the byte that contains the bit. size_t byte_index = bit_index / 8; // If the bit is outside of the bitstring, by definition it is not // asserted. if (byte_index >= bytes_.size()) { return false; } // Within a byte, bits are ordered from most significant to least significant. // Convert |bit_index| to an index within the |byte_index| byte, measured from // its least significant bit. uint8_t bit_index_in_byte = 7 - (bit_index - byte_index * 8); // BIT STRING parsing already guarantees that unused bits in a byte are zero // (otherwise it wouldn't be valid DER). Therefore it isn't necessary to check // |unused_bits_| uint8_t byte = bytes_[byte_index]; return 0 != (byte & (1 << bit_index_in_byte)); } std::optional ParseBitString(Input in) { ByteReader reader(in); // From ITU-T X.690, section 8.6.2.2 (applies to BER, CER, DER): // // The initial octet shall encode, as an unsigned binary integer with // bit 1 as the least significant bit, the number of unused bits in the final // subsequent octet. The number shall be in the range zero to seven. uint8_t unused_bits; if (!reader.ReadByte(&unused_bits)) { return std::nullopt; } if (unused_bits > 7) { return std::nullopt; } Input bytes; if (!reader.ReadBytes(reader.BytesLeft(), &bytes)) { return std::nullopt; // Not reachable. } // Ensure that unused bits in the last byte are set to 0. if (unused_bits > 0) { // From ITU-T X.690, section 8.6.2.3 (applies to BER, CER, DER): // // If the bitstring is empty, there shall be no subsequent octets, // and the initial octet shall be zero. if (bytes.empty()) { return std::nullopt; } uint8_t last_byte = bytes.back(); // From ITU-T X.690, section 11.2.1 (applies to CER and DER, but not BER): // // Each unused bit in the final octet of the encoding of a bit string value // shall be set to zero. uint8_t mask = 0xFF >> (8 - unused_bits); if ((mask & last_byte) != 0) { return std::nullopt; } } return BitString(bytes, unused_bits); } bool GeneralizedTime::InUTCTimeRange() const { return 1950 <= year && year < 2050; } bool operator<(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { return std::tie(lhs.year, lhs.month, lhs.day, lhs.hours, lhs.minutes, lhs.seconds) < std::tie(rhs.year, rhs.month, rhs.day, rhs.hours, rhs.minutes, rhs.seconds); } bool operator>(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { return rhs < lhs; } bool operator<=(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { return !(lhs > rhs); } bool operator>=(const GeneralizedTime &lhs, const GeneralizedTime &rhs) { return !(lhs < rhs); } bool ParseUTCTime(Input in, GeneralizedTime *value) { ByteReader reader(in); GeneralizedTime time; if (!DecimalStringToUint(reader, 2, &time.year) || !DecimalStringToUint(reader, 2, &time.month) || !DecimalStringToUint(reader, 2, &time.day) || !DecimalStringToUint(reader, 2, &time.hours) || !DecimalStringToUint(reader, 2, &time.minutes) || !DecimalStringToUint(reader, 2, &time.seconds)) { return false; } uint8_t zulu; if (!reader.ReadByte(&zulu) || zulu != 'Z' || reader.HasMore()) { return false; } if (time.year < 50) { time.year += 2000; } else { time.year += 1900; } if (!ValidateGeneralizedTime(time)) { return false; } *value = time; return true; } bool ParseGeneralizedTime(Input in, GeneralizedTime *value) { ByteReader reader(in); GeneralizedTime time; if (!DecimalStringToUint(reader, 4, &time.year) || !DecimalStringToUint(reader, 2, &time.month) || !DecimalStringToUint(reader, 2, &time.day) || !DecimalStringToUint(reader, 2, &time.hours) || !DecimalStringToUint(reader, 2, &time.minutes) || !DecimalStringToUint(reader, 2, &time.seconds)) { return false; } uint8_t zulu; if (!reader.ReadByte(&zulu) || zulu != 'Z' || reader.HasMore()) { return false; } if (!ValidateGeneralizedTime(time)) { return false; } *value = time; return true; } bool ParseIA5String(Input in, std::string *out) { for (uint8_t c : in) { if (c > 127) { return false; } } *out = BytesAsStringView(in); return true; } bool ParseVisibleString(Input in, std::string *out) { // ITU-T X.680: // VisibleString : "Defining registration number 6" + SPACE // 6 includes all the characters from '!' .. '~' (33 .. 126), space is 32. // Also ITU-T X.691 says it much more clearly: // "for VisibleString [the range] is 32 to 126 ... For VisibleString .. all // the values in the range are present." for (uint8_t c : in) { if (c < 32 || c > 126) { return false; } } *out = BytesAsStringView(in); return true; } bool ParsePrintableString(Input in, std::string *out) { for (uint8_t c : in) { if (!(OPENSSL_isalpha(c) || c == ' ' || (c >= '\'' && c <= ':') || c == '=' || c == '?')) { return false; } } *out = BytesAsStringView(in); return true; } bool ParseTeletexStringAsLatin1(Input in, std::string *out) { out->clear(); // Convert from Latin-1 to UTF-8. size_t utf8_length = in.size(); for (size_t i = 0; i < in.size(); i++) { if (in[i] > 0x7f) { utf8_length++; } } out->reserve(utf8_length); for (size_t i = 0; i < in.size(); i++) { uint8_t u = in[i]; if (u <= 0x7f) { out->push_back(u); } else { out->push_back(0xc0 | (u >> 6)); out->push_back(0x80 | (u & 0x3f)); } } BSSL_CHECK(utf8_length == out->size()); return true; } bool ParseUniversalString(Input in, std::string *out) { if (in.size() % 4 != 0) { return false; } CBS cbs; CBS_init(&cbs, in.data(), in.size()); bssl::ScopedCBB cbb; if (!CBB_init(cbb.get(), in.size())) { return false; } while (CBS_len(&cbs) != 0) { uint32_t c; if (!CBS_get_utf32_be(&cbs, &c) || // !CBB_add_utf8(cbb.get(), c)) { return false; } } out->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); return true; } bool ParseBmpString(Input in, std::string *out) { if (in.size() % 2 != 0) { return false; } CBS cbs; CBS_init(&cbs, in.data(), in.size()); bssl::ScopedCBB cbb; if (!CBB_init(cbb.get(), in.size())) { return false; } while (CBS_len(&cbs) != 0) { uint32_t c; if (!CBS_get_ucs2_be(&cbs, &c) || // !CBB_add_utf8(cbb.get(), c)) { return false; } } out->assign(CBB_data(cbb.get()), CBB_data(cbb.get()) + CBB_len(cbb.get())); return true; } } // namespace bssl::der