/* * ARM AdvSIMD / SVE Vector Helpers * * Copyright (c) 2020 Linaro * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef TARGET_ARM_VEC_INTERNAL_H #define TARGET_ARM_VEC_INTERNAL_H #include "fpu/softfloat.h" typedef struct CPUArchState CPUARMState; /* * Note that vector data is stored in host-endian 64-bit chunks, * so addressing units smaller than that needs a host-endian fixup. * * The H macros are used when indexing an array of elements of size N. * * The H1_ macros are used when performing byte arithmetic and then * casting the final pointer to a type of size N. */ #if HOST_BIG_ENDIAN #define H1(x) ((x) ^ 7) #define H1_2(x) ((x) ^ 6) #define H1_4(x) ((x) ^ 4) #define H2(x) ((x) ^ 3) #define H4(x) ((x) ^ 1) #else #define H1(x) (x) #define H1_2(x) (x) #define H1_4(x) (x) #define H2(x) (x) #define H4(x) (x) #endif /* * Access to 64-bit elements isn't host-endian dependent; we provide H8 * and H1_8 so that when a function is being generated from a macro we * can pass these rather than an empty macro argument, for clarity. */ #define H8(x) (x) #define H1_8(x) (x) /* * Expand active predicate bits to bytes, for byte elements. */ extern const uint64_t expand_pred_b_data[256]; static inline uint64_t expand_pred_b(uint8_t byte) { return expand_pred_b_data[byte]; } /* Similarly for half-word elements. */ extern const uint64_t expand_pred_h_data[0x55 + 1]; static inline uint64_t expand_pred_h(uint8_t byte) { return expand_pred_h_data[byte & 0x55]; } static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz) { uint64_t *d = vd + opr_sz; uintptr_t i; for (i = opr_sz; i < max_sz; i += 8) { *d++ = 0; } } static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits, bool round, uint32_t *sat) { if (shift <= -bits) { /* Rounding the sign bit always produces 0. */ if (round) { return 0; } return src >> 31; } else if (shift < 0) { if (round) { src >>= -shift - 1; return (src >> 1) + (src & 1); } return src >> -shift; } else if (shift < bits) { int32_t val = src << shift; if (bits == 32) { if (!sat || val >> shift == src) { return val; } } else { int32_t extval = sextract32(val, 0, bits); if (!sat || val == extval) { return extval; } } } else if (!sat || src == 0) { return 0; } *sat = 1; return (1u << (bits - 1)) - (src >= 0); } static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits, bool round, uint32_t *sat) { if (shift <= -(bits + round)) { return 0; } else if (shift < 0) { if (round) { src >>= -shift - 1; return (src >> 1) + (src & 1); } return src >> -shift; } else if (shift < bits) { uint32_t val = src << shift; if (bits == 32) { if (!sat || val >> shift == src) { return val; } } else { uint32_t extval = extract32(val, 0, bits); if (!sat || val == extval) { return extval; } } } else if (!sat || src == 0) { return 0; } *sat = 1; return MAKE_64BIT_MASK(0, bits); } static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits, bool round, uint32_t *sat) { if (sat && src < 0) { *sat = 1; return 0; } return do_uqrshl_bhs(src, shift, bits, round, sat); } static inline int64_t do_sqrshl_d(int64_t src, int64_t shift, bool round, uint32_t *sat) { if (shift <= -64) { /* Rounding the sign bit always produces 0. */ if (round) { return 0; } return src >> 63; } else if (shift < 0) { if (round) { src >>= -shift - 1; return (src >> 1) + (src & 1); } return src >> -shift; } else if (shift < 64) { int64_t val = src << shift; if (!sat || val >> shift == src) { return val; } } else if (!sat || src == 0) { return 0; } *sat = 1; return src < 0 ? INT64_MIN : INT64_MAX; } static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift, bool round, uint32_t *sat) { if (shift <= -(64 + round)) { return 0; } else if (shift < 0) { if (round) { src >>= -shift - 1; return (src >> 1) + (src & 1); } return src >> -shift; } else if (shift < 64) { uint64_t val = src << shift; if (!sat || val >> shift == src) { return val; } } else if (!sat || src == 0) { return 0; } *sat = 1; return UINT64_MAX; } static inline int64_t do_suqrshl_d(int64_t src, int64_t shift, bool round, uint32_t *sat) { if (sat && src < 0) { *sat = 1; return 0; } return do_uqrshl_d(src, shift, round, sat); } int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool); int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *); int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *); int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool); #define do_ssat_b(val) MIN(MAX(val, INT8_MIN), INT8_MAX) #define do_ssat_h(val) MIN(MAX(val, INT16_MIN), INT16_MAX) #define do_ssat_s(val) MIN(MAX(val, INT32_MIN), INT32_MAX) #define do_usat_b(val) MIN(MAX(val, 0), UINT8_MAX) #define do_usat_h(val) MIN(MAX(val, 0), UINT16_MAX) #define do_usat_s(val) MIN(MAX(val, 0), UINT32_MAX) static inline uint64_t do_urshr(uint64_t x, unsigned sh) { if (likely(sh < 64)) { return (x >> sh) + ((x >> (sh - 1)) & 1); } else if (sh == 64) { return x >> 63; } else { return 0; } } static inline int64_t do_srshr(int64_t x, unsigned sh) { if (likely(sh < 64)) { return (x >> sh) + ((x >> (sh - 1)) & 1); } else { /* Rounding the sign bit always produces 0. */ return 0; } } /** * bfdotadd: * @sum: addend * @e1, @e2: multiplicand vectors * @fpst: floating-point status to use * * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum. * The @e1 and @e2 operands correspond to the 32-bit source vector * slots and contain two Bfloat16 values each. * * Corresponds to the ARM pseudocode function BFDotAdd, specialized * for the FPCR.EBF == 0 case. */ float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst); /** * bfdotadd_ebf: * @sum: addend * @e1, @e2: multiplicand vectors * @fpst: floating-point status to use * @fpst_odd: floating-point status to use for round-to-odd operations * * BFloat16 2-way dot product of @e1 & @e2, accumulating with @sum. * The @e1 and @e2 operands correspond to the 32-bit source vector * slots and contain two Bfloat16 values each. * * Corresponds to the ARM pseudocode function BFDotAdd, specialized * for the FPCR.EBF == 1 case. */ float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst, float_status *fpst_odd); /** * is_ebf: * @env: CPU state * @statusp: pointer to floating point status to fill in * @oddstatusp: pointer to floating point status to fill in for round-to-odd * * Determine whether a BFDotAdd operation should use FPCR.EBF = 0 * or FPCR.EBF = 1 semantics. On return, has initialized *statusp * and *oddstatusp to suitable float_status arguments to use with either * bfdotadd() or bfdotadd_ebf(). * Returns true for EBF = 1, false for EBF = 0. (The caller should use this * to decide whether to call bfdotadd() or bfdotadd_ebf().) */ bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp); /* * Negate as for FPCR.AH=1 -- do not negate NaNs. */ static inline float16 bfloat16_ah_chs(float16 a) { return bfloat16_is_any_nan(a) ? a : bfloat16_chs(a); } static inline float16 float16_ah_chs(float16 a) { return float16_is_any_nan(a) ? a : float16_chs(a); } static inline float32 float32_ah_chs(float32 a) { return float32_is_any_nan(a) ? a : float32_chs(a); } static inline float64 float64_ah_chs(float64 a) { return float64_is_any_nan(a) ? a : float64_chs(a); } static inline float16 float16_maybe_ah_chs(float16 a, bool fpcr_ah) { return fpcr_ah && float16_is_any_nan(a) ? a : float16_chs(a); } static inline float32 float32_maybe_ah_chs(float32 a, bool fpcr_ah) { return fpcr_ah && float32_is_any_nan(a) ? a : float32_chs(a); } static inline float64 float64_maybe_ah_chs(float64 a, bool fpcr_ah) { return fpcr_ah && float64_is_any_nan(a) ? a : float64_chs(a); } /* Not actually called directly as a helper, but uses similar machinery. */ bfloat16 helper_sme2_ah_fmax_b16(bfloat16 a, bfloat16 b, float_status *fpst); bfloat16 helper_sme2_ah_fmin_b16(bfloat16 a, bfloat16 b, float_status *fpst); float32 sve_f16_to_f32(float16 f, float_status *fpst); float16 sve_f32_to_f16(float32 f, float_status *fpst); /* * Decode helper functions for predicate as counter. */ typedef struct { unsigned count; unsigned lg2_stride; bool invert; } DecodeCounter; static inline DecodeCounter decode_counter(unsigned png, unsigned vl, unsigned v_esz) { DecodeCounter ret = { }; /* C.f. Arm pseudocode CounterToPredicate. */ if (likely(png & 0xf)) { unsigned p_esz = ctz32(png); /* * maxbit = log2(pl(bits) * 4) * = log2(vl(bytes) * 4) * = log2(vl) + 2 * maxbit_mask = ones * = (1 << (maxbit + 1)) - 1 * = (1 << (log2(vl) + 2 + 1)) - 1 * = (1 << (log2(vl) + 3)) - 1 * = (pow2ceil(vl) << 3) - 1 */ ret.count = png & (((unsigned)pow2ceil(vl) << 3) - 1); ret.count >>= p_esz + 1; ret.invert = (png >> 15) & 1; /* * The Arm pseudocode for CounterToPredicate expands the count to * a set of bits, and then the operation proceeds as for the original * interpretation of predicates as a set of bits. * * We can avoid the expansion by adjusting the count and supplying * an element stride. */ if (unlikely(p_esz != v_esz)) { if (p_esz < v_esz) { /* * For predicate esz < vector esz, the expanded predicate * will have more bits set than will be consumed. * Adjust the count down, rounding up. * Consider p_esz = MO_8, v_esz = MO_64, count 14: * The expanded predicate would be * 0011 1111 1111 1111 * The significant bits are * ...1 ...1 ...1 ...1 */ unsigned shift = v_esz - p_esz; unsigned trunc = ret.count >> shift; ret.count = trunc + (ret.count != (trunc << shift)); } else { /* * For predicate esz > vector esz, the expanded predicate * will have bits set only at power-of-two multiples of * the vector esz. Bits at other multiples will all be * false. Adjust the count up, and supply the caller * with a stride of elements to skip. */ unsigned shift = p_esz - v_esz; ret.count <<= shift; ret.lg2_stride = shift; } } } return ret; } /* Extract @len bits from an array of uint64_t at offset @pos bits. */ static inline uint64_t extractn(uint64_t *p, unsigned pos, unsigned len) { uint64_t x; p += pos / 64; pos = pos % 64; x = p[0]; if (pos + len > 64) { x = (x >> pos) | (p[1] << (-pos & 63)); pos = 0; } return extract64(x, pos, len); } /* Deposit @len bits into an array of uint64_t at offset @pos bits. */ static inline void depositn(uint64_t *p, unsigned pos, unsigned len, uint64_t val) { p += pos / 64; pos = pos % 64; if (pos + len <= 64) { p[0] = deposit64(p[0], pos, len, val); } else { unsigned len0 = 64 - pos; unsigned len1 = len - len0; p[0] = deposit64(p[0], pos, len0, val); p[1] = deposit64(p[1], 0, len1, val >> len0); } } #endif /* TARGET_ARM_VEC_INTERNAL_H */