aboutsummaryrefslogtreecommitdiff
path: root/crypto/modes
diff options
context:
space:
mode:
authorAndy Polyakov <appro@openssl.org>2011-04-01 20:52:35 +0000
committerAndy Polyakov <appro@openssl.org>2011-04-01 20:52:35 +0000
commitd8d958323bb116bf9f88137ba46948dcb1691a77 (patch)
treeeabe219be2b9c865a1c2248ffd73e9eb268e758a /crypto/modes
parent30b26b551f4c578f5c2c79887938352792edaeca (diff)
downloadopenssl-d8d958323bb116bf9f88137ba46948dcb1691a77.zip
openssl-d8d958323bb116bf9f88137ba46948dcb1691a77.tar.gz
openssl-d8d958323bb116bf9f88137ba46948dcb1691a77.tar.bz2
gcm128.c: tidy up, minor optimization, rearrange gcm128_context.
Diffstat (limited to 'crypto/modes')
-rw-r--r--crypto/modes/gcm128.c91
-rw-r--r--crypto/modes/modes_lcl.h59
2 files changed, 103 insertions, 47 deletions
diff --git a/crypto/modes/gcm128.c b/crypto/modes/gcm128.c
index 8a48e90..c2a2d5e 100644
--- a/crypto/modes/gcm128.c
+++ b/crypto/modes/gcm128.c
@@ -82,6 +82,40 @@
} \
} while(0)
+/*
+ * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
+ * never be set to 8. 8 is effectively reserved for testing purposes.
+ * TABLE_BITS>1 are lookup-table-driven implementations referred to as
+ * "Shoup's" in GCM specification. In other words OpenSSL does not cover
+ * whole spectrum of possible table driven implementations. Why? In
+ * non-"Shoup's" case memory access pattern is segmented in such manner,
+ * that it's trivial to see that cache timing information can reveal
+ * fair portion of intermediate hash value. Given that ciphertext is
+ * always available to attacker, it's possible for him to attempt to
+ * deduce secret parameter H and if successful, tamper with messages
+ * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
+ * not as trivial, but there is no reason to believe that it's resistant
+ * to cache-timing attack. And the thing about "8-bit" implementation is
+ * that it consumes 16 (sixteen) times more memory, 4KB per individual
+ * key + 1KB shared. Well, on pros side it should be twice as fast as
+ * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
+ * was observed to run ~75% faster, closer to 100% for commercial
+ * compilers... Yet "4-bit" procedure is preferred, because it's
+ * believed to provide better security-performance balance and adequate
+ * all-round performance. "All-round" refers to things like:
+ *
+ * - shorter setup time effectively improves overall timing for
+ * handling short messages;
+ * - larger table allocation can become unbearable because of VM
+ * subsystem penalties (for example on Windows large enough free
+ * results in VM working set trimming, meaning that consequent
+ * malloc would immediately incur working set expansion);
+ * - larger table has larger cache footprint, which can affect
+ * performance of other code paths (not necessarily even from same
+ * thread in Hyper-Threading world);
+ *
+ * Value of 1 is not appropriate for performance reasons.
+ */
#if TABLE_BITS==8
static void gcm_init_8bit(u128 Htable[256], u64 H[2])
@@ -108,7 +142,7 @@ static void gcm_init_8bit(u128 Htable[256], u64 H[2])
}
}
-static void gcm_gmult_8bit(u64 Xi[2], u128 Htable[256])
+static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256])
{
u128 Z = { 0, 0};
const u8 *xi = (const u8 *)Xi+15;
@@ -612,7 +646,7 @@ static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
(defined(__i386) || defined(__i386__) || \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
-# define GHASH_ASM_IAX
+# define GHASH_ASM_X86_OR_64
extern unsigned int OPENSSL_ia32cap_P[2];
void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]);
@@ -628,10 +662,7 @@ void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]);
void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
# endif
-# undef GCM_MUL
-# define GCM_MUL(ctx,Xi) (*((ctx)->gmult))(ctx->Xi.u,ctx->Htable)
-# undef GHASH
-# define GHASH(ctx,in,len) (*((ctx)->ghash))((ctx)->Xi.u,(ctx)->Htable,in,len)
+# define GCM_FUNCREF_4BIT
#endif
void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
@@ -662,7 +693,7 @@ void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
#if TABLE_BITS==8
gcm_init_8bit(ctx->Htable,ctx->H.u);
#elif TABLE_BITS==4
-# if defined(GHASH_ASM_IAX) /* both x86 and x86_64 */
+# if defined(GHASH_ASM_X86_OR_64)
# if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
if (OPENSSL_ia32cap_P[1]&(1<<1)) {
gcm_init_clmul(ctx->Htable,ctx->H.u);
@@ -694,6 +725,9 @@ void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len)
{
const union { long one; char little; } is_endian = {1};
unsigned int ctr;
+#ifdef GCM_FUNCREF_4BIT
+ void (*gcm_gmult_4bit)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
+#endif
ctx->Yi.u[0] = 0;
ctx->Yi.u[1] = 0;
@@ -762,6 +796,13 @@ int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
size_t i;
unsigned int n;
u64 alen = ctx->len.u[0];
+#ifdef GCM_FUNCREF_4BIT
+ void (*gcm_gmult_4bit)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
+# ifdef GHASH
+ void (*gcm_ghash_4bit)(u64 Xi[2],const u128 Htable[16],
+ const u8 *inp,size_t len) = ctx->ghash;
+# endif
+#endif
if (ctx->len.u[1]) return -2;
@@ -815,6 +856,13 @@ int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
unsigned int n, ctr;
size_t i;
u64 mlen = ctx->len.u[1];
+#ifdef GCM_FUNCREF_4BIT
+ void (*gcm_gmult_4bit)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
+# ifdef GHASH
+ void (*gcm_ghash_4bit)(u64 Xi[2],const u128 Htable[16],
+ const u8 *inp,size_t len) = ctx->ghash;
+# endif
+#endif
#if 0
n = (unsigned int)mlen%16; /* alternative to ctx->mres */
@@ -956,6 +1004,13 @@ int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
unsigned int n, ctr;
size_t i;
u64 mlen = ctx->len.u[1];
+#ifdef GCM_FUNCREF_4BIT
+ void (*gcm_gmult_4bit)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
+# ifdef GHASH
+ void (*gcm_ghash_4bit)(u64 Xi[2],const u128 Htable[16],
+ const u8 *inp,size_t len) = ctx->ghash;
+# endif
+#endif
mlen += len;
if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
@@ -1100,6 +1155,13 @@ int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
unsigned int n, ctr;
size_t i;
u64 mlen = ctx->len.u[1];
+#ifdef GCM_FUNCREF_4BIT
+ void (*gcm_gmult_4bit)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
+# ifdef GHASH
+ void (*gcm_ghash_4bit)(u64 Xi[2],const u128 Htable[16],
+ const u8 *inp,size_t len) = ctx->ghash;
+# endif
+#endif
mlen += len;
if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
@@ -1191,6 +1253,13 @@ int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
unsigned int n, ctr;
size_t i;
u64 mlen = ctx->len.u[1];
+#ifdef GCM_FUNCREF_4BIT
+ void (*gcm_gmult_4bit)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
+# ifdef GHASH
+ void (*gcm_ghash_4bit)(u64 Xi[2],const u128 Htable[16],
+ const u8 *inp,size_t len) = ctx->ghash;
+# endif
+#endif
mlen += len;
if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
@@ -1287,6 +1356,9 @@ int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag,
const union { long one; char little; } is_endian = {1};
u64 alen = ctx->len.u[0]<<3;
u64 clen = ctx->len.u[1]<<3;
+#ifdef GCM_FUNCREF_4BIT
+ void (*gcm_gmult_4bit)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
+#endif
if (ctx->mres)
GCM_MUL(ctx,Xi);
@@ -1395,9 +1467,8 @@ static const u8 P4[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
/* Test Case 5 */
#define K5 K4
#define P5 P4
-static const u8 A5[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,
- 0xab,0xad,0xda,0xd2},
- IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
+#define A5 A4
+static const u8 IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
C5[]= {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0x1f,0xa2,0x2a,0x47,0x55,
0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0xf9,0x7b,0x6c,0x74,0x23,
0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42,
diff --git a/crypto/modes/modes_lcl.h b/crypto/modes/modes_lcl.h
index 201a691..a789e85 100644
--- a/crypto/modes/modes_lcl.h
+++ b/crypto/modes/modes_lcl.h
@@ -29,7 +29,10 @@ typedef unsigned char u8;
#if defined(__i386) || defined(__i386__) || \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \
- defined(__s390__) || defined(__s390x__)
+ defined(__s390__) || defined(__s390x__) || \
+ ( (defined(__arm__) || defined(__arm)) && \
+ (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
+ defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__)) )
# undef STRICT_ALIGNMENT
#endif
@@ -37,19 +40,28 @@ typedef unsigned char u8;
#if defined(__GNUC__) && __GNUC__>=2
# if defined(__x86_64) || defined(__x86_64__)
# define BSWAP8(x) ({ u64 ret=(x); \
- asm volatile ("bswapq %0" \
+ asm ("bswapq %0" \
: "+r"(ret)); ret; })
# define BSWAP4(x) ({ u32 ret=(x); \
- asm volatile ("bswapl %0" \
+ asm ("bswapl %0" \
: "+r"(ret)); ret; })
# elif (defined(__i386) || defined(__i386__))
# define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \
- asm volatile ("bswapl %0; bswapl %1" \
+ asm ("bswapl %0; bswapl %1" \
: "+r"(hi),"+r"(lo)); \
(u64)hi<<32|lo; })
# define BSWAP4(x) ({ u32 ret=(x); \
- asm volatile ("bswapl %0" \
+ asm ("bswapl %0" \
: "+r"(ret)); ret; })
+# elif (defined(__arm__) || defined(__arm)) && !defined(STRICT_ALIGNMENT)
+# define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \
+ asm ("rev %0,%0; rev %1,%1" \
+ : "+r"(hi),"+r"(lo)); \
+ (u64)hi<<32|lo; })
+# define BSWAP4(x) ({ u32 ret; \
+ asm ("rev %0,%1" \
+ : "=r"(ret) : "r"((u32)(x))); \
+ ret; })
# endif
#elif defined(_MSC_VER)
# if _MSC_VER>=1300
@@ -83,43 +95,16 @@ typedef struct { u64 hi,lo; } u128;
#endif
/*
* Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
- * never be set to 8. 8 is effectively reserved for testing purposes.
- * TABLE_BITS>1 are lookup-table-driven implementations referred to as
- * "Shoup's" in GCM specification. In other words OpenSSL does not cover
- * whole spectrum of possible table driven implementations. Why? In
- * non-"Shoup's" case memory access pattern is segmented in such manner,
- * that it's trivial to see that cache timing information can reveal
- * fair portion of intermediate hash value. Given that ciphertext is
- * always available to attacker, it's possible for him to attempt to
- * deduce secret parameter H and if successful, tamper with messages
- * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
- * not as trivial, but there is no reason to believe that it's resistant
- * to cache-timing attack. And the thing about "8-bit" implementation is
- * that it consumes 16 (sixteen) times more memory, 4KB per individual
- * key + 1KB shared. Well, on pros side it should be twice as fast as
- * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
- * was observed to run ~75% faster, closer to 100% for commercial
- * compilers... Yet "4-bit" procedure is preferred, because it's
- * believed to provide better security-performance balance and adequate
- * all-round performance. "All-round" refers to things like:
- *
- * - shorter setup time effectively improves overall timing for
- * handling short messages;
- * - larger table allocation can become unbearable because of VM
- * subsystem penalties (for example on Windows large enough free
- * results in VM working set trimming, meaning that consequent
- * malloc would immediately incur working set expansion);
- * - larger table has larger cache footprint, which can affect
- * performance of other code paths (not necessarily even from same
- * thread in Hyper-Threading world);
+ * never be set to 8 [or 1]. For further information see gcm128.c.
*/
#define TABLE_BITS 4
struct gcm128_context {
/* Following 6 names follow names in GCM specification */
- union { u64 u[2]; u32 d[4]; u8 c[16]; } Yi,EKi,EK0,
- Xi,H,len;
- /* Pre-computed table used by gcm_gmult_* */
+ union { u64 u[2]; u32 d[4]; u8 c[16]; } Yi,EKi,EK0,len,
+ Xi,H;
+ /* Relative position of Xi, H and pre-computed Htable is used
+ * in some assembler modules, i.e. don't change the order! */
#if TABLE_BITS==8
u128 Htable[256];
#else