aboutsummaryrefslogtreecommitdiff
path: root/polly/lib/Analysis/ScopBuilder.cpp
blob: 1817797fc579f26d479c47f6690a30d070a38196 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
//===- ScopBuilder.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the SCoP
// detection derived from their LLVM-IR code.
//
//===----------------------------------------------------------------------===//

#include "polly/ScopBuilder.h"
#include "polly/Options.h"
#include "polly/ScopDetection.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/Delinearization.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-scops"

STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
STATISTIC(InfeasibleScops,
          "Number of SCoPs with statically infeasible context.");

bool polly::ModelReadOnlyScalars;

// The maximal number of dimensions we allow during invariant load construction.
// More complex access ranges will result in very high compile time and are also
// unlikely to result in good code. This value is very high and should only
// trigger for corner cases (e.g., the "dct_luma" function in h264, SPEC2006).
static unsigned const MaxDimensionsInAccessRange = 9;

static cl::opt<bool, true> XModelReadOnlyScalars(
    "polly-analyze-read-only-scalars",
    cl::desc("Model read-only scalar values in the scop description"),
    cl::location(ModelReadOnlyScalars), cl::Hidden, cl::init(true),
    cl::cat(PollyCategory));

static cl::opt<int>
    OptComputeOut("polly-analysis-computeout",
                  cl::desc("Bound the scop analysis by a maximal amount of "
                           "computational steps (0 means no bound)"),
                  cl::Hidden, cl::init(800000), cl::cat(PollyCategory));

static cl::opt<bool> PollyAllowDereferenceOfAllFunctionParams(
    "polly-allow-dereference-of-all-function-parameters",
    cl::desc(
        "Treat all parameters to functions that are pointers as dereferencible."
        " This is useful for invariant load hoisting, since we can generate"
        " less runtime checks. This is only valid if all pointers to functions"
        " are always initialized, so that Polly can choose to hoist"
        " their loads. "),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<bool>
    PollyIgnoreInbounds("polly-ignore-inbounds",
                        cl::desc("Do not take inbounds assumptions at all"),
                        cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
    "polly-rtc-max-arrays-per-group",
    cl::desc("The maximal number of arrays to compare in each alias group."),
    cl::Hidden, cl::init(20), cl::cat(PollyCategory));

static cl::opt<unsigned> RunTimeChecksMaxAccessDisjuncts(
    "polly-rtc-max-array-disjuncts",
    cl::desc("The maximal number of disjunts allowed in memory accesses to "
             "to build RTCs."),
    cl::Hidden, cl::init(8), cl::cat(PollyCategory));

static cl::opt<unsigned> RunTimeChecksMaxParameters(
    "polly-rtc-max-parameters",
    cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
    cl::init(8), cl::cat(PollyCategory));

static cl::opt<bool> UnprofitableScalarAccs(
    "polly-unprofitable-scalar-accs",
    cl::desc("Count statements with scalar accesses as not optimizable"),
    cl::Hidden, cl::init(false), cl::cat(PollyCategory));

static cl::opt<std::string> UserContextStr(
    "polly-context", cl::value_desc("isl parameter set"),
    cl::desc("Provide additional constraints on the context parameters"),
    cl::init(""), cl::cat(PollyCategory));

static cl::opt<bool> DetectReductions("polly-detect-reductions",
                                      cl::desc("Detect and exploit reductions"),
                                      cl::Hidden, cl::init(true),
                                      cl::cat(PollyCategory));

// Multiplicative reductions can be disabled separately as these kind of
// operations can overflow easily. Additive reductions and bit operations
// are in contrast pretty stable.
static cl::opt<bool> DisableMultiplicativeReductions(
    "polly-disable-multiplicative-reductions",
    cl::desc("Disable multiplicative reductions"), cl::Hidden,
    cl::cat(PollyCategory));

enum class GranularityChoice { BasicBlocks, ScalarIndependence, Stores };

static cl::opt<GranularityChoice> StmtGranularity(
    "polly-stmt-granularity",
    cl::desc(
        "Algorithm to use for splitting basic blocks into multiple statements"),
    cl::values(clEnumValN(GranularityChoice::BasicBlocks, "bb",
                          "One statement per basic block"),
               clEnumValN(GranularityChoice::ScalarIndependence, "scalar-indep",
                          "Scalar independence heuristic"),
               clEnumValN(GranularityChoice::Stores, "store",
                          "Store-level granularity")),
    cl::init(GranularityChoice::ScalarIndependence), cl::cat(PollyCategory));

/// Helper to treat non-affine regions and basic blocks the same.
///
///{

/// Return the block that is the representing block for @p RN.
static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
  return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
                           : RN->getNodeAs<BasicBlock>();
}

/// Return the @p idx'th block that is executed after @p RN.
static inline BasicBlock *
getRegionNodeSuccessor(RegionNode *RN, Instruction *TI, unsigned idx) {
  if (RN->isSubRegion()) {
    assert(idx == 0);
    return RN->getNodeAs<Region>()->getExit();
  }
  return TI->getSuccessor(idx);
}

static bool containsErrorBlock(RegionNode *RN, const Region &R,
                               ScopDetection *SD) {
  if (!RN->isSubRegion())
    return SD->isErrorBlock(*RN->getNodeAs<BasicBlock>(), R);
  for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
    if (SD->isErrorBlock(*BB, R))
      return true;
  return false;
}

///}

/// Create a map to map from a given iteration to a subsequent iteration.
///
/// This map maps from SetSpace -> SetSpace where the dimensions @p Dim
/// is incremented by one and all other dimensions are equal, e.g.,
///             [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
///
/// if @p Dim is 2 and @p SetSpace has 4 dimensions.
static isl::map createNextIterationMap(isl::space SetSpace, unsigned Dim) {
  isl::space MapSpace = SetSpace.map_from_set();
  isl::map NextIterationMap = isl::map::universe(MapSpace);
  for (unsigned u : rangeIslSize(0, NextIterationMap.domain_tuple_dim()))
    if (u != Dim)
      NextIterationMap =
          NextIterationMap.equate(isl::dim::in, u, isl::dim::out, u);
  isl::constraint C =
      isl::constraint::alloc_equality(isl::local_space(MapSpace));
  C = C.set_constant_si(1);
  C = C.set_coefficient_si(isl::dim::in, Dim, 1);
  C = C.set_coefficient_si(isl::dim::out, Dim, -1);
  NextIterationMap = NextIterationMap.add_constraint(C);
  return NextIterationMap;
}

/// Add @p BSet to set @p BoundedParts if @p BSet is bounded.
static isl::set collectBoundedParts(isl::set S) {
  isl::set BoundedParts = isl::set::empty(S.get_space());
  for (isl::basic_set BSet : S.get_basic_set_list())
    if (BSet.is_bounded())
      BoundedParts = BoundedParts.unite(isl::set(BSet));
  return BoundedParts;
}

/// Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
///
/// @returns A separation of @p S into first an unbounded then a bounded subset,
///          both with regards to the dimension @p Dim.
static std::pair<isl::set, isl::set> partitionSetParts(isl::set S,
                                                       unsigned Dim) {
  for (unsigned u : rangeIslSize(0, S.tuple_dim()))
    S = S.lower_bound_si(isl::dim::set, u, 0);

  unsigned NumDimsS = unsignedFromIslSize(S.tuple_dim());
  isl::set OnlyDimS = S;

  // Remove dimensions that are greater than Dim as they are not interesting.
  assert(NumDimsS >= Dim + 1);
  OnlyDimS = OnlyDimS.project_out(isl::dim::set, Dim + 1, NumDimsS - Dim - 1);

  // Create artificial parametric upper bounds for dimensions smaller than Dim
  // as we are not interested in them.
  OnlyDimS = OnlyDimS.insert_dims(isl::dim::param, 0, Dim);

  for (unsigned u = 0; u < Dim; u++) {
    isl::constraint C = isl::constraint::alloc_inequality(
        isl::local_space(OnlyDimS.get_space()));
    C = C.set_coefficient_si(isl::dim::param, u, 1);
    C = C.set_coefficient_si(isl::dim::set, u, -1);
    OnlyDimS = OnlyDimS.add_constraint(C);
  }

  // Collect all bounded parts of OnlyDimS.
  isl::set BoundedParts = collectBoundedParts(OnlyDimS);

  // Create the dimensions greater than Dim again.
  BoundedParts =
      BoundedParts.insert_dims(isl::dim::set, Dim + 1, NumDimsS - Dim - 1);

  // Remove the artificial upper bound parameters again.
  BoundedParts = BoundedParts.remove_dims(isl::dim::param, 0, Dim);

  isl::set UnboundedParts = S.subtract(BoundedParts);
  return std::make_pair(UnboundedParts, BoundedParts);
}

/// Create the conditions under which @p L @p Pred @p R is true.
static isl::set buildConditionSet(ICmpInst::Predicate Pred, isl::pw_aff L,
                                  isl::pw_aff R) {
  switch (Pred) {
  case ICmpInst::ICMP_EQ:
    return L.eq_set(R);
  case ICmpInst::ICMP_NE:
    return L.ne_set(R);
  case ICmpInst::ICMP_SLT:
    return L.lt_set(R);
  case ICmpInst::ICMP_SLE:
    return L.le_set(R);
  case ICmpInst::ICMP_SGT:
    return L.gt_set(R);
  case ICmpInst::ICMP_SGE:
    return L.ge_set(R);
  case ICmpInst::ICMP_ULT:
    return L.lt_set(R);
  case ICmpInst::ICMP_UGT:
    return L.gt_set(R);
  case ICmpInst::ICMP_ULE:
    return L.le_set(R);
  case ICmpInst::ICMP_UGE:
    return L.ge_set(R);
  default:
    llvm_unreachable("Non integer predicate not supported");
  }
}

isl::set ScopBuilder::adjustDomainDimensions(isl::set Dom, Loop *OldL,
                                             Loop *NewL) {
  // If the loops are the same there is nothing to do.
  if (NewL == OldL)
    return Dom;

  int OldDepth = scop->getRelativeLoopDepth(OldL);
  int NewDepth = scop->getRelativeLoopDepth(NewL);
  // If both loops are non-affine loops there is nothing to do.
  if (OldDepth == -1 && NewDepth == -1)
    return Dom;

  // Distinguish three cases:
  //   1) The depth is the same but the loops are not.
  //      => One loop was left one was entered.
  //   2) The depth increased from OldL to NewL.
  //      => One loop was entered, none was left.
  //   3) The depth decreased from OldL to NewL.
  //      => Loops were left were difference of the depths defines how many.
  if (OldDepth == NewDepth) {
    assert(OldL->getParentLoop() == NewL->getParentLoop());
    Dom = Dom.project_out(isl::dim::set, NewDepth, 1);
    Dom = Dom.add_dims(isl::dim::set, 1);
  } else if (OldDepth < NewDepth) {
    assert(OldDepth + 1 == NewDepth);
    auto &R = scop->getRegion();
    (void)R;
    assert(NewL->getParentLoop() == OldL ||
           ((!OldL || !R.contains(OldL)) && R.contains(NewL)));
    Dom = Dom.add_dims(isl::dim::set, 1);
  } else {
    assert(OldDepth > NewDepth);
    unsigned Diff = OldDepth - NewDepth;
    unsigned NumDim = unsignedFromIslSize(Dom.tuple_dim());
    assert(NumDim >= Diff);
    Dom = Dom.project_out(isl::dim::set, NumDim - Diff, Diff);
  }

  return Dom;
}

/// Compute the isl representation for the SCEV @p E in this BB.
///
/// @param BB               The BB for which isl representation is to be
/// computed.
/// @param InvalidDomainMap A map of BB to their invalid domains.
/// @param E                The SCEV that should be translated.
/// @param NonNegative      Flag to indicate the @p E has to be non-negative.
///
/// Note that this function will also adjust the invalid context accordingly.

__isl_give isl_pw_aff *
ScopBuilder::getPwAff(BasicBlock *BB,
                      DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
                      const SCEV *E, bool NonNegative) {
  PWACtx PWAC = scop->getPwAff(E, BB, NonNegative, &RecordedAssumptions);
  InvalidDomainMap[BB] = InvalidDomainMap[BB].unite(PWAC.second);
  return PWAC.first.release();
}

/// Build condition sets for unsigned ICmpInst(s).
/// Special handling is required for unsigned operands to ensure that if
/// MSB (aka the Sign bit) is set for an operands in an unsigned ICmpInst
/// it should wrap around.
///
/// @param IsStrictUpperBound holds information on the predicate relation
/// between TestVal and UpperBound, i.e,
/// TestVal < UpperBound  OR  TestVal <= UpperBound
__isl_give isl_set *ScopBuilder::buildUnsignedConditionSets(
    BasicBlock *BB, Value *Condition, __isl_keep isl_set *Domain,
    const SCEV *SCEV_TestVal, const SCEV *SCEV_UpperBound,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    bool IsStrictUpperBound) {
  // Do not take NonNeg assumption on TestVal
  // as it might have MSB (Sign bit) set.
  isl_pw_aff *TestVal = getPwAff(BB, InvalidDomainMap, SCEV_TestVal, false);
  // Take NonNeg assumption on UpperBound.
  isl_pw_aff *UpperBound =
      getPwAff(BB, InvalidDomainMap, SCEV_UpperBound, true);

  // 0 <= TestVal
  isl_set *First =
      isl_pw_aff_le_set(isl_pw_aff_zero_on_domain(isl_local_space_from_space(
                            isl_pw_aff_get_domain_space(TestVal))),
                        isl_pw_aff_copy(TestVal));

  isl_set *Second;
  if (IsStrictUpperBound)
    // TestVal < UpperBound
    Second = isl_pw_aff_lt_set(TestVal, UpperBound);
  else
    // TestVal <= UpperBound
    Second = isl_pw_aff_le_set(TestVal, UpperBound);

  isl_set *ConsequenceCondSet = isl_set_intersect(First, Second);
  return ConsequenceCondSet;
}

bool ScopBuilder::buildConditionSets(
    BasicBlock *BB, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
  Value *Condition = getConditionFromTerminator(SI);
  assert(Condition && "No condition for switch");

  isl_pw_aff *LHS, *RHS;
  LHS = getPwAff(BB, InvalidDomainMap, SE.getSCEVAtScope(Condition, L));

  unsigned NumSuccessors = SI->getNumSuccessors();
  ConditionSets.resize(NumSuccessors);
  for (auto &Case : SI->cases()) {
    unsigned Idx = Case.getSuccessorIndex();
    ConstantInt *CaseValue = Case.getCaseValue();

    RHS = getPwAff(BB, InvalidDomainMap, SE.getSCEV(CaseValue));
    isl_set *CaseConditionSet =
        buildConditionSet(ICmpInst::ICMP_EQ, isl::manage_copy(LHS),
                          isl::manage(RHS))
            .release();
    ConditionSets[Idx] = isl_set_coalesce(
        isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
  }

  assert(ConditionSets[0] == nullptr && "Default condition set was set");
  isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
  for (unsigned u = 2; u < NumSuccessors; u++)
    ConditionSetUnion =
        isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
  ConditionSets[0] = isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion);

  isl_pw_aff_free(LHS);

  return true;
}

bool ScopBuilder::buildConditionSets(
    BasicBlock *BB, Value *Condition, Instruction *TI, Loop *L,
    __isl_keep isl_set *Domain,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
  isl_set *ConsequenceCondSet = nullptr;

  if (auto Load = dyn_cast<LoadInst>(Condition)) {
    const SCEV *LHSSCEV = SE.getSCEVAtScope(Load, L);
    const SCEV *RHSSCEV = SE.getZero(LHSSCEV->getType());
    bool NonNeg = false;
    isl_pw_aff *LHS = getPwAff(BB, InvalidDomainMap, LHSSCEV, NonNeg);
    isl_pw_aff *RHS = getPwAff(BB, InvalidDomainMap, RHSSCEV, NonNeg);
    ConsequenceCondSet = buildConditionSet(ICmpInst::ICMP_SLE, isl::manage(LHS),
                                           isl::manage(RHS))
                             .release();
  } else if (auto *PHI = dyn_cast<PHINode>(Condition)) {
    auto *Unique = dyn_cast<ConstantInt>(
        getUniqueNonErrorValue(PHI, &scop->getRegion(), &SD));
    assert(Unique &&
           "A PHINode condition should only be accepted by ScopDetection if "
           "getUniqueNonErrorValue returns non-NULL");

    if (Unique->isZero())
      ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
    else
      ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
  } else if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
    if (CCond->isZero())
      ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
    else
      ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
  } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
    auto Opcode = BinOp->getOpcode();
    assert(Opcode == Instruction::And || Opcode == Instruction::Or);

    bool Valid = buildConditionSets(BB, BinOp->getOperand(0), TI, L, Domain,
                                    InvalidDomainMap, ConditionSets) &&
                 buildConditionSets(BB, BinOp->getOperand(1), TI, L, Domain,
                                    InvalidDomainMap, ConditionSets);
    if (!Valid) {
      while (!ConditionSets.empty())
        isl_set_free(ConditionSets.pop_back_val());
      return false;
    }

    isl_set_free(ConditionSets.pop_back_val());
    isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
    isl_set_free(ConditionSets.pop_back_val());
    isl_set *ConsCondPart1 = ConditionSets.pop_back_val();

    if (Opcode == Instruction::And)
      ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
    else
      ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
  } else {
    auto *ICond = dyn_cast<ICmpInst>(Condition);
    assert(ICond &&
           "Condition of exiting branch was neither constant nor ICmp!");

    Region &R = scop->getRegion();

    isl_pw_aff *LHS, *RHS;
    // For unsigned comparisons we assumed the signed bit of neither operand
    // to be set. The comparison is equal to a signed comparison under this
    // assumption.
    bool NonNeg = ICond->isUnsigned();
    const SCEV *LeftOperand = SE.getSCEVAtScope(ICond->getOperand(0), L),
               *RightOperand = SE.getSCEVAtScope(ICond->getOperand(1), L);

    LeftOperand = tryForwardThroughPHI(LeftOperand, R, SE, &SD);
    RightOperand = tryForwardThroughPHI(RightOperand, R, SE, &SD);

    switch (ICond->getPredicate()) {
    case ICmpInst::ICMP_ULT:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, LeftOperand,
                                     RightOperand, InvalidDomainMap, true);
      break;
    case ICmpInst::ICMP_ULE:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, LeftOperand,
                                     RightOperand, InvalidDomainMap, false);
      break;
    case ICmpInst::ICMP_UGT:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, RightOperand,
                                     LeftOperand, InvalidDomainMap, true);
      break;
    case ICmpInst::ICMP_UGE:
      ConsequenceCondSet =
          buildUnsignedConditionSets(BB, Condition, Domain, RightOperand,
                                     LeftOperand, InvalidDomainMap, false);
      break;
    default:
      LHS = getPwAff(BB, InvalidDomainMap, LeftOperand, NonNeg);
      RHS = getPwAff(BB, InvalidDomainMap, RightOperand, NonNeg);
      ConsequenceCondSet = buildConditionSet(ICond->getPredicate(),
                                             isl::manage(LHS), isl::manage(RHS))
                               .release();
      break;
    }
  }

  // If no terminator was given we are only looking for parameter constraints
  // under which @p Condition is true/false.
  if (!TI)
    ConsequenceCondSet = isl_set_params(ConsequenceCondSet);
  assert(ConsequenceCondSet);
  ConsequenceCondSet = isl_set_coalesce(
      isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain)));

  isl_set *AlternativeCondSet = nullptr;
  bool TooComplex =
      isl_set_n_basic_set(ConsequenceCondSet) >= (int)MaxDisjunctsInDomain;

  if (!TooComplex) {
    AlternativeCondSet = isl_set_subtract(isl_set_copy(Domain),
                                          isl_set_copy(ConsequenceCondSet));
    TooComplex =
        isl_set_n_basic_set(AlternativeCondSet) >= (int)MaxDisjunctsInDomain;
  }

  if (TooComplex) {
    scop->invalidate(COMPLEXITY, TI ? TI->getDebugLoc() : DebugLoc(),
                     TI ? TI->getParent() : nullptr /* BasicBlock */);
    isl_set_free(AlternativeCondSet);
    isl_set_free(ConsequenceCondSet);
    return false;
  }

  ConditionSets.push_back(ConsequenceCondSet);
  ConditionSets.push_back(isl_set_coalesce(AlternativeCondSet));

  return true;
}

bool ScopBuilder::buildConditionSets(
    BasicBlock *BB, Instruction *TI, Loop *L, __isl_keep isl_set *Domain,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap,
    SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
    return buildConditionSets(BB, SI, L, Domain, InvalidDomainMap,
                              ConditionSets);

  assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.");

  if (TI->getNumSuccessors() == 1) {
    ConditionSets.push_back(isl_set_copy(Domain));
    return true;
  }

  Value *Condition = getConditionFromTerminator(TI);
  assert(Condition && "No condition for Terminator");

  return buildConditionSets(BB, Condition, TI, L, Domain, InvalidDomainMap,
                            ConditionSets);
}

bool ScopBuilder::propagateDomainConstraints(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  // Iterate over the region R and propagate the domain constrains from the
  // predecessors to the current node. In contrast to the
  // buildDomainsWithBranchConstraints function, this one will pull the domain
  // information from the predecessors instead of pushing it to the successors.
  // Additionally, we assume the domains to be already present in the domain
  // map here. However, we iterate again in reverse post order so we know all
  // predecessors have been visited before a block or non-affine subregion is
  // visited.

  ReversePostOrderTraversal<Region *> RTraversal(R);
  for (auto *RN : RTraversal) {
    // Recurse for affine subregions but go on for basic blocks and non-affine
    // subregions.
    if (RN->isSubRegion()) {
      Region *SubRegion = RN->getNodeAs<Region>();
      if (!scop->isNonAffineSubRegion(SubRegion)) {
        if (!propagateDomainConstraints(SubRegion, InvalidDomainMap))
          return false;
        continue;
      }
    }

    BasicBlock *BB = getRegionNodeBasicBlock(RN);
    isl::set &Domain = scop->getOrInitEmptyDomain(BB);
    assert(!Domain.is_null());

    // Under the union of all predecessor conditions we can reach this block.
    isl::set PredDom = getPredecessorDomainConstraints(BB, Domain);
    Domain = Domain.intersect(PredDom).coalesce();
    Domain = Domain.align_params(scop->getParamSpace());

    Loop *BBLoop = getRegionNodeLoop(RN, LI);
    if (BBLoop && BBLoop->getHeader() == BB && scop->contains(BBLoop))
      if (!addLoopBoundsToHeaderDomain(BBLoop, InvalidDomainMap))
        return false;
  }

  return true;
}

void ScopBuilder::propagateDomainConstraintsToRegionExit(
    BasicBlock *BB, Loop *BBLoop,
    SmallPtrSetImpl<BasicBlock *> &FinishedExitBlocks,
    DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  // Check if the block @p BB is the entry of a region. If so we propagate it's
  // domain to the exit block of the region. Otherwise we are done.
  auto *RI = scop->getRegion().getRegionInfo();
  auto *BBReg = RI ? RI->getRegionFor(BB) : nullptr;
  auto *ExitBB = BBReg ? BBReg->getExit() : nullptr;
  if (!BBReg || BBReg->getEntry() != BB || !scop->contains(ExitBB))
    return;

  // Do not propagate the domain if there is a loop backedge inside the region
  // that would prevent the exit block from being executed.
  auto *L = BBLoop;
  while (L && scop->contains(L)) {
    SmallVector<BasicBlock *, 4> LatchBBs;
    BBLoop->getLoopLatches(LatchBBs);
    for (auto *LatchBB : LatchBBs)
      if (BB != LatchBB && BBReg->contains(LatchBB))
        return;
    L = L->getParentLoop();
  }

  isl::set Domain = scop->getOrInitEmptyDomain(BB);
  assert(!Domain.is_null() && "Cannot propagate a nullptr");

  Loop *ExitBBLoop = getFirstNonBoxedLoopFor(ExitBB, LI, scop->getBoxedLoops());

  // Since the dimensions of @p BB and @p ExitBB might be different we have to
  // adjust the domain before we can propagate it.
  isl::set AdjustedDomain = adjustDomainDimensions(Domain, BBLoop, ExitBBLoop);
  isl::set &ExitDomain = scop->getOrInitEmptyDomain(ExitBB);

  // If the exit domain is not yet created we set it otherwise we "add" the
  // current domain.
  ExitDomain =
      !ExitDomain.is_null() ? AdjustedDomain.unite(ExitDomain) : AdjustedDomain;

  // Initialize the invalid domain.
  InvalidDomainMap[ExitBB] = ExitDomain.empty(ExitDomain.get_space());

  FinishedExitBlocks.insert(ExitBB);
}

isl::set ScopBuilder::getPredecessorDomainConstraints(BasicBlock *BB,
                                                      isl::set Domain) {
  // If @p BB is the ScopEntry we are done
  if (scop->getRegion().getEntry() == BB)
    return isl::set::universe(Domain.get_space());

  // The region info of this function.
  auto &RI = *scop->getRegion().getRegionInfo();

  Loop *BBLoop = getFirstNonBoxedLoopFor(BB, LI, scop->getBoxedLoops());

  // A domain to collect all predecessor domains, thus all conditions under
  // which the block is executed. To this end we start with the empty domain.
  isl::set PredDom = isl::set::empty(Domain.get_space());

  // Set of regions of which the entry block domain has been propagated to BB.
  // all predecessors inside any of the regions can be skipped.
  SmallSet<Region *, 8> PropagatedRegions;

  for (auto *PredBB : predecessors(BB)) {
    // Skip backedges.
    if (DT.dominates(BB, PredBB))
      continue;

    // If the predecessor is in a region we used for propagation we can skip it.
    auto PredBBInRegion = [PredBB](Region *PR) { return PR->contains(PredBB); };
    if (llvm::any_of(PropagatedRegions, PredBBInRegion)) {
      continue;
    }

    // Check if there is a valid region we can use for propagation, thus look
    // for a region that contains the predecessor and has @p BB as exit block.
    // FIXME: This was an side-effect-free (and possibly infinite) loop when
    //        committed and seems not to be needed.
    auto *PredR = RI.getRegionFor(PredBB);
    while (PredR->getExit() != BB && !PredR->contains(BB))
      PredR = PredR->getParent();

    // If a valid region for propagation was found use the entry of that region
    // for propagation, otherwise the PredBB directly.
    if (PredR->getExit() == BB) {
      PredBB = PredR->getEntry();
      PropagatedRegions.insert(PredR);
    }

    isl::set PredBBDom = scop->getDomainConditions(PredBB);
    Loop *PredBBLoop =
        getFirstNonBoxedLoopFor(PredBB, LI, scop->getBoxedLoops());
    PredBBDom = adjustDomainDimensions(PredBBDom, PredBBLoop, BBLoop);
    PredDom = PredDom.unite(PredBBDom);
  }

  return PredDom;
}

bool ScopBuilder::addLoopBoundsToHeaderDomain(
    Loop *L, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  int LoopDepth = scop->getRelativeLoopDepth(L);
  assert(LoopDepth >= 0 && "Loop in region should have at least depth one");

  BasicBlock *HeaderBB = L->getHeader();
  assert(scop->isDomainDefined(HeaderBB));
  isl::set &HeaderBBDom = scop->getOrInitEmptyDomain(HeaderBB);

  isl::map NextIterationMap =
      createNextIterationMap(HeaderBBDom.get_space(), LoopDepth);

  isl::set UnionBackedgeCondition = HeaderBBDom.empty(HeaderBBDom.get_space());

  SmallVector<BasicBlock *, 4> LatchBlocks;
  L->getLoopLatches(LatchBlocks);

  for (BasicBlock *LatchBB : LatchBlocks) {
    // If the latch is only reachable via error statements we skip it.
    if (!scop->isDomainDefined(LatchBB))
      continue;

    isl::set LatchBBDom = scop->getDomainConditions(LatchBB);

    isl::set BackedgeCondition;

    Instruction *TI = LatchBB->getTerminator();
    BranchInst *BI = dyn_cast<BranchInst>(TI);
    assert(BI && "Only branch instructions allowed in loop latches");

    if (BI->isUnconditional())
      BackedgeCondition = LatchBBDom;
    else {
      SmallVector<isl_set *, 8> ConditionSets;
      int idx = BI->getSuccessor(0) != HeaderBB;
      if (!buildConditionSets(LatchBB, TI, L, LatchBBDom.get(),
                              InvalidDomainMap, ConditionSets))
        return false;

      // Free the non back edge condition set as we do not need it.
      isl_set_free(ConditionSets[1 - idx]);

      BackedgeCondition = isl::manage(ConditionSets[idx]);
    }

    int LatchLoopDepth = scop->getRelativeLoopDepth(LI.getLoopFor(LatchBB));
    assert(LatchLoopDepth >= LoopDepth);
    BackedgeCondition = BackedgeCondition.project_out(
        isl::dim::set, LoopDepth + 1, LatchLoopDepth - LoopDepth);
    UnionBackedgeCondition = UnionBackedgeCondition.unite(BackedgeCondition);
  }

  isl::map ForwardMap = ForwardMap.lex_le(HeaderBBDom.get_space());
  for (int i = 0; i < LoopDepth; i++)
    ForwardMap = ForwardMap.equate(isl::dim::in, i, isl::dim::out, i);

  isl::set UnionBackedgeConditionComplement =
      UnionBackedgeCondition.complement();
  UnionBackedgeConditionComplement =
      UnionBackedgeConditionComplement.lower_bound_si(isl::dim::set, LoopDepth,
                                                      0);
  UnionBackedgeConditionComplement =
      UnionBackedgeConditionComplement.apply(ForwardMap);
  HeaderBBDom = HeaderBBDom.subtract(UnionBackedgeConditionComplement);
  HeaderBBDom = HeaderBBDom.apply(NextIterationMap);

  auto Parts = partitionSetParts(HeaderBBDom, LoopDepth);
  HeaderBBDom = Parts.second;

  // Check if there is a <nsw> tagged AddRec for this loop and if so do not
  // require a runtime check. The assumption is already implied by the <nsw>
  // tag.
  bool RequiresRTC = !scop->hasNSWAddRecForLoop(L);

  isl::set UnboundedCtx = Parts.first.params();
  recordAssumption(&RecordedAssumptions, INFINITELOOP, UnboundedCtx,
                   HeaderBB->getTerminator()->getDebugLoc(), AS_RESTRICTION,
                   nullptr, RequiresRTC);
  return true;
}

void ScopBuilder::buildInvariantEquivalenceClasses() {
  DenseMap<std::pair<const SCEV *, Type *>, LoadInst *> EquivClasses;

  const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
  for (LoadInst *LInst : RIL) {
    const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand());

    Type *Ty = LInst->getType();
    LoadInst *&ClassRep = EquivClasses[std::make_pair(PointerSCEV, Ty)];
    if (ClassRep) {
      scop->addInvariantLoadMapping(LInst, ClassRep);
      continue;
    }

    ClassRep = LInst;
    scop->addInvariantEquivClass(
        InvariantEquivClassTy{PointerSCEV, MemoryAccessList(), {}, Ty});
  }
}

bool ScopBuilder::buildDomains(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  bool IsOnlyNonAffineRegion = scop->isNonAffineSubRegion(R);
  auto *EntryBB = R->getEntry();
  auto *L = IsOnlyNonAffineRegion ? nullptr : LI.getLoopFor(EntryBB);
  int LD = scop->getRelativeLoopDepth(L);
  auto *S =
      isl_set_universe(isl_space_set_alloc(scop->getIslCtx().get(), 0, LD + 1));

  InvalidDomainMap[EntryBB] = isl::manage(isl_set_empty(isl_set_get_space(S)));
  isl::set Domain = isl::manage(S);
  scop->setDomain(EntryBB, Domain);

  if (IsOnlyNonAffineRegion)
    return !containsErrorBlock(R->getNode(), *R, &SD);

  if (!buildDomainsWithBranchConstraints(R, InvalidDomainMap))
    return false;

  if (!propagateDomainConstraints(R, InvalidDomainMap))
    return false;

  // Error blocks and blocks dominated by them have been assumed to never be
  // executed. Representing them in the Scop does not add any value. In fact,
  // it is likely to cause issues during construction of the ScopStmts. The
  // contents of error blocks have not been verified to be expressible and
  // will cause problems when building up a ScopStmt for them.
  // Furthermore, basic blocks dominated by error blocks may reference
  // instructions in the error block which, if the error block is not modeled,
  // can themselves not be constructed properly. To this end we will replace
  // the domains of error blocks and those only reachable via error blocks
  // with an empty set. Additionally, we will record for each block under which
  // parameter combination it would be reached via an error block in its
  // InvalidDomain. This information is needed during load hoisting.
  if (!propagateInvalidStmtDomains(R, InvalidDomainMap))
    return false;

  return true;
}

bool ScopBuilder::buildDomainsWithBranchConstraints(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  // To create the domain for each block in R we iterate over all blocks and
  // subregions in R and propagate the conditions under which the current region
  // element is executed. To this end we iterate in reverse post order over R as
  // it ensures that we first visit all predecessors of a region node (either a
  // basic block or a subregion) before we visit the region node itself.
  // Initially, only the domain for the SCoP region entry block is set and from
  // there we propagate the current domain to all successors, however we add the
  // condition that the successor is actually executed next.
  // As we are only interested in non-loop carried constraints here we can
  // simply skip loop back edges.

  SmallPtrSet<BasicBlock *, 8> FinishedExitBlocks;
  ReversePostOrderTraversal<Region *> RTraversal(R);
  for (auto *RN : RTraversal) {
    // Recurse for affine subregions but go on for basic blocks and non-affine
    // subregions.
    if (RN->isSubRegion()) {
      Region *SubRegion = RN->getNodeAs<Region>();
      if (!scop->isNonAffineSubRegion(SubRegion)) {
        if (!buildDomainsWithBranchConstraints(SubRegion, InvalidDomainMap))
          return false;
        continue;
      }
    }

    if (containsErrorBlock(RN, scop->getRegion(), &SD))
      scop->notifyErrorBlock();
    ;

    BasicBlock *BB = getRegionNodeBasicBlock(RN);
    Instruction *TI = BB->getTerminator();

    if (isa<UnreachableInst>(TI))
      continue;

    if (!scop->isDomainDefined(BB))
      continue;
    isl::set Domain = scop->getDomainConditions(BB);

    scop->updateMaxLoopDepth(unsignedFromIslSize(Domain.tuple_dim()));

    auto *BBLoop = getRegionNodeLoop(RN, LI);
    // Propagate the domain from BB directly to blocks that have a superset
    // domain, at the moment only region exit nodes of regions that start in BB.
    propagateDomainConstraintsToRegionExit(BB, BBLoop, FinishedExitBlocks,
                                           InvalidDomainMap);

    // If all successors of BB have been set a domain through the propagation
    // above we do not need to build condition sets but can just skip this
    // block. However, it is important to note that this is a local property
    // with regards to the region @p R. To this end FinishedExitBlocks is a
    // local variable.
    auto IsFinishedRegionExit = [&FinishedExitBlocks](BasicBlock *SuccBB) {
      return FinishedExitBlocks.count(SuccBB);
    };
    if (std::all_of(succ_begin(BB), succ_end(BB), IsFinishedRegionExit))
      continue;

    // Build the condition sets for the successor nodes of the current region
    // node. If it is a non-affine subregion we will always execute the single
    // exit node, hence the single entry node domain is the condition set. For
    // basic blocks we use the helper function buildConditionSets.
    SmallVector<isl_set *, 8> ConditionSets;
    if (RN->isSubRegion())
      ConditionSets.push_back(Domain.copy());
    else if (!buildConditionSets(BB, TI, BBLoop, Domain.get(), InvalidDomainMap,
                                 ConditionSets))
      return false;

    // Now iterate over the successors and set their initial domain based on
    // their condition set. We skip back edges here and have to be careful when
    // we leave a loop not to keep constraints over a dimension that doesn't
    // exist anymore.
    assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size());
    for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
      isl::set CondSet = isl::manage(ConditionSets[u]);
      BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);

      // Skip blocks outside the region.
      if (!scop->contains(SuccBB))
        continue;

      // If we propagate the domain of some block to "SuccBB" we do not have to
      // adjust the domain.
      if (FinishedExitBlocks.count(SuccBB))
        continue;

      // Skip back edges.
      if (DT.dominates(SuccBB, BB))
        continue;

      Loop *SuccBBLoop =
          getFirstNonBoxedLoopFor(SuccBB, LI, scop->getBoxedLoops());

      CondSet = adjustDomainDimensions(CondSet, BBLoop, SuccBBLoop);

      // Set the domain for the successor or merge it with an existing domain in
      // case there are multiple paths (without loop back edges) to the
      // successor block.
      isl::set &SuccDomain = scop->getOrInitEmptyDomain(SuccBB);

      if (!SuccDomain.is_null()) {
        SuccDomain = SuccDomain.unite(CondSet).coalesce();
      } else {
        // Initialize the invalid domain.
        InvalidDomainMap[SuccBB] = CondSet.empty(CondSet.get_space());
        SuccDomain = CondSet;
      }

      SuccDomain = SuccDomain.detect_equalities();

      // Check if the maximal number of domain disjunctions was reached.
      // In case this happens we will clean up and bail.
      if (unsignedFromIslSize(SuccDomain.n_basic_set()) < MaxDisjunctsInDomain)
        continue;

      scop->invalidate(COMPLEXITY, DebugLoc());
      while (++u < ConditionSets.size())
        isl_set_free(ConditionSets[u]);
      return false;
    }
  }

  return true;
}

bool ScopBuilder::propagateInvalidStmtDomains(
    Region *R, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  ReversePostOrderTraversal<Region *> RTraversal(R);
  for (auto *RN : RTraversal) {

    // Recurse for affine subregions but go on for basic blocks and non-affine
    // subregions.
    if (RN->isSubRegion()) {
      Region *SubRegion = RN->getNodeAs<Region>();
      if (!scop->isNonAffineSubRegion(SubRegion)) {
        propagateInvalidStmtDomains(SubRegion, InvalidDomainMap);
        continue;
      }
    }

    bool ContainsErrorBlock = containsErrorBlock(RN, scop->getRegion(), &SD);
    BasicBlock *BB = getRegionNodeBasicBlock(RN);
    isl::set &Domain = scop->getOrInitEmptyDomain(BB);
    assert(!Domain.is_null() && "Cannot propagate a nullptr");

    isl::set InvalidDomain = InvalidDomainMap[BB];

    bool IsInvalidBlock = ContainsErrorBlock || Domain.is_subset(InvalidDomain);

    if (!IsInvalidBlock) {
      InvalidDomain = InvalidDomain.intersect(Domain);
    } else {
      InvalidDomain = Domain;
      isl::set DomPar = Domain.params();
      recordAssumption(&RecordedAssumptions, ERRORBLOCK, DomPar,
                       BB->getTerminator()->getDebugLoc(), AS_RESTRICTION);
      Domain = isl::set::empty(Domain.get_space());
    }

    if (InvalidDomain.is_empty()) {
      InvalidDomainMap[BB] = InvalidDomain;
      continue;
    }

    auto *BBLoop = getRegionNodeLoop(RN, LI);
    auto *TI = BB->getTerminator();
    unsigned NumSuccs = RN->isSubRegion() ? 1 : TI->getNumSuccessors();
    for (unsigned u = 0; u < NumSuccs; u++) {
      auto *SuccBB = getRegionNodeSuccessor(RN, TI, u);

      // Skip successors outside the SCoP.
      if (!scop->contains(SuccBB))
        continue;

      // Skip backedges.
      if (DT.dominates(SuccBB, BB))
        continue;

      Loop *SuccBBLoop =
          getFirstNonBoxedLoopFor(SuccBB, LI, scop->getBoxedLoops());

      auto AdjustedInvalidDomain =
          adjustDomainDimensions(InvalidDomain, BBLoop, SuccBBLoop);

      isl::set SuccInvalidDomain = InvalidDomainMap[SuccBB];
      SuccInvalidDomain = SuccInvalidDomain.unite(AdjustedInvalidDomain);
      SuccInvalidDomain = SuccInvalidDomain.coalesce();

      InvalidDomainMap[SuccBB] = SuccInvalidDomain;

      // Check if the maximal number of domain disjunctions was reached.
      // In case this happens we will bail.
      if (unsignedFromIslSize(SuccInvalidDomain.n_basic_set()) <
          MaxDisjunctsInDomain)
        continue;

      InvalidDomainMap.erase(BB);
      scop->invalidate(COMPLEXITY, TI->getDebugLoc(), TI->getParent());
      return false;
    }

    InvalidDomainMap[BB] = InvalidDomain;
  }

  return true;
}

void ScopBuilder::buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI,
                                   Region *NonAffineSubRegion,
                                   bool IsExitBlock) {
  // PHI nodes that are in the exit block of the region, hence if IsExitBlock is
  // true, are not modeled as ordinary PHI nodes as they are not part of the
  // region. However, we model the operands in the predecessor blocks that are
  // part of the region as regular scalar accesses.

  // If we can synthesize a PHI we can skip it, however only if it is in
  // the region. If it is not it can only be in the exit block of the region.
  // In this case we model the operands but not the PHI itself.
  auto *Scope = LI.getLoopFor(PHI->getParent());
  if (!IsExitBlock && canSynthesize(PHI, *scop, &SE, Scope))
    return;

  // PHI nodes are modeled as if they had been demoted prior to the SCoP
  // detection. Hence, the PHI is a load of a new memory location in which the
  // incoming value was written at the end of the incoming basic block.
  bool OnlyNonAffineSubRegionOperands = true;
  for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
    Value *Op = PHI->getIncomingValue(u);
    BasicBlock *OpBB = PHI->getIncomingBlock(u);
    ScopStmt *OpStmt = scop->getIncomingStmtFor(PHI->getOperandUse(u));

    // Do not build PHI dependences inside a non-affine subregion, but make
    // sure that the necessary scalar values are still made available.
    if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB)) {
      auto *OpInst = dyn_cast<Instruction>(Op);
      if (!OpInst || !NonAffineSubRegion->contains(OpInst))
        ensureValueRead(Op, OpStmt);
      continue;
    }

    OnlyNonAffineSubRegionOperands = false;
    ensurePHIWrite(PHI, OpStmt, OpBB, Op, IsExitBlock);
  }

  if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
    addPHIReadAccess(PHIStmt, PHI);
  }
}

void ScopBuilder::buildScalarDependences(ScopStmt *UserStmt,
                                         Instruction *Inst) {
  assert(!isa<PHINode>(Inst));

  // Pull-in required operands.
  for (Use &Op : Inst->operands())
    ensureValueRead(Op.get(), UserStmt);
}

// Create a sequence of two schedules. Either argument may be null and is
// interpreted as the empty schedule. Can also return null if both schedules are
// empty.
static isl::schedule combineInSequence(isl::schedule Prev, isl::schedule Succ) {
  if (Prev.is_null())
    return Succ;
  if (Succ.is_null())
    return Prev;

  return Prev.sequence(Succ);
}

// Create an isl_multi_union_aff that defines an identity mapping from the
// elements of USet to their N-th dimension.
//
// # Example:
//
//            Domain: { A[i,j]; B[i,j,k] }
//                 N: 1
//
// Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
//
// @param USet   A union set describing the elements for which to generate a
//               mapping.
// @param N      The dimension to map to.
// @returns      A mapping from USet to its N-th dimension.
static isl::multi_union_pw_aff mapToDimension(isl::union_set USet, unsigned N) {
  assert(!USet.is_null());
  assert(!USet.is_empty());

  auto Result = isl::union_pw_multi_aff::empty(USet.get_space());

  for (isl::set S : USet.get_set_list()) {
    unsigned Dim = unsignedFromIslSize(S.tuple_dim());
    assert(Dim >= N);
    auto PMA = isl::pw_multi_aff::project_out_map(S.get_space(), isl::dim::set,
                                                  N, Dim - N);
    if (N > 1)
      PMA = PMA.drop_dims(isl::dim::out, 0, N - 1);

    Result = Result.add_pw_multi_aff(PMA);
  }

  return isl::multi_union_pw_aff(isl::union_pw_multi_aff(Result));
}

void ScopBuilder::buildSchedule() {
  Loop *L = getLoopSurroundingScop(*scop, LI);
  LoopStackTy LoopStack({LoopStackElementTy(L, {}, 0)});
  buildSchedule(scop->getRegion().getNode(), LoopStack);
  assert(LoopStack.size() == 1 && LoopStack.back().L == L);
  scop->setScheduleTree(LoopStack[0].Schedule);
}

/// To generate a schedule for the elements in a Region we traverse the Region
/// in reverse-post-order and add the contained RegionNodes in traversal order
/// to the schedule of the loop that is currently at the top of the LoopStack.
/// For loop-free codes, this results in a correct sequential ordering.
///
/// Example:
///           bb1(0)
///         /     \.
///      bb2(1)   bb3(2)
///         \    /  \.
///          bb4(3)  bb5(4)
///             \   /
///              bb6(5)
///
/// Including loops requires additional processing. Whenever a loop header is
/// encountered, the corresponding loop is added to the @p LoopStack. Starting
/// from an empty schedule, we first process all RegionNodes that are within
/// this loop and complete the sequential schedule at this loop-level before
/// processing about any other nodes. To implement this
/// loop-nodes-first-processing, the reverse post-order traversal is
/// insufficient. Hence, we additionally check if the traversal yields
/// sub-regions or blocks that are outside the last loop on the @p LoopStack.
/// These region-nodes are then queue and only traverse after the all nodes
/// within the current loop have been processed.
void ScopBuilder::buildSchedule(Region *R, LoopStackTy &LoopStack) {
  Loop *OuterScopLoop = getLoopSurroundingScop(*scop, LI);

  ReversePostOrderTraversal<Region *> RTraversal(R);
  std::deque<RegionNode *> WorkList(RTraversal.begin(), RTraversal.end());
  std::deque<RegionNode *> DelayList;
  bool LastRNWaiting = false;

  // Iterate over the region @p R in reverse post-order but queue
  // sub-regions/blocks iff they are not part of the last encountered but not
  // completely traversed loop. The variable LastRNWaiting is a flag to indicate
  // that we queued the last sub-region/block from the reverse post-order
  // iterator. If it is set we have to explore the next sub-region/block from
  // the iterator (if any) to guarantee progress. If it is not set we first try
  // the next queued sub-region/blocks.
  while (!WorkList.empty() || !DelayList.empty()) {
    RegionNode *RN;

    if ((LastRNWaiting && !WorkList.empty()) || DelayList.empty()) {
      RN = WorkList.front();
      WorkList.pop_front();
      LastRNWaiting = false;
    } else {
      RN = DelayList.front();
      DelayList.pop_front();
    }

    Loop *L = getRegionNodeLoop(RN, LI);
    if (!scop->contains(L))
      L = OuterScopLoop;

    Loop *LastLoop = LoopStack.back().L;
    if (LastLoop != L) {
      if (LastLoop && !LastLoop->contains(L)) {
        LastRNWaiting = true;
        DelayList.push_back(RN);
        continue;
      }
      LoopStack.push_back({L, {}, 0});
    }
    buildSchedule(RN, LoopStack);
  }
}

void ScopBuilder::buildSchedule(RegionNode *RN, LoopStackTy &LoopStack) {
  if (RN->isSubRegion()) {
    auto *LocalRegion = RN->getNodeAs<Region>();
    if (!scop->isNonAffineSubRegion(LocalRegion)) {
      buildSchedule(LocalRegion, LoopStack);
      return;
    }
  }

  assert(LoopStack.rbegin() != LoopStack.rend());
  auto LoopData = LoopStack.rbegin();
  LoopData->NumBlocksProcessed += getNumBlocksInRegionNode(RN);

  for (auto *Stmt : scop->getStmtListFor(RN)) {
    isl::union_set UDomain{Stmt->getDomain()};
    auto StmtSchedule = isl::schedule::from_domain(UDomain);
    LoopData->Schedule = combineInSequence(LoopData->Schedule, StmtSchedule);
  }

  // Check if we just processed the last node in this loop. If we did, finalize
  // the loop by:
  //
  //   - adding new schedule dimensions
  //   - folding the resulting schedule into the parent loop schedule
  //   - dropping the loop schedule from the LoopStack.
  //
  // Then continue to check surrounding loops, which might also have been
  // completed by this node.
  size_t Dimension = LoopStack.size();
  while (LoopData->L &&
         LoopData->NumBlocksProcessed == getNumBlocksInLoop(LoopData->L)) {
    isl::schedule Schedule = LoopData->Schedule;
    auto NumBlocksProcessed = LoopData->NumBlocksProcessed;

    assert(std::next(LoopData) != LoopStack.rend());
    Loop *L = LoopData->L;
    ++LoopData;
    --Dimension;

    if (!Schedule.is_null()) {
      isl::union_set Domain = Schedule.get_domain();
      isl::multi_union_pw_aff MUPA = mapToDimension(Domain, Dimension);
      Schedule = Schedule.insert_partial_schedule(MUPA);

      if (hasDisableAllTransformsHint(L)) {
        /// If any of the loops has a disable_nonforced heuristic, mark the
        /// entire SCoP as such. The ISL rescheduler can only reschedule the
        /// SCoP in its entirety.
        /// TODO: ScopDetection could avoid including such loops or warp them as
        /// boxed loop. It still needs to pass-through loop with user-defined
        /// metadata.
        scop->markDisableHeuristics();
      }

      // It is easier to insert the marks here that do it retroactively.
      isl::id IslLoopId = createIslLoopAttr(scop->getIslCtx(), L);
      if (!IslLoopId.is_null())
        Schedule =
            Schedule.get_root().child(0).insert_mark(IslLoopId).get_schedule();

      LoopData->Schedule = combineInSequence(LoopData->Schedule, Schedule);
    }

    LoopData->NumBlocksProcessed += NumBlocksProcessed;
  }
  // Now pop all loops processed up there from the LoopStack
  LoopStack.erase(LoopStack.begin() + Dimension, LoopStack.end());
}

void ScopBuilder::buildEscapingDependences(Instruction *Inst) {
  // Check for uses of this instruction outside the scop. Because we do not
  // iterate over such instructions and therefore did not "ensure" the existence
  // of a write, we must determine such use here.
  if (scop->isEscaping(Inst))
    ensureValueWrite(Inst);
}

void ScopBuilder::addRecordedAssumptions() {
  for (auto &AS : llvm::reverse(RecordedAssumptions)) {

    if (!AS.BB) {
      scop->addAssumption(AS.Kind, AS.Set, AS.Loc, AS.Sign,
                          nullptr /* BasicBlock */, AS.RequiresRTC);
      continue;
    }

    // If the domain was deleted the assumptions are void.
    isl_set *Dom = scop->getDomainConditions(AS.BB).release();
    if (!Dom)
      continue;

    // If a basic block was given use its domain to simplify the assumption.
    // In case of restrictions we know they only have to hold on the domain,
    // thus we can intersect them with the domain of the block. However, for
    // assumptions the domain has to imply them, thus:
    //                     _              _____
    //   Dom => S   <==>   A v B   <==>   A - B
    //
    // To avoid the complement we will register A - B as a restriction not an
    // assumption.
    isl_set *S = AS.Set.copy();
    if (AS.Sign == AS_RESTRICTION)
      S = isl_set_params(isl_set_intersect(S, Dom));
    else /* (AS.Sign == AS_ASSUMPTION) */
      S = isl_set_params(isl_set_subtract(Dom, S));

    scop->addAssumption(AS.Kind, isl::manage(S), AS.Loc, AS_RESTRICTION, AS.BB,
                        AS.RequiresRTC);
  }
}

void ScopBuilder::addUserAssumptions(
    AssumptionCache &AC, DenseMap<BasicBlock *, isl::set> &InvalidDomainMap) {
  for (auto &Assumption : AC.assumptions()) {
    auto *CI = dyn_cast_or_null<CallInst>(Assumption);
    if (!CI || CI->arg_size() != 1)
      continue;

    bool InScop = scop->contains(CI);
    if (!InScop && !scop->isDominatedBy(DT, CI->getParent()))
      continue;

    auto *L = LI.getLoopFor(CI->getParent());
    auto *Val = CI->getArgOperand(0);
    ParameterSetTy DetectedParams;
    auto &R = scop->getRegion();
    if (!isAffineConstraint(Val, &R, L, SE, DetectedParams)) {
      ORE.emit(
          OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreUserAssumption", CI)
          << "Non-affine user assumption ignored.");
      continue;
    }

    // Collect all newly introduced parameters.
    ParameterSetTy NewParams;
    for (auto *Param : DetectedParams) {
      Param = extractConstantFactor(Param, SE).second;
      Param = scop->getRepresentingInvariantLoadSCEV(Param);
      if (scop->isParam(Param))
        continue;
      NewParams.insert(Param);
    }

    SmallVector<isl_set *, 2> ConditionSets;
    auto *TI = InScop ? CI->getParent()->getTerminator() : nullptr;
    BasicBlock *BB = InScop ? CI->getParent() : R.getEntry();
    auto *Dom = InScop ? isl_set_copy(scop->getDomainConditions(BB).get())
                       : isl_set_copy(scop->getContext().get());
    assert(Dom && "Cannot propagate a nullptr.");
    bool Valid = buildConditionSets(BB, Val, TI, L, Dom, InvalidDomainMap,
                                    ConditionSets);
    isl_set_free(Dom);

    if (!Valid)
      continue;

    isl_set *AssumptionCtx = nullptr;
    if (InScop) {
      AssumptionCtx = isl_set_complement(isl_set_params(ConditionSets[1]));
      isl_set_free(ConditionSets[0]);
    } else {
      AssumptionCtx = isl_set_complement(ConditionSets[1]);
      AssumptionCtx = isl_set_intersect(AssumptionCtx, ConditionSets[0]);
    }

    // Project out newly introduced parameters as they are not otherwise useful.
    if (!NewParams.empty()) {
      for (isl_size u = 0; u < isl_set_n_param(AssumptionCtx); u++) {
        auto *Id = isl_set_get_dim_id(AssumptionCtx, isl_dim_param, u);
        auto *Param = static_cast<const SCEV *>(isl_id_get_user(Id));
        isl_id_free(Id);

        if (!NewParams.count(Param))
          continue;

        AssumptionCtx =
            isl_set_project_out(AssumptionCtx, isl_dim_param, u--, 1);
      }
    }
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "UserAssumption", CI)
             << "Use user assumption: "
             << stringFromIslObj(AssumptionCtx, "null"));
    isl::set newContext =
        scop->getContext().intersect(isl::manage(AssumptionCtx));
    scop->setContext(newContext);
  }
}

bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt) {
  Value *Val = Inst.getValueOperand();
  Type *ElementType = Val->getType();
  Value *Address = Inst.getPointerOperand();
  const SCEV *AccessFunction =
      SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
  const SCEVUnknown *BasePointer =
      dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
  enum MemoryAccess::AccessType AccType =
      isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;

  if (auto *BitCast = dyn_cast<BitCastInst>(Address))
    Address = BitCast->getOperand(0);

  auto *GEP = dyn_cast<GetElementPtrInst>(Address);
  if (!GEP || DL.getTypeAllocSize(GEP->getResultElementType()) !=
                  DL.getTypeAllocSize(ElementType))
    return false;

  SmallVector<const SCEV *, 4> Subscripts;
  SmallVector<int, 4> Sizes;
  getIndexExpressionsFromGEP(SE, GEP, Subscripts, Sizes);
  auto *BasePtr = GEP->getOperand(0);

  if (auto *BasePtrCast = dyn_cast<BitCastInst>(BasePtr))
    BasePtr = BasePtrCast->getOperand(0);

  // Check for identical base pointers to ensure that we do not miss index
  // offsets that have been added before this GEP is applied.
  if (BasePtr != BasePointer->getValue())
    return false;

  std::vector<const SCEV *> SizesSCEV;

  const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();

  Loop *SurroundingLoop = Stmt->getSurroundingLoop();
  for (auto *Subscript : Subscripts) {
    InvariantLoadsSetTy AccessILS;
    if (!isAffineExpr(&scop->getRegion(), SurroundingLoop, Subscript, SE,
                      &AccessILS))
      return false;

    for (LoadInst *LInst : AccessILS)
      if (!ScopRIL.count(LInst))
        return false;
  }

  if (Sizes.empty())
    return false;

  SizesSCEV.push_back(nullptr);

  for (auto V : Sizes)
    SizesSCEV.push_back(SE.getSCEV(
        ConstantInt::get(IntegerType::getInt64Ty(BasePtr->getContext()), V)));

  addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
                 true, Subscripts, SizesSCEV, Val);
  return true;
}

bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) {
  if (!PollyDelinearize)
    return false;

  Value *Address = Inst.getPointerOperand();
  Value *Val = Inst.getValueOperand();
  Type *ElementType = Val->getType();
  unsigned ElementSize = DL.getTypeAllocSize(ElementType);
  enum MemoryAccess::AccessType AccType =
      isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;

  const SCEV *AccessFunction =
      SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
  const SCEVUnknown *BasePointer =
      dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));

  assert(BasePointer && "Could not find base pointer");

  auto &InsnToMemAcc = scop->getInsnToMemAccMap();
  auto AccItr = InsnToMemAcc.find(Inst);
  if (AccItr == InsnToMemAcc.end())
    return false;

  std::vector<const SCEV *> Sizes = {nullptr};

  Sizes.insert(Sizes.end(), AccItr->second.Shape->DelinearizedSizes.begin(),
               AccItr->second.Shape->DelinearizedSizes.end());

  // In case only the element size is contained in the 'Sizes' array, the
  // access does not access a real multi-dimensional array. Hence, we allow
  // the normal single-dimensional access construction to handle this.
  if (Sizes.size() == 1)
    return false;

  // Remove the element size. This information is already provided by the
  // ElementSize parameter. In case the element size of this access and the
  // element size used for delinearization differs the delinearization is
  // incorrect. Hence, we invalidate the scop.
  //
  // TODO: Handle delinearization with differing element sizes.
  auto DelinearizedSize =
      cast<SCEVConstant>(Sizes.back())->getAPInt().getSExtValue();
  Sizes.pop_back();
  if (ElementSize != DelinearizedSize)
    scop->invalidate(DELINEARIZATION, Inst->getDebugLoc(), Inst->getParent());

  addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
                 true, AccItr->second.DelinearizedSubscripts, Sizes, Val);
  return true;
}

bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt) {
  auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Inst);

  if (MemIntr == nullptr)
    return false;

  auto *L = LI.getLoopFor(Inst->getParent());
  auto *LengthVal = SE.getSCEVAtScope(MemIntr->getLength(), L);
  assert(LengthVal);

  // Check if the length val is actually affine or if we overapproximate it
  InvariantLoadsSetTy AccessILS;
  const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();

  Loop *SurroundingLoop = Stmt->getSurroundingLoop();
  bool LengthIsAffine = isAffineExpr(&scop->getRegion(), SurroundingLoop,
                                     LengthVal, SE, &AccessILS);
  for (LoadInst *LInst : AccessILS)
    if (!ScopRIL.count(LInst))
      LengthIsAffine = false;
  if (!LengthIsAffine)
    LengthVal = nullptr;

  auto *DestPtrVal = MemIntr->getDest();
  assert(DestPtrVal);

  auto *DestAccFunc = SE.getSCEVAtScope(DestPtrVal, L);
  assert(DestAccFunc);
  // Ignore accesses to "NULL".
  // TODO: We could use this to optimize the region further, e.g., intersect
  //       the context with
  //          isl_set_complement(isl_set_params(getDomain()))
  //       as we know it would be undefined to execute this instruction anyway.
  if (DestAccFunc->isZero())
    return true;

  if (auto *U = dyn_cast<SCEVUnknown>(DestAccFunc)) {
    if (isa<ConstantPointerNull>(U->getValue()))
      return true;
  }

  auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(DestAccFunc));
  assert(DestPtrSCEV);
  DestAccFunc = SE.getMinusSCEV(DestAccFunc, DestPtrSCEV);
  addArrayAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, DestPtrSCEV->getValue(),
                 IntegerType::getInt8Ty(DestPtrVal->getContext()),
                 LengthIsAffine, {DestAccFunc, LengthVal}, {nullptr},
                 Inst.getValueOperand());

  auto *MemTrans = dyn_cast<MemTransferInst>(MemIntr);
  if (!MemTrans)
    return true;

  auto *SrcPtrVal = MemTrans->getSource();
  assert(SrcPtrVal);

  auto *SrcAccFunc = SE.getSCEVAtScope(SrcPtrVal, L);
  assert(SrcAccFunc);
  // Ignore accesses to "NULL".
  // TODO: See above TODO
  if (SrcAccFunc->isZero())
    return true;

  auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(SrcAccFunc));
  assert(SrcPtrSCEV);
  SrcAccFunc = SE.getMinusSCEV(SrcAccFunc, SrcPtrSCEV);
  addArrayAccess(Stmt, Inst, MemoryAccess::READ, SrcPtrSCEV->getValue(),
                 IntegerType::getInt8Ty(SrcPtrVal->getContext()),
                 LengthIsAffine, {SrcAccFunc, LengthVal}, {nullptr},
                 Inst.getValueOperand());

  return true;
}

bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt) {
  auto *CI = dyn_cast_or_null<CallInst>(Inst);

  if (CI == nullptr)
    return false;

  if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(CI) || isDebugCall(CI))
    return true;

  bool ReadOnly = false;
  auto *AF = SE.getConstant(IntegerType::getInt64Ty(CI->getContext()), 0);
  auto *CalledFunction = CI->getCalledFunction();
  switch (AA.getModRefBehavior(CalledFunction)) {
  case FMRB_UnknownModRefBehavior:
    llvm_unreachable("Unknown mod ref behaviour cannot be represented.");
  case FMRB_DoesNotAccessMemory:
    return true;
  case FMRB_OnlyWritesMemory:
  case FMRB_OnlyWritesInaccessibleMem:
  case FMRB_OnlyWritesInaccessibleOrArgMem:
  case FMRB_OnlyAccessesInaccessibleMem:
  case FMRB_OnlyAccessesInaccessibleOrArgMem:
    return false;
  case FMRB_OnlyReadsMemory:
  case FMRB_OnlyReadsInaccessibleMem:
  case FMRB_OnlyReadsInaccessibleOrArgMem:
    GlobalReads.emplace_back(Stmt, CI);
    return true;
  case FMRB_OnlyReadsArgumentPointees:
    ReadOnly = true;
    [[fallthrough]];
  case FMRB_OnlyWritesArgumentPointees:
  case FMRB_OnlyAccessesArgumentPointees: {
    auto AccType = ReadOnly ? MemoryAccess::READ : MemoryAccess::MAY_WRITE;
    Loop *L = LI.getLoopFor(Inst->getParent());
    for (const auto &Arg : CI->args()) {
      if (!Arg->getType()->isPointerTy())
        continue;

      auto *ArgSCEV = SE.getSCEVAtScope(Arg, L);
      if (ArgSCEV->isZero())
        continue;

      if (auto *U = dyn_cast<SCEVUnknown>(ArgSCEV)) {
        if (isa<ConstantPointerNull>(U->getValue()))
          return true;
      }

      auto *ArgBasePtr = cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
      addArrayAccess(Stmt, Inst, AccType, ArgBasePtr->getValue(),
                     ArgBasePtr->getType(), false, {AF}, {nullptr}, CI);
    }
    return true;
  }
  }

  return true;
}

void ScopBuilder::buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt) {
  Value *Address = Inst.getPointerOperand();
  Value *Val = Inst.getValueOperand();
  Type *ElementType = Val->getType();
  enum MemoryAccess::AccessType AccType =
      isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;

  const SCEV *AccessFunction =
      SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
  const SCEVUnknown *BasePointer =
      dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));

  assert(BasePointer && "Could not find base pointer");
  AccessFunction = SE.getMinusSCEV(AccessFunction, BasePointer);

  // Check if the access depends on a loop contained in a non-affine subregion.
  bool isVariantInNonAffineLoop = false;
  SetVector<const Loop *> Loops;
  findLoops(AccessFunction, Loops);
  for (const Loop *L : Loops)
    if (Stmt->contains(L)) {
      isVariantInNonAffineLoop = true;
      break;
    }

  InvariantLoadsSetTy AccessILS;

  Loop *SurroundingLoop = Stmt->getSurroundingLoop();
  bool IsAffine = !isVariantInNonAffineLoop &&
                  isAffineExpr(&scop->getRegion(), SurroundingLoop,
                               AccessFunction, SE, &AccessILS);

  const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
  for (LoadInst *LInst : AccessILS)
    if (!ScopRIL.count(LInst))
      IsAffine = false;

  if (!IsAffine && AccType == MemoryAccess::MUST_WRITE)
    AccType = MemoryAccess::MAY_WRITE;

  addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
                 IsAffine, {AccessFunction}, {nullptr}, Val);
}

void ScopBuilder::buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt) {
  if (buildAccessMemIntrinsic(Inst, Stmt))
    return;

  if (buildAccessCallInst(Inst, Stmt))
    return;

  if (buildAccessMultiDimFixed(Inst, Stmt))
    return;

  if (buildAccessMultiDimParam(Inst, Stmt))
    return;

  buildAccessSingleDim(Inst, Stmt);
}

void ScopBuilder::buildAccessFunctions() {
  for (auto &Stmt : *scop) {
    if (Stmt.isBlockStmt()) {
      buildAccessFunctions(&Stmt, *Stmt.getBasicBlock());
      continue;
    }

    Region *R = Stmt.getRegion();
    for (BasicBlock *BB : R->blocks())
      buildAccessFunctions(&Stmt, *BB, R);
  }

  // Build write accesses for values that are used after the SCoP.
  // The instructions defining them might be synthesizable and therefore not
  // contained in any statement, hence we iterate over the original instructions
  // to identify all escaping values.
  for (BasicBlock *BB : scop->getRegion().blocks()) {
    for (Instruction &Inst : *BB)
      buildEscapingDependences(&Inst);
  }
}

bool ScopBuilder::shouldModelInst(Instruction *Inst, Loop *L) {
  return !Inst->isTerminator() && !isIgnoredIntrinsic(Inst) &&
         !canSynthesize(Inst, *scop, &SE, L);
}

/// Generate a name for a statement.
///
/// @param BB     The basic block the statement will represent.
/// @param BBIdx  The index of the @p BB relative to other BBs/regions.
/// @param Count  The index of the created statement in @p BB.
/// @param IsMain Whether this is the main of all statement for @p BB. If true,
///               no suffix will be added.
/// @param IsLast Uses a special indicator for the last statement of a BB.
static std::string makeStmtName(BasicBlock *BB, long BBIdx, int Count,
                                bool IsMain, bool IsLast = false) {
  std::string Suffix;
  if (!IsMain) {
    if (UseInstructionNames)
      Suffix = '_';
    if (IsLast)
      Suffix += "last";
    else if (Count < 26)
      Suffix += 'a' + Count;
    else
      Suffix += std::to_string(Count);
  }
  return getIslCompatibleName("Stmt", BB, BBIdx, Suffix, UseInstructionNames);
}

/// Generate a name for a statement that represents a non-affine subregion.
///
/// @param R    The region the statement will represent.
/// @param RIdx The index of the @p R relative to other BBs/regions.
static std::string makeStmtName(Region *R, long RIdx) {
  return getIslCompatibleName("Stmt", R->getNameStr(), RIdx, "",
                              UseInstructionNames);
}

void ScopBuilder::buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore) {
  Loop *SurroundingLoop = LI.getLoopFor(BB);

  int Count = 0;
  long BBIdx = scop->getNextStmtIdx();
  std::vector<Instruction *> Instructions;
  for (Instruction &Inst : *BB) {
    if (shouldModelInst(&Inst, SurroundingLoop))
      Instructions.push_back(&Inst);
    if (Inst.getMetadata("polly_split_after") ||
        (SplitOnStore && isa<StoreInst>(Inst))) {
      std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
      scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
      Count++;
      Instructions.clear();
    }
  }

  std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
  scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
}

/// Is @p Inst an ordered instruction?
///
/// An unordered instruction is an instruction, such that a sequence of
/// unordered instructions can be permuted without changing semantics. Any
/// instruction for which this is not always the case is ordered.
static bool isOrderedInstruction(Instruction *Inst) {
  return Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory();
}

/// Join instructions to the same statement if one uses the scalar result of the
/// other.
static void joinOperandTree(EquivalenceClasses<Instruction *> &UnionFind,
                            ArrayRef<Instruction *> ModeledInsts) {
  for (Instruction *Inst : ModeledInsts) {
    if (isa<PHINode>(Inst))
      continue;

    for (Use &Op : Inst->operands()) {
      Instruction *OpInst = dyn_cast<Instruction>(Op.get());
      if (!OpInst)
        continue;

      // Check if OpInst is in the BB and is a modeled instruction.
      auto OpVal = UnionFind.findValue(OpInst);
      if (OpVal == UnionFind.end())
        continue;

      UnionFind.unionSets(Inst, OpInst);
    }
  }
}

/// Ensure that the order of ordered instructions does not change.
///
/// If we encounter an ordered instruction enclosed in instructions belonging to
/// a different statement (which might as well contain ordered instructions, but
/// this is not tested here), join them.
static void
joinOrderedInstructions(EquivalenceClasses<Instruction *> &UnionFind,
                        ArrayRef<Instruction *> ModeledInsts) {
  SetVector<Instruction *> SeenLeaders;
  for (Instruction *Inst : ModeledInsts) {
    if (!isOrderedInstruction(Inst))
      continue;

    Instruction *Leader = UnionFind.getLeaderValue(Inst);
    // Since previous iterations might have merged sets, some items in
    // SeenLeaders are not leaders anymore. However, The new leader of
    // previously merged instructions must be one of the former leaders of
    // these merged instructions.
    bool Inserted = SeenLeaders.insert(Leader);
    if (Inserted)
      continue;

    // Merge statements to close holes. Say, we have already seen statements A
    // and B, in this order. Then we see an instruction of A again and we would
    // see the pattern "A B A". This function joins all statements until the
    // only seen occurrence of A.
    for (Instruction *Prev : reverse(SeenLeaders)) {
      // We are backtracking from the last element until we see Inst's leader
      // in SeenLeaders and merge all into one set. Although leaders of
      // instructions change during the execution of this loop, it's irrelevant
      // as we are just searching for the element that we already confirmed is
      // in the list.
      if (Prev == Leader)
        break;
      UnionFind.unionSets(Prev, Leader);
    }
  }
}

/// If the BasicBlock has an edge from itself, ensure that the PHI WRITEs for
/// the incoming values from this block are executed after the PHI READ.
///
/// Otherwise it could overwrite the incoming value from before the BB with the
/// value for the next execution. This can happen if the PHI WRITE is added to
/// the statement with the instruction that defines the incoming value (instead
/// of the last statement of the same BB). To ensure that the PHI READ and WRITE
/// are in order, we put both into the statement. PHI WRITEs are always executed
/// after PHI READs when they are in the same statement.
///
/// TODO: This is an overpessimization. We only have to ensure that the PHI
/// WRITE is not put into a statement containing the PHI itself. That could also
/// be done by
/// - having all (strongly connected) PHIs in a single statement,
/// - unite only the PHIs in the operand tree of the PHI WRITE (because it only
///   has a chance of being lifted before a PHI by being in a statement with a
///   PHI that comes before in the basic block), or
/// - when uniting statements, ensure that no (relevant) PHIs are overtaken.
static void joinOrderedPHIs(EquivalenceClasses<Instruction *> &UnionFind,
                            ArrayRef<Instruction *> ModeledInsts) {
  for (Instruction *Inst : ModeledInsts) {
    PHINode *PHI = dyn_cast<PHINode>(Inst);
    if (!PHI)
      continue;

    int Idx = PHI->getBasicBlockIndex(PHI->getParent());
    if (Idx < 0)
      continue;

    Instruction *IncomingVal =
        dyn_cast<Instruction>(PHI->getIncomingValue(Idx));
    if (!IncomingVal)
      continue;

    UnionFind.unionSets(PHI, IncomingVal);
  }
}

void ScopBuilder::buildEqivClassBlockStmts(BasicBlock *BB) {
  Loop *L = LI.getLoopFor(BB);

  // Extracting out modeled instructions saves us from checking
  // shouldModelInst() repeatedly.
  SmallVector<Instruction *, 32> ModeledInsts;
  EquivalenceClasses<Instruction *> UnionFind;
  Instruction *MainInst = nullptr, *MainLeader = nullptr;
  for (Instruction &Inst : *BB) {
    if (!shouldModelInst(&Inst, L))
      continue;
    ModeledInsts.push_back(&Inst);
    UnionFind.insert(&Inst);

    // When a BB is split into multiple statements, the main statement is the
    // one containing the 'main' instruction. We select the first instruction
    // that is unlikely to be removed (because it has side-effects) as the main
    // one. It is used to ensure that at least one statement from the bb has the
    // same name as with -polly-stmt-granularity=bb.
    if (!MainInst && (isa<StoreInst>(Inst) ||
                      (isa<CallInst>(Inst) && !isa<IntrinsicInst>(Inst))))
      MainInst = &Inst;
  }

  joinOperandTree(UnionFind, ModeledInsts);
  joinOrderedInstructions(UnionFind, ModeledInsts);
  joinOrderedPHIs(UnionFind, ModeledInsts);

  // The list of instructions for statement (statement represented by the leader
  // instruction).
  MapVector<Instruction *, std::vector<Instruction *>> LeaderToInstList;

  // The order of statements must be preserved w.r.t. their ordered
  // instructions. Without this explicit scan, we would also use non-ordered
  // instructions (whose order is arbitrary) to determine statement order.
  for (Instruction *Inst : ModeledInsts) {
    if (!isOrderedInstruction(Inst))
      continue;

    auto LeaderIt = UnionFind.findLeader(Inst);
    if (LeaderIt == UnionFind.member_end())
      continue;

    // Insert element for the leader instruction.
    (void)LeaderToInstList[*LeaderIt];
  }

  // Collect the instructions of all leaders. UnionFind's member iterator
  // unfortunately are not in any specific order.
  for (Instruction *Inst : ModeledInsts) {
    auto LeaderIt = UnionFind.findLeader(Inst);
    if (LeaderIt == UnionFind.member_end())
      continue;

    if (Inst == MainInst)
      MainLeader = *LeaderIt;
    std::vector<Instruction *> &InstList = LeaderToInstList[*LeaderIt];
    InstList.push_back(Inst);
  }

  // Finally build the statements.
  int Count = 0;
  long BBIdx = scop->getNextStmtIdx();
  for (auto &Instructions : LeaderToInstList) {
    std::vector<Instruction *> &InstList = Instructions.second;

    // If there is no main instruction, make the first statement the main.
    bool IsMain = (MainInst ? MainLeader == Instructions.first : Count == 0);

    std::string Name = makeStmtName(BB, BBIdx, Count, IsMain);
    scop->addScopStmt(BB, Name, L, std::move(InstList));
    Count += 1;
  }

  // Unconditionally add an epilogue (last statement). It contains no
  // instructions, but holds the PHI write accesses for successor basic blocks,
  // if the incoming value is not defined in another statement if the same BB.
  // The epilogue becomes the main statement only if there is no other
  // statement that could become main.
  // The epilogue will be removed if no PHIWrite is added to it.
  std::string EpilogueName = makeStmtName(BB, BBIdx, Count, Count == 0, true);
  scop->addScopStmt(BB, EpilogueName, L, {});
}

void ScopBuilder::buildStmts(Region &SR) {
  if (scop->isNonAffineSubRegion(&SR)) {
    std::vector<Instruction *> Instructions;
    Loop *SurroundingLoop =
        getFirstNonBoxedLoopFor(SR.getEntry(), LI, scop->getBoxedLoops());
    for (Instruction &Inst : *SR.getEntry())
      if (shouldModelInst(&Inst, SurroundingLoop))
        Instructions.push_back(&Inst);
    long RIdx = scop->getNextStmtIdx();
    std::string Name = makeStmtName(&SR, RIdx);
    scop->addScopStmt(&SR, Name, SurroundingLoop, Instructions);
    return;
  }

  for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
    if (I->isSubRegion())
      buildStmts(*I->getNodeAs<Region>());
    else {
      BasicBlock *BB = I->getNodeAs<BasicBlock>();
      switch (StmtGranularity) {
      case GranularityChoice::BasicBlocks:
        buildSequentialBlockStmts(BB);
        break;
      case GranularityChoice::ScalarIndependence:
        buildEqivClassBlockStmts(BB);
        break;
      case GranularityChoice::Stores:
        buildSequentialBlockStmts(BB, true);
        break;
      }
    }
}

void ScopBuilder::buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB,
                                       Region *NonAffineSubRegion) {
  assert(
      Stmt &&
      "The exit BB is the only one that cannot be represented by a statement");
  assert(Stmt->represents(&BB));

  // We do not build access functions for error blocks, as they may contain
  // instructions we can not model.
  if (SD.isErrorBlock(BB, scop->getRegion()))
    return;

  auto BuildAccessesForInst = [this, Stmt,
                               NonAffineSubRegion](Instruction *Inst) {
    PHINode *PHI = dyn_cast<PHINode>(Inst);
    if (PHI)
      buildPHIAccesses(Stmt, PHI, NonAffineSubRegion, false);

    if (auto MemInst = MemAccInst::dyn_cast(*Inst)) {
      assert(Stmt && "Cannot build access function in non-existing statement");
      buildMemoryAccess(MemInst, Stmt);
    }

    // PHI nodes have already been modeled above and terminators that are
    // not part of a non-affine subregion are fully modeled and regenerated
    // from the polyhedral domains. Hence, they do not need to be modeled as
    // explicit data dependences.
    if (!PHI)
      buildScalarDependences(Stmt, Inst);
  };

  const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
  bool IsEntryBlock = (Stmt->getEntryBlock() == &BB);
  if (IsEntryBlock) {
    for (Instruction *Inst : Stmt->getInstructions())
      BuildAccessesForInst(Inst);
    if (Stmt->isRegionStmt())
      BuildAccessesForInst(BB.getTerminator());
  } else {
    for (Instruction &Inst : BB) {
      if (isIgnoredIntrinsic(&Inst))
        continue;

      // Invariant loads already have been processed.
      if (isa<LoadInst>(Inst) && RIL.count(cast<LoadInst>(&Inst)))
        continue;

      BuildAccessesForInst(&Inst);
    }
  }
}

MemoryAccess *ScopBuilder::addMemoryAccess(
    ScopStmt *Stmt, Instruction *Inst, MemoryAccess::AccessType AccType,
    Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue,
    ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
    MemoryKind Kind) {
  bool isKnownMustAccess = false;

  // Accesses in single-basic block statements are always executed.
  if (Stmt->isBlockStmt())
    isKnownMustAccess = true;

  if (Stmt->isRegionStmt()) {
    // Accesses that dominate the exit block of a non-affine region are always
    // executed. In non-affine regions there may exist MemoryKind::Values that
    // do not dominate the exit. MemoryKind::Values will always dominate the
    // exit and MemoryKind::PHIs only if there is at most one PHI_WRITE in the
    // non-affine region.
    if (Inst && DT.dominates(Inst->getParent(), Stmt->getRegion()->getExit()))
      isKnownMustAccess = true;
  }

  // Non-affine PHI writes do not "happen" at a particular instruction, but
  // after exiting the statement. Therefore they are guaranteed to execute and
  // overwrite the old value.
  if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI)
    isKnownMustAccess = true;

  if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE)
    AccType = MemoryAccess::MAY_WRITE;

  auto *Access = new MemoryAccess(Stmt, Inst, AccType, BaseAddress, ElementType,
                                  Affine, Subscripts, Sizes, AccessValue, Kind);

  scop->addAccessFunction(Access);
  Stmt->addAccess(Access);
  return Access;
}

void ScopBuilder::addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst,
                                 MemoryAccess::AccessType AccType,
                                 Value *BaseAddress, Type *ElementType,
                                 bool IsAffine,
                                 ArrayRef<const SCEV *> Subscripts,
                                 ArrayRef<const SCEV *> Sizes,
                                 Value *AccessValue) {
  ArrayBasePointers.insert(BaseAddress);
  addMemoryAccess(Stmt, MemAccInst, AccType, BaseAddress, ElementType, IsAffine,
                  AccessValue, Subscripts, Sizes, MemoryKind::Array);
}

/// Check if @p Expr is divisible by @p Size.
static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
  assert(Size != 0);
  if (Size == 1)
    return true;

  // Only one factor needs to be divisible.
  if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) {
    for (auto *FactorExpr : MulExpr->operands())
      if (isDivisible(FactorExpr, Size, SE))
        return true;
    return false;
  }

  // For other n-ary expressions (Add, AddRec, Max,...) all operands need
  // to be divisible.
  if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) {
    for (auto *OpExpr : NAryExpr->operands())
      if (!isDivisible(OpExpr, Size, SE))
        return false;
    return true;
  }

  auto *SizeSCEV = SE.getConstant(Expr->getType(), Size);
  auto *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV);
  auto *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV);
  return MulSCEV == Expr;
}

void ScopBuilder::foldSizeConstantsToRight() {
  isl::union_set Accessed = scop->getAccesses().range();

  for (auto Array : scop->arrays()) {
    if (Array->getNumberOfDimensions() <= 1)
      continue;

    isl::space Space = Array->getSpace();
    Space = Space.align_params(Accessed.get_space());

    if (!Accessed.contains(Space))
      continue;

    isl::set Elements = Accessed.extract_set(Space);
    isl::map Transform = isl::map::universe(Array->getSpace().map_from_set());

    std::vector<int> Int;
    unsigned Dims = unsignedFromIslSize(Elements.tuple_dim());
    for (unsigned i = 0; i < Dims; i++) {
      isl::set DimOnly = isl::set(Elements).project_out(isl::dim::set, 0, i);
      DimOnly = DimOnly.project_out(isl::dim::set, 1, Dims - i - 1);
      DimOnly = DimOnly.lower_bound_si(isl::dim::set, 0, 0);

      isl::basic_set DimHull = DimOnly.affine_hull();

      if (i == Dims - 1) {
        Int.push_back(1);
        Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i);
        continue;
      }

      if (unsignedFromIslSize(DimHull.dim(isl::dim::div)) == 1) {
        isl::aff Diff = DimHull.get_div(0);
        isl::val Val = Diff.get_denominator_val();

        int ValInt = 1;
        if (Val.is_int()) {
          auto ValAPInt = APIntFromVal(Val);
          if (ValAPInt.isSignedIntN(32))
            ValInt = ValAPInt.getSExtValue();
        } else {
        }

        Int.push_back(ValInt);
        isl::constraint C = isl::constraint::alloc_equality(
            isl::local_space(Transform.get_space()));
        C = C.set_coefficient_si(isl::dim::out, i, ValInt);
        C = C.set_coefficient_si(isl::dim::in, i, -1);
        Transform = Transform.add_constraint(C);
        continue;
      }

      isl::basic_set ZeroSet = isl::basic_set(DimHull);
      ZeroSet = ZeroSet.fix_si(isl::dim::set, 0, 0);

      int ValInt = 1;
      if (ZeroSet.is_equal(DimHull)) {
        ValInt = 0;
      }

      Int.push_back(ValInt);
      Transform = Transform.equate(isl::dim::in, i, isl::dim::out, i);
    }

    isl::set MappedElements = isl::map(Transform).domain();
    if (!Elements.is_subset(MappedElements))
      continue;

    bool CanFold = true;
    if (Int[0] <= 1)
      CanFold = false;

    unsigned NumDims = Array->getNumberOfDimensions();
    for (unsigned i = 1; i < NumDims - 1; i++)
      if (Int[0] != Int[i] && Int[i])
        CanFold = false;

    if (!CanFold)
      continue;

    for (auto &Access : scop->access_functions())
      if (Access->getScopArrayInfo() == Array)
        Access->setAccessRelation(
            Access->getAccessRelation().apply_range(Transform));

    std::vector<const SCEV *> Sizes;
    for (unsigned i = 0; i < NumDims; i++) {
      auto Size = Array->getDimensionSize(i);

      if (i == NumDims - 1)
        Size = SE.getMulExpr(Size, SE.getConstant(Size->getType(), Int[0]));
      Sizes.push_back(Size);
    }

    Array->updateSizes(Sizes, false /* CheckConsistency */);
  }
}

void ScopBuilder::finalizeAccesses() {
  updateAccessDimensionality();
  foldSizeConstantsToRight();
  foldAccessRelations();
  assumeNoOutOfBounds();
}

void ScopBuilder::updateAccessDimensionality() {
  // Check all array accesses for each base pointer and find a (virtual) element
  // size for the base pointer that divides all access functions.
  for (ScopStmt &Stmt : *scop)
    for (MemoryAccess *Access : Stmt) {
      if (!Access->isArrayKind())
        continue;
      ScopArrayInfo *Array =
          const_cast<ScopArrayInfo *>(Access->getScopArrayInfo());

      if (Array->getNumberOfDimensions() != 1)
        continue;
      unsigned DivisibleSize = Array->getElemSizeInBytes();
      const SCEV *Subscript = Access->getSubscript(0);
      while (!isDivisible(Subscript, DivisibleSize, SE))
        DivisibleSize /= 2;
      auto *Ty = IntegerType::get(SE.getContext(), DivisibleSize * 8);
      Array->updateElementType(Ty);
    }

  for (auto &Stmt : *scop)
    for (auto &Access : Stmt)
      Access->updateDimensionality();
}

void ScopBuilder::foldAccessRelations() {
  for (auto &Stmt : *scop)
    for (auto &Access : Stmt)
      Access->foldAccessRelation();
}

void ScopBuilder::assumeNoOutOfBounds() {
  if (PollyIgnoreInbounds)
    return;
  for (auto &Stmt : *scop)
    for (auto &Access : Stmt) {
      isl::set Outside = Access->assumeNoOutOfBound();
      const auto &Loc = Access->getAccessInstruction()
                            ? Access->getAccessInstruction()->getDebugLoc()
                            : DebugLoc();
      recordAssumption(&RecordedAssumptions, INBOUNDS, Outside, Loc,
                       AS_ASSUMPTION);
    }
}

void ScopBuilder::ensureValueWrite(Instruction *Inst) {
  // Find the statement that defines the value of Inst. That statement has to
  // write the value to make it available to those statements that read it.
  ScopStmt *Stmt = scop->getStmtFor(Inst);

  // It is possible that the value is synthesizable within a loop (such that it
  // is not part of any statement), but not after the loop (where you need the
  // number of loop round-trips to synthesize it). In LCSSA-form a PHI node will
  // avoid this. In case the IR has no such PHI, use the last statement (where
  // the value is synthesizable) to write the value.
  if (!Stmt)
    Stmt = scop->getLastStmtFor(Inst->getParent());

  // Inst not defined within this SCoP.
  if (!Stmt)
    return;

  // Do not process further if the instruction is already written.
  if (Stmt->lookupValueWriteOf(Inst))
    return;

  addMemoryAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, Inst, Inst->getType(),
                  true, Inst, ArrayRef<const SCEV *>(),
                  ArrayRef<const SCEV *>(), MemoryKind::Value);
}

void ScopBuilder::ensureValueRead(Value *V, ScopStmt *UserStmt) {
  // TODO: Make ScopStmt::ensureValueRead(Value*) offer the same functionality
  // to be able to replace this one. Currently, there is a split responsibility.
  // In a first step, the MemoryAccess is created, but without the
  // AccessRelation. In the second step by ScopStmt::buildAccessRelations(), the
  // AccessRelation is created. At least for scalar accesses, there is no new
  // information available at ScopStmt::buildAccessRelations(), so we could
  // create the AccessRelation right away. This is what
  // ScopStmt::ensureValueRead(Value*) does.

  auto *Scope = UserStmt->getSurroundingLoop();
  auto VUse = VirtualUse::create(scop.get(), UserStmt, Scope, V, false);
  switch (VUse.getKind()) {
  case VirtualUse::Constant:
  case VirtualUse::Block:
  case VirtualUse::Synthesizable:
  case VirtualUse::Hoisted:
  case VirtualUse::Intra:
    // Uses of these kinds do not need a MemoryAccess.
    break;

  case VirtualUse::ReadOnly:
    // Add MemoryAccess for invariant values only if requested.
    if (!ModelReadOnlyScalars)
      break;

    [[fallthrough]];
  case VirtualUse::Inter:

    // Do not create another MemoryAccess for reloading the value if one already
    // exists.
    if (UserStmt->lookupValueReadOf(V))
      break;

    addMemoryAccess(UserStmt, nullptr, MemoryAccess::READ, V, V->getType(),
                    true, V, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
                    MemoryKind::Value);

    // Inter-statement uses need to write the value in their defining statement.
    if (VUse.isInter())
      ensureValueWrite(cast<Instruction>(V));
    break;
  }
}

void ScopBuilder::ensurePHIWrite(PHINode *PHI, ScopStmt *IncomingStmt,
                                 BasicBlock *IncomingBlock,
                                 Value *IncomingValue, bool IsExitBlock) {
  // As the incoming block might turn out to be an error statement ensure we
  // will create an exit PHI SAI object. It is needed during code generation
  // and would be created later anyway.
  if (IsExitBlock)
    scop->getOrCreateScopArrayInfo(PHI, PHI->getType(), {},
                                   MemoryKind::ExitPHI);

  // This is possible if PHI is in the SCoP's entry block. The incoming blocks
  // from outside the SCoP's region have no statement representation.
  if (!IncomingStmt)
    return;

  // Take care for the incoming value being available in the incoming block.
  // This must be done before the check for multiple PHI writes because multiple
  // exiting edges from subregion each can be the effective written value of the
  // subregion. As such, all of them must be made available in the subregion
  // statement.
  ensureValueRead(IncomingValue, IncomingStmt);

  // Do not add more than one MemoryAccess per PHINode and ScopStmt.
  if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) {
    assert(Acc->getAccessInstruction() == PHI);
    Acc->addIncoming(IncomingBlock, IncomingValue);
    return;
  }

  MemoryAccess *Acc = addMemoryAccess(
      IncomingStmt, PHI, MemoryAccess::MUST_WRITE, PHI, PHI->getType(), true,
      PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
      IsExitBlock ? MemoryKind::ExitPHI : MemoryKind::PHI);
  assert(Acc);
  Acc->addIncoming(IncomingBlock, IncomingValue);
}

void ScopBuilder::addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI) {
  addMemoryAccess(PHIStmt, PHI, MemoryAccess::READ, PHI, PHI->getType(), true,
                  PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
                  MemoryKind::PHI);
}

void ScopBuilder::buildDomain(ScopStmt &Stmt) {
  isl::id Id = isl::id::alloc(scop->getIslCtx(), Stmt.getBaseName(), &Stmt);

  Stmt.Domain = scop->getDomainConditions(&Stmt);
  Stmt.Domain = Stmt.Domain.set_tuple_id(Id);
}

void ScopBuilder::collectSurroundingLoops(ScopStmt &Stmt) {
  isl::set Domain = Stmt.getDomain();
  BasicBlock *BB = Stmt.getEntryBlock();

  Loop *L = LI.getLoopFor(BB);

  while (L && Stmt.isRegionStmt() && Stmt.getRegion()->contains(L))
    L = L->getParentLoop();

  SmallVector<llvm::Loop *, 8> Loops;

  while (L && Stmt.getParent()->getRegion().contains(L)) {
    Loops.push_back(L);
    L = L->getParentLoop();
  }

  Stmt.NestLoops.insert(Stmt.NestLoops.begin(), Loops.rbegin(), Loops.rend());
}

/// Return the reduction type for a given binary operator.
static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
                                                    const Instruction *Load) {
  if (!BinOp)
    return MemoryAccess::RT_NONE;
  switch (BinOp->getOpcode()) {
  case Instruction::FAdd:
    if (!BinOp->isFast())
      return MemoryAccess::RT_NONE;
    [[fallthrough]];
  case Instruction::Add:
    return MemoryAccess::RT_ADD;
  case Instruction::Or:
    return MemoryAccess::RT_BOR;
  case Instruction::Xor:
    return MemoryAccess::RT_BXOR;
  case Instruction::And:
    return MemoryAccess::RT_BAND;
  case Instruction::FMul:
    if (!BinOp->isFast())
      return MemoryAccess::RT_NONE;
    [[fallthrough]];
  case Instruction::Mul:
    if (DisableMultiplicativeReductions)
      return MemoryAccess::RT_NONE;
    return MemoryAccess::RT_MUL;
  default:
    return MemoryAccess::RT_NONE;
  }
}

void ScopBuilder::checkForReductions(ScopStmt &Stmt) {
  SmallVector<MemoryAccess *, 2> Loads;
  SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;

  // First collect candidate load-store reduction chains by iterating over all
  // stores and collecting possible reduction loads.
  for (MemoryAccess *StoreMA : Stmt) {
    if (StoreMA->isRead())
      continue;

    Loads.clear();
    collectCandidateReductionLoads(StoreMA, Loads);
    for (MemoryAccess *LoadMA : Loads)
      Candidates.push_back(std::make_pair(LoadMA, StoreMA));
  }

  // Then check each possible candidate pair.
  for (const auto &CandidatePair : Candidates) {
    bool Valid = true;
    isl::map LoadAccs = CandidatePair.first->getAccessRelation();
    isl::map StoreAccs = CandidatePair.second->getAccessRelation();

    // Skip those with obviously unequal base addresses.
    if (!LoadAccs.has_equal_space(StoreAccs)) {
      continue;
    }

    // And check if the remaining for overlap with other memory accesses.
    isl::map AllAccsRel = LoadAccs.unite(StoreAccs);
    AllAccsRel = AllAccsRel.intersect_domain(Stmt.getDomain());
    isl::set AllAccs = AllAccsRel.range();

    for (MemoryAccess *MA : Stmt) {
      if (MA == CandidatePair.first || MA == CandidatePair.second)
        continue;

      isl::map AccRel =
          MA->getAccessRelation().intersect_domain(Stmt.getDomain());
      isl::set Accs = AccRel.range();

      if (AllAccs.has_equal_space(Accs)) {
        isl::set OverlapAccs = Accs.intersect(AllAccs);
        Valid = Valid && OverlapAccs.is_empty();
      }
    }

    if (!Valid)
      continue;

    const LoadInst *Load =
        dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
    MemoryAccess::ReductionType RT =
        getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);

    // If no overlapping access was found we mark the load and store as
    // reduction like.
    CandidatePair.first->markAsReductionLike(RT);
    CandidatePair.second->markAsReductionLike(RT);
  }
}

void ScopBuilder::verifyInvariantLoads() {
  auto &RIL = scop->getRequiredInvariantLoads();
  for (LoadInst *LI : RIL) {
    assert(LI && scop->contains(LI));
    // If there exists a statement in the scop which has a memory access for
    // @p LI, then mark this scop as infeasible for optimization.
    for (ScopStmt &Stmt : *scop)
      if (Stmt.getArrayAccessOrNULLFor(LI)) {
        scop->invalidate(INVARIANTLOAD, LI->getDebugLoc(), LI->getParent());
        return;
      }
  }
}

void ScopBuilder::hoistInvariantLoads() {
  if (!PollyInvariantLoadHoisting)
    return;

  isl::union_map Writes = scop->getWrites();
  for (ScopStmt &Stmt : *scop) {
    InvariantAccessesTy InvariantAccesses;

    for (MemoryAccess *Access : Stmt) {
      isl::set NHCtx = getNonHoistableCtx(Access, Writes);
      if (!NHCtx.is_null())
        InvariantAccesses.push_back({Access, NHCtx});
    }

    // Transfer the memory access from the statement to the SCoP.
    for (auto InvMA : InvariantAccesses)
      Stmt.removeMemoryAccess(InvMA.MA);
    addInvariantLoads(Stmt, InvariantAccesses);
  }
}

/// Check if an access range is too complex.
///
/// An access range is too complex, if it contains either many disjuncts or
/// very complex expressions. As a simple heuristic, we assume if a set to
/// be too complex if the sum of existentially quantified dimensions and
/// set dimensions is larger than a threshold. This reliably detects both
/// sets with many disjuncts as well as sets with many divisions as they
/// arise in h264.
///
/// @param AccessRange The range to check for complexity.
///
/// @returns True if the access range is too complex.
static bool isAccessRangeTooComplex(isl::set AccessRange) {
  unsigned NumTotalDims = 0;

  for (isl::basic_set BSet : AccessRange.get_basic_set_list()) {
    NumTotalDims += unsignedFromIslSize(BSet.dim(isl::dim::div));
    NumTotalDims += unsignedFromIslSize(BSet.dim(isl::dim::set));
  }

  if (NumTotalDims > MaxDimensionsInAccessRange)
    return true;

  return false;
}

bool ScopBuilder::hasNonHoistableBasePtrInScop(MemoryAccess *MA,
                                               isl::union_map Writes) {
  if (auto *BasePtrMA = scop->lookupBasePtrAccess(MA)) {
    return getNonHoistableCtx(BasePtrMA, Writes).is_null();
  }

  Value *BaseAddr = MA->getOriginalBaseAddr();
  if (auto *BasePtrInst = dyn_cast<Instruction>(BaseAddr))
    if (!isa<LoadInst>(BasePtrInst))
      return scop->contains(BasePtrInst);

  return false;
}

void ScopBuilder::addUserContext() {
  if (UserContextStr.empty())
    return;

  isl::set UserContext = isl::set(scop->getIslCtx(), UserContextStr.c_str());
  isl::space Space = scop->getParamSpace();
  isl::size SpaceParams = Space.dim(isl::dim::param);
  if (unsignedFromIslSize(SpaceParams) !=
      unsignedFromIslSize(UserContext.dim(isl::dim::param))) {
    std::string SpaceStr = stringFromIslObj(Space, "null");
    errs() << "Error: the context provided in -polly-context has not the same "
           << "number of dimensions than the computed context. Due to this "
           << "mismatch, the -polly-context option is ignored. Please provide "
           << "the context in the parameter space: " << SpaceStr << ".\n";
    return;
  }

  for (auto i : rangeIslSize(0, SpaceParams)) {
    std::string NameContext =
        scop->getContext().get_dim_name(isl::dim::param, i);
    std::string NameUserContext = UserContext.get_dim_name(isl::dim::param, i);

    if (NameContext != NameUserContext) {
      std::string SpaceStr = stringFromIslObj(Space, "null");
      errs() << "Error: the name of dimension " << i
             << " provided in -polly-context "
             << "is '" << NameUserContext << "', but the name in the computed "
             << "context is '" << NameContext
             << "'. Due to this name mismatch, "
             << "the -polly-context option is ignored. Please provide "
             << "the context in the parameter space: " << SpaceStr << ".\n";
      return;
    }

    UserContext = UserContext.set_dim_id(isl::dim::param, i,
                                         Space.get_dim_id(isl::dim::param, i));
  }
  isl::set newContext = scop->getContext().intersect(UserContext);
  scop->setContext(newContext);
}

isl::set ScopBuilder::getNonHoistableCtx(MemoryAccess *Access,
                                         isl::union_map Writes) {
  // TODO: Loads that are not loop carried, hence are in a statement with
  //       zero iterators, are by construction invariant, though we
  //       currently "hoist" them anyway. This is necessary because we allow
  //       them to be treated as parameters (e.g., in conditions) and our code
  //       generation would otherwise use the old value.

  auto &Stmt = *Access->getStatement();
  BasicBlock *BB = Stmt.getEntryBlock();

  if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine() ||
      Access->isMemoryIntrinsic())
    return {};

  // Skip accesses that have an invariant base pointer which is defined but
  // not loaded inside the SCoP. This can happened e.g., if a readnone call
  // returns a pointer that is used as a base address. However, as we want
  // to hoist indirect pointers, we allow the base pointer to be defined in
  // the region if it is also a memory access. Each ScopArrayInfo object
  // that has a base pointer origin has a base pointer that is loaded and
  // that it is invariant, thus it will be hoisted too. However, if there is
  // no base pointer origin we check that the base pointer is defined
  // outside the region.
  auto *LI = cast<LoadInst>(Access->getAccessInstruction());
  if (hasNonHoistableBasePtrInScop(Access, Writes))
    return {};

  isl::map AccessRelation = Access->getAccessRelation();
  assert(!AccessRelation.is_empty());

  if (AccessRelation.involves_dims(isl::dim::in, 0, Stmt.getNumIterators()))
    return {};

  AccessRelation = AccessRelation.intersect_domain(Stmt.getDomain());
  isl::set SafeToLoad;

  auto &DL = scop->getFunction().getParent()->getDataLayout();
  if (isSafeToLoadUnconditionally(LI->getPointerOperand(), LI->getType(),
                                  LI->getAlign(), DL)) {
    SafeToLoad = isl::set::universe(AccessRelation.get_space().range());
  } else if (BB != LI->getParent()) {
    // Skip accesses in non-affine subregions as they might not be executed
    // under the same condition as the entry of the non-affine subregion.
    return {};
  } else {
    SafeToLoad = AccessRelation.range();
  }

  if (isAccessRangeTooComplex(AccessRelation.range()))
    return {};

  isl::union_map Written = Writes.intersect_range(SafeToLoad);
  isl::set WrittenCtx = Written.params();
  bool IsWritten = !WrittenCtx.is_empty();

  if (!IsWritten)
    return WrittenCtx;

  WrittenCtx = WrittenCtx.remove_divs();
  bool TooComplex =
      unsignedFromIslSize(WrittenCtx.n_basic_set()) >= MaxDisjunctsInDomain;
  if (TooComplex || !isRequiredInvariantLoad(LI))
    return {};

  scop->addAssumption(INVARIANTLOAD, WrittenCtx, LI->getDebugLoc(),
                      AS_RESTRICTION, LI->getParent());
  return WrittenCtx;
}

static bool isAParameter(llvm::Value *maybeParam, const Function &F) {
  for (const llvm::Argument &Arg : F.args())
    if (&Arg == maybeParam)
      return true;

  return false;
}

bool ScopBuilder::canAlwaysBeHoisted(MemoryAccess *MA,
                                     bool StmtInvalidCtxIsEmpty,
                                     bool MAInvalidCtxIsEmpty,
                                     bool NonHoistableCtxIsEmpty) {
  LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
  const DataLayout &DL = LInst->getParent()->getModule()->getDataLayout();
  if (PollyAllowDereferenceOfAllFunctionParams &&
      isAParameter(LInst->getPointerOperand(), scop->getFunction()))
    return true;

  // TODO: We can provide more information for better but more expensive
  //       results.
  if (!isDereferenceableAndAlignedPointer(
          LInst->getPointerOperand(), LInst->getType(), LInst->getAlign(), DL))
    return false;

  // If the location might be overwritten we do not hoist it unconditionally.
  //
  // TODO: This is probably too conservative.
  if (!NonHoistableCtxIsEmpty)
    return false;

  // If a dereferenceable load is in a statement that is modeled precisely we
  // can hoist it.
  if (StmtInvalidCtxIsEmpty && MAInvalidCtxIsEmpty)
    return true;

  // Even if the statement is not modeled precisely we can hoist the load if it
  // does not involve any parameters that might have been specialized by the
  // statement domain.
  for (const SCEV *Subscript : MA->subscripts())
    if (!isa<SCEVConstant>(Subscript))
      return false;
  return true;
}

void ScopBuilder::addInvariantLoads(ScopStmt &Stmt,
                                    InvariantAccessesTy &InvMAs) {
  if (InvMAs.empty())
    return;

  isl::set StmtInvalidCtx = Stmt.getInvalidContext();
  bool StmtInvalidCtxIsEmpty = StmtInvalidCtx.is_empty();

  // Get the context under which the statement is executed but remove the error
  // context under which this statement is reached.
  isl::set DomainCtx = Stmt.getDomain().params();
  DomainCtx = DomainCtx.subtract(StmtInvalidCtx);

  if (unsignedFromIslSize(DomainCtx.n_basic_set()) >= MaxDisjunctsInDomain) {
    auto *AccInst = InvMAs.front().MA->getAccessInstruction();
    scop->invalidate(COMPLEXITY, AccInst->getDebugLoc(), AccInst->getParent());
    return;
  }

  // Project out all parameters that relate to loads in the statement. Otherwise
  // we could have cyclic dependences on the constraints under which the
  // hoisted loads are executed and we could not determine an order in which to
  // pre-load them. This happens because not only lower bounds are part of the
  // domain but also upper bounds.
  for (auto &InvMA : InvMAs) {
    auto *MA = InvMA.MA;
    Instruction *AccInst = MA->getAccessInstruction();
    if (SE.isSCEVable(AccInst->getType())) {
      SetVector<Value *> Values;
      for (const SCEV *Parameter : scop->parameters()) {
        Values.clear();
        findValues(Parameter, SE, Values);
        if (!Values.count(AccInst))
          continue;

        isl::id ParamId = scop->getIdForParam(Parameter);
        if (!ParamId.is_null()) {
          int Dim = DomainCtx.find_dim_by_id(isl::dim::param, ParamId);
          if (Dim >= 0)
            DomainCtx = DomainCtx.eliminate(isl::dim::param, Dim, 1);
        }
      }
    }
  }

  for (auto &InvMA : InvMAs) {
    auto *MA = InvMA.MA;
    isl::set NHCtx = InvMA.NonHoistableCtx;

    // Check for another invariant access that accesses the same location as
    // MA and if found consolidate them. Otherwise create a new equivalence
    // class at the end of InvariantEquivClasses.
    LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
    Type *Ty = LInst->getType();
    const SCEV *PointerSCEV = SE.getSCEV(LInst->getPointerOperand());

    isl::set MAInvalidCtx = MA->getInvalidContext();
    bool NonHoistableCtxIsEmpty = NHCtx.is_empty();
    bool MAInvalidCtxIsEmpty = MAInvalidCtx.is_empty();

    isl::set MACtx;
    // Check if we know that this pointer can be speculatively accessed.
    if (canAlwaysBeHoisted(MA, StmtInvalidCtxIsEmpty, MAInvalidCtxIsEmpty,
                           NonHoistableCtxIsEmpty)) {
      MACtx = isl::set::universe(DomainCtx.get_space());
    } else {
      MACtx = DomainCtx;
      MACtx = MACtx.subtract(MAInvalidCtx.unite(NHCtx));
      MACtx = MACtx.gist_params(scop->getContext());
    }

    bool Consolidated = false;
    for (auto &IAClass : scop->invariantEquivClasses()) {
      if (PointerSCEV != IAClass.IdentifyingPointer || Ty != IAClass.AccessType)
        continue;

      // If the pointer and the type is equal check if the access function wrt.
      // to the domain is equal too. It can happen that the domain fixes
      // parameter values and these can be different for distinct part of the
      // SCoP. If this happens we cannot consolidate the loads but need to
      // create a new invariant load equivalence class.
      auto &MAs = IAClass.InvariantAccesses;
      if (!MAs.empty()) {
        auto *LastMA = MAs.front();

        isl::set AR = MA->getAccessRelation().range();
        isl::set LastAR = LastMA->getAccessRelation().range();
        bool SameAR = AR.is_equal(LastAR);

        if (!SameAR)
          continue;
      }

      // Add MA to the list of accesses that are in this class.
      MAs.push_front(MA);

      Consolidated = true;

      // Unify the execution context of the class and this statement.
      isl::set IAClassDomainCtx = IAClass.ExecutionContext;
      if (!IAClassDomainCtx.is_null())
        IAClassDomainCtx = IAClassDomainCtx.unite(MACtx).coalesce();
      else
        IAClassDomainCtx = MACtx;
      IAClass.ExecutionContext = IAClassDomainCtx;
      break;
    }

    if (Consolidated)
      continue;

    MACtx = MACtx.coalesce();

    // If we did not consolidate MA, thus did not find an equivalence class
    // for it, we create a new one.
    scop->addInvariantEquivClass(
        InvariantEquivClassTy{PointerSCEV, MemoryAccessList{MA}, MACtx, Ty});
  }
}

void ScopBuilder::collectCandidateReductionLoads(
    MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
  ScopStmt *Stmt = StoreMA->getStatement();

  auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
  if (!Store)
    return;

  // Skip if there is not one binary operator between the load and the store
  auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
  if (!BinOp)
    return;

  // Skip if the binary operators has multiple uses
  if (BinOp->getNumUses() != 1)
    return;

  // Skip if the opcode of the binary operator is not commutative/associative
  if (!BinOp->isCommutative() || !BinOp->isAssociative())
    return;

  // Skip if the binary operator is outside the current SCoP
  if (BinOp->getParent() != Store->getParent())
    return;

  // Skip if it is a multiplicative reduction and we disabled them
  if (DisableMultiplicativeReductions &&
      (BinOp->getOpcode() == Instruction::Mul ||
       BinOp->getOpcode() == Instruction::FMul))
    return;

  // Check the binary operator operands for a candidate load
  auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
  auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
  if (!PossibleLoad0 && !PossibleLoad1)
    return;

  // A load is only a candidate if it cannot escape (thus has only this use)
  if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
    if (PossibleLoad0->getParent() == Store->getParent())
      Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad0));
  if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
    if (PossibleLoad1->getParent() == Store->getParent())
      Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad1));
}

/// Find the canonical scop array info object for a set of invariant load
/// hoisted loads. The canonical array is the one that corresponds to the
/// first load in the list of accesses which is used as base pointer of a
/// scop array.
static const ScopArrayInfo *findCanonicalArray(Scop &S,
                                               MemoryAccessList &Accesses) {
  for (MemoryAccess *Access : Accesses) {
    const ScopArrayInfo *CanonicalArray = S.getScopArrayInfoOrNull(
        Access->getAccessInstruction(), MemoryKind::Array);
    if (CanonicalArray)
      return CanonicalArray;
  }
  return nullptr;
}

/// Check if @p Array severs as base array in an invariant load.
static bool isUsedForIndirectHoistedLoad(Scop &S, const ScopArrayInfo *Array) {
  for (InvariantEquivClassTy &EqClass2 : S.getInvariantAccesses())
    for (MemoryAccess *Access2 : EqClass2.InvariantAccesses)
      if (Access2->getScopArrayInfo() == Array)
        return true;
  return false;
}

/// Replace the base pointer arrays in all memory accesses referencing @p Old,
/// with a reference to @p New.
static void replaceBasePtrArrays(Scop &S, const ScopArrayInfo *Old,
                                 const ScopArrayInfo *New) {
  for (ScopStmt &Stmt : S)
    for (MemoryAccess *Access : Stmt) {
      if (Access->getLatestScopArrayInfo() != Old)
        continue;

      isl::id Id = New->getBasePtrId();
      isl::map Map = Access->getAccessRelation();
      Map = Map.set_tuple_id(isl::dim::out, Id);
      Access->setAccessRelation(Map);
    }
}

void ScopBuilder::canonicalizeDynamicBasePtrs() {
  for (InvariantEquivClassTy &EqClass : scop->InvariantEquivClasses) {
    MemoryAccessList &BasePtrAccesses = EqClass.InvariantAccesses;

    const ScopArrayInfo *CanonicalBasePtrSAI =
        findCanonicalArray(*scop, BasePtrAccesses);

    if (!CanonicalBasePtrSAI)
      continue;

    for (MemoryAccess *BasePtrAccess : BasePtrAccesses) {
      const ScopArrayInfo *BasePtrSAI = scop->getScopArrayInfoOrNull(
          BasePtrAccess->getAccessInstruction(), MemoryKind::Array);
      if (!BasePtrSAI || BasePtrSAI == CanonicalBasePtrSAI ||
          !BasePtrSAI->isCompatibleWith(CanonicalBasePtrSAI))
        continue;

      // we currently do not canonicalize arrays where some accesses are
      // hoisted as invariant loads. If we would, we need to update the access
      // function of the invariant loads as well. However, as this is not a
      // very common situation, we leave this for now to avoid further
      // complexity increases.
      if (isUsedForIndirectHoistedLoad(*scop, BasePtrSAI))
        continue;

      replaceBasePtrArrays(*scop, BasePtrSAI, CanonicalBasePtrSAI);
    }
  }
}

void ScopBuilder::buildAccessRelations(ScopStmt &Stmt) {
  for (MemoryAccess *Access : Stmt.MemAccs) {
    Type *ElementType = Access->getElementType();

    MemoryKind Ty;
    if (Access->isPHIKind())
      Ty = MemoryKind::PHI;
    else if (Access->isExitPHIKind())
      Ty = MemoryKind::ExitPHI;
    else if (Access->isValueKind())
      Ty = MemoryKind::Value;
    else
      Ty = MemoryKind::Array;

    // Create isl::pw_aff for SCEVs which describe sizes. Collect all
    // assumptions which are taken. isl::pw_aff objects are cached internally
    // and they are used later by scop.
    for (const SCEV *Size : Access->Sizes) {
      if (!Size)
        continue;
      scop->getPwAff(Size, nullptr, false, &RecordedAssumptions);
    }
    auto *SAI = scop->getOrCreateScopArrayInfo(Access->getOriginalBaseAddr(),
                                               ElementType, Access->Sizes, Ty);

    // Create isl::pw_aff for SCEVs which describe subscripts. Collect all
    // assumptions which are taken. isl::pw_aff objects are cached internally
    // and they are used later by scop.
    for (const SCEV *Subscript : Access->subscripts()) {
      if (!Access->isAffine() || !Subscript)
        continue;
      scop->getPwAff(Subscript, Stmt.getEntryBlock(), false,
                     &RecordedAssumptions);
    }
    Access->buildAccessRelation(SAI);
    scop->addAccessData(Access);
  }
}

/// Add the minimal/maximal access in @p Set to @p User.
///
/// @return True if more accesses should be added, false if we reached the
///         maximal number of run-time checks to be generated.
static bool buildMinMaxAccess(isl::set Set,
                              Scop::MinMaxVectorTy &MinMaxAccesses, Scop &S) {
  isl::pw_multi_aff MinPMA, MaxPMA;
  isl::pw_aff LastDimAff;
  isl::aff OneAff;
  unsigned Pos;

  Set = Set.remove_divs();
  polly::simplify(Set);

  if (unsignedFromIslSize(Set.n_basic_set()) > RunTimeChecksMaxAccessDisjuncts)
    Set = Set.simple_hull();

  // Restrict the number of parameters involved in the access as the lexmin/
  // lexmax computation will take too long if this number is high.
  //
  // Experiments with a simple test case using an i7 4800MQ:
  //
  //  #Parameters involved | Time (in sec)
  //            6          |     0.01
  //            7          |     0.04
  //            8          |     0.12
  //            9          |     0.40
  //           10          |     1.54
  //           11          |     6.78
  //           12          |    30.38
  //
  if (isl_set_n_param(Set.get()) >
      static_cast<isl_size>(RunTimeChecksMaxParameters)) {
    unsigned InvolvedParams = 0;
    for (unsigned u = 0, e = isl_set_n_param(Set.get()); u < e; u++)
      if (Set.involves_dims(isl::dim::param, u, 1))
        InvolvedParams++;

    if (InvolvedParams > RunTimeChecksMaxParameters)
      return false;
  }

  MinPMA = Set.lexmin_pw_multi_aff();
  MaxPMA = Set.lexmax_pw_multi_aff();

  MinPMA = MinPMA.coalesce();
  MaxPMA = MaxPMA.coalesce();

  if (MaxPMA.is_null())
    return false;

  unsigned MaxOutputSize = unsignedFromIslSize(MaxPMA.dim(isl::dim::out));

  // Adjust the last dimension of the maximal access by one as we want to
  // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
  // we test during code generation might now point after the end of the
  // allocated array but we will never dereference it anyway.
  assert(MaxOutputSize >= 1 && "Assumed at least one output dimension");

  Pos = MaxOutputSize - 1;
  LastDimAff = MaxPMA.at(Pos);
  OneAff = isl::aff(isl::local_space(LastDimAff.get_domain_space()));
  OneAff = OneAff.add_constant_si(1);
  LastDimAff = LastDimAff.add(OneAff);
  MaxPMA = MaxPMA.set_pw_aff(Pos, LastDimAff);

  if (MinPMA.is_null() || MaxPMA.is_null())
    return false;

  MinMaxAccesses.push_back(std::make_pair(MinPMA, MaxPMA));

  return true;
}

/// Wrapper function to calculate minimal/maximal accesses to each array.
bool ScopBuilder::calculateMinMaxAccess(AliasGroupTy AliasGroup,
                                        Scop::MinMaxVectorTy &MinMaxAccesses) {
  MinMaxAccesses.reserve(AliasGroup.size());

  isl::union_set Domains = scop->getDomains();
  isl::union_map Accesses = isl::union_map::empty(scop->getIslCtx());

  for (MemoryAccess *MA : AliasGroup)
    Accesses = Accesses.unite(MA->getAccessRelation());

  Accesses = Accesses.intersect_domain(Domains);
  isl::union_set Locations = Accesses.range();

  bool LimitReached = false;
  for (isl::set Set : Locations.get_set_list()) {
    LimitReached |= !buildMinMaxAccess(Set, MinMaxAccesses, *scop);
    if (LimitReached)
      break;
  }

  return !LimitReached;
}

static isl::set getAccessDomain(MemoryAccess *MA) {
  isl::set Domain = MA->getStatement()->getDomain();
  Domain = Domain.project_out(isl::dim::set, 0,
                              unsignedFromIslSize(Domain.tuple_dim()));
  return Domain.reset_tuple_id();
}

bool ScopBuilder::buildAliasChecks() {
  if (!PollyUseRuntimeAliasChecks)
    return true;

  if (buildAliasGroups()) {
    // Aliasing assumptions do not go through addAssumption but we still want to
    // collect statistics so we do it here explicitly.
    if (scop->getAliasGroups().size())
      Scop::incrementNumberOfAliasingAssumptions(1);
    return true;
  }

  // If a problem occurs while building the alias groups we need to delete
  // this SCoP and pretend it wasn't valid in the first place. To this end
  // we make the assumed context infeasible.
  scop->invalidate(ALIASING, DebugLoc());

  LLVM_DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << scop->getNameStr()
                    << " could not be created. This SCoP has been dismissed.");
  return false;
}

std::tuple<ScopBuilder::AliasGroupVectorTy, DenseSet<const ScopArrayInfo *>>
ScopBuilder::buildAliasGroupsForAccesses() {
  AliasSetTracker AST(AA);

  DenseMap<Value *, MemoryAccess *> PtrToAcc;
  DenseSet<const ScopArrayInfo *> HasWriteAccess;
  for (ScopStmt &Stmt : *scop) {

    isl::set StmtDomain = Stmt.getDomain();
    bool StmtDomainEmpty = StmtDomain.is_empty();

    // Statements with an empty domain will never be executed.
    if (StmtDomainEmpty)
      continue;

    for (MemoryAccess *MA : Stmt) {
      if (MA->isScalarKind())
        continue;
      if (!MA->isRead())
        HasWriteAccess.insert(MA->getScopArrayInfo());
      MemAccInst Acc(MA->getAccessInstruction());
      if (MA->isRead() && isa<MemTransferInst>(Acc))
        PtrToAcc[cast<MemTransferInst>(Acc)->getRawSource()] = MA;
      else
        PtrToAcc[Acc.getPointerOperand()] = MA;
      AST.add(Acc);
    }
  }

  AliasGroupVectorTy AliasGroups;
  for (AliasSet &AS : AST) {
    if (AS.isMustAlias() || AS.isForwardingAliasSet())
      continue;
    AliasGroupTy AG;
    for (auto &PR : AS)
      AG.push_back(PtrToAcc[PR.getValue()]);
    if (AG.size() < 2)
      continue;
    AliasGroups.push_back(std::move(AG));
  }

  return std::make_tuple(AliasGroups, HasWriteAccess);
}

bool ScopBuilder::buildAliasGroups() {
  // To create sound alias checks we perform the following steps:
  //   o) We partition each group into read only and non read only accesses.
  //   o) For each group with more than one base pointer we then compute minimal
  //      and maximal accesses to each array of a group in read only and non
  //      read only partitions separately.
  AliasGroupVectorTy AliasGroups;
  DenseSet<const ScopArrayInfo *> HasWriteAccess;

  std::tie(AliasGroups, HasWriteAccess) = buildAliasGroupsForAccesses();

  splitAliasGroupsByDomain(AliasGroups);

  for (AliasGroupTy &AG : AliasGroups) {
    if (!scop->hasFeasibleRuntimeContext())
      return false;

    {
      IslMaxOperationsGuard MaxOpGuard(scop->getIslCtx().get(), OptComputeOut);
      bool Valid = buildAliasGroup(AG, HasWriteAccess);
      if (!Valid)
        return false;
    }
    if (isl_ctx_last_error(scop->getIslCtx().get()) == isl_error_quota) {
      scop->invalidate(COMPLEXITY, DebugLoc());
      return false;
    }
  }

  return true;
}

bool ScopBuilder::buildAliasGroup(
    AliasGroupTy &AliasGroup, DenseSet<const ScopArrayInfo *> HasWriteAccess) {
  AliasGroupTy ReadOnlyAccesses;
  AliasGroupTy ReadWriteAccesses;
  SmallPtrSet<const ScopArrayInfo *, 4> ReadWriteArrays;
  SmallPtrSet<const ScopArrayInfo *, 4> ReadOnlyArrays;

  if (AliasGroup.size() < 2)
    return true;

  for (MemoryAccess *Access : AliasGroup) {
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "PossibleAlias",
                                        Access->getAccessInstruction())
             << "Possibly aliasing pointer, use restrict keyword.");
    const ScopArrayInfo *Array = Access->getScopArrayInfo();
    if (HasWriteAccess.count(Array)) {
      ReadWriteArrays.insert(Array);
      ReadWriteAccesses.push_back(Access);
    } else {
      ReadOnlyArrays.insert(Array);
      ReadOnlyAccesses.push_back(Access);
    }
  }

  // If there are no read-only pointers, and less than two read-write pointers,
  // no alias check is needed.
  if (ReadOnlyAccesses.empty() && ReadWriteArrays.size() <= 1)
    return true;

  // If there is no read-write pointer, no alias check is needed.
  if (ReadWriteArrays.empty())
    return true;

  // For non-affine accesses, no alias check can be generated as we cannot
  // compute a sufficiently tight lower and upper bound: bail out.
  for (MemoryAccess *MA : AliasGroup) {
    if (!MA->isAffine()) {
      scop->invalidate(ALIASING, MA->getAccessInstruction()->getDebugLoc(),
                       MA->getAccessInstruction()->getParent());
      return false;
    }
  }

  // Ensure that for all memory accesses for which we generate alias checks,
  // their base pointers are available.
  for (MemoryAccess *MA : AliasGroup) {
    if (MemoryAccess *BasePtrMA = scop->lookupBasePtrAccess(MA))
      scop->addRequiredInvariantLoad(
          cast<LoadInst>(BasePtrMA->getAccessInstruction()));
  }

  //  scop->getAliasGroups().emplace_back();
  //  Scop::MinMaxVectorPairTy &pair = scop->getAliasGroups().back();
  Scop::MinMaxVectorTy MinMaxAccessesReadWrite;
  Scop::MinMaxVectorTy MinMaxAccessesReadOnly;

  bool Valid;

  Valid = calculateMinMaxAccess(ReadWriteAccesses, MinMaxAccessesReadWrite);

  if (!Valid)
    return false;

  // Bail out if the number of values we need to compare is too large.
  // This is important as the number of comparisons grows quadratically with
  // the number of values we need to compare.
  if (MinMaxAccessesReadWrite.size() + ReadOnlyArrays.size() >
      RunTimeChecksMaxArraysPerGroup)
    return false;

  Valid = calculateMinMaxAccess(ReadOnlyAccesses, MinMaxAccessesReadOnly);

  scop->addAliasGroup(MinMaxAccessesReadWrite, MinMaxAccessesReadOnly);
  if (!Valid)
    return false;

  return true;
}

void ScopBuilder::splitAliasGroupsByDomain(AliasGroupVectorTy &AliasGroups) {
  for (unsigned u = 0; u < AliasGroups.size(); u++) {
    AliasGroupTy NewAG;
    AliasGroupTy &AG = AliasGroups[u];
    AliasGroupTy::iterator AGI = AG.begin();
    isl::set AGDomain = getAccessDomain(*AGI);
    while (AGI != AG.end()) {
      MemoryAccess *MA = *AGI;
      isl::set MADomain = getAccessDomain(MA);
      if (AGDomain.is_disjoint(MADomain)) {
        NewAG.push_back(MA);
        AGI = AG.erase(AGI);
      } else {
        AGDomain = AGDomain.unite(MADomain);
        AGI++;
      }
    }
    if (NewAG.size() > 1)
      AliasGroups.push_back(std::move(NewAG));
  }
}

#ifndef NDEBUG
static void verifyUse(Scop *S, Use &Op, LoopInfo &LI) {
  auto PhysUse = VirtualUse::create(S, Op, &LI, false);
  auto VirtUse = VirtualUse::create(S, Op, &LI, true);
  assert(PhysUse.getKind() == VirtUse.getKind());
}

/// Check the consistency of every statement's MemoryAccesses.
///
/// The check is carried out by expecting the "physical" kind of use (derived
/// from the BasicBlocks instructions resides in) to be same as the "virtual"
/// kind of use (derived from a statement's MemoryAccess).
///
/// The "physical" uses are taken by ensureValueRead to determine whether to
/// create MemoryAccesses. When done, the kind of scalar access should be the
/// same no matter which way it was derived.
///
/// The MemoryAccesses might be changed by later SCoP-modifying passes and hence
/// can intentionally influence on the kind of uses (not corresponding to the
/// "physical" anymore, hence called "virtual"). The CodeGenerator therefore has
/// to pick up the virtual uses. But here in the code generator, this has not
/// happened yet, such that virtual and physical uses are equivalent.
static void verifyUses(Scop *S, LoopInfo &LI, DominatorTree &DT) {
  for (auto *BB : S->getRegion().blocks()) {
    for (auto &Inst : *BB) {
      auto *Stmt = S->getStmtFor(&Inst);
      if (!Stmt)
        continue;

      if (isIgnoredIntrinsic(&Inst))
        continue;

      // Branch conditions are encoded in the statement domains.
      if (Inst.isTerminator() && Stmt->isBlockStmt())
        continue;

      // Verify all uses.
      for (auto &Op : Inst.operands())
        verifyUse(S, Op, LI);

      // Stores do not produce values used by other statements.
      if (isa<StoreInst>(Inst))
        continue;

      // For every value defined in the block, also check that a use of that
      // value in the same statement would not be an inter-statement use. It can
      // still be synthesizable or load-hoisted, but these kind of instructions
      // are not directly copied in code-generation.
      auto VirtDef =
          VirtualUse::create(S, Stmt, Stmt->getSurroundingLoop(), &Inst, true);
      assert(VirtDef.getKind() == VirtualUse::Synthesizable ||
             VirtDef.getKind() == VirtualUse::Intra ||
             VirtDef.getKind() == VirtualUse::Hoisted);
    }
  }

  if (S->hasSingleExitEdge())
    return;

  // PHINodes in the SCoP region's exit block are also uses to be checked.
  if (!S->getRegion().isTopLevelRegion()) {
    for (auto &Inst : *S->getRegion().getExit()) {
      if (!isa<PHINode>(Inst))
        break;

      for (auto &Op : Inst.operands())
        verifyUse(S, Op, LI);
    }
  }
}
#endif

void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) {
  scop.reset(new Scop(R, SE, LI, DT, *SD.getDetectionContext(&R), ORE,
                      SD.getNextID()));

  buildStmts(R);

  // Create all invariant load instructions first. These are categorized as
  // 'synthesizable', therefore are not part of any ScopStmt but need to be
  // created somewhere.
  const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
  for (BasicBlock *BB : scop->getRegion().blocks()) {
    if (SD.isErrorBlock(*BB, scop->getRegion()))
      continue;

    for (Instruction &Inst : *BB) {
      LoadInst *Load = dyn_cast<LoadInst>(&Inst);
      if (!Load)
        continue;

      if (!RIL.count(Load))
        continue;

      // Invariant loads require a MemoryAccess to be created in some statement.
      // It is not important to which statement the MemoryAccess is added
      // because it will later be removed from the ScopStmt again. We chose the
      // first statement of the basic block the LoadInst is in.
      ArrayRef<ScopStmt *> List = scop->getStmtListFor(BB);
      assert(!List.empty());
      ScopStmt *RILStmt = List.front();
      buildMemoryAccess(Load, RILStmt);
    }
  }
  buildAccessFunctions();

  // In case the region does not have an exiting block we will later (during
  // code generation) split the exit block. This will move potential PHI nodes
  // from the current exit block into the new region exiting block. Hence, PHI
  // nodes that are at this point not part of the region will be.
  // To handle these PHI nodes later we will now model their operands as scalar
  // accesses. Note that we do not model anything in the exit block if we have
  // an exiting block in the region, as there will not be any splitting later.
  if (!R.isTopLevelRegion() && !scop->hasSingleExitEdge()) {
    for (Instruction &Inst : *R.getExit()) {
      PHINode *PHI = dyn_cast<PHINode>(&Inst);
      if (!PHI)
        break;

      buildPHIAccesses(nullptr, PHI, nullptr, true);
    }
  }

  // Create memory accesses for global reads since all arrays are now known.
  auto *AF = SE.getConstant(IntegerType::getInt64Ty(SE.getContext()), 0);
  for (auto GlobalReadPair : GlobalReads) {
    ScopStmt *GlobalReadStmt = GlobalReadPair.first;
    Instruction *GlobalRead = GlobalReadPair.second;
    for (auto *BP : ArrayBasePointers)
      addArrayAccess(GlobalReadStmt, MemAccInst(GlobalRead), MemoryAccess::READ,
                     BP, BP->getType(), false, {AF}, {nullptr}, GlobalRead);
  }

  buildInvariantEquivalenceClasses();

  /// A map from basic blocks to their invalid domains.
  DenseMap<BasicBlock *, isl::set> InvalidDomainMap;

  if (!buildDomains(&R, InvalidDomainMap)) {
    LLVM_DEBUG(
        dbgs() << "Bailing-out because buildDomains encountered problems\n");
    return;
  }

  addUserAssumptions(AC, InvalidDomainMap);

  // Initialize the invalid domain.
  for (ScopStmt &Stmt : scop->Stmts)
    if (Stmt.isBlockStmt())
      Stmt.setInvalidDomain(InvalidDomainMap[Stmt.getEntryBlock()]);
    else
      Stmt.setInvalidDomain(InvalidDomainMap[getRegionNodeBasicBlock(
          Stmt.getRegion()->getNode())]);

  // Remove empty statements.
  // Exit early in case there are no executable statements left in this scop.
  scop->removeStmtNotInDomainMap();
  scop->simplifySCoP(false);
  if (scop->isEmpty()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because SCoP is empty\n");
    return;
  }

  // The ScopStmts now have enough information to initialize themselves.
  for (ScopStmt &Stmt : *scop) {
    collectSurroundingLoops(Stmt);

    buildDomain(Stmt);
    buildAccessRelations(Stmt);

    if (DetectReductions)
      checkForReductions(Stmt);
  }

  // Check early for a feasible runtime context.
  if (!scop->hasFeasibleRuntimeContext()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (early)\n");
    return;
  }

  // Check early for profitability. Afterwards it cannot change anymore,
  // only the runtime context could become infeasible.
  if (!scop->isProfitable(UnprofitableScalarAccs)) {
    scop->invalidate(PROFITABLE, DebugLoc());
    LLVM_DEBUG(
        dbgs() << "Bailing-out because SCoP is not considered profitable\n");
    return;
  }

  buildSchedule();

  finalizeAccesses();

  scop->realignParams();
  addUserContext();

  // After the context was fully constructed, thus all our knowledge about
  // the parameters is in there, we add all recorded assumptions to the
  // assumed/invalid context.
  addRecordedAssumptions();

  scop->simplifyContexts();
  if (!buildAliasChecks()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because could not build alias checks\n");
    return;
  }

  hoistInvariantLoads();
  canonicalizeDynamicBasePtrs();
  verifyInvariantLoads();
  scop->simplifySCoP(true);

  // Check late for a feasible runtime context because profitability did not
  // change.
  if (!scop->hasFeasibleRuntimeContext()) {
    LLVM_DEBUG(dbgs() << "Bailing-out because of unfeasible context (late)\n");
    return;
  }

#ifndef NDEBUG
  verifyUses(scop.get(), LI, DT);
#endif
}

ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AAResults &AA,
                         const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
                         ScopDetection &SD, ScalarEvolution &SE,
                         OptimizationRemarkEmitter &ORE)
    : AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE), ORE(ORE) {
  DebugLoc Beg, End;
  auto P = getBBPairForRegion(R);
  getDebugLocations(P, Beg, End);

  std::string Msg = "SCoP begins here.";
  ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEntry", Beg, P.first)
           << Msg);

  buildScop(*R, AC);

  LLVM_DEBUG(dbgs() << *scop);

  if (!scop->hasFeasibleRuntimeContext()) {
    InfeasibleScops++;
    Msg = "SCoP ends here but was dismissed.";
    LLVM_DEBUG(dbgs() << "SCoP detected but dismissed\n");
    RecordedAssumptions.clear();
    scop.reset();
  } else {
    Msg = "SCoP ends here.";
    ++ScopFound;
    if (scop->getMaxLoopDepth() > 0)
      ++RichScopFound;
  }

  if (R->isTopLevelRegion())
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.first)
             << Msg);
  else
    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.second)
             << Msg);
}