// Copyright 2015 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "name_constraints.h" #include #include #include #include #include #include "cert_errors.h" #include "common_cert_errors.h" #include "general_names.h" #include "input.h" #include "ip_util.h" #include "parser.h" #include "string_util.h" #include "verify_name_match.h" namespace bssl { namespace { // The name types of GeneralName that are fully supported in name constraints. // // (The other types will have the minimal checking described by RFC 5280 // section 4.2.1.10: If a name constraints extension that is marked as critical // imposes constraints on a particular name form, and an instance of // that name form appears in the subject field or subjectAltName // extension of a subsequent certificate, then the application MUST // either process the constraint or reject the certificate.) const int kSupportedNameTypes = GENERAL_NAME_RFC822_NAME | GENERAL_NAME_DNS_NAME | GENERAL_NAME_DIRECTORY_NAME | GENERAL_NAME_IP_ADDRESS; // Controls wildcard handling of DNSNameMatches. // If WildcardMatchType is WILDCARD_PARTIAL_MATCH "*.bar.com" is considered to // match the constraint "foo.bar.com". If it is WILDCARD_FULL_MATCH, "*.bar.com" // will match "bar.com" but not "foo.bar.com". enum WildcardMatchType { WILDCARD_PARTIAL_MATCH, WILDCARD_FULL_MATCH }; // Returns true if |name| falls in the subtree defined by |dns_constraint|. // RFC 5280 section 4.2.1.10: // DNS name restrictions are expressed as host.example.com. Any DNS // name that can be constructed by simply adding zero or more labels // to the left-hand side of the name satisfies the name constraint. For // example, www.host.example.com would satisfy the constraint but // host1.example.com would not. // // |wildcard_matching| controls handling of wildcard names (|name| starts with // "*."). Wildcard handling is not specified by RFC 5280, but certificate // verification allows it, name constraints must check it similarly. bool DNSNameMatches(std::string_view name, std::string_view dns_constraint, WildcardMatchType wildcard_matching) { // Everything matches the empty DNS name constraint. if (dns_constraint.empty()) { return true; } // Normalize absolute DNS names by removing the trailing dot, if any. if (!name.empty() && *name.rbegin() == '.') { name.remove_suffix(1); } if (!dns_constraint.empty() && *dns_constraint.rbegin() == '.') { dns_constraint.remove_suffix(1); } // Wildcard partial-match handling ("*.bar.com" matching name constraint // "foo.bar.com"). This only handles the case where the the dnsname and the // constraint match after removing the leftmost label, otherwise it is handled // by falling through to the check of whether the dnsname is fully within or // fully outside of the constraint. if (wildcard_matching == WILDCARD_PARTIAL_MATCH && name.size() > 2 && name[0] == '*' && name[1] == '.') { size_t dns_constraint_dot_pos = dns_constraint.find('.'); if (dns_constraint_dot_pos != std::string::npos) { std::string_view dns_constraint_domain = dns_constraint.substr(dns_constraint_dot_pos + 1); std::string_view wildcard_domain = name.substr(2); if (bssl::string_util::IsEqualNoCase(wildcard_domain, dns_constraint_domain)) { return true; } } } if (!bssl::string_util::EndsWithNoCase(name, dns_constraint)) { return false; } // Exact match. if (name.size() == dns_constraint.size()) { return true; } // If dNSName constraint starts with a dot, only subdomains should match. // (e.g., "foo.bar.com" matches constraint ".bar.com", but "bar.com" doesn't.) // RFC 5280 is ambiguous, but this matches the behavior of other platforms. if (!dns_constraint.empty() && dns_constraint[0] == '.') { dns_constraint.remove_prefix(1); } // Subtree match. if (name.size() > dns_constraint.size() && name[name.size() - dns_constraint.size() - 1] == '.') { return true; } // Trailing text matches, but not in a subtree (e.g., "foobar.com" is not a // match for "bar.com"). return false; } // Parses a GeneralSubtrees |value| and store the contents in |subtrees|. // The individual values stored into |subtrees| are not validated by this // function. // NOTE: |subtrees| is not pre-initialized by the function(it is expected to be // a default initialized object), and it will be modified regardless of the // return value. [[nodiscard]] bool ParseGeneralSubtrees(der::Input value, GeneralNames *subtrees, CertErrors *errors) { BSSL_CHECK(errors); // GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree // // GeneralSubtree ::= SEQUENCE { // base GeneralName, // minimum [0] BaseDistance DEFAULT 0, // maximum [1] BaseDistance OPTIONAL } // // BaseDistance ::= INTEGER (0..MAX) der::Parser sequence_parser(value); // The GeneralSubtrees sequence should have at least 1 element. if (!sequence_parser.HasMore()) { return false; } while (sequence_parser.HasMore()) { der::Parser subtree_sequence; if (!sequence_parser.ReadSequence(&subtree_sequence)) { return false; } der::Input raw_general_name; if (!subtree_sequence.ReadRawTLV(&raw_general_name)) { return false; } if (!ParseGeneralName(raw_general_name, GeneralNames::IP_ADDRESS_AND_NETMASK, subtrees, errors)) { errors->AddError(kFailedParsingGeneralName); return false; } // RFC 5280 section 4.2.1.10: // Within this profile, the minimum and maximum fields are not used with any // name forms, thus, the minimum MUST be zero, and maximum MUST be absent. // However, if an application encounters a critical name constraints // extension that specifies other values for minimum or maximum for a name // form that appears in a subsequent certificate, the application MUST // either process these fields or reject the certificate. // Note that technically failing here isn't required: rather only need to // fail if a name of this type actually appears in a subsequent cert and // this extension was marked critical. However the minimum and maximum // fields appear uncommon enough that implementing that isn't useful. if (subtree_sequence.HasMore()) { return false; } } return true; } bool IsAlphaDigit(char c) { return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); } // Returns true if 'local_part' contains only characters that are valid in a // non-quoted mailbox local-part. Does not check any other part of the syntax // requirements. Does not allow whitespace. bool IsAllowedRfc822LocalPart(std::string_view local_part) { if (local_part.empty()) { return false; } for (char c : local_part) { if (!(IsAlphaDigit(c) || c == '!' || c == '#' || c == '$' || c == '%' || c == '&' || c == '\'' || c == '*' || c == '+' || c == '-' || c == '/' || c == '=' || c == '?' || c == '^' || c == '_' || c == '`' || c == '{' || c == '|' || c == '}' || c == '~' || c == '.')) { return false; } } return true; } // Returns true if 'domain' contains only characters that are valid in a // mailbox domain. Does not check any other part of the syntax // requirements. Does not allow IPv6-address-literal as text IPv6 addresses are // non-unique. Does not allow other address literals either as how to handle // them with domain/subdomain matching isn't specified/possible. bool IsAllowedRfc822Domain(std::string_view domain) { if (domain.empty()) { return false; } for (char c : domain) { if (!(IsAlphaDigit(c) || c == '-' || c == '.')) { return false; } } return true; } enum class Rfc822NameMatchType { kPermitted, kExcluded }; bool Rfc822NameMatches(std::string_view local_part, std::string_view domain, std::string_view rfc822_constraint, Rfc822NameMatchType match_type, bool case_insensitive_local_part) { // In case of parsing errors, return a value that will cause the name to not // be permitted. const bool error_value = match_type == Rfc822NameMatchType::kPermitted ? false : true; std::vector constraint_components = bssl::string_util::SplitString(rfc822_constraint, '@'); std::string_view constraint_local_part; std::string_view constraint_domain; if (constraint_components.size() == 1) { constraint_domain = constraint_components[0]; } else if (constraint_components.size() == 2) { constraint_local_part = constraint_components[0]; if (!IsAllowedRfc822LocalPart(constraint_local_part)) { return error_value; } constraint_domain = constraint_components[1]; } else { // If we did the full parsing then it is possible for a @ to be in a quoted // local-part of the name, but we don't do that, so just error if @ appears // more than once. return error_value; } if (!IsAllowedRfc822Domain(constraint_domain)) { return error_value; } // RFC 5280 section 4.2.1.10: // To indicate a particular mailbox, the constraint is the complete mail // address. For example, "root@example.com" indicates the root mailbox on // the host "example.com". if (!constraint_local_part.empty()) { return (case_insensitive_local_part ? string_util::IsEqualNoCase(local_part, constraint_local_part) : local_part == constraint_local_part) && string_util::IsEqualNoCase(domain, constraint_domain); } // RFC 5280 section 4.2.1.10: // To specify any address within a domain, the constraint is specified with a // leading period (as with URIs). For example, ".example.com" indicates all // the Internet mail addresses in the domain "example.com", but not Internet // mail addresses on the host "example.com". if (!constraint_domain.empty() && constraint_domain[0] == '.') { return string_util::EndsWithNoCase(domain, constraint_domain); } // RFC 5280 section 4.2.1.10: // To indicate all Internet mail addresses on a particular host, the // constraint is specified as the host name. For example, the constraint // "example.com" is satisfied by any mail address at the host "example.com". return string_util::IsEqualNoCase(domain, constraint_domain); } } // namespace NameConstraints::~NameConstraints() = default; // static std::unique_ptr NameConstraints::Create( der::Input extension_value, bool is_critical, CertErrors *errors) { BSSL_CHECK(errors); auto name_constraints = std::make_unique(); if (!name_constraints->Parse(extension_value, is_critical, errors)) { return nullptr; } return name_constraints; } std::unique_ptr NameConstraints::CreateFromPermittedSubtrees( GeneralNames permitted_subtrees) { auto name_constraints = std::make_unique(); name_constraints->constrained_name_types_ = permitted_subtrees.present_name_types; name_constraints->permitted_subtrees_ = std::move(permitted_subtrees); return name_constraints; } bool NameConstraints::Parse(der::Input extension_value, bool is_critical, CertErrors *errors) { BSSL_CHECK(errors); der::Parser extension_parser(extension_value); der::Parser sequence_parser; // NameConstraints ::= SEQUENCE { // permittedSubtrees [0] GeneralSubtrees OPTIONAL, // excludedSubtrees [1] GeneralSubtrees OPTIONAL } if (!extension_parser.ReadSequence(&sequence_parser)) { return false; } if (extension_parser.HasMore()) { return false; } std::optional permitted_subtrees_value; if (!sequence_parser.ReadOptionalTag( CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0, &permitted_subtrees_value)) { return false; } if (permitted_subtrees_value && !ParseGeneralSubtrees(permitted_subtrees_value.value(), &permitted_subtrees_, errors)) { return false; } constrained_name_types_ |= permitted_subtrees_.present_name_types & (is_critical ? GENERAL_NAME_ALL_TYPES : kSupportedNameTypes); std::optional excluded_subtrees_value; if (!sequence_parser.ReadOptionalTag( CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1, &excluded_subtrees_value)) { return false; } if (excluded_subtrees_value && !ParseGeneralSubtrees(excluded_subtrees_value.value(), &excluded_subtrees_, errors)) { return false; } constrained_name_types_ |= excluded_subtrees_.present_name_types & (is_critical ? GENERAL_NAME_ALL_TYPES : kSupportedNameTypes); // RFC 5280 section 4.2.1.10: // Conforming CAs MUST NOT issue certificates where name constraints is an // empty sequence. That is, either the permittedSubtrees field or the // excludedSubtrees MUST be present. if (!permitted_subtrees_value && !excluded_subtrees_value) { return false; } if (sequence_parser.HasMore()) { return false; } return true; } void NameConstraints::IsPermittedCert(der::Input subject_rdn_sequence, const GeneralNames *subject_alt_names, CertErrors *errors) const { // Checking NameConstraints is O(number_of_names * number_of_constraints). // Impose a hard limit to mitigate the use of name constraints as a DoS // mechanism. This mimics the similar check in BoringSSL x509/v_ncons.c // TODO(bbe): make both name constraint mechanisms subquadratic and remove // this check. const size_t kMaxChecks = 1048576; // 1 << 20 // Names all come from a certificate, which is bound by size_t, so adding them // up can not overflow a size_t. size_t name_count = 0; // Constraints all come from a certificate, which is bound by a size_t, so // adding them up can not overflow a size_t. size_t constraint_count = 0; if (subject_alt_names) { name_count = subject_alt_names->rfc822_names.size() + subject_alt_names->dns_names.size() + subject_alt_names->directory_names.size() + subject_alt_names->ip_addresses.size(); constraint_count = excluded_subtrees_.rfc822_names.size() + permitted_subtrees_.rfc822_names.size() + excluded_subtrees_.dns_names.size() + permitted_subtrees_.dns_names.size() + excluded_subtrees_.directory_names.size() + permitted_subtrees_.directory_names.size() + excluded_subtrees_.ip_address_ranges.size() + permitted_subtrees_.ip_address_ranges.size(); } else { constraint_count += excluded_subtrees_.directory_names.size() + permitted_subtrees_.directory_names.size(); name_count = subject_rdn_sequence.size(); } // Upper bound the number of possible checks, checking for overflow. size_t check_count = constraint_count * name_count; if ((constraint_count > 0 && check_count / constraint_count != name_count) || check_count > kMaxChecks) { errors->AddError(cert_errors::kTooManyNameConstraintChecks); return; } std::vector subject_email_addresses_to_check; if (!subject_alt_names && (constrained_name_types() & GENERAL_NAME_RFC822_NAME)) { if (!FindEmailAddressesInName(subject_rdn_sequence, &subject_email_addresses_to_check)) { // Error parsing |subject_rdn_sequence|. errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } } // Subject Alternative Name handling: // // RFC 5280 section 4.2.1.6: // id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 } // // SubjectAltName ::= GeneralNames // // GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName if (subject_alt_names) { // Check unsupported name types: // constrained_name_types() for the unsupported types will only be true if // that type of name was present in a name constraint that was marked // critical. // // RFC 5280 section 4.2.1.10: // If a name constraints extension that is marked as critical // imposes constraints on a particular name form, and an instance of // that name form appears in the subject field or subjectAltName // extension of a subsequent certificate, then the application MUST // either process the constraint or reject the certificate. if (constrained_name_types() & subject_alt_names->present_name_types & ~kSupportedNameTypes) { errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } // Check supported name types: // Only check rfc822 SANs if any rfc822 constraints are present, since we // might fail if there are email addresses we don't know how to parse but // are technically correct. if (constrained_name_types() & GENERAL_NAME_RFC822_NAME) { for (const auto &rfc822_name : subject_alt_names->rfc822_names) { if (!IsPermittedRfc822Name( rfc822_name, /*case_insensitive_exclude_localpart=*/false)) { errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } } } for (const auto &dns_name : subject_alt_names->dns_names) { if (!IsPermittedDNSName(dns_name)) { errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } } for (const auto &directory_name : subject_alt_names->directory_names) { if (!IsPermittedDirectoryName(directory_name)) { errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } } for (const auto &ip_address : subject_alt_names->ip_addresses) { if (!IsPermittedIP(ip_address)) { errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } } } // Subject handling: // RFC 5280 section 4.2.1.10: // Legacy implementations exist where an electronic mail address is embedded // in the subject distinguished name in an attribute of type emailAddress // (Section 4.1.2.6). When constraints are imposed on the rfc822Name name // form, but the certificate does not include a subject alternative name, the // rfc822Name constraint MUST be applied to the attribute of type emailAddress // in the subject distinguished name. for (const auto &rfc822_name : subject_email_addresses_to_check) { // Whether local_part should be matched case-sensitive or not is somewhat // unclear. RFC 2821 says that it should be case-sensitive. RFC 2985 says // that emailAddress attributes in a Name are fully case-insensitive. // Some other verifier implementations always do local-part comparison // case-sensitive, while some always do it case-insensitive. Many but not // all SMTP servers interpret addresses as case-insensitive. // // Give how poorly specified this is, and the conflicting implementations // in the wild, this implementation will do case-insensitive match for // excluded names from the subject to avoid potentially allowing // something that wasn't expected. if (!IsPermittedRfc822Name(rfc822_name, /*case_insensitive_exclude_localpart=*/true)) { errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } } // RFC 5280 4.1.2.6: // If subject naming information is present only in the subjectAltName // extension (e.g., a key bound only to an email address or URI), then the // subject name MUST be an empty sequence and the subjectAltName extension // MUST be critical. // This code assumes that criticality condition is checked by the caller, and // therefore only needs to avoid the IsPermittedDirectoryName check against an // empty subject in such a case. if (subject_alt_names && subject_rdn_sequence.empty()) { return; } if (!IsPermittedDirectoryName(subject_rdn_sequence)) { errors->AddError(cert_errors::kNotPermittedByNameConstraints); return; } } bool NameConstraints::IsPermittedRfc822Name( std::string_view name, bool case_insensitive_exclude_localpart) const { // RFC 5280 4.2.1.6. Subject Alternative Name // // When the subjectAltName extension contains an Internet mail address, // the address MUST be stored in the rfc822Name. The format of an // rfc822Name is a "Mailbox" as defined in Section 4.1.2 of [RFC2821]. // A Mailbox has the form "Local-part@Domain". Note that a Mailbox has // no phrase (such as a common name) before it, has no comment (text // surrounded in parentheses) after it, and is not surrounded by "<" and // ">". Rules for encoding Internet mail addresses that include // internationalized domain names are specified in Section 7.5. // Relevant parts from RFC 2821 & RFC 2822 // // Mailbox = Local-part "@" Domain // Local-part = Dot-string / Quoted-string // ; MAY be case-sensitive // // Dot-string = Atom *("." Atom) // Atom = 1*atext // Quoted-string = DQUOTE *qcontent DQUOTE // // // atext = ALPHA / DIGIT / ; Any character except controls, // "!" / "#" / ; SP, and specials. // "$" / "%" / ; Used for atoms // "&" / "'" / // "*" / "+" / // "-" / "/" / // "=" / "?" / // "^" / "_" / // "`" / "{" / // "|" / "}" / // "~" // // atom = [CFWS] 1*atext [CFWS] // // // qtext = NO-WS-CTL / ; Non white space controls // %d33 / ; The rest of the US-ASCII // %d35-91 / ; characters not including "\" // %d93-126 ; or the quote character // // quoted-pair = ("\" text) / obs-qp // qcontent = qtext / quoted-pair // // // Domain = (sub-domain 1*("." sub-domain)) / address-literal // sub-domain = Let-dig [Ldh-str] // // Let-dig = ALPHA / DIGIT // Ldh-str = *( ALPHA / DIGIT / "-" ) Let-dig // // address-literal = "[" IPv4-address-literal / // IPv6-address-literal / // General-address-literal "]" // ; See section 4.1.3 // However, no one actually implements all that. Known implementations just // do string comparisons, but that is technically incorrect. (Ex: a // constraint excluding |foo@example.com| should exclude a SAN of // |"foo"@example.com|, while a naive direct comparison will allow it.) // // We don't implement all that either, but do something a bit more fail-safe // by rejecting any addresses that contain characters that are not allowed in // the non-quoted formats. std::vector name_components = bssl::string_util::SplitString(name, '@'); if (name_components.size() != 2) { // If we did the full parsing then it is possible for a @ to be in a quoted // local-part of the name, but we don't do that, so just fail if @ appears // more than once. return false; } if (!IsAllowedRfc822LocalPart(name_components[0]) || !IsAllowedRfc822Domain(name_components[1])) { return false; } for (const auto &excluded_name : excluded_subtrees_.rfc822_names) { if (Rfc822NameMatches(name_components[0], name_components[1], excluded_name, Rfc822NameMatchType::kExcluded, case_insensitive_exclude_localpart)) { return false; } } // If permitted subtrees are not constrained, any name that is not excluded is // allowed. if (!(permitted_subtrees_.present_name_types & GENERAL_NAME_RFC822_NAME)) { return true; } for (const auto &permitted_name : permitted_subtrees_.rfc822_names) { if (Rfc822NameMatches(name_components[0], name_components[1], permitted_name, Rfc822NameMatchType::kPermitted, /*case_insenitive_local_part=*/false)) { return true; } } return false; } bool NameConstraints::IsPermittedDNSName(std::string_view name) const { for (const auto &excluded_name : excluded_subtrees_.dns_names) { // When matching wildcard hosts against excluded subtrees, consider it a // match if the constraint would match any expansion of the wildcard. Eg, // *.bar.com should match a constraint of foo.bar.com. if (DNSNameMatches(name, excluded_name, WILDCARD_PARTIAL_MATCH)) { return false; } } // If permitted subtrees are not constrained, any name that is not excluded is // allowed. if (!(permitted_subtrees_.present_name_types & GENERAL_NAME_DNS_NAME)) { return true; } for (const auto &permitted_name : permitted_subtrees_.dns_names) { // When matching wildcard hosts against permitted subtrees, consider it a // match only if the constraint would match all expansions of the wildcard. // Eg, *.bar.com should match a constraint of bar.com, but not foo.bar.com. if (DNSNameMatches(name, permitted_name, WILDCARD_FULL_MATCH)) { return true; } } return false; } bool NameConstraints::IsPermittedDirectoryName( der::Input name_rdn_sequence) const { for (const auto &excluded_name : excluded_subtrees_.directory_names) { if (VerifyNameInSubtree(name_rdn_sequence, excluded_name)) { return false; } } // If permitted subtrees are not constrained, any name that is not excluded is // allowed. if (!(permitted_subtrees_.present_name_types & GENERAL_NAME_DIRECTORY_NAME)) { return true; } for (const auto &permitted_name : permitted_subtrees_.directory_names) { if (VerifyNameInSubtree(name_rdn_sequence, permitted_name)) { return true; } } return false; } bool NameConstraints::IsPermittedIP(der::Input ip) const { for (const auto &excluded_ip : excluded_subtrees_.ip_address_ranges) { if (IPAddressMatchesWithNetmask(ip, excluded_ip.first, excluded_ip.second)) { return false; } } // If permitted subtrees are not constrained, any name that is not excluded is // allowed. if (!(permitted_subtrees_.present_name_types & GENERAL_NAME_IP_ADDRESS)) { return true; } for (const auto &permitted_ip : permitted_subtrees_.ip_address_ranges) { if (IPAddressMatchesWithNetmask(ip, permitted_ip.first, permitted_ip.second)) { return true; } } return false; } } // namespace bssl