aboutsummaryrefslogtreecommitdiff
path: root/crypto/pkcs12
diff options
context:
space:
mode:
authorRich Salz <rsalz@akamai.com>2019-07-11 14:01:56 -0400
committerRichard Levitte <levitte@openssl.org>2019-07-16 05:26:28 +0200
commitcbfa5b03989ee6b8f5c13c4284d5bae02c562f20 (patch)
tree3310c99c9e47c0fa88a276e789cad33136663185 /crypto/pkcs12
parentaac96e2797c34a6b2a839eb58c30ab3328a0cee8 (diff)
downloadopenssl-cbfa5b03989ee6b8f5c13c4284d5bae02c562f20.zip
openssl-cbfa5b03989ee6b8f5c13c4284d5bae02c562f20.tar.gz
openssl-cbfa5b03989ee6b8f5c13c4284d5bae02c562f20.tar.bz2
Regenerate mkerr files
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org> Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/9058)
Diffstat (limited to 'crypto/pkcs12')
-rw-r--r--crypto/pkcs12/pk12err.c58
1 files changed, 2 insertions, 56 deletions
diff --git a/crypto/pkcs12/pk12err.c b/crypto/pkcs12/pk12err.c
index dd07b6d..c9fd1d7 100644
--- a/crypto/pkcs12/pk12err.c
+++ b/crypto/pkcs12/pk12err.c
@@ -1,6 +1,6 @@
/*
* Generated by util/mkerr.pl DO NOT EDIT
- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
@@ -13,58 +13,6 @@
#ifndef OPENSSL_NO_ERR
-static const ERR_STRING_DATA PKCS12_str_functs[] = {
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_ASC2UNI, 0), "OPENSSL_asc2uni"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_UNI2ASC, 0), "OPENSSL_uni2asc"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_UNI2UTF8, 0),
- "OPENSSL_uni2utf8"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_OPENSSL_UTF82UNI, 0),
- "OPENSSL_utf82uni"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_CREATE, 0), "PKCS12_create"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_GEN_MAC, 0), "PKCS12_gen_mac"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_INIT, 0), "PKCS12_init"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_ITEM_DECRYPT_D2I, 0),
- "PKCS12_item_decrypt_d2i"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT, 0),
- "PKCS12_item_i2d_encrypt"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, 0),
- "PKCS12_item_pack_safebag"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_KEY_GEN_ASC, 0),
- "PKCS12_key_gen_asc"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_KEY_GEN_UNI, 0),
- "PKCS12_key_gen_uni"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_KEY_GEN_UTF8, 0),
- "PKCS12_key_gen_utf8"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_NEWPASS, 0), "PKCS12_newpass"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PACK_P7DATA, 0),
- "PKCS12_pack_p7data"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PACK_P7ENCDATA, 0),
- "PKCS12_pack_p7encdata"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PARSE, 0), "PKCS12_parse"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PBE_CRYPT, 0),
- "PKCS12_pbe_crypt"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_PBE_KEYIVGEN, 0),
- "PKCS12_PBE_keyivgen"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SAFEBAG_CREATE0_P8INF, 0),
- "PKCS12_SAFEBAG_create0_p8inf"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SAFEBAG_CREATE0_PKCS8, 0),
- "PKCS12_SAFEBAG_create0_pkcs8"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SAFEBAG_CREATE_PKCS8_ENCRYPT, 0),
- "PKCS12_SAFEBAG_create_pkcs8_encrypt"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SETUP_MAC, 0),
- "PKCS12_setup_mac"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_SET_MAC, 0), "PKCS12_set_mac"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_UNPACK_AUTHSAFES, 0),
- "PKCS12_unpack_authsafes"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_UNPACK_P7DATA, 0),
- "PKCS12_unpack_p7data"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS12_VERIFY_MAC, 0),
- "PKCS12_verify_mac"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS8_ENCRYPT, 0), "PKCS8_encrypt"},
- {ERR_PACK(ERR_LIB_PKCS12, PKCS12_F_PKCS8_SET0_PBE, 0), "PKCS8_set0_pbe"},
- {0, NULL}
-};
-
static const ERR_STRING_DATA PKCS12_str_reasons[] = {
{ERR_PACK(ERR_LIB_PKCS12, 0, PKCS12_R_CANT_PACK_STRUCTURE),
"cant pack structure"},
@@ -108,10 +56,8 @@ static const ERR_STRING_DATA PKCS12_str_reasons[] = {
int ERR_load_PKCS12_strings(void)
{
#ifndef OPENSSL_NO_ERR
- if (ERR_func_error_string(PKCS12_str_functs[0].error) == NULL) {
- ERR_load_strings_const(PKCS12_str_functs);
+ if (ERR_func_error_string(PKCS12_str_reasons[0].error) == NULL)
ERR_load_strings_const(PKCS12_str_reasons);
- }
#endif
return 1;
}
n312'>312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
/* Expands front end tree to back end RTL for GCC.
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
   1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* This file handles the generation of rtl code from tree structure
   at the level of the function as a whole.
   It creates the rtl expressions for parameters and auto variables
   and has full responsibility for allocating stack slots.

   `expand_function_start' is called at the beginning of a function,
   before the function body is parsed, and `expand_function_end' is
   called after parsing the body.

   Call `assign_stack_local' to allocate a stack slot for a local variable.
   This is usually done during the RTL generation for the function body,
   but it can also be done in the reload pass when a pseudo-register does
   not get a hard register.

   Call `put_var_into_stack' when you learn, belatedly, that a variable
   previously given a pseudo-register must in fact go in the stack.
   This function changes the DECL_RTL to be a stack slot instead of a reg
   then scans all the RTL instructions so far generated to correct them.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "basic-block.h"
#include "toplev.h"
#include "hashtab.h"
#include "ggc.h"
#include "tm_p.h"
#include "integrate.h"
#include "langhooks.h"
#include "target.h"
#include "cfglayout.h"

#ifndef LOCAL_ALIGNMENT
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
#endif

#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#endif

#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)

/* Some systems use __main in a way incompatible with its use in gcc, in these
   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
   give the same symbol without quotes for an alternative entry point.  You
   must define both, or neither.  */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#endif

/* Round a value to the lowest integer less than it that is a multiple of
   the required alignment.  Avoid using division in case the value is
   negative.  Assume the alignment is a power of two.  */
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))

/* Similar, but round to the next highest integer that meets the
   alignment.  */
#define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))

/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
   during rtl generation.  If they are different register numbers, this is
   always true.  It may also be true if
   FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
   generation.  See fix_lexical_addr for details.  */

#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
#define NEED_SEPARATE_AP
#endif

/* Nonzero if function being compiled doesn't contain any calls
   (ignoring the prologue and epilogue).  This is set prior to
   local register allocation and is valid for the remaining
   compiler passes.  */
int current_function_is_leaf;

/* Nonzero if function being compiled doesn't contain any instructions
   that can throw an exception.  This is set prior to final.  */

int current_function_nothrow;

/* Nonzero if function being compiled doesn't modify the stack pointer
   (ignoring the prologue and epilogue).  This is only valid after
   life_analysis has run.  */
int current_function_sp_is_unchanging;

/* Nonzero if the function being compiled is a leaf function which only
   uses leaf registers.  This is valid after reload (specifically after
   sched2) and is useful only if the port defines LEAF_REGISTERS.  */
int current_function_uses_only_leaf_regs;

/* Nonzero once virtual register instantiation has been done.
   assign_stack_local uses frame_pointer_rtx when this is nonzero.
   calls.c:emit_library_call_value_1 uses it to set up
   post-instantiation libcalls.  */
int virtuals_instantiated;

/* Assign unique numbers to labels generated for profiling, debugging, etc.  */
static GTY(()) int funcdef_no;

/* These variables hold pointers to functions to create and destroy
   target specific, per-function data structures.  */
struct machine_function * (*init_machine_status) (void);

/* The currently compiled function.  */
struct function *cfun = 0;

/* These arrays record the INSN_UIDs of the prologue and epilogue insns.  */
static GTY(()) varray_type prologue;
static GTY(()) varray_type epilogue;

/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
   in this function.  */
static GTY(()) varray_type sibcall_epilogue;

/* In order to evaluate some expressions, such as function calls returning
   structures in memory, we need to temporarily allocate stack locations.
   We record each allocated temporary in the following structure.

   Associated with each temporary slot is a nesting level.  When we pop up
   one level, all temporaries associated with the previous level are freed.
   Normally, all temporaries are freed after the execution of the statement
   in which they were created.  However, if we are inside a ({...}) grouping,
   the result may be in a temporary and hence must be preserved.  If the
   result could be in a temporary, we preserve it if we can determine which
   one it is in.  If we cannot determine which temporary may contain the
   result, all temporaries are preserved.  A temporary is preserved by
   pretending it was allocated at the previous nesting level.

   Automatic variables are also assigned temporary slots, at the nesting
   level where they are defined.  They are marked a "kept" so that
   free_temp_slots will not free them.  */

struct temp_slot GTY(())
{
  /* Points to next temporary slot.  */
  struct temp_slot *next;
  /* Points to previous temporary slot.  */
  struct temp_slot *prev;

  /* The rtx to used to reference the slot.  */
  rtx slot;
  /* The rtx used to represent the address if not the address of the
     slot above.  May be an EXPR_LIST if multiple addresses exist.  */
  rtx address;
  /* The alignment (in bits) of the slot.  */
  unsigned int align;
  /* The size, in units, of the slot.  */
  HOST_WIDE_INT size;
  /* The type of the object in the slot, or zero if it doesn't correspond
     to a type.  We use this to determine whether a slot can be reused.
     It can be reused if objects of the type of the new slot will always
     conflict with objects of the type of the old slot.  */
  tree type;
  /* The value of `sequence_rtl_expr' when this temporary is allocated.  */
  tree rtl_expr;
  /* Nonzero if this temporary is currently in use.  */
  char in_use;
  /* Nonzero if this temporary has its address taken.  */
  char addr_taken;
  /* Nesting level at which this slot is being used.  */
  int level;
  /* Nonzero if this should survive a call to free_temp_slots.  */
  int keep;
  /* The offset of the slot from the frame_pointer, including extra space
     for alignment.  This info is for combine_temp_slots.  */
  HOST_WIDE_INT base_offset;
  /* The size of the slot, including extra space for alignment.  This
     info is for combine_temp_slots.  */
  HOST_WIDE_INT full_size;
};

/* This structure is used to record MEMs or pseudos used to replace VAR, any
   SUBREGs of VAR, and any MEMs containing VAR as an address.  We need to
   maintain this list in case two operands of an insn were required to match;
   in that case we must ensure we use the same replacement.  */

struct fixup_replacement GTY(())
{
  rtx old;
  rtx new;
  struct fixup_replacement *next;
};

struct insns_for_mem_entry
{
  /* A MEM.  */
  rtx key;
  /* These are the INSNs which reference the MEM.  */
  rtx insns;
};

/* Forward declarations.  */

static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
				 struct function *);
static struct temp_slot *find_temp_slot_from_address (rtx);
static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
				unsigned int, bool, bool, bool, htab_t);
static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
				     htab_t);
static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
static struct fixup_replacement
  *find_fixup_replacement (struct fixup_replacement **, rtx);
static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
			      struct fixup_replacement **, rtx);
static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
static rtx walk_fixup_memory_subreg (rtx, rtx, rtx, enum machine_mode, int);
static rtx fixup_stack_1 (rtx, rtx);
static void optimize_bit_field (rtx, rtx, rtx *);
static void instantiate_decls (tree, int);
static void instantiate_decls_1 (tree, int);
static void instantiate_decl (rtx, HOST_WIDE_INT, int);
static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
static int instantiate_virtual_regs_1 (rtx *, rtx, int);
static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
static void pad_below (struct args_size *, enum machine_mode, tree);
static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
static void reorder_blocks_1 (rtx, tree, varray_type *);
static void reorder_fix_fragments (tree);
static int all_blocks (tree, tree *);
static tree *get_block_vector (tree, int *);
extern tree debug_find_var_in_block_tree (tree, tree);
/* We always define `record_insns' even if it's not used so that we
   can always export `prologue_epilogue_contains'.  */
static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
static int contains (rtx, varray_type);
#ifdef HAVE_return
static void emit_return_into_block (basic_block, rtx);
#endif
static void put_addressof_into_stack (rtx, htab_t);
static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
static void purge_single_hard_subreg_set (rtx);
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
static rtx keep_stack_depressed (rtx);
#endif
static int is_addressof (rtx *, void *);
static hashval_t insns_for_mem_hash (const void *);
static int insns_for_mem_comp (const void *, const void *);
static int insns_for_mem_walk (rtx *, void *);
static void compute_insns_for_mem (rtx, rtx, htab_t);
static void prepare_function_start (tree);
static void do_clobber_return_reg (rtx, void *);
static void do_use_return_reg (rtx, void *);
static void instantiate_virtual_regs_lossage (rtx);
static tree split_complex_args (tree);
static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;

/* Pointer to chain of `struct function' for containing functions.  */
struct function *outer_function_chain;

/* List of insns that were postponed by purge_addressof_1.  */
static rtx postponed_insns;

/* Given a function decl for a containing function,
   return the `struct function' for it.  */

struct function *
find_function_data (tree decl)
{
  struct function *p;

  for (p = outer_function_chain; p; p = p->outer)
    if (p->decl == decl)
      return p;

  abort ();
}

/* Save the current context for compilation of a nested function.
   This is called from language-specific code.  The caller should use
   the enter_nested langhook to save any language-specific state,
   since this function knows only about language-independent
   variables.  */

void
push_function_context_to (tree context)
{
  struct function *p;

  if (context)
    {
      if (context == current_function_decl)
	cfun->contains_functions = 1;
      else
	{
	  struct function *containing = find_function_data (context);
	  containing->contains_functions = 1;
	}
    }

  if (cfun == 0)
    init_dummy_function_start ();
  p = cfun;

  p->outer = outer_function_chain;
  outer_function_chain = p;
  p->fixup_var_refs_queue = 0;

  lang_hooks.function.enter_nested (p);

  cfun = 0;
}

void
push_function_context (void)
{
  push_function_context_to (current_function_decl);
}

/* Restore the last saved context, at the end of a nested function.
   This function is called from language-specific code.  */

void
pop_function_context_from (tree context ATTRIBUTE_UNUSED)
{
  struct function *p = outer_function_chain;
  struct var_refs_queue *queue;

  cfun = p;
  outer_function_chain = p->outer;

  current_function_decl = p->decl;
  reg_renumber = 0;

  restore_emit_status (p);

  lang_hooks.function.leave_nested (p);

  /* Finish doing put_var_into_stack for any of our variables which became
     addressable during the nested function.  If only one entry has to be
     fixed up, just do that one.  Otherwise, first make a list of MEMs that
     are not to be unshared.  */
  if (p->fixup_var_refs_queue == 0)
    ;
  else if (p->fixup_var_refs_queue->next == 0)
    fixup_var_refs (p->fixup_var_refs_queue->modified,
		    p->fixup_var_refs_queue->promoted_mode,
		    p->fixup_var_refs_queue->unsignedp,
		    p->fixup_var_refs_queue->modified, 0);
  else
    {
      rtx list = 0;

      for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
	list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);

      for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
	fixup_var_refs (queue->modified, queue->promoted_mode,
			queue->unsignedp, list, 0);

    }

  p->fixup_var_refs_queue = 0;

  /* Reset variables that have known state during rtx generation.  */
  rtx_equal_function_value_matters = 1;
  virtuals_instantiated = 0;
  generating_concat_p = 1;
}

void
pop_function_context (void)
{
  pop_function_context_from (current_function_decl);
}

/* Clear out all parts of the state in F that can safely be discarded
   after the function has been parsed, but not compiled, to let
   garbage collection reclaim the memory.  */

void
free_after_parsing (struct function *f)
{
  /* f->expr->forced_labels is used by code generation.  */
  /* f->emit->regno_reg_rtx is used by code generation.  */
  /* f->varasm is used by code generation.  */
  /* f->eh->eh_return_stub_label is used by code generation.  */

  lang_hooks.function.final (f);
  f->stmt = NULL;
}

/* Clear out all parts of the state in F that can safely be discarded
   after the function has been compiled, to let garbage collection
   reclaim the memory.  */

void
free_after_compilation (struct function *f)
{
  f->eh = NULL;
  f->expr = NULL;
  f->emit = NULL;
  f->varasm = NULL;
  f->machine = NULL;

  f->x_avail_temp_slots = NULL;
  f->x_used_temp_slots = NULL;
  f->arg_offset_rtx = NULL;
  f->return_rtx = NULL;
  f->internal_arg_pointer = NULL;
  f->x_nonlocal_goto_handler_labels = NULL;
  f->x_cleanup_label = NULL;
  f->x_return_label = NULL;
  f->x_naked_return_label = NULL;
  f->computed_goto_common_label = NULL;
  f->computed_goto_common_reg = NULL;
  f->x_save_expr_regs = NULL;
  f->x_stack_slot_list = NULL;
  f->x_rtl_expr_chain = NULL;
  f->x_tail_recursion_reentry = NULL;
  f->x_arg_pointer_save_area = NULL;
  f->x_parm_birth_insn = NULL;
  f->x_last_parm_insn = NULL;
  f->x_parm_reg_stack_loc = NULL;
  f->fixup_var_refs_queue = NULL;
  f->original_arg_vector = NULL;
  f->original_decl_initial = NULL;
  f->inl_last_parm_insn = NULL;
  f->epilogue_delay_list = NULL;
}

/* Allocate fixed slots in the stack frame of the current function.  */

/* Return size needed for stack frame based on slots so far allocated in
   function F.
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
   the caller may have to do that.  */

HOST_WIDE_INT
get_func_frame_size (struct function *f)
{
#ifdef FRAME_GROWS_DOWNWARD
  return -f->x_frame_offset;
#else
  return f->x_frame_offset;
#endif
}

/* Return size needed for stack frame based on slots so far allocated.
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
   the caller may have to do that.  */
HOST_WIDE_INT
get_frame_size (void)
{
  return get_func_frame_size (cfun);
}

/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
   with machine mode MODE.

   ALIGN controls the amount of alignment for the address of the slot:
   0 means according to MODE,
   -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
   -2 means use BITS_PER_UNIT,
   positive specifies alignment boundary in bits.

   We do not round to stack_boundary here.

   FUNCTION specifies the function to allocate in.  */

static rtx
assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
		      struct function *function)
{
  rtx x, addr;
  int bigend_correction = 0;
  int alignment;
  int frame_off, frame_alignment, frame_phase;

  if (align == 0)
    {
      tree type;

      if (mode == BLKmode)
	alignment = BIGGEST_ALIGNMENT;
      else
	alignment = GET_MODE_ALIGNMENT (mode);

      /* Allow the target to (possibly) increase the alignment of this
	 stack slot.  */
      type = lang_hooks.types.type_for_mode (mode, 0);
      if (type)
	alignment = LOCAL_ALIGNMENT (type, alignment);

      alignment /= BITS_PER_UNIT;
    }
  else if (align == -1)
    {
      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
      size = CEIL_ROUND (size, alignment);
    }
  else if (align == -2)
    alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
  else
    alignment = align / BITS_PER_UNIT;

#ifdef FRAME_GROWS_DOWNWARD
  function->x_frame_offset -= size;
#endif

  /* Ignore alignment we can't do with expected alignment of the boundary.  */
  if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
    alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;

  if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
    function->stack_alignment_needed = alignment * BITS_PER_UNIT;

  /* Calculate how many bytes the start of local variables is off from
     stack alignment.  */
  frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
  frame_off = STARTING_FRAME_OFFSET % frame_alignment;
  frame_phase = frame_off ? frame_alignment - frame_off : 0;

  /* Round the frame offset to the specified alignment.  The default is
     to always honor requests to align the stack but a port may choose to
     do its own stack alignment by defining STACK_ALIGNMENT_NEEDED.  */
  if (STACK_ALIGNMENT_NEEDED
      || mode != BLKmode
      || size != 0)
    {
      /*  We must be careful here, since FRAME_OFFSET might be negative and
	  division with a negative dividend isn't as well defined as we might
	  like.  So we instead assume that ALIGNMENT is a power of two and
	  use logical operations which are unambiguous.  */
#ifdef FRAME_GROWS_DOWNWARD
      function->x_frame_offset
	= (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
	   + frame_phase);
#else
      function->x_frame_offset
	= (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
	   + frame_phase);
#endif
    }

  /* On a big-endian machine, if we are allocating more space than we will use,
     use the least significant bytes of those that are allocated.  */
  if (BYTES_BIG_ENDIAN && mode != BLKmode)
    bigend_correction = size - GET_MODE_SIZE (mode);

  /* If we have already instantiated virtual registers, return the actual
     address relative to the frame pointer.  */
  if (function == cfun && virtuals_instantiated)
    addr = plus_constant (frame_pointer_rtx,
			  trunc_int_for_mode
			  (frame_offset + bigend_correction
			   + STARTING_FRAME_OFFSET, Pmode));
  else
    addr = plus_constant (virtual_stack_vars_rtx,
			  trunc_int_for_mode
			  (function->x_frame_offset + bigend_correction,
			   Pmode));

#ifndef FRAME_GROWS_DOWNWARD
  function->x_frame_offset += size;
#endif

  x = gen_rtx_MEM (mode, addr);

  function->x_stack_slot_list
    = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);

  return x;
}

/* Wrapper around assign_stack_local_1;  assign a local stack slot for the
   current function.  */

rtx
assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
{
  return assign_stack_local_1 (mode, size, align, cfun);
}


/* Removes temporary slot TEMP from LIST.  */

static void
cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
{
  if (temp->next)
    temp->next->prev = temp->prev;
  if (temp->prev)
    temp->prev->next = temp->next;
  else
    *list = temp->next;

  temp->prev = temp->next = NULL;
}

/* Inserts temporary slot TEMP to LIST.  */

static void
insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
{
  temp->next = *list;
  if (*list)
    (*list)->prev = temp;
  temp->prev = NULL;
  *list = temp;
}

/* Returns the list of used temp slots at LEVEL.  */

static struct temp_slot **
temp_slots_at_level (int level)
{
  level++;

  if (!used_temp_slots)
    VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");

  while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
    VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);

  return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
}

/* Returns the maximal temporary slot level.  */

static int
max_slot_level (void)
{
  if (!used_temp_slots)
    return -1;

  return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
}

/* Moves temporary slot TEMP to LEVEL.  */

static void
move_slot_to_level (struct temp_slot *temp, int level)
{
  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
  insert_slot_to_list (temp, temp_slots_at_level (level));
  temp->level = level;
}

/* Make temporary slot TEMP available.  */

static void
make_slot_available (struct temp_slot *temp)
{
  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
  insert_slot_to_list (temp, &avail_temp_slots);
  temp->in_use = 0;
  temp->level = -1;
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.

   MODE is the machine mode to be given to the returned rtx.

   SIZE is the size in units of the space required.  We do no rounding here
   since assign_stack_local will do any required rounding.

   KEEP is 1 if this slot is to be retained after a call to
   free_temp_slots.  Automatic variables for a block are allocated
   with this flag.  KEEP is 2 if we allocate a longer term temporary,
   whose lifetime is controlled by CLEANUP_POINT_EXPRs.  KEEP is 3
   if we are to allocate something at an inner level to be treated as
   a variable in the block (e.g., a SAVE_EXPR).

   TYPE is the type that will be used for the stack slot.  */

rtx
assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
			    tree type)
{
  unsigned int align;
  struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
  rtx slot;

  /* If SIZE is -1 it means that somebody tried to allocate a temporary
     of a variable size.  */
  if (size == -1)
    abort ();

  if (mode == BLKmode)
    align = BIGGEST_ALIGNMENT;
  else
    align = GET_MODE_ALIGNMENT (mode);

  if (! type)
    type = lang_hooks.types.type_for_mode (mode, 0);

  if (type)
    align = LOCAL_ALIGNMENT (type, align);

  /* Try to find an available, already-allocated temporary of the proper
     mode which meets the size and alignment requirements.  Choose the
     smallest one with the closest alignment.  */
  for (p = avail_temp_slots; p; p = p->next)
    {
      if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
	  && objects_must_conflict_p (p->type, type)
	  && (best_p == 0 || best_p->size > p->size
	      || (best_p->size == p->size && best_p->align > p->align)))
	{
	  if (p->align == align && p->size == size)
	    {
	      selected = p;
	      cut_slot_from_list (selected, &avail_temp_slots);
	      best_p = 0;
	      break;
	    }
	  best_p = p;
	}
    }

  /* Make our best, if any, the one to use.  */
  if (best_p)
    {
      selected = best_p;
      cut_slot_from_list (selected, &avail_temp_slots);

      /* If there are enough aligned bytes left over, make them into a new
	 temp_slot so that the extra bytes don't get wasted.  Do this only
	 for BLKmode slots, so that we can be sure of the alignment.  */
      if (GET_MODE (best_p->slot) == BLKmode)
	{
	  int alignment = best_p->align / BITS_PER_UNIT;
	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);

	  if (best_p->size - rounded_size >= alignment)
	    {
	      p = ggc_alloc (sizeof (struct temp_slot));
	      p->in_use = p->addr_taken = 0;
	      p->size = best_p->size - rounded_size;
	      p->base_offset = best_p->base_offset + rounded_size;
	      p->full_size = best_p->full_size - rounded_size;
	      p->slot = gen_rtx_MEM (BLKmode,
				     plus_constant (XEXP (best_p->slot, 0),
						    rounded_size));
	      p->align = best_p->align;
	      p->address = 0;
	      p->rtl_expr = 0;
	      p->type = best_p->type;
	      insert_slot_to_list (p, &avail_temp_slots);

	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
						   stack_slot_list);

	      best_p->size = rounded_size;
	      best_p->full_size = rounded_size;
	    }
	}
    }

  /* If we still didn't find one, make a new temporary.  */
  if (selected == 0)
    {
      HOST_WIDE_INT frame_offset_old = frame_offset;

      p = ggc_alloc (sizeof (struct temp_slot));

      /* We are passing an explicit alignment request to assign_stack_local.
	 One side effect of that is assign_stack_local will not round SIZE
	 to ensure the frame offset remains suitably aligned.

	 So for requests which depended on the rounding of SIZE, we go ahead
	 and round it now.  We also make sure ALIGNMENT is at least
	 BIGGEST_ALIGNMENT.  */
      if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
	abort ();
      p->slot = assign_stack_local (mode,
				    (mode == BLKmode
				     ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
				     : size),
				    align);

      p->align = align;

      /* The following slot size computation is necessary because we don't
	 know the actual size of the temporary slot until assign_stack_local
	 has performed all the frame alignment and size rounding for the
	 requested temporary.  Note that extra space added for alignment
	 can be either above or below this stack slot depending on which
	 way the frame grows.  We include the extra space if and only if it
	 is above this slot.  */
#ifdef FRAME_GROWS_DOWNWARD
      p->size = frame_offset_old - frame_offset;
#else
      p->size = size;
#endif

      /* Now define the fields used by combine_temp_slots.  */
#ifdef FRAME_GROWS_DOWNWARD
      p->base_offset = frame_offset;
      p->full_size = frame_offset_old - frame_offset;
#else
      p->base_offset = frame_offset_old;
      p->full_size = frame_offset - frame_offset_old;
#endif
      p->address = 0;

      selected = p;
    }

  p = selected;
  p->in_use = 1;
  p->addr_taken = 0;
  p->rtl_expr = seq_rtl_expr;
  p->type = type;

  if (keep == 2)
    {
      p->level = target_temp_slot_level;
      p->keep = 1;
    }
  else if (keep == 3)
    {
      p->level = var_temp_slot_level;
      p->keep = 0;
    }
  else
    {
      p->level = temp_slot_level;
      p->keep = keep;
    }

  pp = temp_slots_at_level (p->level);
  insert_slot_to_list (p, pp);

  /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
  slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
  stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);

  /* If we know the alias set for the memory that will be used, use
     it.  If there's no TYPE, then we don't know anything about the
     alias set for the memory.  */
  set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
  set_mem_align (slot, align);

  /* If a type is specified, set the relevant flags.  */
  if (type != 0)
    {
      RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
				 && TYPE_READONLY (type));
      MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
      MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
    }

  return slot;
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.  First three arguments are same as in preceding function.  */

rtx
assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
{
  return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
}

/* Assign a temporary.
   If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
   and so that should be used in error messages.  In either case, we
   allocate of the given type.
   KEEP is as for assign_stack_temp.
   MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
   it is 0 if a register is OK.
   DONT_PROMOTE is 1 if we should not promote values in register
   to wider modes.  */

rtx
assign_temp (tree type_or_decl, int keep, int memory_required,
	     int dont_promote ATTRIBUTE_UNUSED)
{
  tree type, decl;
  enum machine_mode mode;
#ifdef PROMOTE_MODE
  int unsignedp;
#endif

  if (DECL_P (type_or_decl))
    decl = type_or_decl, type = TREE_TYPE (decl);
  else
    decl = NULL, type = type_or_decl;

  mode = TYPE_MODE (type);
#ifdef PROMOTE_MODE
  unsignedp = TYPE_UNSIGNED (type);
#endif

  if (mode == BLKmode || memory_required)
    {
      HOST_WIDE_INT size = int_size_in_bytes (type);
      rtx tmp;

      /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
	 problems with allocating the stack space.  */
      if (size == 0)
	size = 1;

      /* Unfortunately, we don't yet know how to allocate variable-sized
	 temporaries.  However, sometimes we have a fixed upper limit on
	 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
	 instead.  This is the case for Chill variable-sized strings.  */
      if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
	  && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
	  && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
	size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);

      /* The size of the temporary may be too large to fit into an integer.  */
      /* ??? Not sure this should happen except for user silliness, so limit
	 this to things that aren't compiler-generated temporaries.  The
	 rest of the time we'll abort in assign_stack_temp_for_type.  */
      if (decl && size == -1
	  && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
	{
	  error ("%Jsize of variable '%D' is too large", decl, decl);
	  size = 1;
	}

      tmp = assign_stack_temp_for_type (mode, size, keep, type);
      return tmp;
    }

#ifdef PROMOTE_MODE
  if (! dont_promote)
    mode = promote_mode (type, mode, &unsignedp, 0);
#endif

  return gen_reg_rtx (mode);
}

/* Combine temporary stack slots which are adjacent on the stack.

   This allows for better use of already allocated stack space.  This is only
   done for BLKmode slots because we can be sure that we won't have alignment
   problems in this case.  */

void
combine_temp_slots (void)
{
  struct temp_slot *p, *q, *next, *next_q;
  int num_slots;

  /* We can't combine slots, because the information about which slot
     is in which alias set will be lost.  */
  if (flag_strict_aliasing)
    return;

  /* If there are a lot of temp slots, don't do anything unless
     high levels of optimization.  */
  if (! flag_expensive_optimizations)
    for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
      if (num_slots > 100 || (num_slots > 10 && optimize == 0))
	return;

  for (p = avail_temp_slots; p; p = next)
    {
      int delete_p = 0;

      next = p->next;

      if (GET_MODE (p->slot) != BLKmode)
	continue;

      for (q = p->next; q; q = next_q)
	{
       	  int delete_q = 0;

	  next_q = q->next;

	  if (GET_MODE (q->slot) != BLKmode)
	    continue;

	  if (p->base_offset + p->full_size == q->base_offset)
	    {
	      /* Q comes after P; combine Q into P.  */
	      p->size += q->size;
	      p->full_size += q->full_size;
	      delete_q = 1;
	    }
	  else if (q->base_offset + q->full_size == p->base_offset)
	    {
	      /* P comes after Q; combine P into Q.  */
	      q->size += p->size;
	      q->full_size += p->full_size;
	      delete_p = 1;
	      break;
	    }
	  if (delete_q)
	    cut_slot_from_list (q, &avail_temp_slots);
	}

      /* Either delete P or advance past it.  */
      if (delete_p)
	cut_slot_from_list (p, &avail_temp_slots);
    }
}

/* Find the temp slot corresponding to the object at address X.  */

static struct temp_slot *
find_temp_slot_from_address (rtx x)
{
  struct temp_slot *p;
  rtx next;
  int i;

  for (i = max_slot_level (); i >= 0; i--)
    for (p = *temp_slots_at_level (i); p; p = p->next)
      {
	if (XEXP (p->slot, 0) == x
	    || p->address == x
	    || (GET_CODE (x) == PLUS
		&& XEXP (x, 0) == virtual_stack_vars_rtx
		&& GET_CODE (XEXP (x, 1)) == CONST_INT
		&& INTVAL (XEXP (x, 1)) >= p->base_offset
		&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
	  return p;

	else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
	  for (next = p->address; next; next = XEXP (next, 1))
	    if (XEXP (next, 0) == x)
	      return p;
      }

  /* If we have a sum involving a register, see if it points to a temp
     slot.  */
  if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
      && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
    return p;
  else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
    return p;

  return 0;
}

/* Indicate that NEW is an alternate way of referring to the temp slot
   that previously was known by OLD.  */

void
update_temp_slot_address (rtx old, rtx new)
{
  struct temp_slot *p;

  if (rtx_equal_p (old, new))
    return;

  p = find_temp_slot_from_address (old);

  /* If we didn't find one, see if both OLD is a PLUS.  If so, and NEW
     is a register, see if one operand of the PLUS is a temporary
     location.  If so, NEW points into it.  Otherwise, if both OLD and
     NEW are a PLUS and if there is a register in common between them.
     If so, try a recursive call on those values.  */
  if (p == 0)
    {
      if (GET_CODE (old) != PLUS)
	return;

      if (REG_P (new))
	{
	  update_temp_slot_address (XEXP (old, 0), new);
	  update_temp_slot_address (XEXP (old, 1), new);
	  return;
	}
      else if (GET_CODE (new) != PLUS)
	return;

      if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
	update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
	update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
      else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
	update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
	update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));

      return;
    }

  /* Otherwise add an alias for the temp's address.  */
  else if (p->address == 0)
    p->address = new;
  else
    {
      if (GET_CODE (p->address) != EXPR_LIST)
	p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);

      p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
    }
}

/* If X could be a reference to a temporary slot, mark the fact that its
   address was taken.  */

void
mark_temp_addr_taken (rtx x)
{
  struct temp_slot *p;

  if (x == 0)
    return;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  p = find_temp_slot_from_address (XEXP (x, 0));
  if (p != 0)
    p->addr_taken = 1;
}

/* If X could be a reference to a temporary slot, mark that slot as
   belonging to the to one level higher than the current level.  If X
   matched one of our slots, just mark that one.  Otherwise, we can't
   easily predict which it is, so upgrade all of them.  Kept slots
   need not be touched.

   This is called when an ({...}) construct occurs and a statement
   returns a value in memory.  */

void
preserve_temp_slots (rtx x)
{
  struct temp_slot *p = 0, *next;

  /* If there is no result, we still might have some objects whose address
     were taken, so we need to make sure they stay around.  */
  if (x == 0)
    {
      for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
	{
	  next = p->next;

	  if (p->addr_taken)
	    move_slot_to_level (p, temp_slot_level - 1);
	}

      return;
    }

  /* If X is a register that is being used as a pointer, see if we have
     a temporary slot we know it points to.  To be consistent with
     the code below, we really should preserve all non-kept slots
     if we can't find a match, but that seems to be much too costly.  */
  if (REG_P (x) && REG_POINTER (x))
    p = find_temp_slot_from_address (x);

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot, but it can contain something whose address was
     taken.  */
  if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
    {
      for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
	{
	  next = p->next;

	  if (p->addr_taken)
	    move_slot_to_level (p, temp_slot_level - 1);
	}

      return;
    }

  /* First see if we can find a match.  */
  if (p == 0)
    p = find_temp_slot_from_address (XEXP (x, 0));

  if (p != 0)
    {
      /* Move everything at our level whose address was taken to our new
	 level in case we used its address.  */
      struct temp_slot *q;

      if (p->level == temp_slot_level)
	{
	  for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
	    {
	      next = q->next;

	      if (p != q && q->addr_taken)
		move_slot_to_level (q, temp_slot_level - 1);
	    }

	  move_slot_to_level (p, temp_slot_level - 1);
	  p->addr_taken = 0;
	}
      return;
    }

  /* Otherwise, preserve all non-kept slots at this level.  */
  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
    {
      next = p->next;

      if (!p->keep)
	move_slot_to_level (p, temp_slot_level - 1);
    }
}

/* X is the result of an RTL_EXPR.  If it is a temporary slot associated
   with that RTL_EXPR, promote it into a temporary slot at the present
   level so it will not be freed when we free slots made in the
   RTL_EXPR.  */

void
preserve_rtl_expr_result (rtx x)
{
  struct temp_slot *p;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  /* If we can find a match, move it to our level unless it is already at
     an upper level.  */
  p = find_temp_slot_from_address (XEXP (x, 0));
  if (p != 0)
    {
      move_slot_to_level (p, MIN (p->level, temp_slot_level));
      p->rtl_expr = 0;
    }

  return;
}

/* Free all temporaries used so far.  This is normally called at the end
   of generating code for a statement.  Don't free any temporaries
   currently in use for an RTL_EXPR that hasn't yet been emitted.
   We could eventually do better than this since it can be reused while
   generating the same RTL_EXPR, but this is complex and probably not
   worthwhile.  */

void
free_temp_slots (void)
{
  struct temp_slot *p, *next;

  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
    {
      next = p->next;

      if (!p->keep && p->rtl_expr == 0)
	make_slot_available (p);
    }

  combine_temp_slots ();
}

/* Free all temporary slots used in T, an RTL_EXPR node.  */

void
free_temps_for_rtl_expr (tree t)
{
  struct temp_slot *p, *next;

  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
    {
      next = p->next;

      if (p->rtl_expr == t)
	{
	  /* If this slot is below the current TEMP_SLOT_LEVEL, then it
	     needs to be preserved.  This can happen if a temporary in
	     the RTL_EXPR was addressed; preserve_temp_slots will move
	     the temporary into a higher level.  */
	  if (temp_slot_level <= p->level)
	    make_slot_available (p);
	  else
	    p->rtl_expr = NULL_TREE;
	}
    }

  combine_temp_slots ();
}

/* Push deeper into the nesting level for stack temporaries.  */

void
push_temp_slots (void)
{
  temp_slot_level++;
}

/* Pop a temporary nesting level.  All slots in use in the current level
   are freed.  */

void
pop_temp_slots (void)
{
  struct temp_slot *p, *next;

  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
    {
      next = p->next;

      if (p->rtl_expr == 0)
	make_slot_available (p);
    }

  combine_temp_slots ();

  temp_slot_level--;
}

/* Initialize temporary slots.  */

void
init_temp_slots (void)
{
  /* We have not allocated any temporaries yet.  */
  avail_temp_slots = 0;
  used_temp_slots = 0;
  temp_slot_level = 0;
  var_temp_slot_level = 0;
  target_temp_slot_level = 0;
}

/* Retroactively move an auto variable from a register to a stack
   slot.  This is done when an address-reference to the variable is
   seen.  If RESCAN is true, all previously emitted instructions are
   examined and modified to handle the fact that DECL is now
   addressable.  */

void
put_var_into_stack (tree decl, int rescan)
{
  rtx orig_reg, reg;
  enum machine_mode promoted_mode, decl_mode;
  struct function *function = 0;
  tree context;
  bool can_use_addressof_p;
  bool volatile_p = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
  bool used_p = (TREE_USED (decl)
	       || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));

  context = decl_function_context (decl);

  /* Get the current rtl used for this object and its original mode.  */
 orig_reg = reg = (TREE_CODE (decl) == SAVE_EXPR
		   ? SAVE_EXPR_RTL (decl)
		   : DECL_RTL_IF_SET (decl));

  /* No need to do anything if decl has no rtx yet
     since in that case caller is setting TREE_ADDRESSABLE
     and a stack slot will be assigned when the rtl is made.  */
  if (reg == 0)
    return;

  /* Get the declared mode for this object.  */
  decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
	       : DECL_MODE (decl));
  /* Get the mode it's actually stored in.  */
  promoted_mode = GET_MODE (reg);

  /* If this variable comes from an outer function, find that
     function's saved context.  Don't use find_function_data here,
     because it might not be in any active function.
     FIXME: Is that really supposed to happen?
     It does in ObjC at least.  */
  if (context != current_function_decl)
    for (function = outer_function_chain; function; function = function->outer)
      if (function->decl == context)
	break;

  /* If this is a variable-sized object or a structure passed by invisible
     reference, with a pseudo to address it, put that pseudo into the stack
     if the var is non-local.  */
  if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
      && GET_CODE (reg) == MEM
      && REG_P (XEXP (reg, 0))
      && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
    {
      orig_reg = reg = XEXP (reg, 0);
      decl_mode = promoted_mode = GET_MODE (reg);
    }

  /* If this variable lives in the current function and we don't need to put it
     in the stack for the sake of setjmp or the non-locality, try to keep it in
     a register until we know we actually need the address.  */
  can_use_addressof_p
    = (function == 0
       && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
       && optimize > 0
       /* FIXME make it work for promoted modes too */
       && decl_mode == promoted_mode
#ifdef NON_SAVING_SETJMP
       && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
#endif
       );

  /* If we can't use ADDRESSOF, make sure we see through one we already
     generated.  */
  if (! can_use_addressof_p
      && GET_CODE (reg) == MEM
      && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
    reg = XEXP (XEXP (reg, 0), 0);

  /* Now we should have a value that resides in one or more pseudo regs.  */

  if (REG_P (reg))
    {
      if (can_use_addressof_p)
	gen_mem_addressof (reg, decl, rescan);
      else
	put_reg_into_stack (function, reg, TREE_TYPE (decl), decl_mode,
			    0, volatile_p, used_p, false, 0);

	  /* If this was previously a MEM but we've removed the ADDRESSOF,
	     set this address into that MEM so we always use the same
	     rtx for this variable.  */
	  if (orig_reg != reg && GET_CODE (orig_reg) == MEM)
	    XEXP (orig_reg, 0) = XEXP (reg, 0);
    }
  else if (GET_CODE (reg) == CONCAT)
    {
      /* A CONCAT contains two pseudos; put them both in the stack.
	 We do it so they end up consecutive.
	 We fixup references to the parts only after we fixup references
	 to the whole CONCAT, lest we do double fixups for the latter
	 references.  */
      enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
      tree part_type = lang_hooks.types.type_for_mode (part_mode, 0);
      rtx lopart = XEXP (reg, 0);
      rtx hipart = XEXP (reg, 1);
#ifdef FRAME_GROWS_DOWNWARD
      /* Since part 0 should have a lower address, do it second.  */
      put_reg_into_stack (function, hipart, part_type, part_mode,
			  0, volatile_p, false, false, 0);
      put_reg_into_stack (function, lopart, part_type, part_mode,
			  0, volatile_p, false, true, 0);
#else
      put_reg_into_stack (function, lopart, part_type, part_mode,
			  0, volatile_p, false, false, 0);
      put_reg_into_stack (function, hipart, part_type, part_mode,
			  0, volatile_p, false, true, 0);
#endif

      /* Change the CONCAT into a combined MEM for both parts.  */
      PUT_CODE (reg, MEM);
      MEM_ATTRS (reg) = 0;

      /* set_mem_attributes uses DECL_RTL to avoid re-generating of
         already computed alias sets.  Here we want to re-generate.  */
      if (DECL_P (decl))
	SET_DECL_RTL (decl, NULL);
      set_mem_attributes (reg, decl, 1);
      if (DECL_P (decl))
	SET_DECL_RTL (decl, reg);

      /* The two parts are in memory order already.
	 Use the lower parts address as ours.  */
      XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
      /* Prevent sharing of rtl that might lose.  */
      if (GET_CODE (XEXP (reg, 0)) == PLUS)
	XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
      if (used_p && rescan)
	{
	  schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
				   promoted_mode, 0);
	  schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
	  schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
	}
    }
  else
    return;
}

/* Subroutine of put_var_into_stack.  This puts a single pseudo reg REG
   into the stack frame of FUNCTION (0 means the current function).
   TYPE is the user-level data type of the value hold in the register.
   DECL_MODE is the machine mode of the user-level data type.
   ORIGINAL_REGNO must be set if the real regno is not visible in REG.
   VOLATILE_P is true if this is for a "volatile" decl.
   USED_P is true if this reg might have already been used in an insn.
   CONSECUTIVE_P is true if the stack slot assigned to reg must be
   consecutive with the previous stack slot.  */

static void
put_reg_into_stack (struct function *function, rtx reg, tree type,
		    enum machine_mode decl_mode, unsigned int original_regno,
		    bool volatile_p, bool used_p, bool consecutive_p,
		    htab_t ht)
{
  struct function *func = function ? function : cfun;
  enum machine_mode mode = GET_MODE (reg);
  unsigned int regno = original_regno;
  rtx new = 0;

  if (regno == 0)
    regno = REGNO (reg);

  if (regno < func->x_max_parm_reg)
    {
      if (!func->x_parm_reg_stack_loc)
	abort ();
      new = func->x_parm_reg_stack_loc[regno];
    }

  if (new == 0)
    new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode),
				consecutive_p ? -2 : 0, func);

  PUT_CODE (reg, MEM);
  PUT_MODE (reg, decl_mode);
  XEXP (reg, 0) = XEXP (new, 0);
  MEM_ATTRS (reg) = 0;
  /* `volatil' bit means one thing for MEMs, another entirely for REGs.  */
  MEM_VOLATILE_P (reg) = volatile_p;

  /* If this is a memory ref that contains aggregate components,
     mark it as such for cse and loop optimize.  If we are reusing a
     previously generated stack slot, then we need to copy the bit in
     case it was set for other reasons.  For instance, it is set for
     __builtin_va_alist.  */
  if (type)
    {
      MEM_SET_IN_STRUCT_P (reg,
			   AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
      set_mem_alias_set (reg, get_alias_set (type));
    }

  if (used_p)
    schedule_fixup_var_refs (function, reg, type, mode, ht);
}

/* Make sure that all refs to the variable, previously made
   when it was a register, are fixed up to be valid again.
   See function above for meaning of arguments.  */

static void
schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
			 enum machine_mode promoted_mode, htab_t ht)
{
  int unsigned_p = type ? TYPE_UNSIGNED (type) : 0;

  if (function != 0)
    {
      struct var_refs_queue *temp;

      temp = ggc_alloc (sizeof (struct var_refs_queue));
      temp->modified = reg;
      temp->promoted_mode = promoted_mode;
      temp->unsignedp = unsigned_p;
      temp->next = function->fixup_var_refs_queue;
      function->fixup_var_refs_queue = temp;
    }
  else
    /* Variable is local; fix it up now.  */
    fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
}

static void
fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
		rtx may_share, htab_t ht)
{
  tree pending;
  rtx first_insn = get_insns ();
  struct sequence_stack *stack = seq_stack;
  tree rtl_exps = rtl_expr_chain;
  int save_volatile_ok = volatile_ok;

  /* If there's a hash table, it must record all uses of VAR.  */
  if (ht)
    {
      if (stack != 0)
	abort ();
      fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
				      may_share);
      return;
    }

  /* Volatile is valid in MEMs because all we're doing in changing the
     address inside.  */
  volatile_ok = 1;
  fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
			stack == 0, may_share);

  /* Scan all pending sequences too.  */
  for (; stack; stack = stack->next)
    {
      push_to_full_sequence (stack->first, stack->last);
      fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
			    stack->next != 0, may_share);
      /* Update bounds of sequence in case we added insns.  */
      stack->first = get_insns ();
      stack->last = get_last_insn ();
      end_sequence ();
    }

  /* Scan all waiting RTL_EXPRs too.  */
  for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
    {
      rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
      if (seq != const0_rtx && seq != 0)
	{
	  push_to_sequence (seq);
	  fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
				may_share);
	  end_sequence ();
	}
    }

  volatile_ok = save_volatile_ok;
}

/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
   some part of an insn.  Return a struct fixup_replacement whose OLD
   value is equal to X.  Allocate a new structure if no such entry exists.  */

static struct fixup_replacement *
find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
{
  struct fixup_replacement *p;

  /* See if we have already replaced this.  */
  for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
    ;

  if (p == 0)
    {
      p = xmalloc (sizeof (struct fixup_replacement));
      p->old = x;
      p->new = 0;
      p->next = *replacements;
      *replacements = p;
    }

  return p;
}

/* Scan the insn-chain starting with INSN for refs to VAR and fix them
   up.  TOPLEVEL is nonzero if this chain is the main chain of insns
   for the current function.  MAY_SHARE is either a MEM that is not
   to be unshared or a list of them.  */

static void
fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
		      int unsignedp, int toplevel, rtx may_share)
{
  while (insn)
    {
      /* fixup_var_refs_insn might modify insn, so save its next
         pointer now.  */
      rtx next = NEXT_INSN (insn);

      if (INSN_P (insn))
	fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
			     may_share);

      insn = next;
    }
}

/* Look up the insns which reference VAR in HT and fix them up.  Other
   arguments are the same as fixup_var_refs_insns.  */

static void
fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
				int unsignedp, rtx may_share)
{
  struct insns_for_mem_entry tmp;
  struct insns_for_mem_entry *ime;
  rtx insn_list;

  tmp.key = var;
  ime = htab_find (ht, &tmp);
  for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
    if (INSN_P (XEXP (insn_list, 0)))
      fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
			   unsignedp, 1, may_share);
}


/* Per-insn processing by fixup_var_refs_insns(_with_hash).  INSN is
   the insn under examination, VAR is the variable to fix up
   references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
   TOPLEVEL is nonzero if this is the main insn chain for this
   function.  */

static void
fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
		     int unsignedp, int toplevel, rtx no_share)
{
  rtx call_dest = 0;
  rtx set, prev, prev_set;
  rtx note;

  /* Remember the notes in case we delete the insn.  */
  note = REG_NOTES (insn);

  /* If this is a CLOBBER of VAR, delete it.

     If it has a REG_LIBCALL note, delete the REG_LIBCALL
     and REG_RETVAL notes too.  */
  if (GET_CODE (PATTERN (insn)) == CLOBBER
      && (XEXP (PATTERN (insn), 0) == var
	  || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
	      && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
		  || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
    {
      if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
	/* The REG_LIBCALL note will go away since we are going to
	   turn INSN into a NOTE, so just delete the
	   corresponding REG_RETVAL note.  */
	remove_note (XEXP (note, 0),
		     find_reg_note (XEXP (note, 0), REG_RETVAL,
				    NULL_RTX));

      delete_insn (insn);
    }

  /* The insn to load VAR from a home in the arglist
     is now a no-op.  When we see it, just delete it.
     Similarly if this is storing VAR from a register from which
     it was loaded in the previous insn.  This will occur
     when an ADDRESSOF was made for an arglist slot.  */
  else if (toplevel
	   && (set = single_set (insn)) != 0
	   && SET_DEST (set) == var
	   /* If this represents the result of an insn group,
	      don't delete the insn.  */
	   && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
	   && (rtx_equal_p (SET_SRC (set), var)
	       || (REG_P (SET_SRC (set))
		   && (prev = prev_nonnote_insn (insn)) != 0
		   && (prev_set = single_set (prev)) != 0
		   && SET_DEST (prev_set) == SET_SRC (set)
		   && rtx_equal_p (SET_SRC (prev_set), var))))
    {
      delete_insn (insn);
    }
  else
    {
      struct fixup_replacement *replacements = 0;
      rtx next_insn = NEXT_INSN (insn);

      if (SMALL_REGISTER_CLASSES)
	{
	  /* If the insn that copies the results of a CALL_INSN
	     into a pseudo now references VAR, we have to use an
	     intermediate pseudo since we want the life of the
	     return value register to be only a single insn.

	     If we don't use an intermediate pseudo, such things as
	     address computations to make the address of VAR valid
	     if it is not can be placed between the CALL_INSN and INSN.

	     To make sure this doesn't happen, we record the destination
	     of the CALL_INSN and see if the next insn uses both that
	     and VAR.  */

	  if (call_dest != 0 && GET_CODE (insn) == INSN
	      && reg_mentioned_p (var, PATTERN (insn))
	      && reg_mentioned_p (call_dest, PATTERN (insn)))
	    {
	      rtx temp = gen_reg_rtx (GET_MODE (call_dest));

	      emit_insn_before (gen_move_insn (temp, call_dest), insn);

	      PATTERN (insn) = replace_rtx (PATTERN (insn),
					    call_dest, temp);
	    }

	  if (GET_CODE (insn) == CALL_INSN
	      && GET_CODE (PATTERN (insn)) == SET)
	    call_dest = SET_DEST (PATTERN (insn));
	  else if (GET_CODE (insn) == CALL_INSN
		   && GET_CODE (PATTERN (insn)) == PARALLEL
		   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
	    call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
	  else
	    call_dest = 0;
	}

      /* See if we have to do anything to INSN now that VAR is in
	 memory.  If it needs to be loaded into a pseudo, use a single
	 pseudo for the entire insn in case there is a MATCH_DUP
	 between two operands.  We pass a pointer to the head of
	 a list of struct fixup_replacements.  If fixup_var_refs_1
	 needs to allocate pseudos or replacement MEMs (for SUBREGs),
	 it will record them in this list.

	 If it allocated a pseudo for any replacement, we copy into
	 it here.  */

      fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
			&replacements, no_share);

      /* If this is last_parm_insn, and any instructions were output
	 after it to fix it up, then we must set last_parm_insn to
	 the last such instruction emitted.  */
      if (insn == last_parm_insn)
	last_parm_insn = PREV_INSN (next_insn);

      while (replacements)
	{
	  struct fixup_replacement *next;

	  if (REG_P (replacements->new))
	    {
	      rtx insert_before;
	      rtx seq;

	      /* OLD might be a (subreg (mem)).  */
	      if (GET_CODE (replacements->old) == SUBREG)
		replacements->old
		  = fixup_memory_subreg (replacements->old, insn,
					 promoted_mode, 0);
	      else
		replacements->old
		  = fixup_stack_1 (replacements->old, insn);

	      insert_before = insn;

	      /* If we are changing the mode, do a conversion.
		 This might be wasteful, but combine.c will
		 eliminate much of the waste.  */

	      if (GET_MODE (replacements->new)
		  != GET_MODE (replacements->old))
		{
		  start_sequence ();
		  convert_move (replacements->new,
				replacements->old, unsignedp);
		  seq = get_insns ();
		  end_sequence ();
		}
	      else
		seq = gen_move_insn (replacements->new,
				     replacements->old);

	      emit_insn_before (seq, insert_before);
	    }

	  next = replacements->next;
	  free (replacements);
	  replacements = next;
	}
    }

  /* Also fix up any invalid exprs in the REG_NOTES of this insn.
     But don't touch other insns referred to by reg-notes;
     we will get them elsewhere.  */
  while (note)
    {
      if (GET_CODE (note) != INSN_LIST)
	XEXP (note, 0)
	  = walk_fixup_memory_subreg (XEXP (note, 0), insn, var,
				      promoted_mode, 1);
      note = XEXP (note, 1);
    }
}

/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
   See if the rtx expression at *LOC in INSN needs to be changed.

   REPLACEMENTS is a pointer to a list head that starts out zero, but may
   contain a list of original rtx's and replacements. If we find that we need
   to modify this insn by replacing a memory reference with a pseudo or by
   making a new MEM to implement a SUBREG, we consult that list to see if
   we have already chosen a replacement. If none has already been allocated,
   we allocate it and update the list.  fixup_var_refs_insn will copy VAR
   or the SUBREG, as appropriate, to the pseudo.  */

static void
fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
		  struct fixup_replacement **replacements, rtx no_share)
{
  int i;
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
  rtx tem, tem1;
  struct fixup_replacement *replacement;

  switch (code)
    {
    case ADDRESSOF:
      if (XEXP (x, 0) == var)
	{
	  /* Prevent sharing of rtl that might lose.  */
	  rtx sub = copy_rtx (XEXP (var, 0));

	  if (! validate_change (insn, loc, sub, 0))
	    {
	      rtx y = gen_reg_rtx (GET_MODE (sub));
	      rtx seq, new_insn;

	      /* We should be able to replace with a register or all is lost.
		 Note that we can't use validate_change to verify this, since
		 we're not caring for replacing all dups simultaneously.  */
	      if (! validate_replace_rtx (*loc, y, insn))
		abort ();

	      /* Careful!  First try to recognize a direct move of the
		 value, mimicking how things are done in gen_reload wrt
		 PLUS.  Consider what happens when insn is a conditional
		 move instruction and addsi3 clobbers flags.  */

	      start_sequence ();
	      new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
	      seq = get_insns ();
	      end_sequence ();

	      if (recog_memoized (new_insn) < 0)
		{
		  /* That failed.  Fall back on force_operand and hope.  */

		  start_sequence ();
		  sub = force_operand (sub, y);
		  if (sub != y)
		    emit_insn (gen_move_insn (y, sub));
		  seq = get_insns ();
		  end_sequence ();
		}

#ifdef HAVE_cc0
	      /* Don't separate setter from user.  */
	      if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
		insn = PREV_INSN (insn);
#endif

	      emit_insn_before (seq, insn);
	    }
	}
      return;

    case MEM:
      if (var == x)
	{
	  /* If we already have a replacement, use it.  Otherwise,
	     try to fix up this address in case it is invalid.  */

	  replacement = find_fixup_replacement (replacements, var);
	  if (replacement->new)
	    {
	      *loc = replacement->new;
	      return;
	    }

	  *loc = replacement->new = x = fixup_stack_1 (x, insn);

	  /* Unless we are forcing memory to register or we changed the mode,
	     we can leave things the way they are if the insn is valid.  */

	  INSN_CODE (insn) = -1;
	  if (! flag_force_mem && GET_MODE (x) == promoted_mode
	      && recog_memoized (insn) >= 0)
	    return;

	  *loc = replacement->new = gen_reg_rtx (promoted_mode);
	  return;
	}

      /* If X contains VAR, we need to unshare it here so that we update
	 each occurrence separately.  But all identical MEMs in one insn
	 must be replaced with the same rtx because of the possibility of
	 MATCH_DUPs.  */

      if (reg_mentioned_p (var, x))
	{
	  replacement = find_fixup_replacement (replacements, x);
	  if (replacement->new == 0)
	    replacement->new = copy_most_rtx (x, no_share);

	  *loc = x = replacement->new;
	  code = GET_CODE (x);
	}
      break;

    case REG:
    case CC0:
    case PC:
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
    case CONST_VECTOR:
      return;

    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      /* Note that in some cases those types of expressions are altered
	 by optimize_bit_field, and do not survive to get here.  */
      if (XEXP (x, 0) == var
	  || (GET_CODE (XEXP (x, 0)) == SUBREG
	      && SUBREG_REG (XEXP (x, 0)) == var))
	{
	  /* Get TEM as a valid MEM in the mode presently in the insn.

	     We don't worry about the possibility of MATCH_DUP here; it
	     is highly unlikely and would be tricky to handle.  */

	  tem = XEXP (x, 0);
	  if (GET_CODE (tem) == SUBREG)
	    {
	      if (GET_MODE_BITSIZE (GET_MODE (tem))
		  > GET_MODE_BITSIZE (GET_MODE (var)))
		{
		  replacement = find_fixup_replacement (replacements, var);
		  if (replacement->new == 0)
		    replacement->new = gen_reg_rtx (GET_MODE (var));
		  SUBREG_REG (tem) = replacement->new;

		  /* The following code works only if we have a MEM, so we
		     need to handle the subreg here.  We directly substitute
		     it assuming that a subreg must be OK here.  We already
		     scheduled a replacement to copy the mem into the
		     subreg.  */
		  XEXP (x, 0) = tem;
		  return;
		}
	      else
		tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
	    }
	  else
	    tem = fixup_stack_1 (tem, insn);

	  /* Unless we want to load from memory, get TEM into the proper mode
	     for an extract from memory.  This can only be done if the
	     extract is at a constant position and length.  */

	  if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
	      && GET_CODE (XEXP (x, 2)) == CONST_INT
	      && ! mode_dependent_address_p (XEXP (tem, 0))
	      && ! MEM_VOLATILE_P (tem))
	    {
	      enum machine_mode wanted_mode = VOIDmode;
	      enum machine_mode is_mode = GET_MODE (tem);
	      HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));

	      if (GET_CODE (x) == ZERO_EXTRACT)
		{
		  enum machine_mode new_mode
		    = mode_for_extraction (EP_extzv, 1);
		  if (new_mode != MAX_MACHINE_MODE)
		    wanted_mode = new_mode;
		}
	      else if (GET_CODE (x) == SIGN_EXTRACT)
		{
		  enum machine_mode new_mode
		    = mode_for_extraction (EP_extv, 1);
		  if (new_mode != MAX_MACHINE_MODE)
		    wanted_mode = new_mode;
		}

	      /* If we have a narrower mode, we can do something.  */
	      if (wanted_mode != VOIDmode
		  && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		{
		  HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
		  rtx old_pos = XEXP (x, 2);
		  rtx newmem;

		  /* If the bytes and bits are counted differently, we
		     must adjust the offset.  */
		  if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		    offset = (GET_MODE_SIZE (is_mode)
			      - GET_MODE_SIZE (wanted_mode) - offset);

		  pos %= GET_MODE_BITSIZE (wanted_mode);

		  newmem = adjust_address_nv (tem, wanted_mode, offset);

		  /* Make the change and see if the insn remains valid.  */
		  INSN_CODE (insn) = -1;
		  XEXP (x, 0) = newmem;
		  XEXP (x, 2) = GEN_INT (pos);

		  if (recog_memoized (insn) >= 0)
		    return;

		  /* Otherwise, restore old position.  XEXP (x, 0) will be
		     restored later.  */
		  XEXP (x, 2) = old_pos;
		}
	    }

	  /* If we get here, the bitfield extract insn can't accept a memory
	     reference.  Copy the input into a register.  */

	  tem1 = gen_reg_rtx (GET_MODE (tem));
	  emit_insn_before (gen_move_insn (tem1, tem), insn);
	  XEXP (x, 0) = tem1;
	  return;
	}
      break;

    case SUBREG:
      if (SUBREG_REG (x) == var)
	{
	  /* If this is a special SUBREG made because VAR was promoted
	     from a wider mode, replace it with VAR and call ourself
	     recursively, this time saying that the object previously
	     had its current mode (by virtue of the SUBREG).  */

	  if (SUBREG_PROMOTED_VAR_P (x))
	    {
	      *loc = var;
	      fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
				no_share);
	      return;
	    }

	  /* If this SUBREG makes VAR wider, it has become a paradoxical
	     SUBREG with VAR in memory, but these aren't allowed at this
	     stage of the compilation.  So load VAR into a pseudo and take
	     a SUBREG of that pseudo.  */
	  if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
	    {
	      replacement = find_fixup_replacement (replacements, var);
	      if (replacement->new == 0)
		replacement->new = gen_reg_rtx (promoted_mode);
	      SUBREG_REG (x) = replacement->new;
	      return;
	    }

	  /* See if we have already found a replacement for this SUBREG.
	     If so, use it.  Otherwise, make a MEM and see if the insn
	     is recognized.  If not, or if we should force MEM into a register,
	     make a pseudo for this SUBREG.  */
	  replacement = find_fixup_replacement (replacements, x);
	  if (replacement->new)
	    {
	      enum machine_mode mode = GET_MODE (x);
	      *loc = replacement->new;

	      /* Careful!  We may have just replaced a SUBREG by a MEM, which
		 means that the insn may have become invalid again.  We can't
		 in this case make a new replacement since we already have one
		 and we must deal with MATCH_DUPs.  */
	      if (GET_CODE (replacement->new) == MEM)
		{
		  INSN_CODE (insn) = -1;
		  if (recog_memoized (insn) >= 0)
		    return;

		  fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
				    insn, replacements, no_share);
		}

	      return;
	    }

	  replacement->new = *loc = fixup_memory_subreg (x, insn,
							 promoted_mode, 0);

	  INSN_CODE (insn) = -1;
	  if (! flag_force_mem && recog_memoized (insn) >= 0)
	    return;

	  *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
	  return;
	}
      break;

    case SET:
      /* First do special simplification of bit-field references.  */
      if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
	optimize_bit_field (x, insn, 0);
      if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
	optimize_bit_field (x, insn, 0);

      /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
	 into a register and then store it back out.  */
      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
	  && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
	  && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  replacement = find_fixup_replacement (replacements, var);
	  if (replacement->new == 0)
	    replacement->new = gen_reg_rtx (GET_MODE (var));

	  SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
	  emit_insn_after (gen_move_insn (var, replacement->new), insn);
	}

      /* If SET_DEST is now a paradoxical SUBREG, put the result of this
	 insn into a pseudo and store the low part of the pseudo into VAR.  */
      if (GET_CODE (SET_DEST (x)) == SUBREG
	  && SUBREG_REG (SET_DEST (x)) == var
	  && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
	  emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
							    tem)),
			   insn);
	  break;
	}

      {
	rtx dest = SET_DEST (x);
	rtx src = SET_SRC (x);
	rtx outerdest = dest;

	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	       || GET_CODE (dest) == SIGN_EXTRACT
	       || GET_CODE (dest) == ZERO_EXTRACT)
	  dest = XEXP (dest, 0);

	if (GET_CODE (src) == SUBREG)
	  src = SUBREG_REG (src);

	/* If VAR does not appear at the top level of the SET
	   just scan the lower levels of the tree.  */

	if (src != var && dest != var)
	  break;

	/* We will need to rerecognize this insn.  */
	INSN_CODE (insn) = -1;

	if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
	    && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
	  {
	    /* Since this case will return, ensure we fixup all the
	       operands here.  */
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
			      insn, replacements, no_share);
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
			      insn, replacements, no_share);
	    fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
			      insn, replacements, no_share);

	    tem = XEXP (outerdest, 0);

	    /* Clean up (SUBREG:SI (MEM:mode ...) 0)
	       that may appear inside a ZERO_EXTRACT.
	       This was legitimate when the MEM was a REG.  */
	    if (GET_CODE (tem) == SUBREG
		&& SUBREG_REG (tem) == var)
	      tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
	    else
	      tem = fixup_stack_1 (tem, insn);

	    if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
		&& GET_CODE (XEXP (outerdest, 2)) == CONST_INT
		&& ! mode_dependent_address_p (XEXP (tem, 0))
		&& ! MEM_VOLATILE_P (tem))
	      {
		enum machine_mode wanted_mode;
		enum machine_mode is_mode = GET_MODE (tem);
		HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));

		wanted_mode = mode_for_extraction (EP_insv, 0);

		/* If we have a narrower mode, we can do something.  */
		if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		  {
		    HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
		    rtx old_pos = XEXP (outerdest, 2);
		    rtx newmem;

		    if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		      offset = (GET_MODE_SIZE (is_mode)
				- GET_MODE_SIZE (wanted_mode) - offset);

		    pos %= GET_MODE_BITSIZE (wanted_mode);

		    newmem = adjust_address_nv (tem, wanted_mode, offset);

		    /* Make the change and see if the insn remains valid.  */
		    INSN_CODE (insn) = -1;
		    XEXP (outerdest, 0) = newmem;
		    XEXP (outerdest, 2) = GEN_INT (pos);

		    if (recog_memoized (insn) >= 0)
		      return;

		    /* Otherwise, restore old position.  XEXP (x, 0) will be
		       restored later.  */
		    XEXP (outerdest, 2) = old_pos;
		  }
	      }

	    /* If we get here, the bit-field store doesn't allow memory
	       or isn't located at a constant position.  Load the value into
	       a register, do the store, and put it back into memory.  */

	    tem1 = gen_reg_rtx (GET_MODE (tem));
	    emit_insn_before (gen_move_insn (tem1, tem), insn);
	    emit_insn_after (gen_move_insn (tem, tem1), insn);
	    XEXP (outerdest, 0) = tem1;
	    return;
	  }

	/* STRICT_LOW_PART is a no-op on memory references
	   and it can cause combinations to be unrecognizable,
	   so eliminate it.  */

	if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
	  SET_DEST (x) = XEXP (SET_DEST (x), 0);

	/* A valid insn to copy VAR into or out of a register
	   must be left alone, to avoid an infinite loop here.
	   If the reference to VAR is by a subreg, fix that up,
	   since SUBREG is not valid for a memref.
	   Also fix up the address of the stack slot.

	   Note that we must not try to recognize the insn until
	   after we know that we have valid addresses and no
	   (subreg (mem ...) ...) constructs, since these interfere
	   with determining the validity of the insn.  */

	if ((SET_SRC (x) == var
	     || (GET_CODE (SET_SRC (x)) == SUBREG
		 && SUBREG_REG (SET_SRC (x)) == var))
	    && (REG_P (SET_DEST (x))
		|| (GET_CODE (SET_DEST (x)) == SUBREG
		    && REG_P (SUBREG_REG (SET_DEST (x)))))
	    && GET_MODE (var) == promoted_mode
	    && x == single_set (insn))
	  {
	    rtx pat, last;

	    if (GET_CODE (SET_SRC (x)) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
		    > GET_MODE_SIZE (GET_MODE (var))))
	      {
		/* This (subreg VAR) is now a paradoxical subreg.  We need
		   to replace VAR instead of the subreg.  */
		replacement = find_fixup_replacement (replacements, var);
		if (replacement->new == NULL_RTX)
		  replacement->new = gen_reg_rtx (GET_MODE (var));
		SUBREG_REG (SET_SRC (x)) = replacement->new;
	      }
	    else
	      {
		replacement = find_fixup_replacement (replacements, SET_SRC (x));
		if (replacement->new)
		  SET_SRC (x) = replacement->new;
		else if (GET_CODE (SET_SRC (x)) == SUBREG)
		  SET_SRC (x) = replacement->new
		    = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
					   0);
		else
		  SET_SRC (x) = replacement->new
		    = fixup_stack_1 (SET_SRC (x), insn);
	      }

	    if (recog_memoized (insn) >= 0)
	      return;

	    /* INSN is not valid, but we know that we want to
	       copy SET_SRC (x) to SET_DEST (x) in some way.  So
	       we generate the move and see whether it requires more
	       than one insn.  If it does, we emit those insns and
	       delete INSN.  Otherwise, we can just replace the pattern
	       of INSN; we have already verified above that INSN has
	       no other function that to do X.  */

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
	    if (NEXT_INSN (pat) != NULL_RTX)
	      {
		last = emit_insn_before (pat, insn);

		/* INSN might have REG_RETVAL or other important notes, so
		   we need to store the pattern of the last insn in the
		   sequence into INSN similarly to the normal case.  LAST
		   should not have REG_NOTES, but we allow them if INSN has
		   no REG_NOTES.  */
		if (REG_NOTES (last) && REG_NOTES (insn))
		  abort ();
		if (REG_NOTES (last))
		  REG_NOTES (insn) = REG_NOTES (last);
		PATTERN (insn) = PATTERN (last);

		delete_insn (last);
	      }
	    else
	      PATTERN (insn) = PATTERN (pat);

	    return;
	  }

	if ((SET_DEST (x) == var
	     || (GET_CODE (SET_DEST (x)) == SUBREG
		 && SUBREG_REG (SET_DEST (x)) == var))
	    && (REG_P (SET_SRC (x))
		|| (GET_CODE (SET_SRC (x)) == SUBREG
		    && REG_P (SUBREG_REG (SET_SRC (x)))))
	    && GET_MODE (var) == promoted_mode
	    && x == single_set (insn))
	  {
	    rtx pat, last;

	    if (GET_CODE (SET_DEST (x)) == SUBREG)
	      SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
						  promoted_mode, 0);
	    else
	      SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);

	    if (recog_memoized (insn) >= 0)
	      return;

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
	    if (NEXT_INSN (pat) != NULL_RTX)
	      {
		last = emit_insn_before (pat, insn);

		/* INSN might have REG_RETVAL or other important notes, so
		   we need to store the pattern of the last insn in the
		   sequence into INSN similarly to the normal case.  LAST
		   should not have REG_NOTES, but we allow them if INSN has
		   no REG_NOTES.  */
		if (REG_NOTES (last) && REG_NOTES (insn))
		  abort ();
		if (REG_NOTES (last))
		  REG_NOTES (insn) = REG_NOTES (last);
		PATTERN (insn) = PATTERN (last);

		delete_insn (last);
	      }
	    else
	      PATTERN (insn) = PATTERN (pat);

	    return;
	  }

	/* Otherwise, storing into VAR must be handled specially
	   by storing into a temporary and copying that into VAR
	   with a new insn after this one.  Note that this case
	   will be used when storing into a promoted scalar since
	   the insn will now have different modes on the input
	   and output and hence will be invalid (except for the case
	   of setting it to a constant, which does not need any
	   change if it is valid).  We generate extra code in that case,
	   but combine.c will eliminate it.  */

	if (dest == var)
	  {
	    rtx temp;
	    rtx fixeddest = SET_DEST (x);
	    enum machine_mode temp_mode;

	    /* STRICT_LOW_PART can be discarded, around a MEM.  */
	    if (GET_CODE (fixeddest) == STRICT_LOW_PART)
	      fixeddest = XEXP (fixeddest, 0);
	    /* Convert (SUBREG (MEM)) to a MEM in a changed mode.  */
	    if (GET_CODE (fixeddest) == SUBREG)
	      {
		fixeddest = fixup_memory_subreg (fixeddest, insn,
						 promoted_mode, 0);
		temp_mode = GET_MODE (fixeddest);
	      }
	    else
	      {
		fixeddest = fixup_stack_1 (fixeddest, insn);
		temp_mode = promoted_mode;
	      }

	    temp = gen_reg_rtx (temp_mode);

	    emit_insn_after (gen_move_insn (fixeddest,
					    gen_lowpart (GET_MODE (fixeddest),
							 temp)),
			     insn);

	    SET_DEST (x) = temp;
	  }
      }

    default:
      break;
    }

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
			  no_share);
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
			      insn, replacements, no_share);
	}
    }
}

/* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
   The REG  was placed on the stack, so X now has the form (SUBREG:m1
   (MEM:m2 ...)).

   Return an rtx (MEM:m1 newaddr) which is equivalent.  If any insns
   must be emitted to compute NEWADDR, put them before INSN.

   UNCRITICAL nonzero means accept paradoxical subregs.
   This is used for subregs found inside REG_NOTES.  */

static rtx
fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
{
  int offset;
  rtx mem = SUBREG_REG (x);
  rtx addr = XEXP (mem, 0);
  enum machine_mode mode = GET_MODE (x);
  rtx result, seq;

  /* Paradoxical SUBREGs are usually invalid during RTL generation.  */
  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
    abort ();

  offset = SUBREG_BYTE (x);
  if (BYTES_BIG_ENDIAN)
    /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
       the offset so that it points to the right location within the
       MEM.  */
    offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));

  if (!flag_force_addr
      && memory_address_p (mode, plus_constant (addr, offset)))
    /* Shortcut if no insns need be emitted.  */
    return adjust_address (mem, mode, offset);

  start_sequence ();
  result = adjust_address (mem, mode, offset);
  seq = get_insns ();
  end_sequence ();

  emit_insn_before (seq, insn);
  return result;
}

/* Do fixup_memory_subreg on all (SUBREG (VAR) ...) contained in X.
   VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
   Replace subexpressions of X in place.
   If X itself is a (SUBREG (VAR) ...), return the replacement expression.
   Otherwise return X, with its contents possibly altered.

   INSN and UNCRITICAL are as for fixup_memory_subreg.  */

static rtx
walk_fixup_memory_subreg (rtx x, rtx insn, rtx var,
			  enum machine_mode promoted_mode, int uncritical)
{
  enum rtx_code code;
  const char *fmt;
  int i;

  if (x == 0)
    return 0;

  code = GET_CODE (x);

  if (code == SUBREG && SUBREG_REG (x) == var)
    return fixup_memory_subreg (x, insn, promoted_mode, uncritical);

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, var,
						promoted_mode, uncritical);
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j)
	      = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, var,
					  promoted_mode, uncritical);
	}
    }
  return x;
}

/* For each memory ref within X, if it refers to a stack slot
   with an out of range displacement, put the address in a temp register
   (emitting new insns before INSN to load these registers)
   and alter the memory ref to use that register.
   Replace each such MEM rtx with a copy, to avoid clobberage.  */

static rtx
fixup_stack_1 (rtx x, rtx insn)
{
  int i;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;

  if (code == MEM)
    {
      rtx ad = XEXP (x, 0);
      /* If we have address of a stack slot but it's not valid
	 (displacement is too large), compute the sum in a register.  */
      if (GET_CODE (ad) == PLUS
	  && REG_P (XEXP (ad, 0))
	  && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
	       && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
	      || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
#endif
	      || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
	      || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
	      || XEXP (ad, 0) == current_function_internal_arg_pointer)
	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
	{
	  rtx temp, seq;
	  if (memory_address_p (GET_MODE (x), ad))
	    return x;

	  start_sequence ();
	  temp = copy_to_reg (ad);
	  seq = get_insns ();
	  end_sequence ();
	  emit_insn_before (seq, insn);
	  return replace_equiv_address (x, temp);
	}
      return x;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
	}
    }
  return x;
}

/* Optimization: a bit-field instruction whose field
   happens to be a byte or halfword in memory
   can be changed to a move instruction.

   We call here when INSN is an insn to examine or store into a bit-field.
   BODY is the SET-rtx to be altered.

   EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
   (Currently this is called only from function.c, and EQUIV_MEM
   is always 0.)  */

static void
optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
{
  rtx bitfield;
  int destflag;
  rtx seq = 0;
  enum machine_mode mode;

  if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
      || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
    bitfield = SET_DEST (body), destflag = 1;
  else
    bitfield = SET_SRC (body), destflag = 0;

  /* First check that the field being stored has constant size and position
     and is in fact a byte or halfword suitably aligned.  */

  if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
      && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
      && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
	  != BLKmode)
      && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
    {
      rtx memref = 0;

      /* Now check that the containing word is memory, not a register,
	 and that it is safe to change the machine mode.  */

      if (GET_CODE (XEXP (bitfield, 0)) == MEM)
	memref = XEXP (bitfield, 0);
      else if (REG_P (XEXP (bitfield, 0))
	       && equiv_mem != 0)
	memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
	memref = SUBREG_REG (XEXP (bitfield, 0));
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && equiv_mem != 0
	       && REG_P (SUBREG_REG (XEXP (bitfield, 0))))
	memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];

      if (memref
	  && ! mode_dependent_address_p (XEXP (memref, 0))
	  && ! MEM_VOLATILE_P (memref))
	{
	  /* Now adjust the address, first for any subreg'ing
	     that we are now getting rid of,
	     and then for which byte of the word is wanted.  */

	  HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
	  rtx insns;

	  /* Adjust OFFSET to count bits from low-address byte.  */
	  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
	    offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
		      - offset - INTVAL (XEXP (bitfield, 1)));

	  /* Adjust OFFSET to count bytes from low-address byte.  */
	  offset /= BITS_PER_UNIT;
	  if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
	    {
	      offset += (SUBREG_BYTE (XEXP (bitfield, 0))
			 / UNITS_PER_WORD) * UNITS_PER_WORD;
	      if (BYTES_BIG_ENDIAN)
		offset -= (MIN (UNITS_PER_WORD,
				GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
			   - MIN (UNITS_PER_WORD,
				  GET_MODE_SIZE (GET_MODE (memref))));
	    }

	  start_sequence ();
	  memref = adjust_address (memref, mode, offset);
	  insns = get_insns ();
	  end_sequence ();
	  emit_insn_before (insns, insn);

	  /* Store this memory reference where
	     we found the bit field reference.  */

	  if (destflag)
	    {
	      validate_change (insn, &SET_DEST (body), memref, 1);
	      if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
		{
		  rtx src = SET_SRC (body);
		  while (GET_CODE (src) == SUBREG
			 && SUBREG_BYTE (src) == 0)
		    src = SUBREG_REG (src);
		  if (GET_MODE (src) != GET_MODE (memref))
		    src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
		  validate_change (insn, &SET_SRC (body), src, 1);
		}
	      else if (GET_MODE (SET_SRC (body)) != VOIDmode
		       && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
		/* This shouldn't happen because anything that didn't have
		   one of these modes should have got converted explicitly
		   and then referenced through a subreg.
		   This is so because the original bit-field was
		   handled by agg_mode and so its tree structure had
		   the same mode that memref now has.  */
		abort ();
	    }
	  else
	    {
	      rtx dest = SET_DEST (body);

	      while (GET_CODE (dest) == SUBREG
		     && SUBREG_BYTE (dest) == 0
		     && (GET_MODE_CLASS (GET_MODE (dest))
			 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
		     && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
			 <= UNITS_PER_WORD))
		dest = SUBREG_REG (dest);

	      validate_change (insn, &SET_DEST (body), dest, 1);

	      if (GET_MODE (dest) == GET_MODE (memref))
		validate_change (insn, &SET_SRC (body), memref, 1);
	      else
		{
		  /* Convert the mem ref to the destination mode.  */
		  rtx newreg = gen_reg_rtx (GET_MODE (dest));

		  start_sequence ();
		  convert_move (newreg, memref,
				GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
		  seq = get_insns ();
		  end_sequence ();

		  validate_change (insn, &SET_SRC (body), newreg, 1);
		}
	    }

	  /* See if we can convert this extraction or insertion into
	     a simple move insn.  We might not be able to do so if this
	     was, for example, part of a PARALLEL.

	     If we succeed, write out any needed conversions.  If we fail,
	     it is hard to guess why we failed, so don't do anything
	     special; just let the optimization be suppressed.  */

	  if (apply_change_group () && seq)
	    emit_insn_before (seq, insn);
	}
    }
}

/* These routines are responsible for converting virtual register references
   to the actual hard register references once RTL generation is complete.

   The following four variables are used for communication between the
   routines.  They contain the offsets of the virtual registers from their
   respective hard registers.  */

static int in_arg_offset;
static int var_offset;
static int dynamic_offset;
static int out_arg_offset;
static int cfa_offset;

/* In most machines, the stack pointer register is equivalent to the bottom
   of the stack.  */

#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET	0
#endif

/* If not defined, pick an appropriate default for the offset of dynamically
   allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
   REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */

#ifndef STACK_DYNAMIC_OFFSET

/* The bottom of the stack points to the actual arguments.  If
   REG_PARM_STACK_SPACE is defined, this includes the space for the register
   parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
   stack space for register parameters is not pushed by the caller, but
   rather part of the fixed stack areas and hence not included in
   `current_function_outgoing_args_size'.  Nevertheless, we must allow
   for it when allocating stack dynamic objects.  */

#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
((ACCUMULATE_OUTGOING_ARGS						      \
  ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
 + (STACK_POINTER_OFFSET))						      \

#else
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0)	      \
 + (STACK_POINTER_OFFSET))
#endif
#endif

/* On most machines, the CFA coincides with the first incoming parm.  */

#ifndef ARG_POINTER_CFA_OFFSET
#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
#endif

/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
   had its address taken.  DECL is the decl or SAVE_EXPR for the
   object stored in the register, for later use if we do need to force
   REG into the stack.  REG is overwritten by the MEM like in
   put_reg_into_stack.  RESCAN is true if previously emitted
   instructions must be rescanned and modified now that the REG has
   been transformed.  */

rtx
gen_mem_addressof (rtx reg, tree decl, int rescan)
{
  rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
			     REGNO (reg), decl);

  /* Calculate this before we start messing with decl's RTL.  */
  HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;

  /* If the original REG was a user-variable, then so is the REG whose
     address is being taken.  Likewise for unchanging.  */
  REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
  RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);

  PUT_CODE (reg, MEM);
  MEM_VOLATILE_P (reg) = 0;
  MEM_ATTRS (reg) = 0;
  XEXP (reg, 0) = r;

  if (decl)
    {
      tree type = TREE_TYPE (decl);
      enum machine_mode decl_mode
	= (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
      rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
		      : DECL_RTL_IF_SET (decl));

      PUT_MODE (reg, decl_mode);

      /* Clear DECL_RTL momentarily so functions below will work
	 properly, then set it again.  */
      if (DECL_P (decl) && decl_rtl == reg)
	SET_DECL_RTL (decl, 0);

      set_mem_attributes (reg, decl, 1);
      set_mem_alias_set (reg, set);

      if (DECL_P (decl) && decl_rtl == reg)
	SET_DECL_RTL (decl, reg);

      if (rescan
	  && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
	fixup_var_refs (reg, GET_MODE (reg), TYPE_UNSIGNED (type), reg, 0);
    }
  else if (rescan)
    {
      /* This can only happen during reload.  Clear the same flag bits as
	 reload.  */
      RTX_UNCHANGING_P (reg) = 0;
      MEM_IN_STRUCT_P (reg) = 0;
      MEM_SCALAR_P (reg) = 0;

      fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
    }

  return reg;
}

/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack.  */

void
flush_addressof (tree decl)
{
  if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
      && DECL_RTL (decl) != 0
      && GET_CODE (DECL_RTL (decl)) == MEM
      && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
      && REG_P (XEXP (XEXP (DECL_RTL (decl), 0), 0)))
    put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
}

/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack.  */

static void
put_addressof_into_stack (rtx r, htab_t ht)
{
  tree decl, type;
  bool volatile_p, used_p;

  rtx reg = XEXP (r, 0);

  if (!REG_P (reg))
    abort ();

  decl = ADDRESSOF_DECL (r);
  if (decl)
    {
      type = TREE_TYPE (decl);
      volatile_p = (TREE_CODE (decl) != SAVE_EXPR
		    && TREE_THIS_VOLATILE (decl));
      used_p = (TREE_USED (decl)
		|| (DECL_P (decl) && DECL_INITIAL (decl) != 0));
    }
  else
    {
      type = NULL_TREE;
      volatile_p = false;
      used_p = true;
    }

  put_reg_into_stack (0, reg, type, GET_MODE (reg), ADDRESSOF_REGNO (r),
		      volatile_p, used_p, false, ht);
}

/* List of replacements made below in purge_addressof_1 when creating
   bitfield insertions.  */
static rtx purge_bitfield_addressof_replacements;

/* List of replacements made below in purge_addressof_1 for patterns
   (MEM (ADDRESSOF (REG ...))).  The key of the list entry is the
   corresponding (ADDRESSOF (REG ...)) and value is a substitution for
   the all pattern.  List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
   enough in complex cases, e.g. when some field values can be
   extracted by usage MEM with narrower mode.  */
static rtx purge_addressof_replacements;

/* Helper function for purge_addressof.  See if the rtx expression at *LOC
   in INSN needs to be changed.  If FORCE, always put any ADDRESSOFs into
   the stack.  If the function returns FALSE then the replacement could not
   be made.  If MAY_POSTPONE is true and we would not put the addressof
   to stack, postpone processing of the insn.  */

static bool
purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
		   htab_t ht)
{
  rtx x;
  RTX_CODE code;
  int i, j;
  const char *fmt;
  bool result = true;
  bool libcall = false;

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
    return true;

  /* Is this a libcall?  */
  if (!insn)
    libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;

  code = GET_CODE (x);

  /* If we don't return in any of the cases below, we will recurse inside
     the RTX, which will normally result in any ADDRESSOF being forced into
     memory.  */
  if (code == SET)
    {
      result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
				  may_postpone, ht);
      result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
				   may_postpone, ht);
      return result;
    }
  else if (code == ADDRESSOF)
    {
      rtx sub, insns;

      if (GET_CODE (XEXP (x, 0)) != MEM)
	put_addressof_into_stack (x, ht);

      /* We must create a copy of the rtx because it was created by
	 overwriting a REG rtx which is always shared.  */
      sub = copy_rtx (XEXP (XEXP (x, 0), 0));
      if (validate_change (insn, loc, sub, 0)
	  || validate_replace_rtx (x, sub, insn))
	return true;

      start_sequence ();

      /* If SUB is a hard or virtual register, try it as a pseudo-register.
	 Otherwise, perhaps SUB is an expression, so generate code to compute
	 it.  */
      if (REG_P (sub) && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
	sub = copy_to_reg (sub);
      else
	sub = force_operand (sub, NULL_RTX);

      if (! validate_change (insn, loc, sub, 0)
	  && ! validate_replace_rtx (x, sub, insn))
	abort ();

      insns = get_insns ();
      end_sequence ();
      emit_insn_before (insns, insn);
      return true;
    }

  else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
    {
      rtx sub = XEXP (XEXP (x, 0), 0);

      if (GET_CODE (sub) == MEM)
	sub = adjust_address_nv (sub, GET_MODE (x), 0);
      else if (REG_P (sub)
	       && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
	;
      else if (REG_P (sub) && GET_MODE (x) != GET_MODE (sub))
	{
	  int size_x, size_sub;

	  if (may_postpone)
	    {
	      /* Postpone for now, so that we do not emit bitfield arithmetics
		 unless there is some benefit from it.  */
	      if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
		postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
	      return true;
	    }

	  if (!insn)
	    {
	      /* When processing REG_NOTES look at the list of
		 replacements done on the insn to find the register that X
		 was replaced by.  */
	      rtx tem;

	      for (tem = purge_bitfield_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (x, XEXP (tem, 0)))
		  {
		    *loc = XEXP (XEXP (tem, 1), 0);
		    return true;
		  }

	      /* See comment for purge_addressof_replacements.  */
	      for (tem = purge_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
		  {
		    rtx z = XEXP (XEXP (tem, 1), 0);

		    if (GET_MODE (x) == GET_MODE (z)
			|| (!REG_P (XEXP (XEXP (tem, 1), 0))
			    && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
		      abort ();

		    /* It can happen that the note may speak of things
		       in a wider (or just different) mode than the
		       code did.  This is especially true of
		       REG_RETVAL.  */

		    if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
		      z = SUBREG_REG (z);

		    if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
			&& (GET_MODE_SIZE (GET_MODE (x))
			    > GET_MODE_SIZE (GET_MODE (z))))
		      {
			/* This can occur as a result in invalid
			   pointer casts, e.g. float f; ...
			   *(long long int *)&f.
			   ??? We could emit a warning here, but
			   without a line number that wouldn't be
			   very helpful.  */
			z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
		      }
		    else
		      z = gen_lowpart (GET_MODE (x), z);

		    *loc = z;
		    return true;
		  }

	      /* When we are processing the REG_NOTES of the last instruction
		 of a libcall, there will be typically no replacements
		 for that insn; the replacements happened before, piecemeal
		 fashion.  OTOH we are not interested in the details of
		 this for the REG_EQUAL note, we want to know the big picture,
		 which can be succinctly described with a simple SUBREG.
		 Note that removing the REG_EQUAL note is not an option
		 on the last insn of a libcall, so we must do a replacement.  */

	      /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
		 we got
		 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
		 [0 S8 A32]), which can be expressed with a simple
		 same-size subreg  */
	      if ((GET_MODE_SIZE (GET_MODE (x))
		   <= GET_MODE_SIZE (GET_MODE (sub)))
		  /* Again, invalid pointer casts (as in
		     compile/990203-1.c) can require paradoxical
		     subregs.  */
		  || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
		      && (GET_MODE_SIZE (GET_MODE (x))
			  > GET_MODE_SIZE (GET_MODE (sub)))
		      && libcall))
		{
		  *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
		  return true;
		}
	      /* ??? Are there other cases we should handle?  */

	      /* Sometimes we may not be able to find the replacement.  For
		 example when the original insn was a MEM in a wider mode,
		 and the note is part of a sign extension of a narrowed
		 version of that MEM.  Gcc testcase compile/990829-1.c can
		 generate an example of this situation.  Rather than complain
		 we return false, which will prompt our caller to remove the
		 offending note.  */
	      return false;
	    }

	  size_x = GET_MODE_BITSIZE (GET_MODE (x));
	  size_sub = GET_MODE_BITSIZE (GET_MODE (sub));

	  /* Do not frob unchanging MEMs.  If a later reference forces the
	     pseudo to the stack, we can wind up with multiple writes to
	     an unchanging memory, which is invalid.  */
	  if (RTX_UNCHANGING_P (x) && size_x != size_sub)
	    ;

	  /* Don't even consider working with paradoxical subregs,
	     or the moral equivalent seen here.  */
	  else if (size_x <= size_sub
	           && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
	    {
	      /* Do a bitfield insertion to mirror what would happen
		 in memory.  */

	      rtx val, seq;

	      if (store)
		{
		  rtx p = PREV_INSN (insn);

		  start_sequence ();
		  val = gen_reg_rtx (GET_MODE (x));
		  if (! validate_change (insn, loc, val, 0))
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }
		  seq = get_insns ();
		  end_sequence ();
		  emit_insn_before (seq, insn);
		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
					 insn, ht);

		  start_sequence ();
		  store_bit_field (sub, size_x, 0, GET_MODE (x),
				   val, GET_MODE_SIZE (GET_MODE (sub)));

		  /* Make sure to unshare any shared rtl that store_bit_field
		     might have created.  */
		  unshare_all_rtl_again (get_insns ());

		  seq = get_insns ();
		  end_sequence ();
		  p = emit_insn_after (seq, insn);
		  if (NEXT_INSN (insn))
		    compute_insns_for_mem (NEXT_INSN (insn),
					   p ? NEXT_INSN (p) : NULL_RTX,
					   ht);
		}
	      else
		{
		  rtx p = PREV_INSN (insn);

		  start_sequence ();
		  val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
					   GET_MODE (x), GET_MODE (x),
					   GET_MODE_SIZE (GET_MODE (sub)));

		  if (! validate_change (insn, loc, val, 0))
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }

		  seq = get_insns ();
		  end_sequence ();
		  emit_insn_before (seq, insn);
		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
					 insn, ht);
		}

	      /* Remember the replacement so that the same one can be done
		 on the REG_NOTES.  */
	      purge_bitfield_addressof_replacements
		= gen_rtx_EXPR_LIST (VOIDmode, x,
				     gen_rtx_EXPR_LIST
				     (VOIDmode, val,
				      purge_bitfield_addressof_replacements));

	      /* We replaced with a reg -- all done.  */
	      return true;
	    }
	}

      else if (validate_change (insn, loc, sub, 0))
	{
	  /* Remember the replacement so that the same one can be done
	     on the REG_NOTES.  */
	  if (REG_P (sub) || GET_CODE (sub) == SUBREG)
	    {
	      rtx tem;

	      for (tem = purge_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
		  {
		    XEXP (XEXP (tem, 1), 0) = sub;
		    return true;
		  }
	      purge_addressof_replacements
		= gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
				     gen_rtx_EXPR_LIST (VOIDmode, sub,
							purge_addressof_replacements));
	      return true;
	    }
	  goto restart;
	}
    }

 give_up:
  /* Scan all subexpressions.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
	result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
				     may_postpone, ht);
      else if (*fmt == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
				       may_postpone, ht);
    }

  return result;
}

/* Return a hash value for K, a REG.  */

static hashval_t
insns_for_mem_hash (const void *k)
{
  /* Use the address of the key for the hash value.  */
  struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
  return htab_hash_pointer (m->key);
}

/* Return nonzero if K1 and K2 (two REGs) are the same.  */

static int
insns_for_mem_comp (const void *k1, const void *k2)
{
  struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
  struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
  return m1->key == m2->key;
}

struct insns_for_mem_walk_info
{
  /* The hash table that we are using to record which INSNs use which
     MEMs.  */
  htab_t ht;

  /* The INSN we are currently processing.  */
  rtx insn;

  /* Zero if we are walking to find ADDRESSOFs, one if we are walking
     to find the insns that use the REGs in the ADDRESSOFs.  */
  int pass;
};

/* Called from compute_insns_for_mem via for_each_rtx.  If R is a REG
   that might be used in an ADDRESSOF expression, record this INSN in
   the hash table given by DATA (which is really a pointer to an
   insns_for_mem_walk_info structure).  */

static int
insns_for_mem_walk (rtx *r, void *data)
{
  struct insns_for_mem_walk_info *ifmwi
    = (struct insns_for_mem_walk_info *) data;
  struct insns_for_mem_entry tmp;
  tmp.insns = NULL_RTX;

  if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
      && REG_P (XEXP (*r, 0)))
    {
      void **e;
      tmp.key = XEXP (*r, 0);
      e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
      if (*e == NULL)
	{
	  *e = ggc_alloc (sizeof (tmp));
	  memcpy (*e, &tmp, sizeof (tmp));
	}
    }
  else if (ifmwi->pass == 1 && *r && REG_P (*r))
    {
      struct insns_for_mem_entry *ifme;
      tmp.key = *r;
      ifme = htab_find (ifmwi->ht, &tmp);

      /* If we have not already recorded this INSN, do so now.  Since
	 we process the INSNs in order, we know that if we have
	 recorded it it must be at the front of the list.  */
      if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
	ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
					 ifme->insns);
    }

  return 0;
}

/* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
   which REGs in HT.  */

static void
compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
{
  rtx insn;
  struct insns_for_mem_walk_info ifmwi;
  ifmwi.ht = ht;

  for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
    for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
      if (INSN_P (insn))
	{
	  ifmwi.insn = insn;
	  for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
	}
}

/* Helper function for purge_addressof called through for_each_rtx.
   Returns true iff the rtl is an ADDRESSOF.  */

static int
is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
{
  return GET_CODE (*rtl) == ADDRESSOF;
}

/* Eliminate all occurrences of ADDRESSOF from INSNS.  Elide any remaining
   (MEM (ADDRESSOF)) patterns, and force any needed registers into the
   stack.  */

void
purge_addressof (rtx insns)
{
  rtx insn, tmp;
  htab_t ht;

  /* When we actually purge ADDRESSOFs, we turn REGs into MEMs.  That
     requires a fixup pass over the instruction stream to correct
     INSNs that depended on the REG being a REG, and not a MEM.  But,
     these fixup passes are slow.  Furthermore, most MEMs are not
     mentioned in very many instructions.  So, we speed up the process
     by pre-calculating which REGs occur in which INSNs; that allows
     us to perform the fixup passes much more quickly.  */
  ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
  compute_insns_for_mem (insns, NULL_RTX, ht);

  postponed_insns = NULL;

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	if (! purge_addressof_1 (&PATTERN (insn), insn,
				 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
	  /* If we could not replace the ADDRESSOFs in the insn,
	     something is wrong.  */
	  abort ();

	if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
	  {
	    /* If we could not replace the ADDRESSOFs in the insn's notes,
	       we can just remove the offending notes instead.  */
	    rtx note;

	    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	      {
		/* If we find a REG_RETVAL note then the insn is a libcall.
		   Such insns must have REG_EQUAL notes as well, in order
		   for later passes of the compiler to work.  So it is not
		   safe to delete the notes here, and instead we abort.  */
		if (REG_NOTE_KIND (note) == REG_RETVAL)
		  abort ();
		if (for_each_rtx (&note, is_addressof, NULL))
		  remove_note (insn, note);
	      }
	  }
      }

  /* Process the postponed insns.  */
  while (postponed_insns)
    {
      insn = XEXP (postponed_insns, 0);
      tmp = postponed_insns;
      postponed_insns = XEXP (postponed_insns, 1);
      free_INSN_LIST_node (tmp);

      if (! purge_addressof_1 (&PATTERN (insn), insn,
			       asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
	abort ();
    }

  /* Clean up.  */
  purge_bitfield_addressof_replacements = 0;
  purge_addressof_replacements = 0;

  /* REGs are shared.  purge_addressof will destructively replace a REG
     with a MEM, which creates shared MEMs.

     Unfortunately, the children of put_reg_into_stack assume that MEMs
     referring to the same stack slot are shared (fixup_var_refs and
     the associated hash table code).

     So, we have to do another unsharing pass after we have flushed any
     REGs that had their address taken into the stack.

     It may be worth tracking whether or not we converted any REGs into
     MEMs to avoid this overhead when it is not needed.  */
  unshare_all_rtl_again (get_insns ());
}

/* Convert a SET of a hard subreg to a set of the appropriate hard
   register.  A subroutine of purge_hard_subreg_sets.  */

static void
purge_single_hard_subreg_set (rtx pattern)
{
  rtx reg = SET_DEST (pattern);
  enum machine_mode mode = GET_MODE (SET_DEST (pattern));
  int offset = 0;

  if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg))
      && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
    {
      offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
				    GET_MODE (SUBREG_REG (reg)),
				    SUBREG_BYTE (reg),
				    GET_MODE (reg));
      reg = SUBREG_REG (reg);
    }


  if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
    {
      reg = gen_rtx_REG (mode, REGNO (reg) + offset);
      SET_DEST (pattern) = reg;
    }
}

/* Eliminate all occurrences of SETs of hard subregs from INSNS.  The
   only such SETs that we expect to see are those left in because
   integrate can't handle sets of parts of a return value register.

   We don't use alter_subreg because we only want to eliminate subregs
   of hard registers.  */

void
purge_hard_subreg_sets (rtx insn)
{
  for (; insn; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  rtx pattern = PATTERN (insn);
	  switch (GET_CODE (pattern))
	    {
	    case SET:
	      if (GET_CODE (SET_DEST (pattern)) == SUBREG)
		purge_single_hard_subreg_set (pattern);
	      break;
	    case PARALLEL:
	      {
		int j;
		for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
		  {
		    rtx inner_pattern = XVECEXP (pattern, 0, j);
		    if (GET_CODE (inner_pattern) == SET
			&& GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
		      purge_single_hard_subreg_set (inner_pattern);
		  }
	      }
	      break;
	    default:
	      break;
	    }
	}
    }
}

/* Pass through the INSNS of function FNDECL and convert virtual register
   references to hard register references.  */

void
instantiate_virtual_regs (tree fndecl, rtx insns)
{
  rtx insn;
  unsigned int i;

  /* Compute the offsets to use for this function.  */
  in_arg_offset = FIRST_PARM_OFFSET (fndecl);
  var_offset = STARTING_FRAME_OFFSET;
  dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
  out_arg_offset = STACK_POINTER_OFFSET;
  cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);

  /* Scan all variables and parameters of this function.  For each that is
     in memory, instantiate all virtual registers if the result is a valid
     address.  If not, we do it later.  That will handle most uses of virtual
     regs on many machines.  */
  instantiate_decls (fndecl, 1);

  /* Initialize recognition, indicating that volatile is OK.  */
  init_recog ();

  /* Scan through all the insns, instantiating every virtual register still
     present.  */
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
	|| GET_CODE (insn) == CALL_INSN)
      {
	instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
	if (INSN_DELETED_P (insn))
	  continue;
	instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
	if (GET_CODE (insn) == CALL_INSN)
	  instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
				      NULL_RTX, 0);

	/* Past this point all ASM statements should match.  Verify that
	   to avoid failures later in the compilation process.  */
        if (asm_noperands (PATTERN (insn)) >= 0
	    && ! check_asm_operands (PATTERN (insn)))
          instantiate_virtual_regs_lossage (insn);
      }

  /* Instantiate the stack slots for the parm registers, for later use in
     addressof elimination.  */
  for (i = 0; i < max_parm_reg; ++i)
    if (parm_reg_stack_loc[i])
      instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);

  /* Now instantiate the remaining register equivalences for debugging info.
     These will not be valid addresses.  */
  instantiate_decls (fndecl, 0);

  /* Indicate that, from now on, assign_stack_local should use
     frame_pointer_rtx.  */
  virtuals_instantiated = 1;
}

/* Scan all decls in FNDECL (both variables and parameters) and instantiate
   all virtual registers in their DECL_RTL's.

   If VALID_ONLY, do this only if the resulting address is still valid.
   Otherwise, always do it.  */

static void
instantiate_decls (tree fndecl, int valid_only)
{
  tree decl;

  /* Process all parameters of the function.  */
  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
    {
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
      HOST_WIDE_INT size_rtl;

      instantiate_decl (DECL_RTL (decl), size, valid_only);

      /* If the parameter was promoted, then the incoming RTL mode may be
	 larger than the declared type size.  We must use the larger of
	 the two sizes.  */
      size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
      size = MAX (size_rtl, size);
      instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
    }

  /* Now process all variables defined in the function or its subblocks.  */
  instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
}

/* Subroutine of instantiate_decls: Process all decls in the given
   BLOCK node and all its subblocks.  */

static void
instantiate_decls_1 (tree let, int valid_only)
{
  tree t;

  for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
    if (DECL_RTL_SET_P (t))
      instantiate_decl (DECL_RTL (t),
			int_size_in_bytes (TREE_TYPE (t)),
			valid_only);

  /* Process all subblocks.  */
  for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
    instantiate_decls_1 (t, valid_only);
}

/* Subroutine of the preceding procedures: Given RTL representing a
   decl and the size of the object, do any instantiation required.

   If VALID_ONLY is nonzero, it means that the RTL should only be
   changed if the new address is valid.  */

static void
instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
{
  enum machine_mode mode;
  rtx addr;

  /* If this is not a MEM, no need to do anything.  Similarly if the
     address is a constant or a register that is not a virtual register.  */

  if (x == 0 || GET_CODE (x) != MEM)
    return;

  addr = XEXP (x, 0);
  if (CONSTANT_P (addr)
      || (GET_CODE (addr) == ADDRESSOF && REG_P (XEXP (addr, 0)))
      || (REG_P (addr)
	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
    return;

  /* If we should only do this if the address is valid, copy the address.
     We need to do this so we can undo any changes that might make the
     address invalid.  This copy is unfortunate, but probably can't be
     avoided.  */

  if (valid_only)
    addr = copy_rtx (addr);

  instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);

  if (valid_only && size >= 0)
    {
      unsigned HOST_WIDE_INT decl_size = size;

      /* Now verify that the resulting address is valid for every integer or
	 floating-point mode up to and including SIZE bytes long.  We do this
	 since the object might be accessed in any mode and frame addresses
	 are shared.  */

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;
    }

  /* Put back the address now that we have updated it and we either know
     it is valid or we don't care whether it is valid.  */

  XEXP (x, 0) = addr;
}

/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
   is a virtual register, return the equivalent hard register and set the
   offset indirectly through the pointer.  Otherwise, return 0.  */

static rtx
instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
{
  rtx new;
  HOST_WIDE_INT offset;

  if (x == virtual_incoming_args_rtx)
    new = arg_pointer_rtx, offset = in_arg_offset;
  else if (x == virtual_stack_vars_rtx)
    new = frame_pointer_rtx, offset = var_offset;
  else if (x == virtual_stack_dynamic_rtx)
    new = stack_pointer_rtx, offset = dynamic_offset;
  else if (x == virtual_outgoing_args_rtx)
    new = stack_pointer_rtx, offset = out_arg_offset;
  else if (x == virtual_cfa_rtx)
    new = arg_pointer_rtx, offset = cfa_offset;
  else
    return 0;

  *poffset = offset;
  return new;
}


/* Called when instantiate_virtual_regs has failed to update the instruction.
   Usually this means that non-matching instruction has been emit, however for
   asm statements it may be the problem in the constraints.  */
static void
instantiate_virtual_regs_lossage (rtx insn)
{
  if (asm_noperands (PATTERN (insn)) >= 0)
    {
      error_for_asm (insn, "impossible constraint in `asm'");
      delete_insn (insn);
    }
  else
    abort ();
}
/* Given a pointer to a piece of rtx and an optional pointer to the
   containing object, instantiate any virtual registers present in it.

   If EXTRA_INSNS, we always do the replacement and generate
   any extra insns before OBJECT.  If it zero, we do nothing if replacement
   is not valid.

   Return 1 if we either had nothing to do or if we were able to do the
   needed replacement.  Return 0 otherwise; we only return zero if
   EXTRA_INSNS is zero.

   We first try some simple transformations to avoid the creation of extra
   pseudos.  */

static int
instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
{
  rtx x;
  RTX_CODE code;
  rtx new = 0;
  HOST_WIDE_INT offset = 0;
  rtx temp;
  rtx seq;
  int i, j;
  const char *fmt;

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
    return 1;

  /* We may have detected and deleted invalid asm statements.  */
  if (object && INSN_P (object) && INSN_DELETED_P (object))
    return 1;

  code = GET_CODE (x);

  /* Check for some special cases.  */
  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case CONST:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
      return 1;

    case SET:
      /* We are allowed to set the virtual registers.  This means that
	 the actual register should receive the source minus the
	 appropriate offset.  This is used, for example, in the handling
	 of non-local gotos.  */
      if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
	{
	  rtx src = SET_SRC (x);

	  /* We are setting the register, not using it, so the relevant
	     offset is the negative of the offset to use were we using
	     the register.  */
	  offset = - offset;
	  instantiate_virtual_regs_1 (&src, NULL_RTX, 0);

	  /* The only valid sources here are PLUS or REG.  Just do
	     the simplest possible thing to handle them.  */
	  if (!REG_P (src) && GET_CODE (src) != PLUS)
	    {
	      instantiate_virtual_regs_lossage (object);
	      return 1;
	    }

	  start_sequence ();
	  if (!REG_P (src))
	    temp = force_operand (src, NULL_RTX);
	  else
	    temp = src;
	  temp = force_operand (plus_constant (temp, offset), NULL_RTX);
	  seq = get_insns ();
	  end_sequence ();

	  emit_insn_before (seq, object);
	  SET_DEST (x) = new;

	  if (! validate_change (object, &SET_SRC (x), temp, 0)
	      || ! extra_insns)
	    instantiate_virtual_regs_lossage (object);

	  return 1;
	}

      instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
      loc = &SET_SRC (x);
      goto restart;

    case PLUS:
      /* Handle special case of virtual register plus constant.  */
      if (CONSTANT_P (XEXP (x, 1)))
	{
	  rtx old, new_offset;

	  /* Check for (plus (plus VIRT foo) (const_int)) first.  */
	  if (GET_CODE (XEXP (x, 0)) == PLUS)
	    {
	      if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
		{
		  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
					      extra_insns);
		  new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
		}
	      else
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}
	    }

#ifdef POINTERS_EXTEND_UNSIGNED
	  /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
	     we can commute the PLUS and SUBREG because pointers into the
	     frame are well-behaved.  */
	  else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
		   && GET_CODE (XEXP (x, 1)) == CONST_INT
		   && 0 != (new
			    = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
						   &offset))
		   && validate_change (object, loc,
				       plus_constant (gen_lowpart (ptr_mode,
								   new),
						      offset
						      + INTVAL (XEXP (x, 1))),
				       0))
		return 1;
#endif
	  else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
	    {
	      /* We know the second operand is a constant.  Unless the
		 first operand is a REG (which has been already checked),
		 it needs to be checked.  */
	      if (!REG_P (XEXP (x, 0)))
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}
	      return 1;
	    }

	  new_offset = plus_constant (XEXP (x, 1), offset);

	  /* If the new constant is zero, try to replace the sum with just
	     the register.  */
	  if (new_offset == const0_rtx
	      && validate_change (object, loc, new, 0))
	    return 1;

	  /* Next try to replace the register and new offset.
	     There are two changes to validate here and we can't assume that
	     in the case of old offset equals new just changing the register
	     will yield a valid insn.  In the interests of a little efficiency,
	     however, we only call validate change once (we don't queue up the
	     changes and then call apply_change_group).  */

	  old = XEXP (x, 0);
	  if (offset == 0
	      ? ! validate_change (object, &XEXP (x, 0), new, 0)
	      : (XEXP (x, 0) = new,
		 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
	    {
	      if (! extra_insns)
		{
		  XEXP (x, 0) = old;
		  return 0;
		}

	      /* Otherwise copy the new constant into a register and replace
		 constant with that register.  */
	      temp = gen_reg_rtx (Pmode);
	      XEXP (x, 0) = new;
	      if (validate_change (object, &XEXP (x, 1), temp, 0))
		emit_insn_before (gen_move_insn (temp, new_offset), object);
	      else
		{
		  /* If that didn't work, replace this expression with a
		     register containing the sum.  */

		  XEXP (x, 0) = old;
		  new = gen_rtx_PLUS (Pmode, new, new_offset);

		  start_sequence ();
		  temp = force_operand (new, NULL_RTX);
		  seq = get_insns ();
		  end_sequence ();

		  emit_insn_before (seq, object);
		  if (! validate_change (object, loc, temp, 0)
		      && ! validate_replace_rtx (x, temp, object))
		    {
		      instantiate_virtual_regs_lossage (object);
		      return 1;
		    }
		}
	    }

	  return 1;
	}

      /* Fall through to generic two-operand expression case.  */
    case EXPR_LIST:
    case CALL:
    case COMPARE:
    case MINUS:
    case MULT:
    case DIV:      case UDIV:
    case MOD:      case UMOD:
    case AND:      case IOR:      case XOR:
    case ROTATERT: case ROTATE:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
    case NE:       case EQ:
    case GE:       case GT:       case GEU:    case GTU:
    case LE:       case LT:       case LEU:    case LTU:
      if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
	instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
      loc = &XEXP (x, 0);
      goto restart;

    case MEM:
      /* Most cases of MEM that convert to valid addresses have already been
	 handled by our scan of decls.  The only special handling we
	 need here is to make a copy of the rtx to ensure it isn't being
	 shared if we have to change it to a pseudo.

	 If the rtx is a simple reference to an address via a virtual register,
	 it can potentially be shared.  In such cases, first try to make it
	 a valid address, which can also be shared.  Otherwise, copy it and
	 proceed normally.

	 First check for common cases that need no processing.  These are
	 usually due to instantiation already being done on a previous instance
	 of a shared rtx.  */

      temp = XEXP (x, 0);
      if (CONSTANT_ADDRESS_P (temp)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	  || temp == arg_pointer_rtx
#endif
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	  || temp == hard_frame_pointer_rtx
#endif
	  || temp == frame_pointer_rtx)
	return 1;

      if (GET_CODE (temp) == PLUS
	  && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	  && (XEXP (temp, 0) == frame_pointer_rtx
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || XEXP (temp, 0) == hard_frame_pointer_rtx
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      || XEXP (temp, 0) == arg_pointer_rtx
#endif
	      ))
	return 1;

      if (temp == virtual_stack_vars_rtx
	  || temp == virtual_incoming_args_rtx
	  || (GET_CODE (temp) == PLUS
	      && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	      && (XEXP (temp, 0) == virtual_stack_vars_rtx
		  || XEXP (temp, 0) == virtual_incoming_args_rtx)))
	{
	  /* This MEM may be shared.  If the substitution can be done without
	     the need to generate new pseudos, we want to do it in place
	     so all copies of the shared rtx benefit.  The call below will
	     only make substitutions if the resulting address is still
	     valid.

	     Note that we cannot pass X as the object in the recursive call
	     since the insn being processed may not allow all valid
	     addresses.  However, if we were not passed on object, we can
	     only modify X without copying it if X will have a valid
	     address.

	     ??? Also note that this can still lose if OBJECT is an insn that
	     has less restrictions on an address that some other insn.
	     In that case, we will modify the shared address.  This case
	     doesn't seem very likely, though.  One case where this could
	     happen is in the case of a USE or CLOBBER reference, but we
	     take care of that below.  */

	  if (instantiate_virtual_regs_1 (&XEXP (x, 0),
					  object ? object : x, 0))
	    return 1;

	  /* Otherwise make a copy and process that copy.  We copy the entire
	     RTL expression since it might be a PLUS which could also be
	     shared.  */
	  *loc = x = copy_rtx (x);
	}

      /* Fall through to generic unary operation case.  */
    case PREFETCH:
    case SUBREG:
    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case PRE_DEC:      case PRE_INC:      case POST_DEC:    case POST_INC:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case SQRT:
    case FFS:
    case CLZ:          case CTZ:
    case POPCOUNT:     case PARITY:
      /* These case either have just one operand or we know that we need not
	 check the rest of the operands.  */
      loc = &XEXP (x, 0);
      goto restart;

    case USE:
    case CLOBBER:
      /* If the operand is a MEM, see if the change is a valid MEM.  If not,
	 go ahead and make the invalid one, but do it to a copy.  For a REG,
	 just make the recursive call, since there's no chance of a problem.  */

      if ((GET_CODE (XEXP (x, 0)) == MEM
	   && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
					  0))
	  || (REG_P (XEXP (x, 0))
	      && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
	return 1;

      XEXP (x, 0) = copy_rtx (XEXP (x, 0));
      loc = &XEXP (x, 0);
      goto restart;

    case REG:
      /* Try to replace with a PLUS.  If that doesn't work, compute the sum
	 in front of this insn and substitute the temporary.  */
      if ((new = instantiate_new_reg (x, &offset)) != 0)
	{
	  temp = plus_constant (new, offset);
	  if (!validate_change (object, loc, temp, 0))
	    {
	      if (! extra_insns)
		return 0;

	      start_sequence ();
	      temp = force_operand (temp, NULL_RTX);
	      seq = get_insns ();
	      end_sequence ();

	      emit_insn_before (seq, object);
	      if (! validate_change (object, loc, temp, 0)
		  && ! validate_replace_rtx (x, temp, object))
	        instantiate_virtual_regs_lossage (object);
	    }
	}

      return 1;

    case ADDRESSOF:
      if (REG_P (XEXP (x, 0)))
	return 1;

      else if (GET_CODE (XEXP (x, 0)) == MEM)
	{
	  /* If we have a (addressof (mem ..)), do any instantiation inside
	     since we know we'll be making the inside valid when we finally
	     remove the ADDRESSOF.  */
	  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
	  return 1;
	}
      break;

    default:
      break;
    }

  /* Scan all subexpressions.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    if (*fmt == 'e')
      {
	if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
	  return 0;
      }
    else if (*fmt == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
					  extra_insns))
	  return 0;

  return 1;
}

/* Return the first insn following those generated by `assign_parms'.  */

rtx
get_first_nonparm_insn (void)
{
  if (last_parm_insn)
    return NEXT_INSN (last_parm_insn);
  return get_insns ();
}

/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
   This means a type for which function calls must pass an address to the
   function or get an address back from the function.
   EXP may be a type node or an expression (whose type is tested).  */

int
aggregate_value_p (tree exp, tree fntype)
{
  int i, regno, nregs;
  rtx reg;

  tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);

  if (fntype)
    switch (TREE_CODE (fntype))
      {
      case CALL_EXPR:
	fntype = get_callee_fndecl (fntype);
	fntype = fntype ? TREE_TYPE (fntype) : 0;
	break;
      case FUNCTION_DECL:
	fntype = TREE_TYPE (fntype);
	break;
      case FUNCTION_TYPE:
      case METHOD_TYPE:
        break;
      case IDENTIFIER_NODE:
	fntype = 0;
	break;
      default:
	/* We don't expect other rtl types here.  */
	abort();
      }

  if (TREE_CODE (type) == VOID_TYPE)
    return 0;
  if (targetm.calls.return_in_memory (type, fntype))
    return 1;
  /* Types that are TREE_ADDRESSABLE must be constructed in memory,
     and thus can't be returned in registers.  */
  if (TREE_ADDRESSABLE (type))
    return 1;
  if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
    return 1;
  /* Make sure we have suitable call-clobbered regs to return
     the value in; if not, we must return it in memory.  */
  reg = hard_function_value (type, 0, 0);

  /* If we have something other than a REG (e.g. a PARALLEL), then assume
     it is OK.  */
  if (!REG_P (reg))
    return 0;

  regno = REGNO (reg);
  nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
  for (i = 0; i < nregs; i++)
    if (! call_used_regs[regno + i])
      return 1;
  return 0;
}

/* Assign RTL expressions to the function's parameters.
   This may involve copying them into registers and using
   those registers as the RTL for them.  */

void
assign_parms (tree fndecl)
{
  tree parm;
  CUMULATIVE_ARGS args_so_far;
  /* Total space needed so far for args on the stack,
     given as a constant and a tree-expression.  */
  struct args_size stack_args_size;
  HOST_WIDE_INT extra_pretend_bytes = 0;
  tree fntype = TREE_TYPE (fndecl);
  tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
  /* This is used for the arg pointer when referring to stack args.  */
  rtx internal_arg_pointer;
  /* This is a dummy PARM_DECL that we used for the function result if
     the function returns a structure.  */
  tree function_result_decl = 0;
  int varargs_setup = 0;
  int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
  rtx conversion_insns = 0;

  /* Nonzero if function takes extra anonymous args.
     This means the last named arg must be on the stack
     right before the anonymous ones.  */
  int stdarg = current_function_stdarg;

  /* If the reg that the virtual arg pointer will be translated into is
     not a fixed reg or is the stack pointer, make a copy of the virtual
     arg pointer, and address parms via the copy.  The frame pointer is
     considered fixed even though it is not marked as such.

     The second time through, simply use ap to avoid generating rtx.  */

  if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
       || ! (fixed_regs[ARG_POINTER_REGNUM]
	     || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
    internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
  else
    internal_arg_pointer = virtual_incoming_args_rtx;
  current_function_internal_arg_pointer = internal_arg_pointer;

  stack_args_size.constant = 0;
  stack_args_size.var = 0;

  /* If struct value address is treated as the first argument, make it so.  */
  if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
      && ! current_function_returns_pcc_struct
      && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
    {
      tree type = build_pointer_type (TREE_TYPE (fntype));

      function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);

      DECL_ARG_TYPE (function_result_decl) = type;
      TREE_CHAIN (function_result_decl) = fnargs;
      fnargs = function_result_decl;
    }

  orig_fnargs = fnargs;

  max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
  parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));

  /* If the target wants to split complex arguments into scalars, do so.  */
  if (targetm.calls.split_complex_arg)
    fnargs = split_complex_args (fnargs);

#ifdef REG_PARM_STACK_SPACE
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif

#ifdef INIT_CUMULATIVE_INCOMING_ARGS
  INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
#else
  INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl, -1);
#endif

  /* We haven't yet found an argument that we must push and pretend the
     caller did.  */
  current_function_pretend_args_size = 0;

  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
    {
      rtx entry_parm;
      rtx stack_parm;
      enum machine_mode promoted_mode, passed_mode;
      enum machine_mode nominal_mode, promoted_nominal_mode;
      int unsignedp;
      struct locate_and_pad_arg_data locate;
      int passed_pointer = 0;
      int did_conversion = 0;
      tree passed_type = DECL_ARG_TYPE (parm);
      tree nominal_type = TREE_TYPE (parm);
      int last_named = 0, named_arg;
      int in_regs;
      int partial = 0;
      int pretend_bytes = 0;
      int loaded_in_reg = 0;

      /* Set LAST_NAMED if this is last named arg before last
	 anonymous args.  */
      if (stdarg)
	{
	  tree tem;

	  for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
	    if (DECL_NAME (tem))
	      break;

	  if (tem == 0)
	    last_named = 1;
	}
      /* Set NAMED_ARG if this arg should be treated as a named arg.  For
	 most machines, if this is a varargs/stdarg function, then we treat
	 the last named arg as if it were anonymous too.  */
      named_arg = (targetm.calls.strict_argument_naming (&args_so_far)
		   ? 1 : !last_named);

      if (TREE_TYPE (parm) == error_mark_node
	  /* This can happen after weird syntax errors
	     or if an enum type is defined among the parms.  */
	  || TREE_CODE (parm) != PARM_DECL
	  || passed_type == NULL)
	{
	  SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
	  TREE_USED (parm) = 1;
	  continue;
	}

      /* Find mode of arg as it is passed, and mode of arg
	 as it should be during execution of this function.  */
      passed_mode = TYPE_MODE (passed_type);
      nominal_mode = TYPE_MODE (nominal_type);

      /* If the parm's mode is VOID, its value doesn't matter,
	 and avoid the usual things like emit_move_insn that could crash.  */
      if (nominal_mode == VOIDmode)
	{
	  SET_DECL_RTL (parm, const0_rtx);
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
	  continue;
	}

      /* If the parm is to be passed as a transparent union, use the
	 type of the first field for the tests below.  We have already
	 verified that the modes are the same.  */
      if (DECL_TRANSPARENT_UNION (parm)
	  || (TREE_CODE (passed_type) == UNION_TYPE
	      && TYPE_TRANSPARENT_UNION (passed_type)))
	passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));

      /* See if this arg was passed by invisible reference.  It is if
	 it is an object whose size depends on the contents of the
	 object itself or if the machine requires these objects be passed
	 that way.  */

      if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
	  || TREE_ADDRESSABLE (passed_type)
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
	  || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
					     passed_type, named_arg)
#endif
	  )
	{
	  passed_type = nominal_type = build_pointer_type (passed_type);
	  passed_pointer = 1;
	  passed_mode = nominal_mode = Pmode;
	}
      /* See if the frontend wants to pass this by invisible reference.  */
      else if (passed_type != nominal_type
	       && POINTER_TYPE_P (passed_type)
	       && TREE_TYPE (passed_type) == nominal_type)
	{
	  nominal_type = passed_type;
	  passed_pointer = 1;
	  passed_mode = nominal_mode = Pmode;
	}

      promoted_mode = passed_mode;

      if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
	{
	  /* Compute the mode in which the arg is actually extended to.  */
	  unsignedp = TYPE_UNSIGNED (passed_type);
	  promoted_mode = promote_mode (passed_type, promoted_mode,
					&unsignedp, 1);
	}

      /* Let machine desc say which reg (if any) the parm arrives in.
	 0 means it arrives on the stack.  */
#ifdef FUNCTION_INCOMING_ARG
      entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
					  passed_type, named_arg);
#else
      entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
				 passed_type, named_arg);
#endif

      if (entry_parm == 0)
	promoted_mode = passed_mode;

      /* If this is the last named parameter, do any required setup for
	 varargs or stdargs.  We need to know about the case of this being an
	 addressable type, in which case we skip the registers it
	 would have arrived in.

	 For stdargs, LAST_NAMED will be set for two parameters, the one that
	 is actually the last named, and the dummy parameter.  We only
	 want to do this action once.

	 Also, indicate when RTL generation is to be suppressed.  */
      if (last_named && !varargs_setup)
	{
	  int varargs_pretend_bytes = 0;
	  targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
						passed_type,
						&varargs_pretend_bytes, 0);
	  varargs_setup = 1;

	  /* If the back-end has requested extra stack space, record how
	     much is needed.  Do not change pretend_args_size otherwise
	     since it may be nonzero from an earlier partial argument.  */
	  if (varargs_pretend_bytes > 0)
	    current_function_pretend_args_size = varargs_pretend_bytes;
	}

      /* Determine parm's home in the stack,
	 in case it arrives in the stack or we should pretend it did.

	 Compute the stack position and rtx where the argument arrives
	 and its size.

	 There is one complexity here:  If this was a parameter that would
	 have been passed in registers, but wasn't only because it is
	 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
	 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
	 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
	 0 as it was the previous time.  */
      in_regs = entry_parm != 0;
#ifdef STACK_PARMS_IN_REG_PARM_AREA
      in_regs = 1;
#endif
      if (!in_regs && !named_arg)
	{
	  int pretend_named =
	    targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
	  if (pretend_named)
	    {
#ifdef FUNCTION_INCOMING_ARG
	      in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
					       passed_type,
					       pretend_named) != 0;
#else
	      in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
				      passed_type,
				      pretend_named) != 0;
#endif
	    }
	}

      /* If this parameter was passed both in registers and in the stack,
	 use the copy on the stack.  */
      if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
	entry_parm = 0;

#ifdef FUNCTION_ARG_PARTIAL_NREGS
      if (entry_parm)
	{
	  partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
						passed_type, named_arg);
	  if (partial
	      /* The caller might already have allocated stack space
		 for the register parameters.  */
	      && reg_parm_stack_space == 0)
	    {
	      /* Part of this argument is passed in registers and part
		 is passed on the stack.  Ask the prologue code to extend
		 the stack part so that we can recreate the full value.

		 PRETEND_BYTES is the size of the registers we need to store.
		 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
		 stack space that the prologue should allocate.

		 Internally, gcc assumes that the argument pointer is
		 aligned to STACK_BOUNDARY bits.  This is used both for
		 alignment optimizations (see init_emit) and to locate
		 arguments that are aligned to more than PARM_BOUNDARY
		 bits.  We must preserve this invariant by rounding
		 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
		 boundary.  */

	      /* We assume at most one partial arg, and it must be the first
	         argument on the stack.  */
	      if (extra_pretend_bytes || current_function_pretend_args_size)
		abort ();

	      pretend_bytes = partial * UNITS_PER_WORD;
	      current_function_pretend_args_size
		= CEIL_ROUND (pretend_bytes, STACK_BYTES);

	      /* We want to align relative to the actual stack pointer, so
	         don't include this in the stack size until later.  */
	      extra_pretend_bytes = current_function_pretend_args_size;
	    }
	}
#endif

      memset (&locate, 0, sizeof (locate));
      locate_and_pad_parm (promoted_mode, passed_type, in_regs,
			   entry_parm ? partial : 0, fndecl,
			   &stack_args_size, &locate);
      /* Adjust offsets to include the pretend args.  */
      locate.slot_offset.constant += extra_pretend_bytes - pretend_bytes;
      locate.offset.constant += extra_pretend_bytes - pretend_bytes;

      {
	rtx offset_rtx;

	/* If we're passing this arg using a reg, make its stack home
	   the aligned stack slot.  */
	if (entry_parm)
	  offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
	else
	  offset_rtx = ARGS_SIZE_RTX (locate.offset);

	if (offset_rtx == const0_rtx)
	  stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
	else
	  stack_parm = gen_rtx_MEM (promoted_mode,
				    gen_rtx_PLUS (Pmode,
						  internal_arg_pointer,
						  offset_rtx));

	set_mem_attributes (stack_parm, parm, 1);
	set_mem_align (stack_parm, 
		       FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type));
	if (entry_parm)
	  set_reg_attrs_for_parm (entry_parm, stack_parm);
      }

      /* If this parm was passed part in regs and part in memory,
	 pretend it arrived entirely in memory
	 by pushing the register-part onto the stack.

	 In the special case of a DImode or DFmode that is split,
	 we could put it together in a pseudoreg directly,
	 but for now that's not worth bothering with.  */

      if (partial)
	{
	  /* Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (GET_CODE (entry_parm) == PARALLEL)
	    emit_group_store (validize_mem (stack_parm), entry_parm,
			      TREE_TYPE (parm),
			      int_size_in_bytes (TREE_TYPE (parm)));

	  else
	    move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
				 partial);

	  entry_parm = stack_parm;
	}

      /* If we didn't decide this parm came in a register,
	 by default it came on the stack.  */
      if (entry_parm == 0)
	entry_parm = stack_parm;

      /* Record permanently how this parm was passed.  */
      set_decl_incoming_rtl (parm, entry_parm);

      /* If there is actually space on the stack for this parm,
	 count it in stack_args_size; otherwise set stack_parm to 0
	 to indicate there is no preallocated stack slot for the parm.  */

      if (entry_parm == stack_parm
	  || (GET_CODE (entry_parm) == PARALLEL
	      && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
#if defined (REG_PARM_STACK_SPACE)
	  /* On some machines, even if a parm value arrives in a register
	     there is still an (uninitialized) stack slot allocated
	     for it.  */
	  || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
	  )
	{
	  stack_args_size.constant += locate.size.constant;
	  if (locate.size.var)
	    ADD_PARM_SIZE (stack_args_size, locate.size.var);
	}
      else
	/* No stack slot was pushed for this parm.  */
	stack_parm = 0;

      /* Update info on where next arg arrives in registers.  */

      FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
			    passed_type, named_arg);

      /* If we can't trust the parm stack slot to be aligned enough
	 for its ultimate type, don't use that slot after entry.
	 We'll make another stack slot, if we need one.  */
      if (STRICT_ALIGNMENT && stack_parm
	  && GET_MODE_ALIGNMENT (nominal_mode) > MEM_ALIGN (stack_parm))
	stack_parm = 0;

      /* If parm was passed in memory, and we need to convert it on entry,
	 don't store it back in that same slot.  */
      if (entry_parm == stack_parm
	  && nominal_mode != BLKmode && nominal_mode != passed_mode)
	stack_parm = 0;

      /* When an argument is passed in multiple locations, we can't
	 make use of this information, but we can save some copying if
	 the whole argument is passed in a single register.  */
      if (GET_CODE (entry_parm) == PARALLEL
	  && nominal_mode != BLKmode && passed_mode != BLKmode)
	{
	  int i, len = XVECLEN (entry_parm, 0);

	  for (i = 0; i < len; i++)
	    if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
		&& REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
		&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
		    == passed_mode)
		&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
	      {
		entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
		set_decl_incoming_rtl (parm, entry_parm);
		break;
	      }
	}

      /* ENTRY_PARM is an RTX for the parameter as it arrives,
	 in the mode in which it arrives.
	 STACK_PARM is an RTX for a stack slot where the parameter can live
	 during the function (in case we want to put it there).
	 STACK_PARM is 0 if no stack slot was pushed for it.

	 Now output code if necessary to convert ENTRY_PARM to
	 the type in which this function declares it,
	 and store that result in an appropriate place,
	 which may be a pseudo reg, may be STACK_PARM,
	 or may be a local stack slot if STACK_PARM is 0.

	 Set DECL_RTL to that place.  */

      if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode
	  && XVECLEN (entry_parm, 0) > 1)
	{
	  /* Reconstitute objects the size of a register or larger using
	     register operations instead of the stack.  */
	  rtx parmreg = gen_reg_rtx (nominal_mode);

	  if (REG_P (parmreg))
	    {
	      unsigned int regno = REGNO (parmreg);

	      emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
				int_size_in_bytes (TREE_TYPE (parm)));
	      SET_DECL_RTL (parm, parmreg);
	      loaded_in_reg = 1;

	      if (regno >= max_parm_reg)
		{
		  rtx *new;
		  int old_max_parm_reg = max_parm_reg;

		  /* It's slow to expand this one register at a time,
		     but it's also rare and we need max_parm_reg to be
		     precisely correct.  */
		  max_parm_reg = regno + 1;
		  new = ggc_realloc (parm_reg_stack_loc,
				     max_parm_reg * sizeof (rtx));
		  memset (new + old_max_parm_reg, 0,
			  (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
		  parm_reg_stack_loc = new;
		  parm_reg_stack_loc[regno] = stack_parm;
		}
	    }
	}

      if (nominal_mode == BLKmode
#ifdef BLOCK_REG_PADDING
	  || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
	      && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
#endif
	  || GET_CODE (entry_parm) == PARALLEL)
	{
	  /* If a BLKmode arrives in registers, copy it to a stack slot.
	     Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (REG_P (entry_parm)
	      || (GET_CODE (entry_parm) == PARALLEL
		 && (!loaded_in_reg || !optimize)))
	    {
	      int size = int_size_in_bytes (TREE_TYPE (parm));
	      int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
	      rtx mem;

	      /* Note that we will be storing an integral number of words.
		 So we have to be careful to ensure that we allocate an
		 integral number of words.  We do this below in the
		 assign_stack_local if space was not allocated in the argument
		 list.  If it was, this will not work if PARM_BOUNDARY is not
		 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
		 if it becomes a problem.  Exception is when BLKmode arrives
		 with arguments not conforming to word_mode.  */

	      if (stack_parm == 0)
		{
		  stack_parm = assign_stack_local (BLKmode, size_stored, 0);
		  PUT_MODE (stack_parm, GET_MODE (entry_parm));
		  set_mem_attributes (stack_parm, parm, 1);
		}
	      else if (GET_CODE (entry_parm) == PARALLEL 
		       && GET_MODE(entry_parm) == BLKmode)
		;
	      else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
		abort ();

	      mem = validize_mem (stack_parm);

	      /* Handle calls that pass values in multiple non-contiguous
		 locations.  The Irix 6 ABI has examples of this.  */
	      if (GET_CODE (entry_parm) == PARALLEL)
		emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);

	      else if (size == 0)
		;

	      /* If SIZE is that of a mode no bigger than a word, just use
		 that mode's store operation.  */
	      else if (size <= UNITS_PER_WORD)
		{
		  enum machine_mode mode
		    = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);

		  if (mode != BLKmode
#ifdef BLOCK_REG_PADDING
		      && (size == UNITS_PER_WORD
			  || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
			      != (BYTES_BIG_ENDIAN ? upward : downward)))
#endif
		      )
		    {
		      rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
		      emit_move_insn (change_address (mem, mode, 0), reg);
		    }

		  /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
		     machine must be aligned to the left before storing
		     to memory.  Note that the previous test doesn't
		     handle all cases (e.g. SIZE == 3).  */
		  else if (size != UNITS_PER_WORD
#ifdef BLOCK_REG_PADDING
			   && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
			       == downward)
#else
			   && BYTES_BIG_ENDIAN
#endif
			   )
		    {
		      rtx tem, x;
		      int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
		      rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));

		      x = expand_binop (word_mode, ashl_optab, reg,
					GEN_INT (by), 0, 1, OPTAB_WIDEN);
		      tem = change_address (mem, word_mode, 0);
		      emit_move_insn (tem, x);
		    }
		  else
		    move_block_from_reg (REGNO (entry_parm), mem,
					 size_stored / UNITS_PER_WORD);
		}
	      else
		move_block_from_reg (REGNO (entry_parm), mem,
				     size_stored / UNITS_PER_WORD);
	    }
	  /* If parm is already bound to register pair, don't change 
	     this binding.  */
	  if (! DECL_RTL_SET_P (parm))
	    SET_DECL_RTL (parm, stack_parm);
	}
      else if (! ((! optimize
		   && ! DECL_REGISTER (parm))
		  || TREE_SIDE_EFFECTS (parm)
		  /* If -ffloat-store specified, don't put explicit
		     float variables into registers.  */
		  || (flag_float_store
		      && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
	       /* Always assign pseudo to structure return or item passed
		  by invisible reference.  */
	       || passed_pointer || parm == function_result_decl)
	{
	  /* Store the parm in a pseudoregister during the function, but we
	     may need to do it in a wider mode.  */

	  rtx parmreg;
	  unsigned int regno, regnoi = 0, regnor = 0;

	  unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));

	  promoted_nominal_mode
	    = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);

	  parmreg = gen_reg_rtx (promoted_nominal_mode);
	  mark_user_reg (parmreg);

	  /* If this was an item that we received a pointer to, set DECL_RTL
	     appropriately.  */
	  if (passed_pointer)
	    {
	      rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
				   parmreg);
	      set_mem_attributes (x, parm, 1);
	      SET_DECL_RTL (parm, x);
	    }
	  else
	    {
	      SET_DECL_RTL (parm, parmreg);
	      maybe_set_unchanging (DECL_RTL (parm), parm);
	    }

	  /* Copy the value into the register.  */
	  if (nominal_mode != passed_mode
	      || promoted_nominal_mode != promoted_mode)
	    {
	      int save_tree_used;
	      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
		 mode, by the caller.  We now have to convert it to
		 NOMINAL_MODE, if different.  However, PARMREG may be in
		 a different mode than NOMINAL_MODE if it is being stored
		 promoted.

		 If ENTRY_PARM is a hard register, it might be in a register
		 not valid for operating in its mode (e.g., an odd-numbered
		 register for a DFmode).  In that case, moves are the only
		 thing valid, so we can't do a convert from there.  This
		 occurs when the calling sequence allow such misaligned
		 usages.

		 In addition, the conversion may involve a call, which could
		 clobber parameters which haven't been copied to pseudo
		 registers yet.  Therefore, we must first copy the parm to
		 a pseudo reg here, and save the conversion until after all
		 parameters have been moved.  */

	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));

	      emit_move_insn (tempreg, validize_mem (entry_parm));

	      push_to_sequence (conversion_insns);
	      tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);

	      if (GET_CODE (tempreg) == SUBREG
		  && GET_MODE (tempreg) == nominal_mode
		  && REG_P (SUBREG_REG (tempreg))
		  && nominal_mode == passed_mode
		  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
		  && GET_MODE_SIZE (GET_MODE (tempreg))
		     < GET_MODE_SIZE (GET_MODE (entry_parm)))
		{
		  /* The argument is already sign/zero extended, so note it
		     into the subreg.  */
		  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
		  SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
		}

	      /* TREE_USED gets set erroneously during expand_assignment.  */
	      save_tree_used = TREE_USED (parm);
	      expand_assignment (parm,
				 make_tree (nominal_type, tempreg), 0);
	      TREE_USED (parm) = save_tree_used;
	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }
	  else
	    emit_move_insn (parmreg, validize_mem (entry_parm));

	  /* If we were passed a pointer but the actual value
	     can safely live in a register, put it in one.  */
	  if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
	      /* If by-reference argument was promoted, demote it.  */
	      && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
		  || ! ((! optimize
			 && ! DECL_REGISTER (parm))
			|| TREE_SIDE_EFFECTS (parm)
			/* If -ffloat-store specified, don't put explicit
			   float variables into registers.  */
			|| (flag_float_store
			    && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
	    {
	      /* We can't use nominal_mode, because it will have been set to
		 Pmode above.  We must use the actual mode of the parm.  */
	      parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
	      mark_user_reg (parmreg);
	      if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
		{
		  rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
		  int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
		  push_to_sequence (conversion_insns);
		  emit_move_insn (tempreg, DECL_RTL (parm));
		  SET_DECL_RTL (parm,
				convert_to_mode (GET_MODE (parmreg),
						 tempreg,
						 unsigned_p));
		  emit_move_insn (parmreg, DECL_RTL (parm));
		  conversion_insns = get_insns();
		  did_conversion = 1;
		  end_sequence ();
		}
	      else
		emit_move_insn (parmreg, DECL_RTL (parm));
	      SET_DECL_RTL (parm, parmreg);
	      /* STACK_PARM is the pointer, not the parm, and PARMREG is
		 now the parm.  */
	      stack_parm = 0;
	    }
#ifdef FUNCTION_ARG_CALLEE_COPIES
	  /* If we are passed an arg by reference and it is our responsibility
	     to make a copy, do it now.
	     PASSED_TYPE and PASSED mode now refer to the pointer, not the
	     original argument, so we must recreate them in the call to
	     FUNCTION_ARG_CALLEE_COPIES.  */
	  /* ??? Later add code to handle the case that if the argument isn't
	     modified, don't do the copy.  */

	  else if (passed_pointer
		   && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
						  TYPE_MODE (TREE_TYPE (passed_type)),
						  TREE_TYPE (passed_type),
						  named_arg)
		   && ! TREE_ADDRESSABLE (TREE_TYPE (passed_type)))
	    {
	      rtx copy;
	      tree type = TREE_TYPE (passed_type);

	      /* This sequence may involve a library call perhaps clobbering
		 registers that haven't been copied to pseudos yet.  */

	      push_to_sequence (conversion_insns);

	      if (!COMPLETE_TYPE_P (type)
		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
		/* This is a variable sized object.  */
		copy = gen_rtx_MEM (BLKmode,
				    allocate_dynamic_stack_space
				    (expr_size (parm), NULL_RTX,
				     TYPE_ALIGN (type)));
	      else
		copy = assign_stack_temp (TYPE_MODE (type),
					  int_size_in_bytes (type), 1);
	      set_mem_attributes (copy, parm, 1);

	      store_expr (parm, copy, 0);
	      emit_move_insn (parmreg, XEXP (copy, 0));
	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }
#endif /* FUNCTION_ARG_CALLEE_COPIES */

	  /* In any case, record the parm's desired stack location
	     in case we later discover it must live in the stack.

	     If it is a COMPLEX value, store the stack location for both
	     halves.  */

	  if (GET_CODE (parmreg) == CONCAT)
	    regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
	  else
	    regno = REGNO (parmreg);

	  if (regno >= max_parm_reg)
	    {
	      rtx *new;
	      int old_max_parm_reg = max_parm_reg;

	      /* It's slow to expand this one register at a time,
		 but it's also rare and we need max_parm_reg to be
		 precisely correct.  */
	      max_parm_reg = regno + 1;
	      new = ggc_realloc (parm_reg_stack_loc,
				 max_parm_reg * sizeof (rtx));
	      memset (new + old_max_parm_reg, 0,
		      (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
	      parm_reg_stack_loc = new;
	    }

	  if (GET_CODE (parmreg) == CONCAT)
	    {
	      enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));

	      regnor = REGNO (gen_realpart (submode, parmreg));
	      regnoi = REGNO (gen_imagpart (submode, parmreg));

	      if (stack_parm != 0)
		{
		  parm_reg_stack_loc[regnor]
		    = gen_realpart (submode, stack_parm);
		  parm_reg_stack_loc[regnoi]
		    = gen_imagpart (submode, stack_parm);
		}
	      else
		{
		  parm_reg_stack_loc[regnor] = 0;
		  parm_reg_stack_loc[regnoi] = 0;
		}
	    }
	  else
	    parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;

	  /* Mark the register as eliminable if we did no conversion
	     and it was copied from memory at a fixed offset,
	     and the arg pointer was not copied to a pseudo-reg.
	     If the arg pointer is a pseudo reg or the offset formed
	     an invalid address, such memory-equivalences
	     as we make here would screw up life analysis for it.  */
	  if (nominal_mode == passed_mode
	      && ! did_conversion
	      && stack_parm != 0
	      && GET_CODE (stack_parm) == MEM
	      && locate.offset.var == 0
	      && reg_mentioned_p (virtual_incoming_args_rtx,
				  XEXP (stack_parm, 0)))
	    {
	      rtx linsn = get_last_insn ();
	      rtx sinsn, set;

	      /* Mark complex types separately.  */
	      if (GET_CODE (parmreg) == CONCAT)
		/* Scan backwards for the set of the real and
		   imaginary parts.  */
		for (sinsn = linsn; sinsn != 0;
		     sinsn = prev_nonnote_insn (sinsn))
		  {
		    set = single_set (sinsn);
		    if (set != 0
			&& SET_DEST (set) == regno_reg_rtx [regnoi])
		      REG_NOTES (sinsn)
			= gen_rtx_EXPR_LIST (REG_EQUIV,
					     parm_reg_stack_loc[regnoi],
					     REG_NOTES (sinsn));
		    else if (set != 0
			     && SET_DEST (set) == regno_reg_rtx [regnor])
		      REG_NOTES (sinsn)
			= gen_rtx_EXPR_LIST (REG_EQUIV,
					     parm_reg_stack_loc[regnor],
					     REG_NOTES (sinsn));
		  }
	      else if ((set = single_set (linsn)) != 0
		       && SET_DEST (set) == parmreg)
		REG_NOTES (linsn)
		  = gen_rtx_EXPR_LIST (REG_EQUIV,
				       stack_parm, REG_NOTES (linsn));
	    }

	  /* For pointer data type, suggest pointer register.  */
	  if (POINTER_TYPE_P (TREE_TYPE (parm)))
	    mark_reg_pointer (parmreg,
			      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));

	  /* If something wants our address, try to use ADDRESSOF.  */
	  if (TREE_ADDRESSABLE (parm))
	    {
	      /* If we end up putting something into the stack,
		 fixup_var_refs_insns will need to make a pass over
		 all the instructions.  It looks through the pending
		 sequences -- but it can't see the ones in the
		 CONVERSION_INSNS, if they're not on the sequence
		 stack.  So, we go back to that sequence, just so that
		 the fixups will happen.  */
	      push_to_sequence (conversion_insns);
	      put_var_into_stack (parm, /*rescan=*/true);
	      conversion_insns = get_insns ();
	      end_sequence ();
	    }
	}
      else
	{
	  /* Value must be stored in the stack slot STACK_PARM
	     during function execution.  */

	  if (promoted_mode != nominal_mode)
	    {
	      /* Conversion is required.  */
	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));

	      emit_move_insn (tempreg, validize_mem (entry_parm));

	      push_to_sequence (conversion_insns);
	      entry_parm = convert_to_mode (nominal_mode, tempreg,
					    TYPE_UNSIGNED (TREE_TYPE (parm)));
	      if (stack_parm)
		/* ??? This may need a big-endian conversion on sparc64.  */
		stack_parm = adjust_address (stack_parm, nominal_mode, 0);

	      conversion_insns = get_insns ();
	      did_conversion = 1;
	      end_sequence ();
	    }

	  if (entry_parm != stack_parm)
	    {
	      if (stack_parm == 0)
		{
		  stack_parm
		    = assign_stack_local (GET_MODE (entry_parm),
					  GET_MODE_SIZE (GET_MODE (entry_parm)),
					  0);
		  set_mem_attributes (stack_parm, parm, 1);
		}

	      if (promoted_mode != nominal_mode)
		{
		  push_to_sequence (conversion_insns);
		  emit_move_insn (validize_mem (stack_parm),
				  validize_mem (entry_parm));
		  conversion_insns = get_insns ();
		  end_sequence ();
		}
	      else
		emit_move_insn (validize_mem (stack_parm),
				validize_mem (entry_parm));
	    }

	  SET_DECL_RTL (parm, stack_parm);
	}
    }

  if (targetm.calls.split_complex_arg && fnargs != orig_fnargs)
    {
      for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
	{
	  if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
	      && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
	    {
	      rtx tmp, real, imag;
	      enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));

	      real = DECL_RTL (fnargs);
	      imag = DECL_RTL (TREE_CHAIN (fnargs));
	      if (inner != GET_MODE (real))
		{
		  real = gen_lowpart_SUBREG (inner, real);
		  imag = gen_lowpart_SUBREG (inner, imag);
		}
	      tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
	      SET_DECL_RTL (parm, tmp);

	      real = DECL_INCOMING_RTL (fnargs);
	      imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
	      if (inner != GET_MODE (real))
		{
		  real = gen_lowpart_SUBREG (inner, real);
		  imag = gen_lowpart_SUBREG (inner, imag);
		}
	      tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
	      set_decl_incoming_rtl (parm, tmp);
	      fnargs = TREE_CHAIN (fnargs);
	    }
	  else
	    {
	      SET_DECL_RTL (parm, DECL_RTL (fnargs));
	      set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));

	      /* Set MEM_EXPR to the original decl, i.e. to PARM,
		 instead of the copy of decl, i.e. FNARGS.  */
	      if (DECL_INCOMING_RTL (parm)
		  && GET_CODE (DECL_INCOMING_RTL (parm)) == MEM)
		set_mem_expr (DECL_INCOMING_RTL (parm), parm);
	    }
	  fnargs = TREE_CHAIN (fnargs);
	}
    }

  /* Output all parameter conversion instructions (possibly including calls)
     now that all parameters have been copied out of hard registers.  */
  emit_insn (conversion_insns);

  /* If we are receiving a struct value address as the first argument, set up
     the RTL for the function result. As this might require code to convert
     the transmitted address to Pmode, we do this here to ensure that possible
     preliminary conversions of the address have been emitted already.  */
  if (function_result_decl)
    {
      tree result = DECL_RESULT (fndecl);
      rtx addr = DECL_RTL (function_result_decl);
      rtx x;

      addr = convert_memory_address (Pmode, addr);
      x = gen_rtx_MEM (DECL_MODE (result), addr);
      set_mem_attributes (x, result, 1);
      SET_DECL_RTL (result, x);
    }

  last_parm_insn = get_last_insn ();

  /* We have aligned all the args, so add space for the pretend args.  */
  stack_args_size.constant += extra_pretend_bytes;
  current_function_args_size = stack_args_size.constant;

  /* Adjust function incoming argument size for alignment and
     minimum length.  */

#ifdef REG_PARM_STACK_SPACE
  current_function_args_size = MAX (current_function_args_size,
				    REG_PARM_STACK_SPACE (fndecl));
#endif

  current_function_args_size
    = ((current_function_args_size + STACK_BYTES - 1)
       / STACK_BYTES) * STACK_BYTES;

#ifdef ARGS_GROW_DOWNWARD
  current_function_arg_offset_rtx
    = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
       : expand_expr (size_diffop (stack_args_size.var,
				   size_int (-stack_args_size.constant)),
		      NULL_RTX, VOIDmode, 0));
#else
  current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
#endif

  /* See how many bytes, if any, of its args a function should try to pop
     on return.  */

  current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
						 current_function_args_size);

  /* For stdarg.h function, save info about
     regs and stack space used by the named args.  */

  current_function_args_info = args_so_far;

  /* Set the rtx used for the function return value.  Put this in its
     own variable so any optimizers that need this information don't have
     to include tree.h.  Do this here so it gets done when an inlined
     function gets output.  */

  current_function_return_rtx
    = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
       ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);

  /* If scalar return value was computed in a pseudo-reg, or was a named
     return value that got dumped to the stack, copy that to the hard
     return register.  */
  if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
    {
      tree decl_result = DECL_RESULT (fndecl);
      rtx decl_rtl = DECL_RTL (decl_result);

      if (REG_P (decl_rtl)
	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
	  : DECL_REGISTER (decl_result))
	{
	  rtx real_decl_rtl;

#ifdef FUNCTION_OUTGOING_VALUE
	  real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
						   fndecl);
#else
	  real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
					  fndecl);
#endif
	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
	  /* The delay slot scheduler assumes that current_function_return_rtx
	     holds the hard register containing the return value, not a
	     temporary pseudo.  */
	  current_function_return_rtx = real_decl_rtl;
	}
    }
}

/* If ARGS contains entries with complex types, split the entry into two
   entries of the component type.  Return a new list of substitutions are
   needed, else the old list.  */

static tree
split_complex_args (tree args)
{
  tree p;

  /* Before allocating memory, check for the common case of no complex.  */
  for (p = args; p; p = TREE_CHAIN (p))
    {
      tree type = TREE_TYPE (p);
      if (TREE_CODE (type) == COMPLEX_TYPE
	  && targetm.calls.split_complex_arg (type))
        goto found;
    }
  return args;

 found:
  args = copy_list (args);

  for (p = args; p; p = TREE_CHAIN (p))
    {
      tree type = TREE_TYPE (p);
      if (TREE_CODE (type) == COMPLEX_TYPE
	  && targetm.calls.split_complex_arg (type))
	{
	  tree decl;
	  tree subtype = TREE_TYPE (type);

	  /* Rewrite the PARM_DECL's type with its component.  */
	  TREE_TYPE (p) = subtype;
	  DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
	  DECL_MODE (p) = VOIDmode;
	  DECL_SIZE (p) = NULL;
	  DECL_SIZE_UNIT (p) = NULL;
	  layout_decl (p, 0);

	  /* Build a second synthetic decl.  */
	  decl = build_decl (PARM_DECL, NULL_TREE, subtype);
	  DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
	  layout_decl (decl, 0);

	  /* Splice it in; skip the new decl.  */
	  TREE_CHAIN (decl) = TREE_CHAIN (p);
	  TREE_CHAIN (p) = decl;
	  p = decl;
	}
    }

  return args;
}

/* Indicate whether REGNO is an incoming argument to the current function
   that was promoted to a wider mode.  If so, return the RTX for the
   register (to get its mode).  PMODE and PUNSIGNEDP are set to the mode
   that REGNO is promoted from and whether the promotion was signed or
   unsigned.  */

rtx
promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
{
  tree arg;

  for (arg = DECL_ARGUMENTS (current_function_decl); arg;
       arg = TREE_CHAIN (arg))
    if (REG_P (DECL_INCOMING_RTL (arg))
	&& REGNO (DECL_INCOMING_RTL (arg)) == regno
	&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
      {
	enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
	int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));

	mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
	if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
	    && mode != DECL_MODE (arg))
	  {
	    *pmode = DECL_MODE (arg);
	    *punsignedp = unsignedp;
	    return DECL_INCOMING_RTL (arg);
	  }
      }

  return 0;
}


/* Compute the size and offset from the start of the stacked arguments for a
   parm passed in mode PASSED_MODE and with type TYPE.

   INITIAL_OFFSET_PTR points to the current offset into the stacked
   arguments.

   The starting offset and size for this parm are returned in
   LOCATE->OFFSET and LOCATE->SIZE, respectively.  When IN_REGS is
   nonzero, the offset is that of stack slot, which is returned in
   LOCATE->SLOT_OFFSET.  LOCATE->ALIGNMENT_PAD is the amount of
   padding required from the initial offset ptr to the stack slot.

   IN_REGS is nonzero if the argument will be passed in registers.  It will
   never be set if REG_PARM_STACK_SPACE is not defined.

   FNDECL is the function in which the argument was defined.

   There are two types of rounding that are done.  The first, controlled by
   FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
   list to be aligned to the specific boundary (in bits).  This rounding
   affects the initial and starting offsets, but not the argument size.

   The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
   optionally rounds the size of the parm to PARM_BOUNDARY.  The
   initial offset is not affected by this rounding, while the size always
   is and the starting offset may be.  */

/*  LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
    INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
    callers pass in the total size of args so far as
    INITIAL_OFFSET_PTR.  LOCATE->SIZE is always positive.  */

void
locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
		     int partial, tree fndecl ATTRIBUTE_UNUSED,
		     struct args_size *initial_offset_ptr,
		     struct locate_and_pad_arg_data *locate)
{
  tree sizetree;
  enum direction where_pad;
  int boundary;
  int reg_parm_stack_space = 0;
  int part_size_in_regs;

#ifdef REG_PARM_STACK_SPACE
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);

  /* If we have found a stack parm before we reach the end of the
     area reserved for registers, skip that area.  */
  if (! in_regs)
    {
      if (reg_parm_stack_space > 0)
	{
	  if (initial_offset_ptr->var)
	    {
	      initial_offset_ptr->var
		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
			      ssize_int (reg_parm_stack_space));
	      initial_offset_ptr->constant = 0;
	    }
	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
	    initial_offset_ptr->constant = reg_parm_stack_space;
	}
    }
#endif /* REG_PARM_STACK_SPACE */

  part_size_in_regs = 0;
  if (reg_parm_stack_space == 0)
    part_size_in_regs = ((partial * UNITS_PER_WORD)
			 / (PARM_BOUNDARY / BITS_PER_UNIT)
			 * (PARM_BOUNDARY / BITS_PER_UNIT));

  sizetree
    = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
  where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
  boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
  locate->where_pad = where_pad;

#ifdef ARGS_GROW_DOWNWARD
  locate->slot_offset.constant = -initial_offset_ptr->constant;
  if (initial_offset_ptr->var)
    locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
					  initial_offset_ptr->var);

  {
    tree s2 = sizetree;
    if (where_pad != none
	&& (!host_integerp (sizetree, 1)
	    || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
      s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
    SUB_PARM_SIZE (locate->slot_offset, s2);
  }

  locate->slot_offset.constant += part_size_in_regs;

  if (!in_regs
#ifdef REG_PARM_STACK_SPACE
      || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
     )
    pad_to_arg_alignment (&locate->slot_offset, boundary,
			  &locate->alignment_pad);

  locate->size.constant = (-initial_offset_ptr->constant
			   - locate->slot_offset.constant);
  if (initial_offset_ptr->var)
    locate->size.var = size_binop (MINUS_EXPR,
				   size_binop (MINUS_EXPR,
					       ssize_int (0),
					       initial_offset_ptr->var),
				   locate->slot_offset.var);

  /* Pad_below needs the pre-rounded size to know how much to pad
     below.  */
  locate->offset = locate->slot_offset;
  if (where_pad == downward)
    pad_below (&locate->offset, passed_mode, sizetree);

#else /* !ARGS_GROW_DOWNWARD */
  if (!in_regs
#ifdef REG_PARM_STACK_SPACE
      || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
      )
    pad_to_arg_alignment (initial_offset_ptr, boundary,
			  &locate->alignment_pad);
  locate->slot_offset = *initial_offset_ptr;

#ifdef PUSH_ROUNDING
  if (passed_mode != BLKmode)
    sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
#endif

  /* Pad_below needs the pre-rounded size to know how much to pad below
     so this must be done before rounding up.  */
  locate->offset = locate->slot_offset;
  if (where_pad == downward)
    pad_below (&locate->offset, passed_mode, sizetree);

  if (where_pad != none
      && (!host_integerp (sizetree, 1)
	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
    sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);

  ADD_PARM_SIZE (locate->size, sizetree);

  locate->size.constant -= part_size_in_regs;
#endif /* ARGS_GROW_DOWNWARD */
}

/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
   BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */

static void
pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
		      struct args_size *alignment_pad)
{
  tree save_var = NULL_TREE;
  HOST_WIDE_INT save_constant = 0;
  int boundary_in_bytes = boundary / BITS_PER_UNIT;
  HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;

#ifdef SPARC_STACK_BOUNDARY_HACK
  /* The sparc port has a bug.  It sometimes claims a STACK_BOUNDARY
     higher than the real alignment of %sp.  However, when it does this,
     the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
     This is a temporary hack while the sparc port is fixed.  */
  if (SPARC_STACK_BOUNDARY_HACK)
    sp_offset = 0;
#endif

  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
    {
      save_var = offset_ptr->var;
      save_constant = offset_ptr->constant;
    }

  alignment_pad->var = NULL_TREE;
  alignment_pad->constant = 0;

  if (boundary > BITS_PER_UNIT)
    {
      if (offset_ptr->var)
	{
	  tree sp_offset_tree = ssize_int (sp_offset);
	  tree offset = size_binop (PLUS_EXPR,
				    ARGS_SIZE_TREE (*offset_ptr),
				    sp_offset_tree);
#ifdef ARGS_GROW_DOWNWARD
	  tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
#else
	  tree rounded = round_up   (offset, boundary / BITS_PER_UNIT);
#endif

	  offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
	  /* ARGS_SIZE_TREE includes constant term.  */
	  offset_ptr->constant = 0;
	  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
	    alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
					     save_var);
	}
      else
	{
	  offset_ptr->constant = -sp_offset +
#ifdef ARGS_GROW_DOWNWARD
	    FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
#else
	    CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
#endif
	    if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
	      alignment_pad->constant = offset_ptr->constant - save_constant;
	}
    }
}

static void
pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
{
  if (passed_mode != BLKmode)
    {
      if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
	offset_ptr->constant
	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
	      - GET_MODE_SIZE (passed_mode));
    }
  else
    {
      if (TREE_CODE (sizetree) != INTEGER_CST
	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
	{
	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
	  /* Add it in.  */
	  ADD_PARM_SIZE (*offset_ptr, s2);
	  SUB_PARM_SIZE (*offset_ptr, sizetree);
	}
    }
}

/* Walk the tree of blocks describing the binding levels within a function
   and warn about variables the might be killed by setjmp or vfork.
   This is done after calling flow_analysis and before global_alloc
   clobbers the pseudo-regs to hard regs.  */

void
setjmp_vars_warning (tree block)
{
  tree decl, sub;

  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
    {
      if (TREE_CODE (decl) == VAR_DECL
	  && DECL_RTL_SET_P (decl)
	  && REG_P (DECL_RTL (decl))
	  && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
	warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
		 decl, decl);
    }

  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
    setjmp_vars_warning (sub);
}

/* Do the appropriate part of setjmp_vars_warning
   but for arguments instead of local variables.  */

void
setjmp_args_warning (void)
{
  tree decl;
  for (decl = DECL_ARGUMENTS (current_function_decl);
       decl; decl = TREE_CHAIN (decl))
    if (DECL_RTL (decl) != 0
	&& REG_P (DECL_RTL (decl))
	&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
      warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
	       decl, decl);
}

/* If this function call setjmp, put all vars into the stack
   unless they were declared `register'.  */

void
setjmp_protect (tree block)
{
  tree decl, sub;
  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
    if ((TREE_CODE (decl) == VAR_DECL
	 || TREE_CODE (decl) == PARM_DECL)
	&& DECL_RTL (decl) != 0
	&& (REG_P (DECL_RTL (decl))
	    || (GET_CODE (DECL_RTL (decl)) == MEM
		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
	/* If this variable came from an inline function, it must be
	   that its life doesn't overlap the setjmp.  If there was a
	   setjmp in the function, it would already be in memory.  We
	   must exclude such variable because their DECL_RTL might be
	   set to strange things such as virtual_stack_vars_rtx.  */
	&& ! DECL_FROM_INLINE (decl)
	&& (
#ifdef NON_SAVING_SETJMP
	    /* If longjmp doesn't restore the registers,
	       don't put anything in them.  */
	    NON_SAVING_SETJMP
	    ||
#endif
	    ! DECL_REGISTER (decl)))
      put_var_into_stack (decl, /*rescan=*/true);
  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
    setjmp_protect (sub);
}

/* Like the previous function, but for args instead of local variables.  */

void
setjmp_protect_args (void)
{
  tree decl;
  for (decl = DECL_ARGUMENTS (current_function_decl);
       decl; decl = TREE_CHAIN (decl))
    if ((TREE_CODE (decl) == VAR_DECL
	 || TREE_CODE (decl) == PARM_DECL)
	&& DECL_RTL (decl) != 0
	&& (REG_P (DECL_RTL (decl))
	    || (GET_CODE (DECL_RTL (decl)) == MEM
		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
	&& (
	    /* If longjmp doesn't restore the registers,
	       don't put anything in them.  */
#ifdef NON_SAVING_SETJMP
	    NON_SAVING_SETJMP
	    ||
#endif
	    ! DECL_REGISTER (decl)))
      put_var_into_stack (decl, /*rescan=*/true);
}

/* Convert a stack slot address ADDR for variable VAR
   (from a containing function)
   into an address valid in this function (using a static chain).  */

rtx
fix_lexical_addr (rtx addr, tree var)
{
  rtx basereg;
  HOST_WIDE_INT displacement;
  tree context = decl_function_context (var);
  struct function *fp;
  rtx base = 0;

  /* If this is the present function, we need not do anything.  */
  if (context == current_function_decl)
    return addr;

  fp = find_function_data (context);

  if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
    addr = XEXP (XEXP (addr, 0), 0);

  /* Decode given address as base reg plus displacement.  */
  if (REG_P (addr))
    basereg = addr, displacement = 0;
  else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
    basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
  else
    abort ();

  if (base == 0)
    abort ();

  /* Use same offset, relative to appropriate static chain or argument
     pointer.  */
  return plus_constant (base, displacement);
}

/* Put all this function's BLOCK nodes including those that are chained
   onto the first block into a vector, and return it.
   Also store in each NOTE for the beginning or end of a block
   the index of that block in the vector.
   The arguments are BLOCK, the chain of top-level blocks of the function,
   and INSNS, the insn chain of the function.  */

void
identify_blocks (void)
{
  int n_blocks;
  tree *block_vector, *last_block_vector;
  tree *block_stack;
  tree block = DECL_INITIAL (current_function_decl);

  if (block == 0)
    return;

  /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
     depth-first order.  */
  block_vector = get_block_vector (block, &n_blocks);
  block_stack = xmalloc (n_blocks * sizeof (tree));

  last_block_vector = identify_blocks_1 (get_insns (),
					 block_vector + 1,
					 block_vector + n_blocks,
					 block_stack);

  /* If we didn't use all of the subblocks, we've misplaced block notes.  */
  /* ??? This appears to happen all the time.  Latent bugs elsewhere?  */
  if (0 && last_block_vector != block_vector + n_blocks)
    abort ();

  free (block_vector);
  free (block_stack);
}

/* Subroutine of identify_blocks.  Do the block substitution on the
   insn chain beginning with INSNS.

   BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
   BLOCK_VECTOR is incremented for each block seen.  */

static tree *
identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
		   tree *orig_block_stack)
{
  rtx insn;
  tree *block_stack = orig_block_stack;

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
	    {
	      tree b;

	      /* If there are more block notes than BLOCKs, something
		 is badly wrong.  */
	      if (block_vector == end_block_vector)
		abort ();

	      b = *block_vector++;
	      NOTE_BLOCK (insn) = b;
	      *block_stack++ = b;
	    }
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
	    {
	      /* If there are more NOTE_INSN_BLOCK_ENDs than
		 NOTE_INSN_BLOCK_BEGs, something is badly wrong.  */
	      if (block_stack == orig_block_stack)
		abort ();

	      NOTE_BLOCK (insn) = *--block_stack;
	    }
	}
    }

  /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
     something is badly wrong.  */
  if (block_stack != orig_block_stack)
    abort ();

  return block_vector;
}

/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
   and create duplicate blocks.  */
/* ??? Need an option to either create block fragments or to create
   abstract origin duplicates of a source block.  It really depends
   on what optimization has been performed.  */

void
reorder_blocks (void)
{
  tree block = DECL_INITIAL (current_function_decl);
  varray_type block_stack;

  if (block == NULL_TREE)
    return;

  VARRAY_TREE_INIT (block_stack, 10, "block_stack");

  /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
  clear_block_marks (block);

  /* Prune the old trees away, so that they don't get in the way.  */
  BLOCK_SUBBLOCKS (block) = NULL_TREE;
  BLOCK_CHAIN (block) = NULL_TREE;

  /* Recreate the block tree from the note nesting.  */
  reorder_blocks_1 (get_insns (), block, &block_stack);
  BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));

  /* Remove deleted blocks from the block fragment chains.  */
  reorder_fix_fragments (block);
}

/* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */

void
clear_block_marks (tree block)
{
  while (block)
    {
      TREE_ASM_WRITTEN (block) = 0;
      clear_block_marks (BLOCK_SUBBLOCKS (block));
      block = BLOCK_CHAIN (block);
    }
}

static void
reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
{
  rtx insn;

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
	    {
	      tree block = NOTE_BLOCK (insn);

	      /* If we have seen this block before, that means it now
		 spans multiple address regions.  Create a new fragment.  */
	      if (TREE_ASM_WRITTEN (block))
		{
		  tree new_block = copy_node (block);
		  tree origin;

		  origin = (BLOCK_FRAGMENT_ORIGIN (block)
			    ? BLOCK_FRAGMENT_ORIGIN (block)
			    : block);
		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
		  BLOCK_FRAGMENT_CHAIN (new_block)
		    = BLOCK_FRAGMENT_CHAIN (origin);
		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;

		  NOTE_BLOCK (insn) = new_block;
		  block = new_block;
		}

	      BLOCK_SUBBLOCKS (block) = 0;
	      TREE_ASM_WRITTEN (block) = 1;
	      /* When there's only one block for the entire function,
		 current_block == block and we mustn't do this, it
		 will cause infinite recursion.  */
	      if (block != current_block)
		{
		  BLOCK_SUPERCONTEXT (block) = current_block;
		  BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
		  BLOCK_SUBBLOCKS (current_block) = block;
		  current_block = block;
		}
	      VARRAY_PUSH_TREE (*p_block_stack, block);
	    }
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
	    {
	      NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
	      VARRAY_POP (*p_block_stack);
	      BLOCK_SUBBLOCKS (current_block)
		= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
	      current_block = BLOCK_SUPERCONTEXT (current_block);
	    }
	}
    }
}

/* Rationalize BLOCK_FRAGMENT_ORIGIN.  If an origin block no longer
   appears in the block tree, select one of the fragments to become
   the new origin block.  */

static void
reorder_fix_fragments (tree block)
{
  while (block)
    {
      tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
      tree new_origin = NULL_TREE;

      if (dup_origin)
	{
	  if (! TREE_ASM_WRITTEN (dup_origin))
	    {
	      new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);

	      /* Find the first of the remaining fragments.  There must
		 be at least one -- the current block.  */
	      while (! TREE_ASM_WRITTEN (new_origin))
		new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
	      BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
	    }
	}
      else if (! dup_origin)
	new_origin = block;

      /* Re-root the rest of the fragments to the new origin.  In the
	 case that DUP_ORIGIN was null, that means BLOCK was the origin
	 of a chain of fragments and we want to remove those fragments
	 that didn't make it to the output.  */
      if (new_origin)
	{
	  tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
	  tree chain = *pp;

	  while (chain)
	    {
	      if (TREE_ASM_WRITTEN (chain))
		{
		  BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
		  *pp = chain;
		  pp = &BLOCK_FRAGMENT_CHAIN (chain);
		}
	      chain = BLOCK_FRAGMENT_CHAIN (chain);
	    }
	  *pp = NULL_TREE;
	}

      reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
      block = BLOCK_CHAIN (block);
    }
}

/* Reverse the order of elements in the chain T of blocks,
   and return the new head of the chain (old last element).  */

tree
blocks_nreverse (tree t)
{
  tree prev = 0, decl, next;
  for (decl = t; decl; decl = next)
    {
      next = BLOCK_CHAIN (decl);
      BLOCK_CHAIN (decl) = prev;
      prev = decl;
    }
  return prev;
}

/* Count the subblocks of the list starting with BLOCK.  If VECTOR is
   non-NULL, list them all into VECTOR, in a depth-first preorder
   traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
   blocks.  */

static int
all_blocks (tree block, tree *vector)
{
  int n_blocks = 0;

  while (block)
    {
      TREE_ASM_WRITTEN (block) = 0;

      /* Record this block.  */
      if (vector)
	vector[n_blocks] = block;

      ++n_blocks;

      /* Record the subblocks, and their subblocks...  */
      n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
			      vector ? vector + n_blocks : 0);
      block = BLOCK_CHAIN (block);
    }

  return n_blocks;
}

/* Return a vector containing all the blocks rooted at BLOCK.  The
   number of elements in the vector is stored in N_BLOCKS_P.  The
   vector is dynamically allocated; it is the caller's responsibility
   to call `free' on the pointer returned.  */

static tree *
get_block_vector (tree block, int *n_blocks_p)
{
  tree *block_vector;

  *n_blocks_p = all_blocks (block, NULL);
  block_vector = xmalloc (*n_blocks_p * sizeof (tree));
  all_blocks (block, block_vector);

  return block_vector;
}

static GTY(()) int next_block_index = 2;

/* Set BLOCK_NUMBER for all the blocks in FN.  */

void
number_blocks (tree fn)
{
  int i;
  int n_blocks;
  tree *block_vector;

  /* For SDB and XCOFF debugging output, we start numbering the blocks
     from 1 within each function, rather than keeping a running
     count.  */
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
  if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
    next_block_index = 1;
#endif

  block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);

  /* The top-level BLOCK isn't numbered at all.  */
  for (i = 1; i < n_blocks; ++i)
    /* We number the blocks from two.  */
    BLOCK_NUMBER (block_vector[i]) = next_block_index++;

  free (block_vector);

  return;
}

/* If VAR is present in a subblock of BLOCK, return the subblock.  */

tree
debug_find_var_in_block_tree (tree var, tree block)
{
  tree t;

  for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
    if (t == var)
      return block;

  for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
    {
      tree ret = debug_find_var_in_block_tree (var, t);
      if (ret)
	return ret;
    }

  return NULL_TREE;
}

/* Allocate a function structure for FNDECL and set its contents
   to the defaults.  */

void
allocate_struct_function (tree fndecl)
{
  tree result;
  tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;

  cfun = ggc_alloc_cleared (sizeof (struct function));

  max_parm_reg = LAST_VIRTUAL_REGISTER + 1;

  cfun->stack_alignment_needed = STACK_BOUNDARY;
  cfun->preferred_stack_boundary = STACK_BOUNDARY;

  current_function_funcdef_no = funcdef_no++;

  cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;

  init_stmt_for_function ();
  init_eh_for_function ();

  lang_hooks.function.init (cfun);
  if (init_machine_status)
    cfun->machine = (*init_machine_status) ();

  if (fndecl == NULL)
    return;

  DECL_STRUCT_FUNCTION (fndecl) = cfun;
  cfun->decl = fndecl;

  result = DECL_RESULT (fndecl);
  if (aggregate_value_p (result, fndecl))
    {
#ifdef PCC_STATIC_STRUCT_RETURN
      current_function_returns_pcc_struct = 1;
#endif
      current_function_returns_struct = 1;
    }

  current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));

  current_function_stdarg
    = (fntype
       && TYPE_ARG_TYPES (fntype) != 0
       && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
	   != void_type_node));
}

/* Reset cfun, and other non-struct-function variables to defaults as
   appropriate for emitting rtl at the start of a function.  */

static void
prepare_function_start (tree fndecl)
{
  if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
    cfun = DECL_STRUCT_FUNCTION (fndecl);
  else
    allocate_struct_function (fndecl);
  init_emit ();
  init_varasm_status (cfun);
  init_expr ();

  cse_not_expected = ! optimize;

  /* Caller save not needed yet.  */
  caller_save_needed = 0;

  /* We haven't done register allocation yet.  */
  reg_renumber = 0;

  /* Indicate that we need to distinguish between the return value of the
     present function and the return value of a function being called.  */
  rtx_equal_function_value_matters = 1;

  /* Indicate that we have not instantiated virtual registers yet.  */
  virtuals_instantiated = 0;

  /* Indicate that we want CONCATs now.  */
  generating_concat_p = 1;

  /* Indicate we have no need of a frame pointer yet.  */
  frame_pointer_needed = 0;
}

/* Initialize the rtl expansion mechanism so that we can do simple things
   like generate sequences.  This is used to provide a context during global
   initialization of some passes.  */
void
init_dummy_function_start (void)
{
  prepare_function_start (NULL);
}

/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
   and initialize static variables for generating RTL for the statements
   of the function.  */

void
init_function_start (tree subr)
{
  prepare_function_start (subr);

  /* Within function body, compute a type's size as soon it is laid out.  */
  immediate_size_expand++;

  /* Prevent ever trying to delete the first instruction of a
     function.  Also tell final how to output a linenum before the
     function prologue.  Note linenums could be missing, e.g. when
     compiling a Java .class file.  */
  if (DECL_SOURCE_LINE (subr))
    emit_line_note (DECL_SOURCE_LOCATION (subr));

  /* Make sure first insn is a note even if we don't want linenums.
     This makes sure the first insn will never be deleted.
     Also, final expects a note to appear there.  */
  emit_note (NOTE_INSN_DELETED);

  /* Warn if this value is an aggregate type,
     regardless of which calling convention we are using for it.  */
  if (warn_aggregate_return
      && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
    warning ("function returns an aggregate");
}

/* Make sure all values used by the optimization passes have sane
   defaults.  */
void
init_function_for_compilation (void)
{
  reg_renumber = 0;

  /* No prologue/epilogue insns yet.  */
  VARRAY_GROW (prologue, 0);
  VARRAY_GROW (epilogue, 0);
  VARRAY_GROW (sibcall_epilogue, 0);
}

/* Expand a call to __main at the beginning of a possible main function.  */

#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
#undef HAS_INIT_SECTION
#define HAS_INIT_SECTION
#endif

void
expand_main_function (void)
{
#ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
  if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
    {
      int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
      rtx tmp, seq;

      start_sequence ();
      /* Forcibly align the stack.  */
#ifdef STACK_GROWS_DOWNWARD
      tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
				 stack_pointer_rtx, 1, OPTAB_WIDEN);
#else
      tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
				 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
      tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
				 stack_pointer_rtx, 1, OPTAB_WIDEN);
#endif
      if (tmp != stack_pointer_rtx)
	emit_move_insn (stack_pointer_rtx, tmp);

      /* Enlist allocate_dynamic_stack_space to pick up the pieces.  */
      tmp = force_reg (Pmode, const0_rtx);
      allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
      seq = get_insns ();
      end_sequence ();

      for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
	if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
	  break;
      if (tmp)
	emit_insn_before (seq, tmp);
      else
	emit_insn (seq);
    }
#endif

#ifndef HAS_INIT_SECTION
  emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
#endif
}

/* The PENDING_SIZES represent the sizes of variable-sized types.
   Create RTL for the various sizes now (using temporary variables),
   so that we can refer to the sizes from the RTL we are generating
   for the current function.  The PENDING_SIZES are a TREE_LIST.  The
   TREE_VALUE of each node is a SAVE_EXPR.  */

void
expand_pending_sizes (tree pending_sizes)
{
  tree tem;

  /* Evaluate now the sizes of any types declared among the arguments.  */
  for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
    {
      expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
      /* Flush the queue in case this parameter declaration has
	 side-effects.  */
      emit_queue ();
    }
}

/* Start the RTL for a new function, and set variables used for
   emitting RTL.
   SUBR is the FUNCTION_DECL node.
   PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
   the function's parameters, which must be run at any return statement.  */

void
expand_function_start (tree subr, int parms_have_cleanups)
{
  /* Make sure volatile mem refs aren't considered
     valid operands of arithmetic insns.  */
  init_recog_no_volatile ();

  current_function_profile
    = (profile_flag
       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));

  current_function_limit_stack
    = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));

  /* If the parameters of this function need cleaning up, get a label
     for the beginning of the code which executes those cleanups.  This must
     be done before doing anything with return_label.  */
  if (parms_have_cleanups)
    cleanup_label = gen_label_rtx ();
  else
    cleanup_label = 0;

  /* Make the label for return statements to jump to.  Do not special
     case machines with special return instructions -- they will be
     handled later during jump, ifcvt, or epilogue creation.  */
  return_label = gen_label_rtx ();

  /* Initialize rtx used to return the value.  */
  /* Do this before assign_parms so that we copy the struct value address
     before any library calls that assign parms might generate.  */

  /* Decide whether to return the value in memory or in a register.  */
  if (aggregate_value_p (DECL_RESULT (subr), subr))
    {
      /* Returning something that won't go in a register.  */
      rtx value_address = 0;

#ifdef PCC_STATIC_STRUCT_RETURN
      if (current_function_returns_pcc_struct)
	{
	  int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
	  value_address = assemble_static_space (size);
	}
      else
#endif
	{
	  rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
	  /* Expect to be passed the address of a place to store the value.
	     If it is passed as an argument, assign_parms will take care of
	     it.  */
	  if (sv)
	    {
	      value_address = gen_reg_rtx (Pmode);
	      emit_move_insn (value_address, sv);
	    }
	}
      if (value_address)
	{
	  rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
	  set_mem_attributes (x, DECL_RESULT (subr), 1);
	  SET_DECL_RTL (DECL_RESULT (subr), x);
	}
    }
  else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
    /* If return mode is void, this decl rtl should not be used.  */
    SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
  else
    {
      /* Compute the return values into a pseudo reg, which we will copy
	 into the true return register after the cleanups are done.  */

      /* In order to figure out what mode to use for the pseudo, we
	 figure out what the mode of the eventual return register will
	 actually be, and use that.  */
      rtx hard_reg
	= hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
			       subr, 1);

      /* Structures that are returned in registers are not aggregate_value_p,
	 so we may see a PARALLEL or a REG.  */
      if (REG_P (hard_reg))
	SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
      else if (GET_CODE (hard_reg) == PARALLEL)
	SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
      else
	abort ();

      /* Set DECL_REGISTER flag so that expand_function_end will copy the
	 result to the real return register(s).  */
      DECL_REGISTER (DECL_RESULT (subr)) = 1;
    }

  /* Initialize rtx for parameters and local variables.
     In some cases this requires emitting insns.  */
  assign_parms (subr);

  /* If function gets a static chain arg, store it.  */
  if (cfun->static_chain_decl)
    {
      tree parm = cfun->static_chain_decl;
      rtx local = gen_reg_rtx (Pmode);

      set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
      SET_DECL_RTL (parm, local);
      maybe_set_unchanging (local, parm);
      mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));

      emit_move_insn (local, static_chain_incoming_rtx);
    }

  /* If the function receives a non-local goto, then store the
     bits we need to restore the frame pointer.  */
  if (cfun->nonlocal_goto_save_area)
    {
      tree t_save;
      rtx r_save;

      /* ??? We need to do this save early.  Unfortunately here is
	 before the frame variable gets declared.  Help out...  */
      expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));

      t_save = build (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
		      integer_zero_node);
      r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);

      emit_move_insn (r_save, virtual_stack_vars_rtx);
      update_nonlocal_goto_save_area ();
    }

  /* The following was moved from init_function_start.
     The move is supposed to make sdb output more accurate.  */
  /* Indicate the beginning of the function body,
     as opposed to parm setup.  */
  emit_note (NOTE_INSN_FUNCTION_BEG);

  if (GET_CODE (get_last_insn ()) != NOTE)
    emit_note (NOTE_INSN_DELETED);
  parm_birth_insn = get_last_insn ();

  if (current_function_profile)
    {
#ifdef PROFILE_HOOK
      PROFILE_HOOK (current_function_funcdef_no);
#endif
    }

  /* After the display initializations is where the tail-recursion label
     should go, if we end up needing one.   Ensure we have a NOTE here
     since some things (like trampolines) get placed before this.  */
  tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);

  /* Evaluate now the sizes of any types declared among the arguments.  */
  expand_pending_sizes (nreverse (get_pending_sizes ()));

  /* Make sure there is a line number after the function entry setup code.  */
  force_next_line_note ();
}

/* Undo the effects of init_dummy_function_start.  */
void
expand_dummy_function_end (void)
{
  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
    end_sequence ();

  /* Outside function body, can't compute type's actual size
     until next function's body starts.  */

  free_after_parsing (cfun);
  free_after_compilation (cfun);
  cfun = 0;
}

/* Call DOIT for each hard register used as a return value from
   the current function.  */

void
diddle_return_value (void (*doit) (rtx, void *), void *arg)
{
  rtx outgoing = current_function_return_rtx;

  if (! outgoing)
    return;

  if (REG_P (outgoing))
    (*doit) (outgoing, arg);
  else if (GET_CODE (outgoing) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (outgoing, 0); i++)
	{
	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);

	  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
	    (*doit) (x, arg);
	}
    }
}

static void
do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
{
  emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
}

void
clobber_return_register (void)
{
  diddle_return_value (do_clobber_return_reg, NULL);

  /* In case we do use pseudo to return value, clobber it too.  */
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
    {
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);
      if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
	{
	  do_clobber_return_reg (decl_rtl, NULL);
	}
    }
}

static void
do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
{
  emit_insn (gen_rtx_USE (VOIDmode, reg));
}

void
use_return_register (void)
{
  diddle_return_value (do_use_return_reg, NULL);
}

/* Possibly warn about unused parameters.  */
void
do_warn_unused_parameter (tree fn)
{
  tree decl;

  for (decl = DECL_ARGUMENTS (fn);
       decl; decl = TREE_CHAIN (decl))
    if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
	&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
      warning ("%Junused parameter '%D'", decl, decl);
}

static GTY(()) rtx initial_trampoline;

/* Generate RTL for the end of the current function.  */

void
expand_function_end (void)
{
  rtx clobber_after;

  finish_expr_for_function ();

  /* If arg_pointer_save_area was referenced only from a nested
     function, we will not have initialized it yet.  Do that now.  */
  if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
    get_arg_pointer_save_area (cfun);

#ifdef NON_SAVING_SETJMP
  /* Don't put any variables in registers if we call setjmp
     on a machine that fails to restore the registers.  */
  if (NON_SAVING_SETJMP && current_function_calls_setjmp)
    {
      if (DECL_INITIAL (current_function_decl) != error_mark_node)
	setjmp_protect (DECL_INITIAL (current_function_decl));

      setjmp_protect_args ();
    }
#endif

  /* If we are doing stack checking and this function makes calls,
     do a stack probe at the start of the function to ensure we have enough
     space for another stack frame.  */
  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
    {
      rtx insn, seq;

      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == CALL_INSN)
	  {
	    start_sequence ();
	    probe_stack_range (STACK_CHECK_PROTECT,
			       GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
	    seq = get_insns ();
	    end_sequence ();
	    emit_insn_before (seq, tail_recursion_reentry);
	    break;
	  }
    }

  /* Possibly warn about unused parameters.
     When frontend does unit-at-a-time, the warning is already
     issued at finalization time.  */
  if (warn_unused_parameter
      && !lang_hooks.callgraph.expand_function)
    do_warn_unused_parameter (current_function_decl);

  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
    end_sequence ();

  /* Outside function body, can't compute type's actual size
     until next function's body starts.  */
  immediate_size_expand--;

  clear_pending_stack_adjust ();
  do_pending_stack_adjust ();

  /* @@@ This is a kludge.  We want to ensure that instructions that
     may trap are not moved into the epilogue by scheduling, because
     we don't always emit unwind information for the epilogue.
     However, not all machine descriptions define a blockage insn, so
     emit an ASM_INPUT to act as one.  */
  if (flag_non_call_exceptions)
    emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));

  /* Mark the end of the function body.
     If control reaches this insn, the function can drop through
     without returning a value.  */
  emit_note (NOTE_INSN_FUNCTION_END);

  /* Must mark the last line number note in the function, so that the test
     coverage code can avoid counting the last line twice.  This just tells
     the code to ignore the immediately following line note, since there
     already exists a copy of this note somewhere above.  This line number
     note is still needed for debugging though, so we can't delete it.  */
  if (flag_test_coverage)
    emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);

  /* Output a linenumber for the end of the function.
     SDB depends on this.  */
  force_next_line_note ();
  emit_line_note (input_location);

  /* Before the return label (if any), clobber the return
     registers so that they are not propagated live to the rest of
     the function.  This can only happen with functions that drop
     through; if there had been a return statement, there would
     have either been a return rtx, or a jump to the return label.

     We delay actual code generation after the current_function_value_rtx
     is computed.  */
  clobber_after = get_last_insn ();

  /* Output the label for the actual return from the function,
     if one is expected.  This happens either because a function epilogue
     is used instead of a return instruction, or because a return was done
     with a goto in order to run local cleanups, or because of pcc-style
     structure returning.  */
  if (return_label)
    emit_label (return_label);

  /* Let except.c know where it should emit the call to unregister
     the function context for sjlj exceptions.  */
  if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
    sjlj_emit_function_exit_after (get_last_insn ());

  /* If we had calls to alloca, and this machine needs
     an accurate stack pointer to exit the function,
     insert some code to save and restore the stack pointer.  */
  if (! EXIT_IGNORE_STACK
      && current_function_calls_alloca)
    {
      rtx tem = 0;

      emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
      emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
    }

  /* If scalar return value was computed in a pseudo-reg, or was a named
     return value that got dumped to the stack, copy that to the hard
     return register.  */
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
    {
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);

      if (REG_P (decl_rtl)
	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
	  : DECL_REGISTER (decl_result))
	{
	  rtx real_decl_rtl = current_function_return_rtx;

	  /* This should be set in assign_parms.  */
	  if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
	    abort ();

	  /* If this is a BLKmode structure being returned in registers,
	     then use the mode computed in expand_return.  Note that if
	     decl_rtl is memory, then its mode may have been changed,
	     but that current_function_return_rtx has not.  */
	  if (GET_MODE (real_decl_rtl) == BLKmode)
	    PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));

	  /* If a named return value dumped decl_return to memory, then
	     we may need to re-do the PROMOTE_MODE signed/unsigned
	     extension.  */
	  if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
	    {
	      int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));

	      if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
		promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
			      &unsignedp, 1);

	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
	    }
	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
	    {
	      /* If expand_function_start has created a PARALLEL for decl_rtl,
		 move the result to the real return registers.  Otherwise, do
		 a group load from decl_rtl for a named return.  */
	      if (GET_CODE (decl_rtl) == PARALLEL)
		emit_group_move (real_decl_rtl, decl_rtl);
	      else
		emit_group_load (real_decl_rtl, decl_rtl,
				 TREE_TYPE (decl_result),
				 int_size_in_bytes (TREE_TYPE (decl_result)));
	    }
	  else
	    emit_move_insn (real_decl_rtl, decl_rtl);
	}
    }

  /* If returning a structure, arrange to return the address of the value
     in a place where debuggers expect to find it.

     If returning a structure PCC style,
     the caller also depends on this value.
     And current_function_returns_pcc_struct is not necessarily set.  */
  if (current_function_returns_struct
      || current_function_returns_pcc_struct)
    {
      rtx value_address
	= XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
      tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
#ifdef FUNCTION_OUTGOING_VALUE
      rtx outgoing
	= FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
				   current_function_decl);
#else
      rtx outgoing
	= FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
#endif

      /* Mark this as a function return value so integrate will delete the
	 assignment and USE below when inlining this function.  */
      REG_FUNCTION_VALUE_P (outgoing) = 1;

      /* The address may be ptr_mode and OUTGOING may be Pmode.  */
      value_address = convert_memory_address (GET_MODE (outgoing),
					      value_address);

      emit_move_insn (outgoing, value_address);

      /* Show return register used to hold result (in this case the address
	 of the result.  */
      current_function_return_rtx = outgoing;
    }

  /* If this is an implementation of throw, do what's necessary to
     communicate between __builtin_eh_return and the epilogue.  */
  expand_eh_return ();

  /* Emit the actual code to clobber return register.  */
  {
    rtx seq, after;

    start_sequence ();
    clobber_return_register ();
    seq = get_insns ();
    end_sequence ();

    after = emit_insn_after (seq, clobber_after);
  }

  /* Output the label for the naked return from the function, if one is
     expected.  This is currently used only by __builtin_return.  */
  if (naked_return_label)
    emit_label (naked_return_label);

  /* ??? This should no longer be necessary since stupid is no longer with
     us, but there are some parts of the compiler (eg reload_combine, and
     sh mach_dep_reorg) that still try and compute their own lifetime info
     instead of using the general framework.  */
  use_return_register ();

  /* Fix up any gotos that jumped out to the outermost
     binding level of the function.
     Must follow emitting RETURN_LABEL.  */

  /* If you have any cleanups to do at this point,
     and they need to create temporary variables,
     then you will lose.  */
  expand_fixups (get_insns ());
}

rtx
get_arg_pointer_save_area (struct function *f)
{
  rtx ret = f->x_arg_pointer_save_area;

  if (! ret)
    {
      ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
      f->x_arg_pointer_save_area = ret;
    }

  if (f == cfun && ! f->arg_pointer_save_area_init)
    {
      rtx seq;

      /* Save the arg pointer at the beginning of the function.  The
	 generated stack slot may not be a valid memory address, so we
	 have to check it and fix it if necessary.  */
      start_sequence ();
      emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
      seq = get_insns ();
      end_sequence ();

      push_topmost_sequence ();
      emit_insn_after (seq, get_insns ());
      pop_topmost_sequence ();
    }

  return ret;
}

/* Extend a vector that records the INSN_UIDs of INSNS
   (a list of one or more insns).  */

static void
record_insns (rtx insns, varray_type *vecp)
{
  int i, len;
  rtx tmp;

  tmp = insns;
  len = 0;
  while (tmp != NULL_RTX)
    {
      len++;
      tmp = NEXT_INSN (tmp);
    }

  i = VARRAY_SIZE (*vecp);
  VARRAY_GROW (*vecp, i + len);
  tmp = insns;
  while (tmp != NULL_RTX)
    {
      VARRAY_INT (*vecp, i) = INSN_UID (tmp);
      i++;
      tmp = NEXT_INSN (tmp);
    }
}

/* Set the locator of the insn chain starting at INSN to LOC.  */
static void
set_insn_locators (rtx insn, int loc)
{
  while (insn != NULL_RTX)
    {
      if (INSN_P (insn))
	INSN_LOCATOR (insn) = loc;
      insn = NEXT_INSN (insn);
    }
}

/* Determine how many INSN_UIDs in VEC are part of INSN.  Because we can
   be running after reorg, SEQUENCE rtl is possible.  */

static int
contains (rtx insn, varray_type vec)
{
  int i, j;

  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
      int count = 0;
      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
	  if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
	    count++;
      return count;
    }
  else
    {
      for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
	if (INSN_UID (insn) == VARRAY_INT (vec, j))
	  return 1;
    }
  return 0;
}

int
prologue_epilogue_contains (rtx insn)
{
  if (contains (insn, prologue))
    return 1;
  if (contains (insn, epilogue))
    return 1;
  return 0;
}

int
sibcall_epilogue_contains (rtx insn)
{
  if (sibcall_epilogue)
    return contains (insn, sibcall_epilogue);
  return 0;
}

#ifdef HAVE_return
/* Insert gen_return at the end of block BB.  This also means updating
   block_for_insn appropriately.  */

static void
emit_return_into_block (basic_block bb, rtx line_note)
{
  emit_jump_insn_after (gen_return (), BB_END (bb));
  if (line_note)
    emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
}
#endif /* HAVE_return */

#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)

/* These functions convert the epilogue into a variant that does not modify the
   stack pointer.  This is used in cases where a function returns an object
   whose size is not known until it is computed.  The called function leaves the
   object on the stack, leaves the stack depressed, and returns a pointer to
   the object.

   What we need to do is track all modifications and references to the stack
   pointer, deleting the modifications and changing the references to point to
   the location the stack pointer would have pointed to had the modifications
   taken place.

   These functions need to be portable so we need to make as few assumptions
   about the epilogue as we can.  However, the epilogue basically contains
   three things: instructions to reset the stack pointer, instructions to
   reload registers, possibly including the frame pointer, and an
   instruction to return to the caller.

   If we can't be sure of what a relevant epilogue insn is doing, we abort.
   We also make no attempt to validate the insns we make since if they are
   invalid, we probably can't do anything valid.  The intent is that these
   routines get "smarter" as more and more machines start to use them and
   they try operating on different epilogues.

   We use the following structure to track what the part of the epilogue that
   we've already processed has done.  We keep two copies of the SP equivalence,
   one for use during the insn we are processing and one for use in the next
   insn.  The difference is because one part of a PARALLEL may adjust SP
   and the other may use it.  */

struct epi_info
{
  rtx sp_equiv_reg;		/* REG that SP is set from, perhaps SP.  */
  HOST_WIDE_INT sp_offset;	/* Offset from SP_EQUIV_REG of present SP.  */
  rtx new_sp_equiv_reg;		/* REG to be used at end of insn.  */
  HOST_WIDE_INT new_sp_offset;	/* Offset to be used at end of insn.  */
  rtx equiv_reg_src;		/* If nonzero, the value that SP_EQUIV_REG
				   should be set to once we no longer need
				   its value.  */
  rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
					     for registers.  */
};

static void handle_epilogue_set (rtx, struct epi_info *);
static void update_epilogue_consts (rtx, rtx, void *);
static void emit_equiv_load (struct epi_info *);

/* Modify INSN, a list of one or more insns that is part of the epilogue, to
   no modifications to the stack pointer.  Return the new list of insns.  */

static rtx
keep_stack_depressed (rtx insns)
{
  int j;
  struct epi_info info;
  rtx insn, next;

  /* If the epilogue is just a single instruction, it must be OK as is.  */
  if (NEXT_INSN (insns) == NULL_RTX)
    return insns;

  /* Otherwise, start a sequence, initialize the information we have, and
     process all the insns we were given.  */
  start_sequence ();

  info.sp_equiv_reg = stack_pointer_rtx;
  info.sp_offset = 0;
  info.equiv_reg_src = 0;

  for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
    info.const_equiv[j] = 0;

  insn = insns;
  next = NULL_RTX;
  while (insn != NULL_RTX)
    {
      next = NEXT_INSN (insn);

      if (!INSN_P (insn))
	{
	  add_insn (insn);
	  insn = next;
	  continue;
	}

      /* If this insn references the register that SP is equivalent to and
	 we have a pending load to that register, we must force out the load
	 first and then indicate we no longer know what SP's equivalent is.  */
      if (info.equiv_reg_src != 0
	  && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
	{
	  emit_equiv_load (&info);
	  info.sp_equiv_reg = 0;
	}

      info.new_sp_equiv_reg = info.sp_equiv_reg;
      info.new_sp_offset = info.sp_offset;

      /* If this is a (RETURN) and the return address is on the stack,
	 update the address and change to an indirect jump.  */
      if (GET_CODE (PATTERN (insn)) == RETURN
	  || (GET_CODE (PATTERN (insn)) == PARALLEL
	      && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
	{
	  rtx retaddr = INCOMING_RETURN_ADDR_RTX;
	  rtx base = 0;
	  HOST_WIDE_INT offset = 0;
	  rtx jump_insn, jump_set;

	  /* If the return address is in a register, we can emit the insn
	     unchanged.  Otherwise, it must be a MEM and we see what the
	     base register and offset are.  In any case, we have to emit any
	     pending load to the equivalent reg of SP, if any.  */
	  if (REG_P (retaddr))
	    {
	      emit_equiv_load (&info);
	      add_insn (insn);
	      insn = next;
	      continue;
	    }
	  else if (GET_CODE (retaddr) == MEM
		   && REG_P (XEXP (retaddr, 0)))
	    base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
	  else if (GET_CODE (retaddr) == MEM
		   && GET_CODE (XEXP (retaddr, 0)) == PLUS
		   && REG_P (XEXP (XEXP (retaddr, 0), 0))
		   && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
	    {
	      base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
	      offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
	    }
	  else
	    abort ();

	  /* If the base of the location containing the return pointer
	     is SP, we must update it with the replacement address.  Otherwise,
	     just build the necessary MEM.  */
	  retaddr = plus_constant (base, offset);
	  if (base == stack_pointer_rtx)
	    retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
					    plus_constant (info.sp_equiv_reg,
							   info.sp_offset));

	  retaddr = gen_rtx_MEM (Pmode, retaddr);

	  /* If there is a pending load to the equivalent register for SP
	     and we reference that register, we must load our address into
	     a scratch register and then do that load.  */
	  if (info.equiv_reg_src
	      && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
	    {
	      unsigned int regno;
	      rtx reg;

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (HARD_REGNO_MODE_OK (regno, Pmode)
		    && !fixed_regs[regno]
		    && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
		    && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
					 regno)
		    && !refers_to_regno_p (regno,
					   regno + hard_regno_nregs[regno]
								   [Pmode],
					   info.equiv_reg_src, NULL)
		    && info.const_equiv[regno] == 0)
		  break;

	      if (regno == FIRST_PSEUDO_REGISTER)
		abort ();

	      reg = gen_rtx_REG (Pmode, regno);
	      emit_move_insn (reg, retaddr);
	      retaddr = reg;
	    }

	  emit_equiv_load (&info);
	  jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));

	  /* Show the SET in the above insn is a RETURN.  */
	  jump_set = single_set (jump_insn);
	  if (jump_set == 0)
	    abort ();
	  else
	    SET_IS_RETURN_P (jump_set) = 1;
	}

      /* If SP is not mentioned in the pattern and its equivalent register, if
	 any, is not modified, just emit it.  Otherwise, if neither is set,
	 replace the reference to SP and emit the insn.  If none of those are
	 true, handle each SET individually.  */
      else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
	       && (info.sp_equiv_reg == stack_pointer_rtx
		   || !reg_set_p (info.sp_equiv_reg, insn)))
	add_insn (insn);
      else if (! reg_set_p (stack_pointer_rtx, insn)
	       && (info.sp_equiv_reg == stack_pointer_rtx
		   || !reg_set_p (info.sp_equiv_reg, insn)))
	{
	  if (! validate_replace_rtx (stack_pointer_rtx,
				      plus_constant (info.sp_equiv_reg,
						     info.sp_offset),
				      insn))
	    abort ();

	  add_insn (insn);
	}
      else if (GET_CODE (PATTERN (insn)) == SET)
	handle_epilogue_set (PATTERN (insn), &info);
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	{
	  for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
	    if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
	      handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
	}
      else
	add_insn (insn);

      info.sp_equiv_reg = info.new_sp_equiv_reg;
      info.sp_offset = info.new_sp_offset;

      /* Now update any constants this insn sets.  */
      note_stores (PATTERN (insn), update_epilogue_consts, &info);
      insn = next;
    }

  insns = get_insns ();
  end_sequence ();
  return insns;
}

/* SET is a SET from an insn in the epilogue.  P is a pointer to the epi_info
   structure that contains information about what we've seen so far.  We
   process this SET by either updating that data or by emitting one or
   more insns.  */

static void
handle_epilogue_set (rtx set, struct epi_info *p)
{
  /* First handle the case where we are setting SP.  Record what it is being
     set from.  If unknown, abort.  */
  if (reg_set_p (stack_pointer_rtx, set))
    {
      if (SET_DEST (set) != stack_pointer_rtx)
	abort ();

      if (GET_CODE (SET_SRC (set)) == PLUS)
	{
	  p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
	  if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
	    p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
	  else if (REG_P (XEXP (SET_SRC (set), 1))
		   && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
		   && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
	    p->new_sp_offset
	      = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
	  else
	    abort ();
	}
      else
	p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;

      /* If we are adjusting SP, we adjust from the old data.  */
      if (p->new_sp_equiv_reg == stack_pointer_rtx)
	{
	  p->new_sp_equiv_reg = p->sp_equiv_reg;
	  p->new_sp_offset += p->sp_offset;
	}

      if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
	abort ();

      return;
    }

  /* Next handle the case where we are setting SP's equivalent register.
     If we already have a value to set it to, abort.  We could update, but
     there seems little point in handling that case.  Note that we have
     to allow for the case where we are setting the register set in
     the previous part of a PARALLEL inside a single insn.  But use the
     old offset for any updates within this insn.  We must allow for the case
     where the register is being set in a different (usually wider) mode than
     Pmode).  */
  else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
    {
      if (p->equiv_reg_src != 0
	  || !REG_P (p->new_sp_equiv_reg)
	  || !REG_P (SET_DEST (set))
	  || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
	  || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
	abort ();
      else
	p->equiv_reg_src
	  = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
				  plus_constant (p->sp_equiv_reg,
						 p->sp_offset));
    }

  /* Otherwise, replace any references to SP in the insn to its new value
     and emit the insn.  */
  else
    {
      SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
					    plus_constant (p->sp_equiv_reg,
							   p->sp_offset));
      SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
					     plus_constant (p->sp_equiv_reg,
							    p->sp_offset));
      emit_insn (set);
    }
}

/* Update the tracking information for registers set to constants.  */

static void
update_epilogue_consts (rtx dest, rtx x, void *data)
{
  struct epi_info *p = (struct epi_info *) data;
  rtx new;

  if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
    return;

  /* If we are either clobbering a register or doing a partial set,
     show we don't know the value.  */
  else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
    p->const_equiv[REGNO (dest)] = 0;

  /* If we are setting it to a constant, record that constant.  */
  else if (GET_CODE (SET_SRC (x)) == CONST_INT)
    p->const_equiv[REGNO (dest)] = SET_SRC (x);

  /* If this is a binary operation between a register we have been tracking
     and a constant, see if we can compute a new constant value.  */
  else if (ARITHMETIC_P (SET_SRC (x))
	   && REG_P (XEXP (SET_SRC (x), 0))
	   && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
	   && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
	   && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
	   && 0 != (new = simplify_binary_operation
		    (GET_CODE (SET_SRC (x)), GET_MODE (dest),
		     p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
		     XEXP (SET_SRC (x), 1)))
	   && GET_CODE (new) == CONST_INT)
    p->const_equiv[REGNO (dest)] = new;

  /* Otherwise, we can't do anything with this value.  */
  else
    p->const_equiv[REGNO (dest)] = 0;
}

/* Emit an insn to do the load shown in p->equiv_reg_src, if needed.  */

static void
emit_equiv_load (struct epi_info *p)
{
  if (p->equiv_reg_src != 0)
    {
      rtx dest = p->sp_equiv_reg;

      if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
	dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
			    REGNO (p->sp_equiv_reg));

      emit_move_insn (dest, p->equiv_reg_src);
      p->equiv_reg_src = 0;
    }
}
#endif

/* Generate the prologue and epilogue RTL if the machine supports it.  Thread
   this into place with notes indicating where the prologue ends and where
   the epilogue begins.  Update the basic block information when possible.  */

void
thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
{
  int inserted = 0;
  edge e;
#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
  rtx seq;
#endif
#ifdef HAVE_prologue
  rtx prologue_end = NULL_RTX;
#endif
#if defined (HAVE_epilogue) || defined(HAVE_return)
  rtx epilogue_end = NULL_RTX;
#endif

#ifdef HAVE_prologue
  if (HAVE_prologue)
    {
      start_sequence ();
      seq = gen_prologue ();
      emit_insn (seq);

      /* Retain a map of the prologue insns.  */
      record_insns (seq, &prologue);
      prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);

      seq = get_insns ();
      end_sequence ();
      set_insn_locators (seq, prologue_locator);

      /* Can't deal with multiple successors of the entry block
         at the moment.  Function should always have at least one
         entry point.  */
      if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
	abort ();

      insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
      inserted = 1;
    }
#endif

  /* If the exit block has no non-fake predecessors, we don't need
     an epilogue.  */
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
    if ((e->flags & EDGE_FAKE) == 0)
      break;
  if (e == NULL)
    goto epilogue_done;

#ifdef HAVE_return
  if (optimize && HAVE_return)
    {
      /* If we're allowed to generate a simple return instruction,
	 then by definition we don't need a full epilogue.  Examine
	 the block that falls through to EXIT.   If it does not
	 contain any code, examine its predecessors and try to
	 emit (conditional) return instructions.  */

      basic_block last;
      edge e_next;
      rtx label;

      for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
	if (e->flags & EDGE_FALLTHRU)
	  break;
      if (e == NULL)
	goto epilogue_done;
      last = e->src;

      /* Verify that there are no active instructions in the last block.  */
      label = BB_END (last);
      while (label && GET_CODE (label) != CODE_LABEL)
	{
	  if (active_insn_p (label))
	    break;
	  label = PREV_INSN (label);
	}

      if (BB_HEAD (last) == label && GET_CODE (label) == CODE_LABEL)
	{
	  rtx epilogue_line_note = NULL_RTX;

	  /* Locate the line number associated with the closing brace,
	     if we can find one.  */
	  for (seq = get_last_insn ();
	       seq && ! active_insn_p (seq);
	       seq = PREV_INSN (seq))
	    if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
	      {
		epilogue_line_note = seq;
		break;
	      }

	  for (e = last->pred; e; e = e_next)
	    {
	      basic_block bb = e->src;
	      rtx jump;

	      e_next = e->pred_next;
	      if (bb == ENTRY_BLOCK_PTR)
		continue;

	      jump = BB_END (bb);
	      if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
		continue;

	      /* If we have an unconditional jump, we can replace that
		 with a simple return instruction.  */
	      if (simplejump_p (jump))
		{
		  emit_return_into_block (bb, epilogue_line_note);
		  delete_insn (jump);
		}

	      /* If we have a conditional jump, we can try to replace
		 that with a conditional return instruction.  */
	      else if (condjump_p (jump))
		{
		  if (! redirect_jump (jump, 0, 0))
		    continue;

		  /* If this block has only one successor, it both jumps
		     and falls through to the fallthru block, so we can't
		     delete the edge.  */
		  if (bb->succ->succ_next == NULL)
		    continue;
		}
	      else
		continue;

	      /* Fix up the CFG for the successful change we just made.  */
	      redirect_edge_succ (e, EXIT_BLOCK_PTR);
	    }

	  /* Emit a return insn for the exit fallthru block.  Whether
	     this is still reachable will be determined later.  */

	  emit_barrier_after (BB_END (last));
	  emit_return_into_block (last, epilogue_line_note);
	  epilogue_end = BB_END (last);
	  last->succ->flags &= ~EDGE_FALLTHRU;
	  goto epilogue_done;
	}
    }
#endif
  /* Find the edge that falls through to EXIT.  Other edges may exist
     due to RETURN instructions, but those don't need epilogues.
     There really shouldn't be a mixture -- either all should have
     been converted or none, however...  */

  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
    if (e->flags & EDGE_FALLTHRU)
      break;
  if (e == NULL)
    goto epilogue_done;

#ifdef HAVE_epilogue
  if (HAVE_epilogue)
    {
      start_sequence ();
      epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);

      seq = gen_epilogue ();

#ifdef INCOMING_RETURN_ADDR_RTX
      /* If this function returns with the stack depressed and we can support
	 it, massage the epilogue to actually do that.  */
      if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
	  && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
	seq = keep_stack_depressed (seq);
#endif

      emit_jump_insn (seq);

      /* Retain a map of the epilogue insns.  */
      record_insns (seq, &epilogue);
      set_insn_locators (seq, epilogue_locator);

      seq = get_insns ();
      end_sequence ();

      insert_insn_on_edge (seq, e);
      inserted = 1;
    }
  else
#endif
    {
      basic_block cur_bb;

      if (! next_active_insn (BB_END (e->src)))
	goto epilogue_done;
      /* We have a fall-through edge to the exit block, the source is not
         at the end of the function, and there will be an assembler epilogue
         at the end of the function.
         We can't use force_nonfallthru here, because that would try to
         use return.  Inserting a jump 'by hand' is extremely messy, so
	 we take advantage of cfg_layout_finalize using
	fixup_fallthru_exit_predecessor.  */
      cfg_layout_initialize ();
      FOR_EACH_BB (cur_bb)
	if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
	  cur_bb->rbi->next = cur_bb->next_bb;
      cfg_layout_finalize ();
    }
epilogue_done:

  if (inserted)
    commit_edge_insertions ();

#ifdef HAVE_sibcall_epilogue
  /* Emit sibling epilogues before any sibling call sites.  */
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
    {
      basic_block bb = e->src;
      rtx insn = BB_END (bb);
      rtx i;
      rtx newinsn;

      if (GET_CODE (insn) != CALL_INSN
	  || ! SIBLING_CALL_P (insn))
	continue;

      start_sequence ();
      emit_insn (gen_sibcall_epilogue ());
      seq = get_insns ();
      end_sequence ();

      /* Retain a map of the epilogue insns.  Used in life analysis to
	 avoid getting rid of sibcall epilogue insns.  Do this before we
	 actually emit the sequence.  */
      record_insns (seq, &sibcall_epilogue);
      set_insn_locators (seq, epilogue_locator);

      i = PREV_INSN (insn);
      newinsn = emit_insn_before (seq, insn);
    }
#endif

#ifdef HAVE_prologue
  /* This is probably all useless now that we use locators.  */
  if (prologue_end)
    {
      rtx insn, prev;

      /* GDB handles `break f' by setting a breakpoint on the first
	 line note after the prologue.  Which means (1) that if
	 there are line number notes before where we inserted the
	 prologue we should move them, and (2) we should generate a
	 note before the end of the first basic block, if there isn't
	 one already there.

	 ??? This behavior is completely broken when dealing with
	 multiple entry functions.  We simply place the note always
	 into first basic block and let alternate entry points
	 to be missed.
       */

      for (insn = prologue_end; insn; insn = prev)
	{
	  prev = PREV_INSN (insn);
	  if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	    {
	      /* Note that we cannot reorder the first insn in the
		 chain, since rest_of_compilation relies on that
		 remaining constant.  */
	      if (prev == NULL)
		break;
	      reorder_insns (insn, insn, prologue_end);
	    }
	}

      /* Find the last line number note in the first block.  */
      for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
	   insn != prologue_end && insn;
	   insn = PREV_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  break;

      /* If we didn't find one, make a copy of the first line number
	 we run across.  */
      if (! insn)
	{
	  for (insn = next_active_insn (prologue_end);
	       insn;
	       insn = PREV_INSN (insn))
	    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	      {
		emit_note_copy_after (insn, prologue_end);
		break;
	      }
	}
    }
#endif
#ifdef HAVE_epilogue
  if (epilogue_end)
    {
      rtx insn, next;

      /* Similarly, move any line notes that appear after the epilogue.
         There is no need, however, to be quite so anal about the existence
	 of such a note.  Also move the NOTE_INSN_FUNCTION_END and (possibly)
	 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
	 info generation.  */
      for (insn = epilogue_end; insn; insn = next)
	{
	  next = NEXT_INSN (insn);
	  if (GET_CODE (insn) == NOTE 
	      && (NOTE_LINE_NUMBER (insn) > 0
		  || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
		  || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
	}
    }
#endif
}

/* Reposition the prologue-end and epilogue-begin notes after instruction
   scheduling and delayed branch scheduling.  */

void
reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
{
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
  rtx insn, last, note;
  int len;

  if ((len = VARRAY_SIZE (prologue)) > 0)
    {
      last = 0, note = 0;

      /* Scan from the beginning until we reach the last prologue insn.
	 We apparently can't depend on basic_block_{head,end} after
	 reorg has run.  */
      for (insn = f; insn; insn = NEXT_INSN (insn))
	{
	  if (GET_CODE (insn) == NOTE)
	    {
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
		note = insn;
	    }
	  else if (contains (insn, prologue))
	    {
	      last = insn;
	      if (--len == 0)
		break;
	    }
	}

      if (last)
	{
	  /* Find the prologue-end note if we haven't already, and
	     move it to just after the last prologue insn.  */
	  if (note == 0)
	    {
	      for (note = last; (note = NEXT_INSN (note));)
		if (GET_CODE (note) == NOTE
		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
		  break;
	    }

	  /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
	  if (GET_CODE (last) == CODE_LABEL)
	    last = NEXT_INSN (last);
	  reorder_insns (note, note, last);
	}
    }

  if ((len = VARRAY_SIZE (epilogue)) > 0)
    {
      last = 0, note = 0;

      /* Scan from the end until we reach the first epilogue insn.
	 We apparently can't depend on basic_block_{head,end} after
	 reorg has run.  */
      for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
	{
	  if (GET_CODE (insn) == NOTE)
	    {
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
		note = insn;
	    }
	  else if (contains (insn, epilogue))
	    {
	      last = insn;
	      if (--len == 0)
		break;
	    }
	}

      if (last)
	{
	  /* Find the epilogue-begin note if we haven't already, and
	     move it to just before the first epilogue insn.  */
	  if (note == 0)
	    {
	      for (note = insn; (note = PREV_INSN (note));)
		if (GET_CODE (note) == NOTE
		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
		  break;
	    }

	  if (PREV_INSN (last) != note)
	    reorder_insns (note, note, PREV_INSN (last));
	}
    }
#endif /* HAVE_prologue or HAVE_epilogue */
}

/* Called once, at initialization, to initialize function.c.  */

void
init_function_once (void)
{
  VARRAY_INT_INIT (prologue, 0, "prologue");
  VARRAY_INT_INIT (epilogue, 0, "epilogue");
  VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
}

/* Resets insn_block_boundaries array.  */

void
reset_block_changes (void)
{
  VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
  VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
}

/* Record the boundary for BLOCK.  */
void
record_block_change (tree block)
{
  int i, n;
  tree last_block;

  if (!block)
    return;

  last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
  VARRAY_POP (cfun->ib_boundaries_block);
  n = get_max_uid ();
  for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
    VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);

  VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
}

/* Finishes record of boundaries.  */
void finalize_block_changes (void)
{
  record_block_change (DECL_INITIAL (current_function_decl));
}

/* For INSN return the BLOCK it belongs to.  */ 
void
check_block_change (rtx insn, tree *block)
{
  unsigned uid = INSN_UID (insn);

  if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
    return;

  *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
}

/* Releases the ib_boundaries_block records.  */
void
free_block_changes (void)
{
  cfun->ib_boundaries_block = NULL;
}

/* Returns the name of the current function.  */
const char *
current_function_name (void)
{
  return lang_hooks.decl_printable_name (cfun->decl, 2);
}

#include "gt-function.h"