aboutsummaryrefslogtreecommitdiff
path: root/crypto/modes/modes_lcl.h
blob: 201a69115e86b58368e2b5e4f8f7d730de25184d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/* ====================================================================
 * Copyright (c) 2010 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use is governed by OpenSSL license.
 * ====================================================================
 */

#include <openssl/modes.h>


#if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
typedef __int64 i64;
typedef unsigned __int64 u64;
#define U64(C) C##UI64
#elif defined(__arch64__)
typedef long i64;
typedef unsigned long u64;
#define U64(C) C##UL
#else
typedef long long i64;
typedef unsigned long long u64;
#define U64(C) C##ULL
#endif

typedef unsigned int u32;
typedef unsigned char u8;

#define STRICT_ALIGNMENT 1
#if defined(__i386)	|| defined(__i386__)	|| \
    defined(__x86_64)	|| defined(__x86_64__)	|| \
    defined(_M_IX86)	|| defined(_M_AMD64)	|| defined(_M_X64) || \
    defined(__s390__)	|| defined(__s390x__)
# undef STRICT_ALIGNMENT
#endif

#if !defined(PEDANTIC) && !defined(OPENSSL_NO_ASM) && !defined(OPNESSL_NO_INLINE_ASM)
#if defined(__GNUC__) && __GNUC__>=2
# if defined(__x86_64) || defined(__x86_64__)
#  define BSWAP8(x) ({	u64 ret=(x);			\
			asm volatile ("bswapq %0"	\
			: "+r"(ret));	ret;		})
#  define BSWAP4(x) ({	u32 ret=(x);			\
			asm volatile ("bswapl %0"	\
			: "+r"(ret));	ret;		})
# elif (defined(__i386) || defined(__i386__))
#  define BSWAP8(x) ({	u32 lo=(u64)(x)>>32,hi=(x);	\
			asm volatile ("bswapl %0; bswapl %1"	\
			: "+r"(hi),"+r"(lo));		\
			(u64)hi<<32|lo;			})
#  define BSWAP4(x) ({	u32 ret=(x);			\
			asm volatile ("bswapl %0"	\
			: "+r"(ret));	ret;		})
# endif
#elif defined(_MSC_VER)
# if _MSC_VER>=1300
#  pragma intrinsic(_byteswap_uint64,_byteswap_ulong)
#  define BSWAP8(x)	_byteswap_uint64((u64)(x))
#  define BSWAP4(x)	_byteswap_ulong((u32)(x))
# elif defined(_M_IX86)
   __inline u32 _bswap4(u32 val) {
	_asm mov eax,val
	_asm bswap eax
   }
#  define BSWAP4(x)	_bswap4(x)
# endif
#endif
#endif

#if defined(BSWAP4) && !defined(STRICT_ALIGNMENT)
#define GETU32(p)	BSWAP4(*(const u32 *)(p))
#define PUTU32(p,v)	*(u32 *)(p) = BSWAP4(v)
#else
#define GETU32(p)	((u32)(p)[0]<<24|(u32)(p)[1]<<16|(u32)(p)[2]<<8|(u32)(p)[3])
#define PUTU32(p,v)	((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((v)>>8),(p)[3]=(u8)(v))
#endif

/* GCM definitions */

typedef struct { u64 hi,lo; } u128;

#ifdef	TABLE_BITS
#undef	TABLE_BITS
#endif
/*
 * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
 * never be set to 8. 8 is effectively reserved for testing purposes.
 * TABLE_BITS>1 are lookup-table-driven implementations referred to as
 * "Shoup's" in GCM specification. In other words OpenSSL does not cover
 * whole spectrum of possible table driven implementations. Why? In
 * non-"Shoup's" case memory access pattern is segmented in such manner,
 * that it's trivial to see that cache timing information can reveal
 * fair portion of intermediate hash value. Given that ciphertext is
 * always available to attacker, it's possible for him to attempt to
 * deduce secret parameter H and if successful, tamper with messages
 * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
 * not as trivial, but there is no reason to believe that it's resistant
 * to cache-timing attack. And the thing about "8-bit" implementation is
 * that it consumes 16 (sixteen) times more memory, 4KB per individual
 * key + 1KB shared. Well, on pros side it should be twice as fast as
 * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
 * was observed to run ~75% faster, closer to 100% for commercial
 * compilers... Yet "4-bit" procedure is preferred, because it's
 * believed to provide better security-performance balance and adequate
 * all-round performance. "All-round" refers to things like:
 *
 * - shorter setup time effectively improves overall timing for
 *   handling short messages;
 * - larger table allocation can become unbearable because of VM
 *   subsystem penalties (for example on Windows large enough free
 *   results in VM working set trimming, meaning that consequent
 *   malloc would immediately incur working set expansion);
 * - larger table has larger cache footprint, which can affect
 *   performance of other code paths (not necessarily even from same
 *   thread in Hyper-Threading world);
 */
#define	TABLE_BITS 4

struct gcm128_context {
	/* Following 6 names follow names in GCM specification */
	union { u64 u[2]; u32 d[4]; u8 c[16]; }	Yi,EKi,EK0,
						Xi,H,len;
	/* Pre-computed table used by gcm_gmult_* */
#if TABLE_BITS==8
	u128 Htable[256];
#else
	u128 Htable[16];
	void (*gmult)(u64 Xi[2],const u128 Htable[16]);
	void (*ghash)(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
#endif
	unsigned int mres, ares;
	block128_f block;
	void *key;
};