# Copyright 2012-2016 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, platform, re, sys, shutil, subprocess, typing import tempfile import shlex from . import coredata from .linkers import ArLinker, ArmarLinker, VisualStudioLinker, DLinker, CcrxLinker, IntelVisualStudioLinker from . import mesonlib from .mesonlib import ( MesonException, EnvironmentException, MachineChoice, Popen_safe, PerMachineDefaultable, PerThreeMachineDefaultable, split_args, quote_arg ) from . import mlog from .envconfig import ( BinaryTable, Directories, MachineInfo, MesonConfigFile, Properties, known_cpu_families, ) from . import compilers from .compilers import ( Compiler, CompilerType, is_assembly, is_header, is_library, is_llvm_ir, is_object, is_source, ) from .linkers import ( AppleDynamicLinker, ArmClangDynamicLinker, ArmDynamicLinker, CcrxDynamicLinker, ClangClDynamicLinker, DynamicLinker, GnuDynamicLinker, LLVMDynamicLinker, MSVCDynamicLinker, OptlinkDynamicLinker, PGIDynamicLinker, PGIStaticLinker, SolarisDynamicLinker, XildAppleDynamicLinker, XildLinuxDynamicLinker, XilinkDynamicLinker, CudaLinker, ) from functools import lru_cache from .compilers import ( ArmCCompiler, ArmCPPCompiler, ArmclangCCompiler, ArmclangCPPCompiler, AppleClangCCompiler, AppleClangCPPCompiler, ClangCCompiler, ClangCPPCompiler, ClangObjCCompiler, ClangObjCPPCompiler, ClangClCCompiler, ClangClCPPCompiler, FlangFortranCompiler, G95FortranCompiler, GnuCCompiler, GnuCPPCompiler, GnuFortranCompiler, GnuObjCCompiler, GnuObjCPPCompiler, ElbrusCCompiler, ElbrusCPPCompiler, ElbrusFortranCompiler, EmscriptenCCompiler, EmscriptenCPPCompiler, IntelCCompiler, IntelClCCompiler, IntelCPPCompiler, IntelClCPPCompiler, IntelFortranCompiler, IntelClFortranCompiler, JavaCompiler, MonoCompiler, CudaCompiler, VisualStudioCsCompiler, NAGFortranCompiler, Open64FortranCompiler, PathScaleFortranCompiler, PGICCompiler, PGICPPCompiler, PGIFortranCompiler, RustCompiler, CcrxCCompiler, CcrxCPPCompiler, SunFortranCompiler, ValaCompiler, VisualStudioCCompiler, VisualStudioCPPCompiler, ) build_filename = 'meson.build' CompilersDict = typing.Dict[str, Compiler] def detect_gcovr(min_version='3.3', new_rootdir_version='4.2', log=False): gcovr_exe = 'gcovr' try: p, found = Popen_safe([gcovr_exe, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable return None, None found = search_version(found) if p.returncode == 0 and mesonlib.version_compare(found, '>=' + min_version): if log: mlog.log('Found gcovr-{} at {}'.format(found, quote_arg(shutil.which(gcovr_exe)))) return gcovr_exe, mesonlib.version_compare(found, '>=' + new_rootdir_version) return None, None def find_coverage_tools(): gcovr_exe, gcovr_new_rootdir = detect_gcovr() lcov_exe = 'lcov' genhtml_exe = 'genhtml' if not mesonlib.exe_exists([lcov_exe, '--version']): lcov_exe = None if not mesonlib.exe_exists([genhtml_exe, '--version']): genhtml_exe = None return gcovr_exe, gcovr_new_rootdir, lcov_exe, genhtml_exe def detect_ninja(version: str = '1.5', log: bool = False) -> str: env_ninja = os.environ.get('NINJA', None) for n in [env_ninja] if env_ninja else ['ninja', 'ninja-build', 'samu']: try: p, found = Popen_safe([n, '--version'])[0:2] except (FileNotFoundError, PermissionError): # Doesn't exist in PATH or isn't executable continue found = found.strip() # Perhaps we should add a way for the caller to know the failure mode # (not found or too old) if p.returncode == 0 and mesonlib.version_compare(found, '>=' + version): n = shutil.which(n) if log: name = os.path.basename(n) if name.endswith('-' + found): name = name[0:-1 - len(found)] if name == 'ninja-build': name = 'ninja' if name == 'samu': name = 'samurai' mlog.log('Found {}-{} at {}'.format(name, found, quote_arg(n))) return n def get_llvm_tool_names(tool: str) -> typing.List[str]: # Ordered list of possible suffixes of LLVM executables to try. Start with # base, then try newest back to oldest (3.5 is arbitrary), and finally the # devel version. Please note that the development snapshot in Debian does # not have a distinct name. Do not move it to the beginning of the list # unless it becomes a stable release. suffixes = [ '', # base (no suffix) '-9', '90', '-8', '80', '-7', '70', '-6.0', '60', '-5.0', '50', '-4.0', '40', '-3.9', '39', '-3.8', '38', '-3.7', '37', '-3.6', '36', '-3.5', '35', '-10', # Debian development snapshot '-devel', # FreeBSD development snapshot ] names = [] for suffix in suffixes: names.append(tool + suffix) return names def detect_scanbuild() -> typing.List[str]: """ Look for scan-build binary on build platform First, if a SCANBUILD env variable has been provided, give it precedence on all platforms. For most platforms, scan-build is found is the PATH contains a binary named "scan-build". However, some distribution's package manager (FreeBSD) don't. For those, loop through a list of candidates to see if one is available. Return: a single-element list of the found scan-build binary ready to be passed to Popen() """ exelist = [] if 'SCANBUILD' in os.environ: exelist = split_args(os.environ['SCANBUILD']) else: tools = get_llvm_tool_names('scan-build') for tool in tools: if shutil.which(tool) is not None: exelist = [shutil.which(tool)] break if exelist: tool = exelist[0] if os.path.isfile(tool) and os.access(tool, os.X_OK): return [tool] return [] def detect_clangformat() -> typing.List[str]: """ Look for clang-format binary on build platform Do the same thing as detect_scanbuild to find clang-format except it currently does not check the environment variable. Return: a single-element list of the found clang-format binary ready to be passed to Popen() """ tools = get_llvm_tool_names('clang-format') for tool in tools: path = shutil.which(tool) if path is not None: return [path] return [] def detect_native_windows_arch(): """ The architecture of Windows itself: x86, amd64 or arm64 """ # These env variables are always available. See: # https://msdn.microsoft.com/en-us/library/aa384274(VS.85).aspx # https://blogs.msdn.microsoft.com/david.wang/2006/03/27/howto-detect-process-bitness/ arch = os.environ.get('PROCESSOR_ARCHITEW6432', '').lower() if not arch: try: # If this doesn't exist, something is messing with the environment arch = os.environ['PROCESSOR_ARCHITECTURE'].lower() except KeyError: raise EnvironmentException('Unable to detect native OS architecture') return arch def detect_windows_arch(compilers: CompilersDict) -> str: """ Detecting the 'native' architecture of Windows is not a trivial task. We cannot trust that the architecture that Python is built for is the 'native' one because you can run 32-bit apps on 64-bit Windows using WOW64 and people sometimes install 32-bit Python on 64-bit Windows. We also can't rely on the architecture of the OS itself, since it's perfectly normal to compile and run 32-bit applications on Windows as if they were native applications. It's a terrible experience to require the user to supply a cross-info file to compile 32-bit applications on 64-bit Windows. Thankfully, the only way to compile things with Visual Studio on Windows is by entering the 'msvc toolchain' environment, which can be easily detected. In the end, the sanest method is as follows: 1. Check environment variables that are set by Windows and WOW64 to find out if this is x86 (possibly in WOW64), if so use that as our 'native' architecture. 2. If the compiler toolchain target architecture is x86, use that as our 'native' architecture. 3. Otherwise, use the actual Windows architecture """ os_arch = detect_native_windows_arch() if os_arch == 'x86': return os_arch # If we're on 64-bit Windows, 32-bit apps can be compiled without # cross-compilation. So if we're doing that, just set the native arch as # 32-bit and pretend like we're running under WOW64. Else, return the # actual Windows architecture that we deduced above. for compiler in compilers.values(): if compiler.id == 'msvc' and (compiler.target == 'x86' or compiler.target == '80x86'): return 'x86' if compiler.id == 'clang-cl' and compiler.target == 'x86': return 'x86' if compiler.id == 'gcc' and compiler.has_builtin_define('__i386__'): return 'x86' return os_arch def any_compiler_has_define(compilers: CompilersDict, define): for c in compilers.values(): try: if c.has_builtin_define(define): return True except mesonlib.MesonException: # Ignore compilers that do not support has_builtin_define. pass return False def detect_cpu_family(compilers: CompilersDict) -> str: """ Python is inconsistent in its platform module. It returns different values for the same cpu. For x86 it might return 'x86', 'i686' or somesuch. Do some canonicalization. """ if mesonlib.is_windows(): trial = detect_windows_arch(compilers) elif mesonlib.is_freebsd() or mesonlib.is_netbsd() or mesonlib.is_openbsd(): trial = platform.processor().lower() else: trial = platform.machine().lower() if trial.startswith('i') and trial.endswith('86'): trial = 'x86' elif trial == 'bepc': trial = 'x86' elif trial.startswith('arm') or trial.startswith('earm'): trial = 'arm' elif trial.startswith(('powerpc64', 'ppc64')): trial = 'ppc64' elif trial.startswith(('powerpc', 'ppc')): trial = 'ppc' elif trial == 'macppc': trial = 'ppc' elif trial in ('amd64', 'x64', 'i86pc'): trial = 'x86_64' # On Linux (and maybe others) there can be any mixture of 32/64 bit code in # the kernel, Python, system, 32-bit chroot on 64-bit host, etc. The only # reliable way to know is to check the compiler defines. if trial == 'x86_64': if any_compiler_has_define(compilers, '__i386__'): trial = 'x86' elif trial == 'aarch64': if any_compiler_has_define(compilers, '__arm__'): trial = 'arm' # Add more quirks here as bugs are reported. Keep in sync with detect_cpu() # below. elif trial == 'parisc64': # ATM there is no 64 bit userland for PA-RISC. Thus always # report it as 32 bit for simplicity. trial = 'parisc' if trial not in known_cpu_families: mlog.warning('Unknown CPU family {!r}, please report this at ' 'https://github.com/mesonbuild/meson/issues/new with the' 'output of `uname -a` and `cat /proc/cpuinfo`'.format(trial)) return trial def detect_cpu(compilers: CompilersDict): if mesonlib.is_windows(): trial = detect_windows_arch(compilers) elif mesonlib.is_freebsd() or mesonlib.is_netbsd() or mesonlib.is_openbsd(): trial = platform.processor().lower() else: trial = platform.machine().lower() if trial in ('amd64', 'x64', 'i86pc'): trial = 'x86_64' if trial == 'x86_64': # Same check as above for cpu_family if any_compiler_has_define(compilers, '__i386__'): trial = 'i686' # All 64 bit cpus have at least this level of x86 support. elif trial == 'aarch64': # Same check as above for cpu_family if any_compiler_has_define(compilers, '__arm__'): trial = 'arm' elif trial.startswith('earm'): trial = 'arm' elif trial == 'e2k': # Make more precise CPU detection for Elbrus platform. trial = platform.processor().lower() # Add more quirks here as bugs are reported. Keep in sync with # detect_cpu_family() above. return trial def detect_system(): system = platform.system().lower() if system.startswith('cygwin'): return 'cygwin' return system def detect_msys2_arch(): if 'MSYSTEM_CARCH' in os.environ: return os.environ['MSYSTEM_CARCH'] return None def detect_machine_info(compilers: typing.Optional[CompilersDict] = None) -> MachineInfo: """Detect the machine we're running on If compilers are not provided, we cannot know as much. None out those fields to avoid accidentally depending on partial knowledge. The underlying ''detect_*'' method can be called to explicitly use the partial information. """ return MachineInfo( detect_system(), detect_cpu_family(compilers) if compilers is not None else None, detect_cpu(compilers) if compilers is not None else None, sys.byteorder) # TODO make this compare two `MachineInfo`s purely. How important is the # `detect_cpu_family({})` distinction? It is the one impediment to that. def machine_info_can_run(machine_info: MachineInfo): """Whether we can run binaries for this machine on the current machine. Can almost always run 32-bit binaries on 64-bit natively if the host and build systems are the same. We don't pass any compilers to detect_cpu_family() here because we always want to know the OS architecture, not what the compiler environment tells us. """ if machine_info.system != detect_system(): return False true_build_cpu_family = detect_cpu_family({}) return \ (machine_info.cpu_family == true_build_cpu_family) or \ ((true_build_cpu_family == 'x86_64') and (machine_info.cpu_family == 'x86')) def search_version(text): # Usually of the type 4.1.4 but compiler output may contain # stuff like this: # (Sourcery CodeBench Lite 2014.05-29) 4.8.3 20140320 (prerelease) # Limiting major version number to two digits seems to work # thus far. When we get to GCC 100, this will break, but # if we are still relevant when that happens, it can be # considered an achievement in itself. # # This regex is reaching magic levels. If it ever needs # to be updated, do not complexify but convert to something # saner instead. # We'll demystify it a bit with a verbose definition. version_regex = re.compile(r""" (? bool: return self.coredata.is_cross_build() def dump_coredata(self): return coredata.save(self.coredata, self.get_build_dir()) def get_script_dir(self): import mesonbuild.scripts return os.path.dirname(mesonbuild.scripts.__file__) def get_log_dir(self): return self.log_dir def get_coredata(self): return self.coredata def get_build_command(self, unbuffered=False): cmd = mesonlib.meson_command[:] if unbuffered and 'python' in os.path.basename(cmd[0]): cmd.insert(1, '-u') return cmd def is_header(self, fname): return is_header(fname) def is_source(self, fname): return is_source(fname) def is_assembly(self, fname): return is_assembly(fname) def is_llvm_ir(self, fname): return is_llvm_ir(fname) def is_object(self, fname): return is_object(fname) @lru_cache(maxsize=None) def is_library(self, fname): return is_library(fname) @staticmethod def get_gnu_compiler_defines(compiler): """ Detect GNU compiler platform type (Apple, MinGW, Unix) """ # Arguments to output compiler pre-processor defines to stdout # gcc, g++, and gfortran all support these arguments args = compiler + ['-E', '-dM', '-'] p, output, error = Popen_safe(args, write='', stdin=subprocess.PIPE) if p.returncode != 0: raise EnvironmentException('Unable to detect GNU compiler type:\n' + output + error) # Parse several lines of the type: # `#define ___SOME_DEF some_value` # and extract `___SOME_DEF` defines = {} for line in output.split('\n'): if not line: continue d, *rest = line.split(' ', 2) if d != '#define': continue if len(rest) == 1: defines[rest] = True if len(rest) == 2: defines[rest[0]] = rest[1] return defines @staticmethod def get_gnu_version_from_defines(defines): dot = '.' major = defines.get('__GNUC__', '0') minor = defines.get('__GNUC_MINOR__', '0') patch = defines.get('__GNUC_PATCHLEVEL__', '0') return dot.join((major, minor, patch)) @staticmethod def get_lcc_version_from_defines(defines): dot = '.' generation_and_major = defines.get('__LCC__', '100') generation = generation_and_major[:1] major = generation_and_major[1:] minor = defines.get('__LCC_MINOR__', '0') return dot.join((generation, major, minor)) @staticmethod def get_gnu_compiler_type(defines): # Detect GCC type (Apple, MinGW, Cygwin, Unix) if '__APPLE__' in defines: return CompilerType.GCC_OSX elif '__MINGW32__' in defines or '__MINGW64__' in defines: return CompilerType.GCC_MINGW elif '__CYGWIN__' in defines: return CompilerType.GCC_CYGWIN return CompilerType.GCC_STANDARD def _get_compilers(self, lang, for_machine): ''' The list of compilers is detected in the exact same way for C, C++, ObjC, ObjC++, Fortran, CS so consolidate it here. ''' value = self.binaries[for_machine].lookup_entry(lang) if value is not None: compilers, ccache = BinaryTable.parse_entry(value) # Return value has to be a list of compiler 'choices' compilers = [compilers] else: if not self.machines.matches_build_machine(for_machine): raise EnvironmentException('{!r} compiler binary not defined in cross or native file'.format(lang)) compilers = getattr(self, 'default_' + lang) ccache = BinaryTable.detect_ccache() if self.machines.matches_build_machine(for_machine): exe_wrap = None else: exe_wrap = self.get_exe_wrapper() return compilers, ccache, exe_wrap def _handle_exceptions(self, exceptions, binaries, bintype='compiler'): errmsg = 'Unknown {}(s): {}'.format(bintype, binaries) if exceptions: errmsg += '\nThe follow exceptions were encountered:' for (c, e) in exceptions.items(): errmsg += '\nRunning "{0}" gave "{1}"'.format(c, e) raise EnvironmentException(errmsg) @staticmethod def _guess_win_linker(compiler: typing.List[str], for_machine: MachineChoice, prefix: typing.Union[str, typing.List[str]]) -> 'DynamicLinker': # Explicitly pass logo here so that we can get the version of link.exe if isinstance(prefix, str): check_args = [prefix + '/logo', prefix + '--version'] else: check_args = prefix + ['/logo'] + prefix + ['--version'] p, o, _ = Popen_safe(compiler + check_args) if o.startswith('LLD'): if '(compatible with GNU linkers)' in o: return LLVMDynamicLinker(compiler, for_machine, 'lld', prefix, version=search_version(o)) else: return ClangClDynamicLinker(for_machine, exelist=compiler, prefix=prefix, version=search_version(o)) elif o.startswith('Microsoft'): match = re.search(r'.*(X86|X64|ARM|ARM64).*', o) if match: target = str(match.group(1)) else: target = 'x86' return MSVCDynamicLinker( for_machine, machine=target, exelist=compiler, prefix=prefix, version=search_version(o)) raise MesonException('Cannot guess dynamic linker') @staticmethod def _guess_nix_linker(compiler: typing.List[str], for_machine: MachineChoice, prefix: typing.Union[str, typing.List[str]], *, extra_args: typing.Optional[typing.List[str]] = None) -> 'DynamicLinker': """Helper for guessing what linker to use on Unix-Like OSes. :prefix: The prefix that the compiler uses to proxy arguments to the linker, if required. This can be passed as a string or a list of strings. If it is passed as a string then the arguments to be proxied to the linker will be concatenated, if it is a list they will be appended. This means that if a space is required (such as with swift which wants `-Xlinker --version` and *not* `-Xlinker=--version`) you must pass as a list. :extra_args: Any addtional arguments rquired (such as a source file) """ extra_args = typing.cast(typing.List[str], extra_args or []) if isinstance(prefix, str): check_args = [prefix + '--version'] + extra_args else: check_args = prefix + ['--version'] + extra_args _, o, e = Popen_safe(compiler + check_args) v = search_version(o) if o.startswith('LLD'): linker = LLVMDynamicLinker(compiler, for_machine, 'lld', prefix, version=v) # type: DynamicLinker elif e.startswith('lld-link: '): # Toolchain wrapper got in the way; this happens with e.g. https://github.com/mstorsjo/llvm-mingw # Let's try to extract the linker invocation command to grab the version. _, o, e = Popen_safe(compiler + check_args + ['-v']) try: linker_cmd = re.match(r'.*\n(.*?)\nlld-link: ', e, re.DOTALL).group(1) linker_cmd = shlex.split(linker_cmd)[0] except (AttributeError, IndexError, ValueError): pass else: _, o, e = Popen_safe([linker_cmd, '--version']) v = search_version(o) linker = LLVMDynamicLinker(compiler, for_machine, 'lld', prefix, version=v) # first is for apple clang, second is for real gcc elif e.endswith('(use -v to see invocation)\n') or 'macosx_version' in e: if isinstance(prefix, str): _, _, e = Popen_safe(compiler + [prefix + '-v'] + extra_args) else: _, _, e = Popen_safe(compiler + prefix + ['-v'] + extra_args) i = 'APPLE ld' for line in e.split('\n'): if 'PROJECT:ld' in line: v = line.split('-')[1] break else: v = 'unknown version' linker = AppleDynamicLinker(compiler, for_machine, i, prefix, version=v) elif 'GNU' in o: if 'gold' in o: i = 'GNU ld.gold' else: i = 'GNU ld.bfd' linker = GnuDynamicLinker(compiler, for_machine, i, prefix, version=v) elif 'Solaris' in e or 'Solaris' in o: linker = SolarisDynamicLinker( compiler, for_machine, 'solaris', prefix, version=search_version(e)) else: raise MesonException('Unable to determine dynamic linker.') return linker def _detect_c_or_cpp_compiler(self, lang: str, for_machine: MachineChoice) -> Compiler: popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers(lang, for_machine) is_cross = not self.machines.matches_build_machine(for_machine) for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] if not set(['cl', 'cl.exe', 'clang-cl', 'clang-cl.exe']).isdisjoint(compiler): # Watcom C provides it's own cl.exe clone that mimics an older # version of Microsoft's compiler. Since Watcom's cl.exe is # just a wrapper, we skip using it if we detect its presence # so as not to confuse Meson when configuring for MSVC. # # Additionally the help text of Watcom's cl.exe is paged, and # the binary will not exit without human intervention. In # practice, Meson will block waiting for Watcom's cl.exe to # exit, which requires user input and thus will never exit. if 'WATCOM' in os.environ: def sanitize(p): return os.path.normcase(os.path.abspath(p)) watcom_cls = [sanitize(os.path.join(os.environ['WATCOM'], 'BINNT', 'cl')), sanitize(os.path.join(os.environ['WATCOM'], 'BINNT', 'cl.exe'))] found_cl = sanitize(shutil.which('cl')) if found_cl in watcom_cls: continue arg = '/?' elif 'armcc' in compiler[0]: arg = '--vsn' elif 'ccrx' in compiler[0]: arg = '-v' elif 'icl' in compiler[0]: # if you pass anything to icl you get stuck in a pager arg = '' else: arg = '--version' try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e continue if 'ccrx' in compiler[0]: out = err full_version = out.split('\n', 1)[0] version = search_version(out) guess_gcc_or_lcc = False if 'Free Software Foundation' in out or 'xt-' in out: guess_gcc_or_lcc = 'gcc' if 'e2k' in out and 'lcc' in out: guess_gcc_or_lcc = 'lcc' if guess_gcc_or_lcc: defines = self.get_gnu_compiler_defines(compiler) if not defines: popen_exceptions[' '.join(compiler)] = 'no pre-processor defines' continue compiler_type = self.get_gnu_compiler_type(defines) if guess_gcc_or_lcc == 'lcc': version = self.get_lcc_version_from_defines(defines) cls = ElbrusCCompiler if lang == 'c' else ElbrusCPPCompiler else: version = self.get_gnu_version_from_defines(defines) cls = GnuCCompiler if lang == 'c' else GnuCPPCompiler linker = self._guess_nix_linker(compiler, for_machine, cls.LINKER_PREFIX) return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, defines, full_version=full_version, linker=linker) if 'Emscripten' in out: cls = EmscriptenCCompiler if lang == 'c' else EmscriptenCPPCompiler compiler_type = CompilerType.CLANG_EMSCRIPTEN return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, full_version=full_version) if 'armclang' in out: # The compiler version is not present in the first line of output, # instead it is present in second line, startswith 'Component:'. # So, searching for the 'Component' in out although we know it is # present in second line, as we are not sure about the # output format in future versions arm_ver_str = re.search('.*Component.*', out) if arm_ver_str is None: popen_exceptions[' '.join(compiler)] = 'version string not found' continue arm_ver_str = arm_ver_str.group(0) # Override previous values version = search_version(arm_ver_str) full_version = arm_ver_str compiler_type = CompilerType.ARM_WIN cls = ArmclangCCompiler if lang == 'c' else ArmclangCPPCompiler linker = ArmClangDynamicLinker(for_machine, version=version) return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'CL.EXE COMPATIBILITY' in out: # if this is clang-cl masquerading as cl, detect it as cl, not # clang arg = '--version' try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e version = search_version(out) match = re.search('^Target: (.*?)-', out, re.MULTILINE) if match: target = match.group(1) else: target = 'unknown target' cls = ClangClCCompiler if lang == 'c' else ClangClCPPCompiler linker = ClangClDynamicLinker(for_machine, version=version) return cls(compiler, version, for_machine, is_cross, exe_wrap, target, linker=linker) if 'clang' in out: linker = None # Even if the for_machine is darwin, we could be using vanilla # clang. if 'Apple' in out: cls = AppleClangCCompiler if lang == 'c' else AppleClangCPPCompiler else: cls = ClangCCompiler if lang == 'c' else ClangCPPCompiler if 'windows' in out or self.machines[for_machine].is_windows(): # If we're in a MINGW context this actually will use a gnu # style ld, but for clang on "real" windows we'll use # either link.exe or lld-link.exe try: linker = self._guess_win_linker(compiler, for_machine, cls.LINKER_PREFIX) except MesonException: pass if linker is None: linker = self._guess_nix_linker(compiler, for_machine, cls.LINKER_PREFIX) return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'Intel(R) C++ Intel(R)' in err: version = search_version(err) target = 'x86' if 'IA-32' in err else 'x86_64' cls = IntelClCCompiler if lang == 'c' else IntelClCPPCompiler linker = XilinkDynamicLinker(for_machine, version=version) return cls(compiler, version, for_machine, is_cross, exe_wrap, target, linker=linker) if 'Microsoft' in out or 'Microsoft' in err: # Latest versions of Visual Studio print version # number to stderr but earlier ones print version # on stdout. Why? Lord only knows. # Check both outputs to figure out version. for lookat in [err, out]: version = search_version(lookat) if version != 'unknown version': break else: m = 'Failed to detect MSVC compiler version: stderr was\n{!r}' raise EnvironmentException(m.format(err)) match = re.search(' for .*(x86|x64|ARM|ARM64)$', lookat.split('\n')[0]) if match: target = match.group(1) else: target = 'x86' linker = MSVCDynamicLinker(for_machine, version=version) cls = VisualStudioCCompiler if lang == 'c' else VisualStudioCPPCompiler return cls(compiler, version, for_machine, is_cross, exe_wrap, target, linker=linker) if 'PGI Compilers' in out: if self.machines[for_machine].is_darwin(): compiler_type = CompilerType.PGI_OSX elif self.machines[for_machine].is_windows(): compiler_type = CompilerType.PGI_WIN else: compiler_type = CompilerType.PGI_STANDARD cls = PGICCompiler if lang == 'c' else PGICPPCompiler linker = PGIDynamicLinker(compiler, for_machine, 'pgi', cls.LINKER_PREFIX, version=version) return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, linker=linker) if '(ICC)' in out: if self.machines[for_machine].is_darwin(): compiler_type = CompilerType.ICC_OSX l = XildAppleDynamicLinker(compiler, for_machine, 'xild', '-Wl,', version=version) else: compiler_type = CompilerType.ICC_STANDARD l = XildLinuxDynamicLinker(compiler, for_machine, 'xild', '-Wl,', version=version) cls = IntelCCompiler if lang == 'c' else IntelCPPCompiler return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, full_version=full_version, linker=l) if 'ARM' in out: compiler_type = CompilerType.ARM_WIN cls = ArmCCompiler if lang == 'c' else ArmCPPCompiler linker = ArmDynamicLinker(for_machine, version=version) return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'RX Family' in out: compiler_type = CompilerType.CCRX_WIN cls = CcrxCCompiler if lang == 'c' else CcrxCPPCompiler linker = CcrxDynamicLinker(for_machine, version=version) return cls(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def detect_c_compiler(self, for_machine): return self._detect_c_or_cpp_compiler('c', for_machine) def detect_cpp_compiler(self, for_machine): return self._detect_c_or_cpp_compiler('cpp', for_machine) def detect_cuda_compiler(self, for_machine): popen_exceptions = {} is_cross = not self.machines.matches_build_machine(for_machine) compilers, ccache, exe_wrap = self._get_compilers('cuda', for_machine) for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] else: raise EnvironmentException() arg = '--version' try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e continue # Example nvcc printout: # # nvcc: NVIDIA (R) Cuda compiler driver # Copyright (c) 2005-2018 NVIDIA Corporation # Built on Sat_Aug_25_21:08:01_CDT_2018 # Cuda compilation tools, release 10.0, V10.0.130 # # search_version() first finds the "10.0" after "release", # rather than the more precise "10.0.130" after "V". # The patch version number is occasionally important; For # instance, on Linux, # - CUDA Toolkit 8.0.44 requires NVIDIA Driver 367.48 # - CUDA Toolkit 8.0.61 requires NVIDIA Driver 375.26 # Luckily, the "V" also makes it very simple to extract # the full version: version = out.strip().split('V')[-1] cpp_compiler = self.detect_cpp_compiler(for_machine) linker = CudaLinker(compiler, for_machine, 'nvlink', CudaCompiler.LINKER_PREFIX, version=CudaLinker.parse_version()) return CudaCompiler(ccache + compiler, version, for_machine, is_cross, exe_wrap, host_compiler=cpp_compiler, linker=linker) raise EnvironmentException('Could not find suitable CUDA compiler: "' + ' '.join(compilers) + '"') def detect_fortran_compiler(self, for_machine: MachineChoice): popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers('fortran', for_machine) is_cross = not self.machines.matches_build_machine(for_machine) for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] for arg in ['--version', '-V']: try: p, out, err = Popen_safe(compiler + [arg]) except OSError as e: popen_exceptions[' '.join(compiler + [arg])] = e continue version = search_version(out) full_version = out.split('\n', 1)[0] guess_gcc_or_lcc = False if 'GNU Fortran' in out: guess_gcc_or_lcc = 'gcc' if 'e2k' in out and 'lcc' in out: guess_gcc_or_lcc = 'lcc' if guess_gcc_or_lcc: defines = self.get_gnu_compiler_defines(compiler) if not defines: popen_exceptions[' '.join(compiler)] = 'no pre-processor defines' continue compiler_type = self.get_gnu_compiler_type(defines) if guess_gcc_or_lcc == 'lcc': version = self.get_lcc_version_from_defines(defines) cls = ElbrusFortranCompiler else: version = self.get_gnu_version_from_defines(defines) cls = GnuFortranCompiler linker = self._guess_nix_linker(compiler, for_machine, cls.LINKER_PREFIX) return cls(compiler, version, compiler_type, for_machine, is_cross, exe_wrap, defines, full_version=full_version, linker=linker) if 'G95' in out: linker = self._guess_nix_linker(compiler, for_machine, G95FortranCompiler.LINKER_PREFIX) return G95FortranCompiler(compiler, version, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'Sun Fortran' in err: version = search_version(err) linker = self._guess_nix_linker(compiler, for_machine, SunFortranCompiler.LINKER_PREFIX) return SunFortranCompiler(compiler, version, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'Intel(R) Visual Fortran' in err: version = search_version(err) target = 'x86' if 'IA-32' in err else 'x86_64' linker = XilinkDynamicLinker(for_machine, version=version) return IntelClFortranCompiler(compiler, version, for_machine, is_cross, target, exe_wrap, linker=linker) if 'ifort (IFORT)' in out: linker = XildLinuxDynamicLinker(compiler, for_machine, 'xild', '-Wl,', version=version) return IntelFortranCompiler(compiler, version, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'PathScale EKOPath(tm)' in err: return PathScaleFortranCompiler(compiler, version, for_machine, is_cross, exe_wrap, full_version=full_version) if 'PGI Compilers' in out: if self.machines[for_machine].is_darwin(): compiler_type = CompilerType.PGI_OSX elif self.machines[for_machine].is_windows(): compiler_type = CompilerType.PGI_WIN else: compiler_type = CompilerType.PGI_STANDARD linker = PGIDynamicLinker(compiler, for_machine, 'pgi', PGIFortranCompiler.LINKER_PREFIX, version=version) return PGIFortranCompiler(compiler, version, compiler_type, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'flang' in out or 'clang' in out: linker = self._guess_nix_linker(compiler, for_machine, FlangFortranCompiler.LINKER_PREFIX) return FlangFortranCompiler(compiler, version, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'Open64 Compiler Suite' in err: linker = self._guess_nix_linker(compiler, for_machine, Open64FortranCompiler.LINKER_PREFIX) return Open64FortranCompiler(compiler, version, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) if 'NAG Fortran' in err: linker = self._guess_nix_linker(compiler, for_machine, NAGFortranCompiler.LINKER_PREFIX) return NAGFortranCompiler(compiler, version, for_machine, is_cross, exe_wrap, full_version=full_version, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def get_scratch_dir(self): return self.scratch_dir def detect_objc_compiler(self, for_machine: MachineInfo) -> 'Compiler': return self._detect_objc_or_objcpp_compiler(for_machine, True) def detect_objcpp_compiler(self, for_machine: MachineInfo) -> 'Compiler': return self._detect_objc_or_objcpp_compiler(for_machine, False) def _detect_objc_or_objcpp_compiler(self, for_machine: MachineInfo, objc: bool) -> 'Compiler': popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers('objc' if objc else 'objcpp', for_machine) is_cross = not self.machines.matches_build_machine(for_machine) for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] arg = ['--version'] try: p, out, err = Popen_safe(compiler + arg) except OSError as e: popen_exceptions[' '.join(compiler + arg)] = e continue version = search_version(out) if 'Free Software Foundation' in out or ('e2k' in out and 'lcc' in out): defines = self.get_gnu_compiler_defines(compiler) if not defines: popen_exceptions[' '.join(compiler)] = 'no pre-processor defines' continue compiler_type = self.get_gnu_compiler_type(defines) version = self.get_gnu_version_from_defines(defines) comp = GnuObjCCompiler if objc else GnuObjCPPCompiler linker = self._guess_nix_linker(compiler, for_machine, comp.LINKER_PREFIX) return comp(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, defines, linker=linker) if 'clang' in out: linker = None comp = ClangObjCCompiler if objc else ClangObjCPPCompiler if 'Apple' in out or self.machines[for_machine].is_darwin(): compiler_type = CompilerType.CLANG_OSX elif 'windows' in out or self.machines[for_machine].is_windows(): compiler_type = CompilerType.CLANG_MINGW # If we're in a MINGW context this actually will use a gnu style ld try: linker = self._guess_win_linker(compiler, for_machine, comp.LINKER_PREFIX) except MesonException: pass else: compiler_type = CompilerType.CLANG_STANDARD if not linker: linker = self._guess_nix_linker(compiler, for_machine, comp.LINKER_PREFIX) return comp(ccache + compiler, version, compiler_type, for_machine, is_cross, exe_wrap, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def detect_java_compiler(self, for_machine): exelist = self.binaries.host.lookup_entry('java') if exelist is None: # TODO support fallback exelist = [self.default_java[0]] try: p, out, err = Popen_safe(exelist + ['-version']) except OSError: raise EnvironmentException('Could not execute Java compiler "%s"' % ' '.join(exelist)) if 'javac' in out or 'javac' in err: version = search_version(err if 'javac' in err else out) if not version or version == 'unknown version': parts = (err if 'javac' in err else out).split() if len(parts) > 1: version = parts[1] return JavaCompiler(exelist, version, for_machine) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_cs_compiler(self, for_machine): compilers, ccache, exe_wrap = self._get_compilers('cs', for_machine) popen_exceptions = {} for comp in compilers: if not isinstance(comp, list): comp = [comp] try: p, out, err = Popen_safe(comp + ['--version']) except OSError as e: popen_exceptions[' '.join(comp + ['--version'])] = e continue version = search_version(out) if 'Mono' in out: return MonoCompiler(comp, version, for_machine) elif "Visual C#" in out: return VisualStudioCsCompiler(comp, version, for_machine) self._handle_exceptions(popen_exceptions, compilers) def detect_vala_compiler(self, for_machine): exelist = self.binaries.host.lookup_entry('vala') is_cross = not self.machines.matches_build_machine(for_machine) if exelist is None: # TODO support fallback exelist = [self.default_vala[0]] try: p, out = Popen_safe(exelist + ['--version'])[0:2] except OSError: raise EnvironmentException('Could not execute Vala compiler "%s"' % ' '.join(exelist)) version = search_version(out) if 'Vala' in out: return ValaCompiler(exelist, version, for_machine, is_cross) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_rust_compiler(self, for_machine): popen_exceptions = {} compilers, ccache, exe_wrap = self._get_compilers('rust', for_machine) is_cross = not self.machines.matches_build_machine(for_machine) for compiler in compilers: if isinstance(compiler, str): compiler = [compiler] arg = ['--version'] try: p, out = Popen_safe(compiler + arg)[0:2] except OSError as e: popen_exceptions[' '.join(compiler + arg)] = e continue version = search_version(out) if 'rustc' in out: # Chalk up another quirk for rust. There is no way (AFAICT) to # figure out what linker rustc is using for a non-nightly compiler # (On nightly you can pass -Z print-link-args). So we're going to # hard code the linker based on the platform. # Currenty gnu ld is used for everything except apple by # default, and apple ld is used on mac. # TODO: find some better way to figure this out. if self.machines[for_machine].is_darwin(): linker = AppleDynamicLinker([], for_machine, 'Apple ld', '-Wl,') else: linker = GnuDynamicLinker([], for_machine, 'GNU ld', '-Wl,') return RustCompiler(compiler, version, for_machine, is_cross, exe_wrap, linker=linker) self._handle_exceptions(popen_exceptions, compilers) def detect_d_compiler(self, for_machine: MachineChoice): exelist = self.binaries[for_machine].lookup_entry('d') # Search for a D compiler. # We prefer LDC over GDC unless overridden with the DC # environment variable because LDC has a much more # up to date language version at time (2016). if exelist is not None: if os.path.basename(exelist[-1]).startswith(('ldmd', 'gdmd')): raise EnvironmentException( 'Meson does not support {} as it is only a DMD frontend for another compiler.' 'Please provide a valid value for DC or unset it so that Meson can resolve the compiler by itself.'.format(exelist[-1])) else: for d in self.default_d: if shutil.which(d): exelist = [d] break else: raise EnvironmentException('Could not find any supported D compiler.') try: p, out = Popen_safe(exelist + ['--version'])[0:2] except OSError: raise EnvironmentException('Could not execute D compiler "%s"' % ' '.join(exelist)) version = search_version(out) full_version = out.split('\n', 1)[0] # Detect the target architecture, required for proper architecture handling on Windows. c_compiler = {} is_msvc = mesonlib.is_windows() and 'VCINSTALLDIR' in os.environ if is_msvc: c_compiler = {'c': self.detect_c_compiler(for_machine)} # MSVC compiler is required for correct platform detection. arch = detect_cpu_family(c_compiler) if is_msvc and arch == 'x86': arch = 'x86_mscoff' if 'LLVM D compiler' in out: # LDC seems to require a file m = self.machines[for_machine] if m.is_windows() or m.is_cygwin(): # Getting LDC on windows to give useful linker output when not # doing real work is painfully hard. It ships with a verison of # lld-link, so just assume that we're going to use lld-link # with it. _, o, _ = Popen_safe(['lld-link.exe', '--version']) linker = ClangClDynamicLinker(for_machine, version=search_version(o)) else: with tempfile.NamedTemporaryFile(suffix='.d') as f: linker = self._guess_nix_linker( exelist, for_machine, compilers.LLVMDCompiler.LINKER_PREFIX, extra_args=[f.name]) return compilers.LLVMDCompiler(exelist, version, for_machine, arch, full_version=full_version, linker=linker) elif 'gdc' in out: linker = self._guess_nix_linker(exelist, for_machine, compilers.GnuDCompiler.LINKER_PREFIX) return compilers.GnuDCompiler(exelist, version, for_machine, arch, full_version=full_version, linker=linker) elif 'The D Language Foundation' in out or 'Digital Mars' in out: # DMD seems to require a file m = self.machines[for_machine] if m.is_windows() or m.is_cygwin(): linker = OptlinkDynamicLinker(for_machine, version=full_version) else: with tempfile.NamedTemporaryFile(suffix='.d') as f: linker = self._guess_nix_linker( exelist, for_machine, compilers.LLVMDCompiler.LINKER_PREFIX, extra_args=[f.name]) return compilers.DmdDCompiler(exelist, version, for_machine, arch, full_version=full_version, linker=linker) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def detect_swift_compiler(self, for_machine): exelist = self.binaries.host.lookup_entry('swift') is_cross = not self.machines.matches_build_machine(for_machine) if exelist is None: # TODO support fallback exelist = [self.default_swift[0]] try: p, _, err = Popen_safe(exelist + ['-v']) except OSError: raise EnvironmentException('Could not execute Swift compiler "%s"' % ' '.join(exelist)) version = search_version(err) if 'Swift' in err: # As for 5.0.1 swiftc *requires* a file to check the linker: with tempfile.NamedTemporaryFile(suffix='.swift') as f: linker = self._guess_nix_linker( exelist, for_machine, compilers.SwiftCompiler.LINKER_PREFIX, extra_args=[f.name]) return compilers.SwiftCompiler(exelist, version, for_machine, is_cross, linker=linker) raise EnvironmentException('Unknown compiler "' + ' '.join(exelist) + '"') def compiler_from_language(self, lang: str, for_machine: MachineChoice): if lang == 'c': comp = self.detect_c_compiler(for_machine) elif lang == 'cpp': comp = self.detect_cpp_compiler(for_machine) elif lang == 'objc': comp = self.detect_objc_compiler(for_machine) elif lang == 'cuda': comp = self.detect_cuda_compiler(for_machine) elif lang == 'objcpp': comp = self.detect_objcpp_compiler(for_machine) elif lang == 'java': comp = self.detect_java_compiler(for_machine) elif lang == 'cs': comp = self.detect_cs_compiler(for_machine) elif lang == 'vala': comp = self.detect_vala_compiler(for_machine) elif lang == 'd': comp = self.detect_d_compiler(for_machine) elif lang == 'rust': comp = self.detect_rust_compiler(for_machine) elif lang == 'fortran': comp = self.detect_fortran_compiler(for_machine) elif lang == 'swift': comp = self.detect_swift_compiler(for_machine) else: comp = None return comp def detect_compiler_for(self, lang: str, for_machine: MachineChoice): comp = self.compiler_from_language(lang, for_machine) if comp is not None: assert comp.for_machine == for_machine self.coredata.process_new_compiler(lang, comp, self) return comp def detect_static_linker(self, compiler): linker = self.binaries[compiler.for_machine].lookup_entry('ar') if linker is not None: linkers = [linker] else: evar = 'AR' defaults = [[l] for l in self.default_static_linker] if isinstance(compiler, compilers.CudaCompiler): linkers = [self.cuda_static_linker] + defaults elif evar in os.environ: linkers = [split_args(os.environ[evar])] elif isinstance(compiler, compilers.VisualStudioLikeCompiler): linkers = [self.vs_static_linker, self.clang_cl_static_linker] elif isinstance(compiler, compilers.GnuCompiler): # Use gcc-ar if available; needed for LTO linkers = [self.gcc_static_linker] + defaults elif isinstance(compiler, compilers.ClangCompiler): # Use llvm-ar if available; needed for LTO linkers = [self.clang_static_linker] + defaults elif isinstance(compiler, compilers.DCompiler): # Prefer static linkers over linkers used by D compilers if mesonlib.is_windows(): linkers = [self.vs_static_linker, self.clang_cl_static_linker, compiler.get_linker_exelist()] else: linkers = defaults elif isinstance(compiler, IntelClCCompiler): # Intel has it's own linker that acts like microsoft's lib linkers = ['xilib'] elif isinstance(compiler, (PGICCompiler, PGIFortranCompiler)) and mesonlib.is_windows(): linkers = [self.default_static_linker] # this is just a wrapper calling link/lib on Windows, keeping things simple. else: linkers = defaults popen_exceptions = {} for linker in linkers: if not {'lib', 'lib.exe', 'llvm-lib', 'llvm-lib.exe', 'xilib', 'xilib.exe'}.isdisjoint(linker): arg = '/?' else: arg = '--version' try: p, out, err = Popen_safe(linker + [arg]) except OSError as e: popen_exceptions[' '.join(linker + [arg])] = e continue if "xilib: executing 'lib'" in err: return IntelVisualStudioLinker(linker, getattr(compiler, 'machine', None)) if '/OUT:' in out.upper() or '/OUT:' in err.upper(): return VisualStudioLinker(linker, getattr(compiler, 'machine', None)) if 'ar-Error-Unknown switch: --version' in err: return PGIStaticLinker(linker) if p.returncode == 0 and ('armar' in linker or 'armar.exe' in linker): return ArmarLinker(linker) if 'DMD32 D Compiler' in out or 'DMD64 D Compiler' in out: return DLinker(linker, compiler.arch) if 'LDC - the LLVM D compiler' in out: return DLinker(linker, compiler.arch) if 'GDC' in out and ' based on D ' in out: return DLinker(linker, compiler.arch) if err.startswith('Renesas') and ('rlink' in linker or 'rlink.exe' in linker): return CcrxLinker(linker) if p.returncode == 0: return ArLinker(linker) if p.returncode == 1 and err.startswith('usage'): # OSX return ArLinker(linker) if p.returncode == 1 and err.startswith('Usage'): # AIX return ArLinker(linker) if p.returncode == 1 and err.startswith('ar: bad option: --'): # Solaris return ArLinker(linker) self._handle_exceptions(popen_exceptions, linkers, 'linker') raise EnvironmentException('Unknown static linker "%s"' % ' '.join(linkers)) def get_source_dir(self): return self.source_dir def get_build_dir(self): return self.build_dir def get_import_lib_dir(self) -> str: "Install dir for the import library (library used for linking)" return self.get_libdir() def get_shared_module_dir(self) -> str: "Install dir for shared modules that are loaded at runtime" return self.get_libdir() def get_shared_lib_dir(self) -> str: "Install dir for the shared library" m = self.machines.host # Windows has no RPATH or similar, so DLLs must be next to EXEs. if m.is_windows() or m.is_cygwin(): return self.get_bindir() return self.get_libdir() def get_static_lib_dir(self) -> str: "Install dir for the static library" return self.get_libdir() def get_prefix(self) -> str: return self.coredata.get_builtin_option('prefix') def get_libdir(self) -> str: return self.coredata.get_builtin_option('libdir') def get_libexecdir(self) -> str: return self.coredata.get_builtin_option('libexecdir') def get_bindir(self) -> str: return self.coredata.get_builtin_option('bindir') def get_includedir(self) -> str: return self.coredata.get_builtin_option('includedir') def get_mandir(self) -> str: return self.coredata.get_builtin_option('mandir') def get_datadir(self) -> str: return self.coredata.get_builtin_option('datadir') def get_compiler_system_dirs(self, for_machine: MachineChoice): for comp in self.coredata.compilers[for_machine].values(): if isinstance(comp, compilers.ClangCompiler): index = 1 break elif isinstance(comp, compilers.GnuCompiler): index = 2 break else: # This option is only supported by gcc and clang. If we don't get a # GCC or Clang compiler return and empty list. return [] p, out, _ = Popen_safe(comp.get_exelist() + ['-print-search-dirs']) if p.returncode != 0: raise mesonlib.MesonException('Could not calculate system search dirs') out = out.split('\n')[index].lstrip('libraries: =').split(':') return [os.path.normpath(p) for p in out] def need_exe_wrapper(self, for_machine: MachineChoice = MachineChoice.HOST): value = self.properties[for_machine].get('needs_exe_wrapper', None) if value is not None: return value return not machine_info_can_run(self.machines[for_machine]) def get_exe_wrapper(self): if not self.need_exe_wrapper(): from .dependencies import EmptyExternalProgram return EmptyExternalProgram() return self.exe_wrapper