/* * PowerPC exception emulation helpers for QEMU (TCG specific) * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "qemu/log.h" #include "exec/cpu_ldst.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "system/runstate.h" #include "helper_regs.h" #include "hw/ppc/ppc.h" #include "internal.h" #include "cpu.h" #include "trace.h" /*****************************************************************************/ /* Exceptions processing helpers */ void raise_exception_err_ra(CPUPPCState *env, uint32_t exception, uint32_t error_code, uintptr_t raddr) { CPUState *cs = env_cpu(env); cs->exception_index = exception; env->error_code = error_code; cpu_loop_exit_restore(cs, raddr); } void helper_raise_exception_err(CPUPPCState *env, uint32_t exception, uint32_t error_code) { raise_exception_err_ra(env, exception, error_code, 0); } void helper_raise_exception(CPUPPCState *env, uint32_t exception) { raise_exception_err_ra(env, exception, 0, 0); } #ifndef CONFIG_USER_ONLY static G_NORETURN void raise_exception_err(CPUPPCState *env, uint32_t exception, uint32_t error_code) { raise_exception_err_ra(env, exception, error_code, 0); } static G_NORETURN void raise_exception(CPUPPCState *env, uint32_t exception) { raise_exception_err_ra(env, exception, 0, 0); } #endif /* !CONFIG_USER_ONLY */ void helper_TW(CPUPPCState *env, target_ulong arg1, target_ulong arg2, uint32_t flags) { if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) || ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) || ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) || ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) || ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP, GETPC()); } } #ifdef TARGET_PPC64 void helper_TD(CPUPPCState *env, target_ulong arg1, target_ulong arg2, uint32_t flags) { if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) || ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) || ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) || ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) || ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01))))) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP, GETPC()); } } #endif /* TARGET_PPC64 */ static uint32_t helper_SIMON_LIKE_32_64(uint32_t x, uint64_t key, uint32_t lane) { const uint16_t c = 0xfffc; const uint64_t z0 = 0xfa2561cdf44ac398ULL; uint16_t z = 0, temp; uint16_t k[32], eff_k[32], xleft[33], xright[33], fxleft[32]; for (int i = 3; i >= 0; i--) { k[i] = key & 0xffff; key >>= 16; } xleft[0] = x & 0xffff; xright[0] = (x >> 16) & 0xffff; for (int i = 0; i < 28; i++) { z = (z0 >> (63 - i)) & 1; temp = ror16(k[i + 3], 3) ^ k[i + 1]; k[i + 4] = c ^ z ^ k[i] ^ temp ^ ror16(temp, 1); } for (int i = 0; i < 8; i++) { eff_k[4 * i + 0] = k[4 * i + ((0 + lane) % 4)]; eff_k[4 * i + 1] = k[4 * i + ((1 + lane) % 4)]; eff_k[4 * i + 2] = k[4 * i + ((2 + lane) % 4)]; eff_k[4 * i + 3] = k[4 * i + ((3 + lane) % 4)]; } for (int i = 0; i < 32; i++) { fxleft[i] = (rol16(xleft[i], 1) & rol16(xleft[i], 8)) ^ rol16(xleft[i], 2); xleft[i + 1] = xright[i] ^ fxleft[i] ^ eff_k[i]; xright[i + 1] = xleft[i]; } return (((uint32_t)xright[32]) << 16) | xleft[32]; } static uint64_t hash_digest(uint64_t ra, uint64_t rb, uint64_t key) { uint64_t stage0_h = 0ULL, stage0_l = 0ULL; uint64_t stage1_h, stage1_l; for (int i = 0; i < 4; i++) { stage0_h |= ror64(rb & 0xff, 8 * (2 * i + 1)); stage0_h |= ((ra >> 32) & 0xff) << (8 * 2 * i); stage0_l |= ror64((rb >> 32) & 0xff, 8 * (2 * i + 1)); stage0_l |= (ra & 0xff) << (8 * 2 * i); rb >>= 8; ra >>= 8; } stage1_h = (uint64_t)helper_SIMON_LIKE_32_64(stage0_h >> 32, key, 0) << 32; stage1_h |= helper_SIMON_LIKE_32_64(stage0_h, key, 1); stage1_l = (uint64_t)helper_SIMON_LIKE_32_64(stage0_l >> 32, key, 2) << 32; stage1_l |= helper_SIMON_LIKE_32_64(stage0_l, key, 3); return stage1_h ^ stage1_l; } static void do_hash(CPUPPCState *env, target_ulong ea, target_ulong ra, target_ulong rb, uint64_t key, bool store) { uint64_t calculated_hash = hash_digest(ra, rb, key), loaded_hash; if (store) { cpu_stq_data_ra(env, ea, calculated_hash, GETPC()); } else { loaded_hash = cpu_ldq_data_ra(env, ea, GETPC()); if (loaded_hash != calculated_hash) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP, GETPC()); } } } #include "qemu/guest-random.h" #ifdef TARGET_PPC64 #define HELPER_HASH(op, key, store, dexcr_aspect) \ void helper_##op(CPUPPCState *env, target_ulong ea, target_ulong ra, \ target_ulong rb) \ { \ if (env->msr & R_MSR_PR_MASK) { \ if (!(env->spr[SPR_DEXCR] & R_DEXCR_PRO_##dexcr_aspect##_MASK || \ env->spr[SPR_HDEXCR] & R_HDEXCR_ENF_##dexcr_aspect##_MASK)) \ return; \ } else if (!(env->msr & R_MSR_HV_MASK)) { \ if (!(env->spr[SPR_DEXCR] & R_DEXCR_PNH_##dexcr_aspect##_MASK || \ env->spr[SPR_HDEXCR] & R_HDEXCR_ENF_##dexcr_aspect##_MASK)) \ return; \ } else if (!(env->msr & R_MSR_S_MASK)) { \ if (!(env->spr[SPR_HDEXCR] & R_HDEXCR_HNU_##dexcr_aspect##_MASK)) \ return; \ } \ \ do_hash(env, ea, ra, rb, key, store); \ } #else #define HELPER_HASH(op, key, store, dexcr_aspect) \ void helper_##op(CPUPPCState *env, target_ulong ea, target_ulong ra, \ target_ulong rb) \ { \ do_hash(env, ea, ra, rb, key, store); \ } #endif /* TARGET_PPC64 */ HELPER_HASH(HASHST, env->spr[SPR_HASHKEYR], true, NPHIE) HELPER_HASH(HASHCHK, env->spr[SPR_HASHKEYR], false, NPHIE) HELPER_HASH(HASHSTP, env->spr[SPR_HASHPKEYR], true, PHIE) HELPER_HASH(HASHCHKP, env->spr[SPR_HASHPKEYR], false, PHIE) #ifndef CONFIG_USER_ONLY void ppc_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) { CPUPPCState *env = cpu_env(cs); uint32_t insn; /* Restore state and reload the insn we executed, for filling in DSISR. */ cpu_restore_state(cs, retaddr); insn = ppc_ldl_code(env, env->nip); switch (env->mmu_model) { case POWERPC_MMU_SOFT_4xx: env->spr[SPR_40x_DEAR] = vaddr; break; case POWERPC_MMU_BOOKE: case POWERPC_MMU_BOOKE206: env->spr[SPR_BOOKE_DEAR] = vaddr; break; default: env->spr[SPR_DAR] = vaddr; break; } cs->exception_index = POWERPC_EXCP_ALIGN; env->error_code = insn & 0x03FF0000; cpu_loop_exit(cs); } void ppc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr vaddr, unsigned size, MMUAccessType access_type, int mmu_idx, MemTxAttrs attrs, MemTxResult response, uintptr_t retaddr) { CPUPPCState *env = cpu_env(cs); switch (env->excp_model) { #if defined(TARGET_PPC64) case POWERPC_EXCP_POWER8: case POWERPC_EXCP_POWER9: case POWERPC_EXCP_POWER10: case POWERPC_EXCP_POWER11: /* * Machine check codes can be found in processor User Manual or * Linux or skiboot source. */ if (access_type == MMU_DATA_LOAD) { env->spr[SPR_DAR] = vaddr; env->spr[SPR_DSISR] = PPC_BIT(57); env->error_code = PPC_BIT(42); } else if (access_type == MMU_DATA_STORE) { /* * MCE for stores in POWER is asynchronous so hardware does * not set DAR, but QEMU can do better. */ env->spr[SPR_DAR] = vaddr; env->error_code = PPC_BIT(36) | PPC_BIT(43) | PPC_BIT(45); env->error_code |= PPC_BIT(42); } else { /* Fetch */ /* * is_prefix_insn_excp() tests !PPC_BIT(42) to avoid fetching * the instruction, so that must always be clear for fetches. */ env->error_code = PPC_BIT(36) | PPC_BIT(44) | PPC_BIT(45); } break; #endif default: /* * TODO: Check behaviour for other CPUs, for now do nothing. * Could add a basic MCE even if real hardware ignores. */ return; } cs->exception_index = POWERPC_EXCP_MCHECK; cpu_loop_exit_restore(cs, retaddr); } void ppc_cpu_debug_excp_handler(CPUState *cs) { #if defined(TARGET_PPC64) CPUPPCState *env = cpu_env(cs); if (env->insns_flags2 & PPC2_ISA207S) { if (cs->watchpoint_hit) { if (cs->watchpoint_hit->flags & BP_CPU) { env->spr[SPR_DAR] = cs->watchpoint_hit->hitaddr; env->spr[SPR_DSISR] = PPC_BIT(41); cs->watchpoint_hit = NULL; raise_exception(env, POWERPC_EXCP_DSI); } cs->watchpoint_hit = NULL; } else if (cpu_breakpoint_test(cs, env->nip, BP_CPU)) { raise_exception_err(env, POWERPC_EXCP_TRACE, PPC_BIT(33) | PPC_BIT(43)); } } #endif } bool ppc_cpu_debug_check_breakpoint(CPUState *cs) { #if defined(TARGET_PPC64) CPUPPCState *env = cpu_env(cs); if (env->insns_flags2 & PPC2_ISA207S) { target_ulong priv; priv = env->spr[SPR_CIABR] & PPC_BITMASK(62, 63); switch (priv) { case 0x1: /* problem */ return env->msr & ((target_ulong)1 << MSR_PR); case 0x2: /* supervisor */ return (!(env->msr & ((target_ulong)1 << MSR_PR)) && !(env->msr & ((target_ulong)1 << MSR_HV))); case 0x3: /* hypervisor */ return (!(env->msr & ((target_ulong)1 << MSR_PR)) && (env->msr & ((target_ulong)1 << MSR_HV))); default: g_assert_not_reached(); } } #endif return false; } bool ppc_cpu_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) { #if defined(TARGET_PPC64) CPUPPCState *env = cpu_env(cs); bool wt, wti, hv, sv, pr; uint32_t dawrx; if ((env->insns_flags2 & PPC2_ISA207S) && (wp == env->dawr_watchpoint[0])) { dawrx = env->spr[SPR_DAWRX0]; } else if ((env->insns_flags2 & PPC2_ISA310) && (wp == env->dawr_watchpoint[1])) { dawrx = env->spr[SPR_DAWRX1]; } else { return false; } wt = extract32(dawrx, PPC_BIT_NR(59), 1); wti = extract32(dawrx, PPC_BIT_NR(60), 1); hv = extract32(dawrx, PPC_BIT_NR(61), 1); sv = extract32(dawrx, PPC_BIT_NR(62), 1); pr = extract32(dawrx, PPC_BIT_NR(62), 1); if ((env->msr & ((target_ulong)1 << MSR_PR)) && !pr) { return false; } else if ((env->msr & ((target_ulong)1 << MSR_HV)) && !hv) { return false; } else if (!sv) { return false; } if (!wti) { if (env->msr & ((target_ulong)1 << MSR_DR)) { return wt; } else { return !wt; } } return true; #endif return false; } /* * This stops the machine and logs CPU state without killing QEMU (like * cpu_abort()) because it is often a guest error as opposed to a QEMU error, * so the machine can still be debugged. */ G_NORETURN void powerpc_checkstop(CPUPPCState *env, const char *reason) { CPUState *cs = env_cpu(env); FILE *f; f = qemu_log_trylock(); if (f) { fprintf(f, "Entering checkstop state: %s\n", reason); cpu_dump_state(cs, f, CPU_DUMP_FPU | CPU_DUMP_CCOP); qemu_log_unlock(f); } /* * This stops the machine and logs CPU state without killing QEMU * (like cpu_abort()) so the machine can still be debugged (because * it is often a guest error). */ qemu_system_guest_panicked(NULL); cpu_loop_exit_noexc(cs); } /* Return true iff byteswap is needed to load instruction */ static inline bool insn_need_byteswap(CPUArchState *env) { /* SYSTEM builds TARGET_BIG_ENDIAN. Need to swap when MSR[LE] is set */ return !!(env->msr & ((target_ulong)1 << MSR_LE)); } uint32_t ppc_ldl_code(CPUArchState *env, target_ulong addr) { uint32_t insn = cpu_ldl_code(env, addr); if (insn_need_byteswap(env)) { insn = bswap32(insn); } return insn; } #if defined(TARGET_PPC64) void helper_attn(CPUPPCState *env) { /* POWER attn is unprivileged when enabled by HID, otherwise illegal */ if ((*env->check_attn)(env)) { powerpc_checkstop(env, "host executed attn"); } else { raise_exception_err(env, POWERPC_EXCP_HV_EMU, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } } void helper_scv(CPUPPCState *env, uint32_t lev) { if (env->spr[SPR_FSCR] & (1ull << FSCR_SCV)) { raise_exception_err(env, POWERPC_EXCP_SYSCALL_VECTORED, lev); } else { raise_exception_err(env, POWERPC_EXCP_FU, FSCR_IC_SCV); } } void helper_pminsn(CPUPPCState *env, uint32_t insn) { CPUState *cs = env_cpu(env); cs->halted = 1; /* Condition for waking up at 0x100 */ env->resume_as_sreset = (insn != PPC_PM_STOP) || (env->spr[SPR_PSSCR] & PSSCR_EC); /* HDECR is not to wake from PM state, it may have already fired */ if (env->resume_as_sreset) { PowerPCCPU *cpu = env_archcpu(env); ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); } ppc_maybe_interrupt(env); } #endif /* TARGET_PPC64 */ void helper_store_msr(CPUPPCState *env, target_ulong val) { uint32_t excp = hreg_store_msr(env, val, 0); if (excp != 0) { cpu_interrupt_exittb(env_cpu(env)); raise_exception(env, excp); } } void helper_ppc_maybe_interrupt(CPUPPCState *env) { ppc_maybe_interrupt(env); } static void do_rfi(CPUPPCState *env, target_ulong nip, target_ulong msr) { /* MSR:POW cannot be set by any form of rfi */ msr &= ~(1ULL << MSR_POW); /* MSR:TGPR cannot be set by any form of rfi */ if (env->flags & POWERPC_FLAG_TGPR) { msr &= ~(1ULL << MSR_TGPR); } #ifdef TARGET_PPC64 /* Switching to 32-bit ? Crop the nip */ if (!msr_is_64bit(env, msr)) { nip = (uint32_t)nip; } #else nip = (uint32_t)nip; #endif /* XXX: beware: this is false if VLE is supported */ env->nip = nip & ~((target_ulong)0x00000003); hreg_store_msr(env, msr, 1); trace_ppc_excp_rfi(env->nip, env->msr); /* * No need to raise an exception here, as rfi is always the last * insn of a TB */ cpu_interrupt_exittb(env_cpu(env)); /* Reset the reservation */ env->reserve_addr = -1; /* Context synchronizing: check if TCG TLB needs flush */ check_tlb_flush(env, false); } void helper_rfi(CPUPPCState *env) { do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1] & 0xfffffffful); } #ifdef TARGET_PPC64 void helper_rfid(CPUPPCState *env) { /* * The architecture defines a number of rules for which bits can * change but in practice, we handle this in hreg_store_msr() * which will be called by do_rfi(), so there is no need to filter * here */ do_rfi(env, env->spr[SPR_SRR0], env->spr[SPR_SRR1]); } void helper_rfscv(CPUPPCState *env) { do_rfi(env, env->lr, env->ctr); } void helper_hrfid(CPUPPCState *env) { do_rfi(env, env->spr[SPR_HSRR0], env->spr[SPR_HSRR1]); } void helper_rfebb(CPUPPCState *env, target_ulong s) { target_ulong msr = env->msr; /* * Handling of BESCR bits 32:33 according to PowerISA v3.1: * * "If BESCR 32:33 != 0b00 the instruction is treated as if * the instruction form were invalid." */ if (env->spr[SPR_BESCR] & BESCR_INVALID) { raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); } env->nip = env->spr[SPR_EBBRR]; /* Switching to 32-bit ? Crop the nip */ if (!msr_is_64bit(env, msr)) { env->nip = (uint32_t)env->spr[SPR_EBBRR]; } if (s) { env->spr[SPR_BESCR] |= BESCR_GE; } else { env->spr[SPR_BESCR] &= ~BESCR_GE; } } /* * Triggers or queues an 'ebb_excp' EBB exception. All checks * but FSCR, HFSCR and msr_pr must be done beforehand. * * PowerISA v3.1 isn't clear about whether an EBB should be * postponed or cancelled if the EBB facility is unavailable. * Our assumption here is that the EBB is cancelled if both * FSCR and HFSCR EBB facilities aren't available. */ static void do_ebb(CPUPPCState *env, int ebb_excp) { PowerPCCPU *cpu = env_archcpu(env); /* * FSCR_EBB and FSCR_IC_EBB are the same bits used with * HFSCR. */ helper_fscr_facility_check(env, FSCR_EBB, 0, FSCR_IC_EBB); helper_hfscr_facility_check(env, FSCR_EBB, "EBB", FSCR_IC_EBB); if (ebb_excp == POWERPC_EXCP_PERFM_EBB) { env->spr[SPR_BESCR] |= BESCR_PMEO; } else if (ebb_excp == POWERPC_EXCP_EXTERNAL_EBB) { env->spr[SPR_BESCR] |= BESCR_EEO; } if (FIELD_EX64(env->msr, MSR, PR)) { powerpc_excp(cpu, ebb_excp); } else { ppc_set_irq(cpu, PPC_INTERRUPT_EBB, 1); } } void raise_ebb_perfm_exception(CPUPPCState *env) { bool perfm_ebb_enabled = env->spr[SPR_POWER_MMCR0] & MMCR0_EBE && env->spr[SPR_BESCR] & BESCR_PME && env->spr[SPR_BESCR] & BESCR_GE; if (!perfm_ebb_enabled) { return; } do_ebb(env, POWERPC_EXCP_PERFM_EBB); } #endif /* TARGET_PPC64 */ /*****************************************************************************/ /* Embedded PowerPC specific helpers */ void helper_40x_rfci(CPUPPCState *env) { do_rfi(env, env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3]); } void helper_rfci(CPUPPCState *env) { do_rfi(env, env->spr[SPR_BOOKE_CSRR0], env->spr[SPR_BOOKE_CSRR1]); } void helper_rfdi(CPUPPCState *env) { /* FIXME: choose CSRR1 or DSRR1 based on cpu type */ do_rfi(env, env->spr[SPR_BOOKE_DSRR0], env->spr[SPR_BOOKE_DSRR1]); } void helper_rfmci(CPUPPCState *env) { /* FIXME: choose CSRR1 or MCSRR1 based on cpu type */ do_rfi(env, env->spr[SPR_BOOKE_MCSRR0], env->spr[SPR_BOOKE_MCSRR1]); } /* Embedded.Processor Control */ static int dbell2irq(target_ulong rb) { int msg = rb & DBELL_TYPE_MASK; int irq = -1; switch (msg) { case DBELL_TYPE_DBELL: irq = PPC_INTERRUPT_DOORBELL; break; case DBELL_TYPE_DBELL_CRIT: irq = PPC_INTERRUPT_CDOORBELL; break; case DBELL_TYPE_G_DBELL: case DBELL_TYPE_G_DBELL_CRIT: case DBELL_TYPE_G_DBELL_MC: /* XXX implement */ default: break; } return irq; } void helper_msgclr(CPUPPCState *env, target_ulong rb) { int irq = dbell2irq(rb); if (irq < 0) { return; } ppc_set_irq(env_archcpu(env), irq, 0); } void helper_msgsnd(target_ulong rb) { int irq = dbell2irq(rb); int pir = rb & DBELL_PIRTAG_MASK; CPUState *cs; if (irq < 0) { return; } bql_lock(); CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *cenv = &cpu->env; if ((rb & DBELL_BRDCAST_MASK) || (cenv->spr[SPR_BOOKE_PIR] == pir)) { ppc_set_irq(cpu, irq, 1); } } bql_unlock(); } /* Server Processor Control */ static bool dbell_type_server(target_ulong rb) { /* * A Directed Hypervisor Doorbell message is sent only if the * message type is 5. All other types are reserved and the * instruction is a no-op */ return (rb & DBELL_TYPE_MASK) == DBELL_TYPE_DBELL_SERVER; } static inline bool dbell_bcast_core(target_ulong rb) { return (rb & DBELL_BRDCAST_MASK) == DBELL_BRDCAST_CORE; } static inline bool dbell_bcast_subproc(target_ulong rb) { return (rb & DBELL_BRDCAST_MASK) == DBELL_BRDCAST_SUBPROC; } /* * Send an interrupt to a thread in the same core as env). */ static void msgsnd_core_tir(CPUPPCState *env, uint32_t target_tir, int irq) { PowerPCCPU *cpu = env_archcpu(env); CPUState *cs = env_cpu(env); if (ppc_cpu_lpar_single_threaded(cs)) { if (target_tir == 0) { ppc_set_irq(cpu, irq, 1); } } else { CPUState *ccs; /* Does iothread need to be locked for walking CPU list? */ bql_lock(); THREAD_SIBLING_FOREACH(cs, ccs) { PowerPCCPU *ccpu = POWERPC_CPU(ccs); if (target_tir == ppc_cpu_tir(ccpu)) { ppc_set_irq(ccpu, irq, 1); break; } } bql_unlock(); } } void helper_book3s_msgclr(CPUPPCState *env, target_ulong rb) { if (!dbell_type_server(rb)) { return; } ppc_set_irq(env_archcpu(env), PPC_INTERRUPT_HDOORBELL, 0); } void helper_book3s_msgsnd(CPUPPCState *env, target_ulong rb) { int pir = rb & DBELL_PROCIDTAG_MASK; bool brdcast = false; CPUState *cs, *ccs; PowerPCCPU *cpu; if (!dbell_type_server(rb)) { return; } /* POWER8 msgsnd is like msgsndp (targets a thread within core) */ if (!(env->insns_flags2 & PPC2_ISA300)) { msgsnd_core_tir(env, rb & PPC_BITMASK(57, 63), PPC_INTERRUPT_HDOORBELL); return; } /* POWER9 and later msgsnd is a global (targets any thread) */ cpu = ppc_get_vcpu_by_pir(pir); if (!cpu) { return; } cs = CPU(cpu); if (dbell_bcast_core(rb) || (dbell_bcast_subproc(rb) && (env->flags & POWERPC_FLAG_SMT_1LPAR))) { brdcast = true; } if (ppc_cpu_core_single_threaded(cs) || !brdcast) { ppc_set_irq(cpu, PPC_INTERRUPT_HDOORBELL, 1); return; } /* * Why is bql needed for walking CPU list? Answer seems to be because ppc * irq handling needs it, but ppc_set_irq takes the lock itself if needed, * so could this be removed? */ bql_lock(); THREAD_SIBLING_FOREACH(cs, ccs) { ppc_set_irq(POWERPC_CPU(ccs), PPC_INTERRUPT_HDOORBELL, 1); } bql_unlock(); } #ifdef TARGET_PPC64 void helper_book3s_msgclrp(CPUPPCState *env, target_ulong rb) { helper_hfscr_facility_check(env, HFSCR_MSGP, "msgclrp", HFSCR_IC_MSGP); if (!dbell_type_server(rb)) { return; } ppc_set_irq(env_archcpu(env), PPC_INTERRUPT_DOORBELL, 0); } /* * sends a message to another thread on the same * multi-threaded processor */ void helper_book3s_msgsndp(CPUPPCState *env, target_ulong rb) { helper_hfscr_facility_check(env, HFSCR_MSGP, "msgsndp", HFSCR_IC_MSGP); if (!dbell_type_server(rb)) { return; } msgsnd_core_tir(env, rb & PPC_BITMASK(57, 63), PPC_INTERRUPT_DOORBELL); } #endif /* TARGET_PPC64 */ /* Single-step tracing */ void helper_book3s_trace(CPUPPCState *env, target_ulong prev_ip) { uint32_t error_code = 0; if (env->insns_flags2 & PPC2_ISA207S) { /* Load/store reporting, SRR1[35, 36] and SDAR, are not implemented. */ env->spr[SPR_POWER_SIAR] = prev_ip; error_code = PPC_BIT(33); } raise_exception_err(env, POWERPC_EXCP_TRACE, error_code); } #endif /* !CONFIG_USER_ONLY */