aboutsummaryrefslogtreecommitdiff
path: root/openmp/runtime/src/kmp_taskdeps.cpp
blob: f7529481393f9785ec0d20ed2bd152ed78c9bfd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
/*
 * kmp_taskdeps.cpp
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//#define KMP_SUPPORT_GRAPH_OUTPUT 1

#include "kmp.h"
#include "kmp_io.h"
#include "kmp_wait_release.h"
#include "kmp_taskdeps.h"
#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif

// TODO: Improve memory allocation? keep a list of pre-allocated structures?
// allocate in blocks? re-use list finished list entries?
// TODO: don't use atomic ref counters for stack-allocated nodes.
// TODO: find an alternate to atomic refs for heap-allocated nodes?
// TODO: Finish graph output support
// TODO: kmp_lock_t seems a tad to big (and heavy weight) for this. Check other
// runtime locks
// TODO: Any ITT support needed?

#ifdef KMP_SUPPORT_GRAPH_OUTPUT
static std::atomic<kmp_int32> kmp_node_id_seed = 0;
#endif

static void __kmp_init_node(kmp_depnode_t *node) {
  node->dn.successors = NULL;
  node->dn.task = NULL; // will point to the right task
  // once dependences have been processed
  for (int i = 0; i < MAX_MTX_DEPS; ++i)
    node->dn.mtx_locks[i] = NULL;
  node->dn.mtx_num_locks = 0;
  __kmp_init_lock(&node->dn.lock);
  KMP_ATOMIC_ST_RLX(&node->dn.nrefs, 1); // init creates the first reference
#ifdef KMP_SUPPORT_GRAPH_OUTPUT
  node->dn.id = KMP_ATOMIC_INC(&kmp_node_id_seed);
#endif
#if USE_ITT_BUILD && USE_ITT_NOTIFY
  __itt_sync_create(node, "OMP task dep node", NULL, 0);
#endif
}

static inline kmp_depnode_t *__kmp_node_ref(kmp_depnode_t *node) {
  KMP_ATOMIC_INC(&node->dn.nrefs);
  return node;
}

enum { KMP_DEPHASH_OTHER_SIZE = 97, KMP_DEPHASH_MASTER_SIZE = 997 };

size_t sizes[] = {997, 2003, 4001, 8191, 16001, 32003, 64007, 131071, 270029};
const size_t MAX_GEN = 8;

static inline size_t __kmp_dephash_hash(kmp_intptr_t addr, size_t hsize) {
  // TODO alternate to try: set = (((Addr64)(addrUsefulBits * 9.618)) %
  // m_num_sets );
  return ((addr >> 6) ^ (addr >> 2)) % hsize;
}

static kmp_dephash_t *__kmp_dephash_extend(kmp_info_t *thread,
                                           kmp_dephash_t *current_dephash) {
  kmp_dephash_t *h;

  size_t gen = current_dephash->generation + 1;
  if (gen >= MAX_GEN)
    return current_dephash;
  size_t new_size = sizes[gen];

  size_t size_to_allocate =
      new_size * sizeof(kmp_dephash_entry_t *) + sizeof(kmp_dephash_t);

#if USE_FAST_MEMORY
  h = (kmp_dephash_t *)__kmp_fast_allocate(thread, size_to_allocate);
#else
  h = (kmp_dephash_t *)__kmp_thread_malloc(thread, size_to_allocate);
#endif

  h->size = new_size;
  h->nelements = current_dephash->nelements;
  h->buckets = (kmp_dephash_entry **)(h + 1);
  h->generation = gen;
  h->nconflicts = 0;
  h->last_all = current_dephash->last_all;

  // make sure buckets are properly initialized
  for (size_t i = 0; i < new_size; i++) {
    h->buckets[i] = NULL;
  }

  // insert existing elements in the new table
  for (size_t i = 0; i < current_dephash->size; i++) {
    kmp_dephash_entry_t *next, *entry;
    for (entry = current_dephash->buckets[i]; entry; entry = next) {
      next = entry->next_in_bucket;
      // Compute the new hash using the new size, and insert the entry in
      // the new bucket.
      size_t new_bucket = __kmp_dephash_hash(entry->addr, h->size);
      entry->next_in_bucket = h->buckets[new_bucket];
      if (entry->next_in_bucket) {
        h->nconflicts++;
      }
      h->buckets[new_bucket] = entry;
    }
  }

  // Free old hash table
#if USE_FAST_MEMORY
  __kmp_fast_free(thread, current_dephash);
#else
  __kmp_thread_free(thread, current_dephash);
#endif

  return h;
}

static kmp_dephash_t *__kmp_dephash_create(kmp_info_t *thread,
                                           kmp_taskdata_t *current_task) {
  kmp_dephash_t *h;

  size_t h_size;

  if (current_task->td_flags.tasktype == TASK_IMPLICIT)
    h_size = KMP_DEPHASH_MASTER_SIZE;
  else
    h_size = KMP_DEPHASH_OTHER_SIZE;

  size_t size = h_size * sizeof(kmp_dephash_entry_t *) + sizeof(kmp_dephash_t);

#if USE_FAST_MEMORY
  h = (kmp_dephash_t *)__kmp_fast_allocate(thread, size);
#else
  h = (kmp_dephash_t *)__kmp_thread_malloc(thread, size);
#endif
  h->size = h_size;

  h->generation = 0;
  h->nelements = 0;
  h->nconflicts = 0;
  h->buckets = (kmp_dephash_entry **)(h + 1);
  h->last_all = NULL;

  for (size_t i = 0; i < h_size; i++)
    h->buckets[i] = 0;

  return h;
}

static kmp_dephash_entry *__kmp_dephash_find(kmp_info_t *thread,
                                             kmp_dephash_t **hash,
                                             kmp_intptr_t addr) {
  kmp_dephash_t *h = *hash;
  if (h->nelements != 0 && h->nconflicts / h->size >= 1) {
    *hash = __kmp_dephash_extend(thread, h);
    h = *hash;
  }
  size_t bucket = __kmp_dephash_hash(addr, h->size);

  kmp_dephash_entry_t *entry;
  for (entry = h->buckets[bucket]; entry; entry = entry->next_in_bucket)
    if (entry->addr == addr)
      break;

  if (entry == NULL) {
// create entry. This is only done by one thread so no locking required
#if USE_FAST_MEMORY
    entry = (kmp_dephash_entry_t *)__kmp_fast_allocate(
        thread, sizeof(kmp_dephash_entry_t));
#else
    entry = (kmp_dephash_entry_t *)__kmp_thread_malloc(
        thread, sizeof(kmp_dephash_entry_t));
#endif
    entry->addr = addr;
    if (!h->last_all) // no predecessor task with omp_all_memory dependence
      entry->last_out = NULL;
    else // else link the omp_all_memory depnode to the new entry
      entry->last_out = __kmp_node_ref(h->last_all);
    entry->last_set = NULL;
    entry->prev_set = NULL;
    entry->last_flag = 0;
    entry->mtx_lock = NULL;
    entry->next_in_bucket = h->buckets[bucket];
    h->buckets[bucket] = entry;
    h->nelements++;
    if (entry->next_in_bucket)
      h->nconflicts++;
  }
  return entry;
}

static kmp_depnode_list_t *__kmp_add_node(kmp_info_t *thread,
                                          kmp_depnode_list_t *list,
                                          kmp_depnode_t *node) {
  kmp_depnode_list_t *new_head;

#if USE_FAST_MEMORY
  new_head = (kmp_depnode_list_t *)__kmp_fast_allocate(
      thread, sizeof(kmp_depnode_list_t));
#else
  new_head = (kmp_depnode_list_t *)__kmp_thread_malloc(
      thread, sizeof(kmp_depnode_list_t));
#endif

  new_head->node = __kmp_node_ref(node);
  new_head->next = list;

  return new_head;
}

static inline void __kmp_track_dependence(kmp_int32 gtid, kmp_depnode_t *source,
                                          kmp_depnode_t *sink,
                                          kmp_task_t *sink_task) {
#if OMPX_TASKGRAPH
  kmp_taskdata_t *task_source = KMP_TASK_TO_TASKDATA(source->dn.task);
  kmp_taskdata_t *task_sink = KMP_TASK_TO_TASKDATA(sink_task);
  if (source->dn.task && sink_task) {
    // Not supporting dependency between two tasks that one is within the TDG
    // and the other is not
    KMP_ASSERT(task_source->is_taskgraph == task_sink->is_taskgraph);
  }
  if (task_sink->is_taskgraph &&
      __kmp_tdg_is_recording(task_sink->tdg->tdg_status)) {
    kmp_node_info_t *source_info =
        &task_sink->tdg->record_map[task_source->td_task_id];
    bool exists = false;
    for (int i = 0; i < source_info->nsuccessors; i++) {
      if (source_info->successors[i] == task_sink->td_task_id) {
        exists = true;
        break;
      }
    }
    if (!exists) {
      if (source_info->nsuccessors >= source_info->successors_size) {
        source_info->successors_size = 2 * source_info->successors_size;
        kmp_int32 *old_succ_ids = source_info->successors;
        kmp_int32 *new_succ_ids = (kmp_int32 *)__kmp_allocate(
            source_info->successors_size * sizeof(kmp_int32));
        source_info->successors = new_succ_ids;
        __kmp_free(old_succ_ids);
      }

      source_info->successors[source_info->nsuccessors] = task_sink->td_task_id;
      source_info->nsuccessors++;

      kmp_node_info_t *sink_info =
          &(task_sink->tdg->record_map[task_sink->td_task_id]);
      sink_info->npredecessors++;
    }
  }
#endif
#ifdef KMP_SUPPORT_GRAPH_OUTPUT
  kmp_taskdata_t *task_source = KMP_TASK_TO_TASKDATA(source->dn.task);
  // do not use sink->dn.task as that is only filled after the dependences
  // are already processed!
  kmp_taskdata_t *task_sink = KMP_TASK_TO_TASKDATA(sink_task);

  __kmp_printf("%d(%s) -> %d(%s)\n", source->dn.id,
               task_source->td_ident->psource, sink->dn.id,
               task_sink->td_ident->psource);
#endif
#if OMPT_SUPPORT && OMPT_OPTIONAL
  /* OMPT tracks dependences between task (a=source, b=sink) in which
     task a blocks the execution of b through the ompt_new_dependence_callback
     */
  if (ompt_enabled.ompt_callback_task_dependence) {
    kmp_taskdata_t *task_source = KMP_TASK_TO_TASKDATA(source->dn.task);
    ompt_data_t *sink_data;
    if (sink_task)
      sink_data = &(KMP_TASK_TO_TASKDATA(sink_task)->ompt_task_info.task_data);
    else
      sink_data = &__kmp_threads[gtid]->th.ompt_thread_info.task_data;

    ompt_callbacks.ompt_callback(ompt_callback_task_dependence)(
        &(task_source->ompt_task_info.task_data), sink_data);
  }
#endif /* OMPT_SUPPORT && OMPT_OPTIONAL */
}

kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task) {
  kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
  return td->td_depnode ? &(td->td_depnode->dn) : NULL;
}

kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task) {
  kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
  return td->td_depnode->dn.successors;
}

static inline kmp_int32
__kmp_depnode_link_successor(kmp_int32 gtid, kmp_info_t *thread,
                             kmp_task_t *task, kmp_depnode_t *node,
                             kmp_depnode_list_t *plist) {
  if (!plist)
    return 0;
  kmp_int32 npredecessors = 0;
  // link node as successor of list elements
  for (kmp_depnode_list_t *p = plist; p; p = p->next) {
    kmp_depnode_t *dep = p->node;
#if OMPX_TASKGRAPH
    kmp_tdg_status tdg_status = KMP_TDG_NONE;
    if (task) {
      kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
      if (td->is_taskgraph)
        tdg_status = KMP_TASK_TO_TASKDATA(task)->tdg->tdg_status;
      if (__kmp_tdg_is_recording(tdg_status))
        __kmp_track_dependence(gtid, dep, node, task);
    }
#endif
    if (dep->dn.task) {
      KMP_ACQUIRE_DEPNODE(gtid, dep);
      if (dep->dn.task) {
        if (!dep->dn.successors || dep->dn.successors->node != node) {
#if OMPX_TASKGRAPH
          if (!(__kmp_tdg_is_recording(tdg_status)) && task)
#endif
            __kmp_track_dependence(gtid, dep, node, task);
          dep->dn.successors = __kmp_add_node(thread, dep->dn.successors, node);
          KA_TRACE(40, ("__kmp_process_deps: T#%d adding dependence from %p to "
                        "%p\n",
                        gtid, KMP_TASK_TO_TASKDATA(dep->dn.task),
                        KMP_TASK_TO_TASKDATA(task)));
          npredecessors++;
        }
      }
      KMP_RELEASE_DEPNODE(gtid, dep);
    }
  }
  return npredecessors;
}

// Add the edge 'sink' -> 'source' in the task dependency graph
static inline kmp_int32 __kmp_depnode_link_successor(kmp_int32 gtid,
                                                     kmp_info_t *thread,
                                                     kmp_task_t *task,
                                                     kmp_depnode_t *source,
                                                     kmp_depnode_t *sink) {
  if (!sink)
    return 0;
  kmp_int32 npredecessors = 0;
#if OMPX_TASKGRAPH
  kmp_tdg_status tdg_status = KMP_TDG_NONE;
  kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
  if (task) {
    if (td->is_taskgraph)
      tdg_status = KMP_TASK_TO_TASKDATA(task)->tdg->tdg_status;
    if (__kmp_tdg_is_recording(tdg_status) && sink->dn.task)
      __kmp_track_dependence(gtid, sink, source, task);
  }
#endif
  if (sink->dn.task) {
    // synchronously add source to sink' list of successors
    KMP_ACQUIRE_DEPNODE(gtid, sink);
    if (sink->dn.task) {
      if (!sink->dn.successors || sink->dn.successors->node != source) {
#if OMPX_TASKGRAPH
        if (!(__kmp_tdg_is_recording(tdg_status)) && task)
#endif
          __kmp_track_dependence(gtid, sink, source, task);
        sink->dn.successors = __kmp_add_node(thread, sink->dn.successors, source);
        KA_TRACE(40, ("__kmp_process_deps: T#%d adding dependence from %p to "
                    "%p\n",
                    gtid, KMP_TASK_TO_TASKDATA(sink->dn.task),
                    KMP_TASK_TO_TASKDATA(task)));
#if OMPX_TASKGRAPH
        if (__kmp_tdg_is_recording(tdg_status)) {
          kmp_taskdata_t *tdd = KMP_TASK_TO_TASKDATA(sink->dn.task);
          if (tdd->is_taskgraph) {
            if (tdd->td_flags.onced)
              // decrement npredecessors if sink->dn.task belongs to a taskgraph
              // and
              //  1) the task is reset to its initial state (by kmp_free_task) or
              //  2) the task is complete but not yet reset
              npredecessors--;
          }
        }
#endif
      npredecessors++;
      }
    }
    KMP_RELEASE_DEPNODE(gtid, sink);
  }
  return npredecessors;
}

static inline kmp_int32
__kmp_process_dep_all(kmp_int32 gtid, kmp_depnode_t *node, kmp_dephash_t *h,
                      bool dep_barrier, kmp_task_t *task) {
  KA_TRACE(30, ("__kmp_process_dep_all: T#%d processing dep_all, "
                "dep_barrier = %d\n",
                gtid, dep_barrier));
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_int32 npredecessors = 0;

  // process previous omp_all_memory node if any
  npredecessors +=
      __kmp_depnode_link_successor(gtid, thread, task, node, h->last_all);
  __kmp_node_deref(thread, h->last_all);
  if (!dep_barrier) {
    h->last_all = __kmp_node_ref(node);
  } else {
    // if this is a sync point in the serial sequence, then the previous
    // outputs are guaranteed to be completed after the execution of this
    // task so the previous output nodes can be cleared.
    h->last_all = NULL;
  }

  // process all regular dependences
  for (size_t i = 0; i < h->size; i++) {
    kmp_dephash_entry_t *info = h->buckets[i];
    if (!info) // skip empty slots in dephash
      continue;
    for (; info; info = info->next_in_bucket) {
      // for each entry the omp_all_memory works as OUT dependence
      kmp_depnode_t *last_out = info->last_out;
      kmp_depnode_list_t *last_set = info->last_set;
      kmp_depnode_list_t *prev_set = info->prev_set;
      if (last_set) {
        npredecessors +=
            __kmp_depnode_link_successor(gtid, thread, task, node, last_set);
        __kmp_depnode_list_free(thread, last_set);
        __kmp_depnode_list_free(thread, prev_set);
        info->last_set = NULL;
        info->prev_set = NULL;
        info->last_flag = 0; // no sets in this dephash entry
      } else {
        npredecessors +=
            __kmp_depnode_link_successor(gtid, thread, task, node, last_out);
      }
      __kmp_node_deref(thread, last_out);
      if (!dep_barrier) {
        info->last_out = __kmp_node_ref(node);
      } else {
        info->last_out = NULL;
      }
    }
  }
  KA_TRACE(30, ("__kmp_process_dep_all: T#%d found %d predecessors\n", gtid,
                npredecessors));
  return npredecessors;
}

template <bool filter>
static inline kmp_int32
__kmp_process_deps(kmp_int32 gtid, kmp_depnode_t *node, kmp_dephash_t **hash,
                   bool dep_barrier, kmp_int32 ndeps,
                   kmp_depend_info_t *dep_list, kmp_task_t *task) {
  KA_TRACE(30, ("__kmp_process_deps<%d>: T#%d processing %d dependences : "
                "dep_barrier = %d\n",
                filter, gtid, ndeps, dep_barrier));

  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_int32 npredecessors = 0;
  for (kmp_int32 i = 0; i < ndeps; i++) {
    const kmp_depend_info_t *dep = &dep_list[i];

    if (filter && dep->base_addr == 0)
      continue; // skip filtered entries

    kmp_dephash_entry_t *info =
        __kmp_dephash_find(thread, hash, dep->base_addr);
    kmp_depnode_t *last_out = info->last_out;
    kmp_depnode_list_t *last_set = info->last_set;
    kmp_depnode_list_t *prev_set = info->prev_set;

    if (dep->flags.out) { // out or inout --> clean lists if any
      if (last_set) {
        npredecessors +=
            __kmp_depnode_link_successor(gtid, thread, task, node, last_set);
        __kmp_depnode_list_free(thread, last_set);
        __kmp_depnode_list_free(thread, prev_set);
        info->last_set = NULL;
        info->prev_set = NULL;
        info->last_flag = 0; // no sets in this dephash entry
      } else {
        npredecessors +=
            __kmp_depnode_link_successor(gtid, thread, task, node, last_out);
      }
      __kmp_node_deref(thread, last_out);
      if (!dep_barrier) {
        info->last_out = __kmp_node_ref(node);
      } else {
        // if this is a sync point in the serial sequence, then the previous
        // outputs are guaranteed to be completed after the execution of this
        // task so the previous output nodes can be cleared.
        info->last_out = NULL;
      }
    } else { // either IN or MTX or SET
      if (info->last_flag == 0 || info->last_flag == dep->flag) {
        // last_set either didn't exist or of same dep kind
        // link node as successor of the last_out if any
        npredecessors +=
            __kmp_depnode_link_successor(gtid, thread, task, node, last_out);
        // link node as successor of all nodes in the prev_set if any
        npredecessors +=
            __kmp_depnode_link_successor(gtid, thread, task, node, prev_set);
        if (dep_barrier) {
          // clean last_out and prev_set if any; don't touch last_set
          __kmp_node_deref(thread, last_out);
          info->last_out = NULL;
          __kmp_depnode_list_free(thread, prev_set);
          info->prev_set = NULL;
        }
      } else { // last_set is of different dep kind, make it prev_set
        // link node as successor of all nodes in the last_set
        npredecessors +=
            __kmp_depnode_link_successor(gtid, thread, task, node, last_set);
        // clean last_out if any
        __kmp_node_deref(thread, last_out);
        info->last_out = NULL;
        // clean prev_set if any
        __kmp_depnode_list_free(thread, prev_set);
        if (!dep_barrier) {
          // move last_set to prev_set, new last_set will be allocated
          info->prev_set = last_set;
        } else {
          info->prev_set = NULL;
          info->last_flag = 0;
        }
        info->last_set = NULL;
      }
      // for dep_barrier last_flag value should remain:
      // 0 if last_set is empty, unchanged otherwise
      if (!dep_barrier) {
        info->last_flag = dep->flag; // store dep kind of the last_set
        info->last_set = __kmp_add_node(thread, info->last_set, node);
      }
      // check if we are processing MTX dependency
      if (dep->flag == KMP_DEP_MTX) {
        if (info->mtx_lock == NULL) {
          info->mtx_lock = (kmp_lock_t *)__kmp_allocate(sizeof(kmp_lock_t));
          __kmp_init_lock(info->mtx_lock);
        }
        KMP_DEBUG_ASSERT(node->dn.mtx_num_locks < MAX_MTX_DEPS);
        kmp_int32 m;
        // Save lock in node's array
        for (m = 0; m < MAX_MTX_DEPS; ++m) {
          // sort pointers in decreasing order to avoid potential livelock
          if (node->dn.mtx_locks[m] < info->mtx_lock) {
            KMP_DEBUG_ASSERT(!node->dn.mtx_locks[node->dn.mtx_num_locks]);
            for (int n = node->dn.mtx_num_locks; n > m; --n) {
              // shift right all lesser non-NULL pointers
              KMP_DEBUG_ASSERT(node->dn.mtx_locks[n - 1] != NULL);
              node->dn.mtx_locks[n] = node->dn.mtx_locks[n - 1];
            }
            node->dn.mtx_locks[m] = info->mtx_lock;
            break;
          }
        }
        KMP_DEBUG_ASSERT(m < MAX_MTX_DEPS); // must break from loop
        node->dn.mtx_num_locks++;
      }
    }
  }
  KA_TRACE(30, ("__kmp_process_deps<%d>: T#%d found %d predecessors\n", filter,
                gtid, npredecessors));
  return npredecessors;
}

#define NO_DEP_BARRIER (false)
#define DEP_BARRIER (true)

// returns true if the task has any outstanding dependence
static bool __kmp_check_deps(kmp_int32 gtid, kmp_depnode_t *node,
                             kmp_task_t *task, kmp_dephash_t **hash,
                             bool dep_barrier, kmp_int32 ndeps,
                             kmp_depend_info_t *dep_list,
                             kmp_int32 ndeps_noalias,
                             kmp_depend_info_t *noalias_dep_list) {
  int i, n_mtxs = 0, dep_all = 0;
#if KMP_DEBUG
  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
#endif
  KA_TRACE(20, ("__kmp_check_deps: T#%d checking dependences for task %p : %d "
                "possibly aliased dependences, %d non-aliased dependences : "
                "dep_barrier=%d .\n",
                gtid, taskdata, ndeps, ndeps_noalias, dep_barrier));

  // Filter deps in dep_list
  // TODO: Different algorithm for large dep_list ( > 10 ? )
  for (i = 0; i < ndeps; i++) {
    if (dep_list[i].base_addr != 0 &&
        dep_list[i].base_addr != (kmp_intptr_t)KMP_SIZE_T_MAX) {
      KMP_DEBUG_ASSERT(
          dep_list[i].flag == KMP_DEP_IN || dep_list[i].flag == KMP_DEP_OUT ||
          dep_list[i].flag == KMP_DEP_INOUT ||
          dep_list[i].flag == KMP_DEP_MTX || dep_list[i].flag == KMP_DEP_SET);
      for (int j = i + 1; j < ndeps; j++) {
        if (dep_list[i].base_addr == dep_list[j].base_addr) {
          if (dep_list[i].flag != dep_list[j].flag) {
            // two different dependences on same address work identical to OUT
            dep_list[i].flag = KMP_DEP_OUT;
          }
          dep_list[j].base_addr = 0; // Mark j element as void
        }
      }
      if (dep_list[i].flag == KMP_DEP_MTX) {
        // limit number of mtx deps to MAX_MTX_DEPS per node
        if (n_mtxs < MAX_MTX_DEPS && task != NULL) {
          ++n_mtxs;
        } else {
          dep_list[i].flag = KMP_DEP_OUT; // downgrade mutexinoutset to inout
        }
      }
    } else if (dep_list[i].flag == KMP_DEP_ALL ||
               dep_list[i].base_addr == (kmp_intptr_t)KMP_SIZE_T_MAX) {
      // omp_all_memory dependence can be marked by compiler by either
      // (addr=0 && flag=0x80) (flag KMP_DEP_ALL), or (addr=-1).
      // omp_all_memory overrides all other dependences if any
      dep_all = 1;
      break;
    }
  }

  // doesn't need to be atomic as no other thread is going to be accessing this
  // node just yet.
  // npredecessors is set -1 to ensure that none of the releasing tasks queues
  // this task before we have finished processing all the dependences
  node->dn.npredecessors = -1;

  // used to pack all npredecessors additions into a single atomic operation at
  // the end
  int npredecessors;

  if (!dep_all) { // regular dependences
    npredecessors = __kmp_process_deps<true>(gtid, node, hash, dep_barrier,
                                             ndeps, dep_list, task);
    npredecessors += __kmp_process_deps<false>(
        gtid, node, hash, dep_barrier, ndeps_noalias, noalias_dep_list, task);
  } else { // omp_all_memory dependence
    npredecessors = __kmp_process_dep_all(gtid, node, *hash, dep_barrier, task);
  }

  node->dn.task = task;
  KMP_MB();

  // Account for our initial fake value
  npredecessors++;

  // Update predecessors and obtain current value to check if there are still
  // any outstanding dependences (some tasks may have finished while we
  // processed the dependences)
  npredecessors =
      node->dn.npredecessors.fetch_add(npredecessors) + npredecessors;

  KA_TRACE(20, ("__kmp_check_deps: T#%d found %d predecessors for task %p \n",
                gtid, npredecessors, taskdata));

  // beyond this point the task could be queued (and executed) by a releasing
  // task...
  return npredecessors > 0 ? true : false;
}

/*!
@ingroup TASKING
@param loc_ref location of the original task directive
@param gtid Global Thread ID of encountering thread
@param new_task task thunk allocated by __kmp_omp_task_alloc() for the ''new
task''
@param ndeps Number of depend items with possible aliasing
@param dep_list List of depend items with possible aliasing
@param ndeps_noalias Number of depend items with no aliasing
@param noalias_dep_list List of depend items with no aliasing

@return Returns either TASK_CURRENT_NOT_QUEUED if the current task was not
suspended and queued, or TASK_CURRENT_QUEUED if it was suspended and queued

Schedule a non-thread-switchable task with dependences for execution
*/
kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid,
                                    kmp_task_t *new_task, kmp_int32 ndeps,
                                    kmp_depend_info_t *dep_list,
                                    kmp_int32 ndeps_noalias,
                                    kmp_depend_info_t *noalias_dep_list) {

  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
  KA_TRACE(10, ("__kmpc_omp_task_with_deps(enter): T#%d loc=%p task=%p\n", gtid,
                loc_ref, new_taskdata));
  __kmp_assert_valid_gtid(gtid);
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskdata_t *current_task = thread->th.th_current_task;

#if OMPX_TASKGRAPH
  // record TDG with deps
  if (new_taskdata->is_taskgraph &&
      __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) {
    kmp_tdg_info_t *tdg = new_taskdata->tdg;
    // extend record_map if needed
    if (new_taskdata->td_task_id >= tdg->map_size) {
      __kmp_acquire_bootstrap_lock(&tdg->graph_lock);
      if (new_taskdata->td_task_id >= tdg->map_size) {
        kmp_uint old_size = tdg->map_size;
        kmp_uint new_size = old_size * 2;
        kmp_node_info_t *old_record = tdg->record_map;
        kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate(
            new_size * sizeof(kmp_node_info_t));
        KMP_MEMCPY(new_record, tdg->record_map,
                   old_size * sizeof(kmp_node_info_t));
        tdg->record_map = new_record;

        __kmp_free(old_record);

        for (kmp_int i = old_size; i < new_size; i++) {
          kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate(
              __kmp_successors_size * sizeof(kmp_int32));
          new_record[i].task = nullptr;
          new_record[i].successors = successorsList;
          new_record[i].nsuccessors = 0;
          new_record[i].npredecessors = 0;
          new_record[i].successors_size = __kmp_successors_size;
          KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0);
        }
        // update the size at the end, so that we avoid other
        // threads use old_record while map_size is already updated
        tdg->map_size = new_size;
      }
      __kmp_release_bootstrap_lock(&tdg->graph_lock);
    }
    tdg->record_map[new_taskdata->td_task_id].task = new_task;
    tdg->record_map[new_taskdata->td_task_id].parent_task =
        new_taskdata->td_parent;
    KMP_ATOMIC_INC(&tdg->num_tasks);
  }
#endif
#if OMPT_SUPPORT
  if (ompt_enabled.enabled) {
    if (!current_task->ompt_task_info.frame.enter_frame.ptr)
      current_task->ompt_task_info.frame.enter_frame.ptr =
          OMPT_GET_FRAME_ADDRESS(0);
    if (ompt_enabled.ompt_callback_task_create) {
      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
          &(current_task->ompt_task_info.task_data),
          &(current_task->ompt_task_info.frame),
          &(new_taskdata->ompt_task_info.task_data),
          ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 1,
          OMPT_LOAD_OR_GET_RETURN_ADDRESS(gtid));
    }

    new_taskdata->ompt_task_info.frame.enter_frame.ptr =
        OMPT_GET_FRAME_ADDRESS(0);
  }

#if OMPT_OPTIONAL
  /* OMPT grab all dependences if requested by the tool */
  if (ndeps + ndeps_noalias > 0 && ompt_enabled.ompt_callback_dependences) {
    kmp_int32 i;

    int ompt_ndeps = ndeps + ndeps_noalias;
    ompt_dependence_t *ompt_deps = (ompt_dependence_t *)KMP_OMPT_DEPS_ALLOC(
        thread, (ndeps + ndeps_noalias) * sizeof(ompt_dependence_t));

    KMP_ASSERT(ompt_deps != NULL);

    for (i = 0; i < ndeps; i++) {
      ompt_deps[i].variable.ptr = (void *)dep_list[i].base_addr;
      if (dep_list[i].base_addr == KMP_SIZE_T_MAX)
        ompt_deps[i].dependence_type = ompt_dependence_type_out_all_memory;
      else if (dep_list[i].flags.in && dep_list[i].flags.out)
        ompt_deps[i].dependence_type = ompt_dependence_type_inout;
      else if (dep_list[i].flags.out)
        ompt_deps[i].dependence_type = ompt_dependence_type_out;
      else if (dep_list[i].flags.in)
        ompt_deps[i].dependence_type = ompt_dependence_type_in;
      else if (dep_list[i].flags.mtx)
        ompt_deps[i].dependence_type = ompt_dependence_type_mutexinoutset;
      else if (dep_list[i].flags.set)
        ompt_deps[i].dependence_type = ompt_dependence_type_inoutset;
      else if (dep_list[i].flags.all)
        ompt_deps[i].dependence_type = ompt_dependence_type_out_all_memory;
    }
    for (i = 0; i < ndeps_noalias; i++) {
      ompt_deps[ndeps + i].variable.ptr = (void *)noalias_dep_list[i].base_addr;
      if (noalias_dep_list[i].base_addr == KMP_SIZE_T_MAX)
        ompt_deps[ndeps + i].dependence_type =
            ompt_dependence_type_out_all_memory;
      else if (noalias_dep_list[i].flags.in && noalias_dep_list[i].flags.out)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_inout;
      else if (noalias_dep_list[i].flags.out)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_out;
      else if (noalias_dep_list[i].flags.in)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_in;
      else if (noalias_dep_list[i].flags.mtx)
        ompt_deps[ndeps + i].dependence_type =
            ompt_dependence_type_mutexinoutset;
      else if (noalias_dep_list[i].flags.set)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_inoutset;
      else if (noalias_dep_list[i].flags.all)
        ompt_deps[ndeps + i].dependence_type =
            ompt_dependence_type_out_all_memory;
    }
    ompt_callbacks.ompt_callback(ompt_callback_dependences)(
        &(new_taskdata->ompt_task_info.task_data), ompt_deps, ompt_ndeps);
    /* We can now free the allocated memory for the dependences */
    /* For OMPD we might want to delay the free until end of this function */
    KMP_OMPT_DEPS_FREE(thread, ompt_deps);
  }
#endif /* OMPT_OPTIONAL */
#endif /* OMPT_SUPPORT */

  bool serial = current_task->td_flags.team_serial ||
                current_task->td_flags.tasking_ser ||
                current_task->td_flags.final;
  kmp_task_team_t *task_team = thread->th.th_task_team;
  serial = serial &&
           !(task_team && (task_team->tt.tt_found_proxy_tasks ||
                           task_team->tt.tt_hidden_helper_task_encountered));

  if (!serial && (ndeps > 0 || ndeps_noalias > 0)) {
    /* if no dependences have been tracked yet, create the dependence hash */
    if (current_task->td_dephash == NULL)
      current_task->td_dephash = __kmp_dephash_create(thread, current_task);

#if USE_FAST_MEMORY
    kmp_depnode_t *node =
        (kmp_depnode_t *)__kmp_fast_allocate(thread, sizeof(kmp_depnode_t));
#else
    kmp_depnode_t *node =
        (kmp_depnode_t *)__kmp_thread_malloc(thread, sizeof(kmp_depnode_t));
#endif

    __kmp_init_node(node);
    new_taskdata->td_depnode = node;

    if (__kmp_check_deps(gtid, node, new_task, &current_task->td_dephash,
                         NO_DEP_BARRIER, ndeps, dep_list, ndeps_noalias,
                         noalias_dep_list)) {
      KA_TRACE(10, ("__kmpc_omp_task_with_deps(exit): T#%d task had blocking "
                    "dependences: "
                    "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
                    gtid, loc_ref, new_taskdata));
#if OMPT_SUPPORT
      if (ompt_enabled.enabled) {
        current_task->ompt_task_info.frame.enter_frame = ompt_data_none;
      }
#endif
      return TASK_CURRENT_NOT_QUEUED;
    }
  } else {
    KA_TRACE(10, ("__kmpc_omp_task_with_deps(exit): T#%d ignored dependences "
                  "for task (serialized) loc=%p task=%p\n",
                  gtid, loc_ref, new_taskdata));
  }

  KA_TRACE(10, ("__kmpc_omp_task_with_deps(exit): T#%d task had no blocking "
                "dependences : "
                "loc=%p task=%p, transferring to __kmp_omp_task\n",
                gtid, loc_ref, new_taskdata));

  kmp_int32 ret = __kmp_omp_task(gtid, new_task, true);
#if OMPT_SUPPORT
  if (ompt_enabled.enabled) {
    current_task->ompt_task_info.frame.enter_frame = ompt_data_none;
  }
#endif
  return ret;
}

#if OMPT_SUPPORT
void __ompt_taskwait_dep_finish(kmp_taskdata_t *current_task,
                                ompt_data_t *taskwait_task_data) {
  if (ompt_enabled.ompt_callback_task_schedule) {
    ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
        taskwait_task_data, ompt_taskwait_complete, NULL);
  }
  current_task->ompt_task_info.frame.enter_frame.ptr = NULL;
  *taskwait_task_data = ompt_data_none;
}
#endif /* OMPT_SUPPORT */

/*!
@ingroup TASKING
@param loc_ref location of the original task directive
@param gtid Global Thread ID of encountering thread
@param ndeps Number of depend items with possible aliasing
@param dep_list List of depend items with possible aliasing
@param ndeps_noalias Number of depend items with no aliasing
@param noalias_dep_list List of depend items with no aliasing

Blocks the current task until all specifies dependences have been fulfilled.
*/
void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps,
                          kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
                          kmp_depend_info_t *noalias_dep_list) {
  __kmpc_omp_taskwait_deps_51(loc_ref, gtid, ndeps, dep_list, ndeps_noalias,
                              noalias_dep_list, false);
}

/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
                                 Placeholder for taskwait with nowait clause.
                                 Earlier code of __kmpc_omp_wait_deps() is now
                                 in this function.
*/
void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
                                 kmp_int32 ndeps, kmp_depend_info_t *dep_list,
                                 kmp_int32 ndeps_noalias,
                                 kmp_depend_info_t *noalias_dep_list,
                                 kmp_int32 has_no_wait) {
  KA_TRACE(10, ("__kmpc_omp_taskwait_deps(enter): T#%d loc=%p nowait#%d\n",
                gtid, loc_ref, has_no_wait));
  if (ndeps == 0 && ndeps_noalias == 0) {
    KA_TRACE(10, ("__kmpc_omp_taskwait_deps(exit): T#%d has no dependences to "
                  "wait upon : loc=%p\n",
                  gtid, loc_ref));
    return;
  }
  __kmp_assert_valid_gtid(gtid);
  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_taskdata_t *current_task = thread->th.th_current_task;

#if OMPT_SUPPORT
  // this function represents a taskwait construct with depend clause
  // We signal 4 events:
  //  - creation of the taskwait task
  //  - dependences of the taskwait task
  //  - schedule and finish of the taskwait task
  ompt_data_t *taskwait_task_data = &thread->th.ompt_thread_info.task_data;
  KMP_ASSERT(taskwait_task_data->ptr == NULL);
  if (ompt_enabled.enabled) {
    if (!current_task->ompt_task_info.frame.enter_frame.ptr)
      current_task->ompt_task_info.frame.enter_frame.ptr =
          OMPT_GET_FRAME_ADDRESS(0);
    if (ompt_enabled.ompt_callback_task_create) {
      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
          &(current_task->ompt_task_info.task_data),
          &(current_task->ompt_task_info.frame), taskwait_task_data,
          ompt_task_taskwait | ompt_task_undeferred | ompt_task_mergeable, 1,
          OMPT_LOAD_OR_GET_RETURN_ADDRESS(gtid));
    }
  }

#if OMPT_OPTIONAL
  /* OMPT grab all dependences if requested by the tool */
  if (ndeps + ndeps_noalias > 0 && ompt_enabled.ompt_callback_dependences) {
    kmp_int32 i;

    int ompt_ndeps = ndeps + ndeps_noalias;
    ompt_dependence_t *ompt_deps = (ompt_dependence_t *)KMP_OMPT_DEPS_ALLOC(
        thread, (ndeps + ndeps_noalias) * sizeof(ompt_dependence_t));

    KMP_ASSERT(ompt_deps != NULL);

    for (i = 0; i < ndeps; i++) {
      ompt_deps[i].variable.ptr = (void *)dep_list[i].base_addr;
      if (dep_list[i].flags.in && dep_list[i].flags.out)
        ompt_deps[i].dependence_type = ompt_dependence_type_inout;
      else if (dep_list[i].flags.out)
        ompt_deps[i].dependence_type = ompt_dependence_type_out;
      else if (dep_list[i].flags.in)
        ompt_deps[i].dependence_type = ompt_dependence_type_in;
      else if (dep_list[i].flags.mtx)
        ompt_deps[ndeps + i].dependence_type =
            ompt_dependence_type_mutexinoutset;
      else if (dep_list[i].flags.set)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_inoutset;
    }
    for (i = 0; i < ndeps_noalias; i++) {
      ompt_deps[ndeps + i].variable.ptr = (void *)noalias_dep_list[i].base_addr;
      if (noalias_dep_list[i].flags.in && noalias_dep_list[i].flags.out)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_inout;
      else if (noalias_dep_list[i].flags.out)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_out;
      else if (noalias_dep_list[i].flags.in)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_in;
      else if (noalias_dep_list[i].flags.mtx)
        ompt_deps[ndeps + i].dependence_type =
            ompt_dependence_type_mutexinoutset;
      else if (noalias_dep_list[i].flags.set)
        ompt_deps[ndeps + i].dependence_type = ompt_dependence_type_inoutset;
    }
    ompt_callbacks.ompt_callback(ompt_callback_dependences)(
        taskwait_task_data, ompt_deps, ompt_ndeps);
    /* We can now free the allocated memory for the dependences */
    /* For OMPD we might want to delay the free until end of this function */
    KMP_OMPT_DEPS_FREE(thread, ompt_deps);
    ompt_deps = NULL;
  }
#endif /* OMPT_OPTIONAL */
#endif /* OMPT_SUPPORT */

  // We can return immediately as:
  // - dependences are not computed in serial teams (except with proxy tasks)
  // - if the dephash is not yet created it means we have nothing to wait for
  bool ignore = current_task->td_flags.team_serial ||
                current_task->td_flags.tasking_ser ||
                current_task->td_flags.final;
  ignore =
      ignore && thread->th.th_task_team != NULL &&
      thread->th.th_task_team->tt.tt_found_proxy_tasks == FALSE &&
      thread->th.th_task_team->tt.tt_hidden_helper_task_encountered == FALSE;
  ignore = ignore || current_task->td_dephash == NULL;

  if (ignore) {
    KA_TRACE(10, ("__kmpc_omp_taskwait_deps(exit): T#%d has no blocking "
                  "dependences : loc=%p\n",
                  gtid, loc_ref));
#if OMPT_SUPPORT
    __ompt_taskwait_dep_finish(current_task, taskwait_task_data);
#endif /* OMPT_SUPPORT */
    return;
  }

  kmp_depnode_t node = {0};
  __kmp_init_node(&node);

  if (!__kmp_check_deps(gtid, &node, NULL, &current_task->td_dephash,
                        DEP_BARRIER, ndeps, dep_list, ndeps_noalias,
                        noalias_dep_list)) {
    KA_TRACE(10, ("__kmpc_omp_taskwait_deps(exit): T#%d has no blocking "
                  "dependences : loc=%p\n",
                  gtid, loc_ref));
#if OMPT_SUPPORT
    __ompt_taskwait_dep_finish(current_task, taskwait_task_data);
#endif /* OMPT_SUPPORT */
    return;
  }

  int thread_finished = FALSE;
  kmp_flag_32<false, false> flag(
      (std::atomic<kmp_uint32> *)&node.dn.npredecessors, 0U);
  while (node.dn.npredecessors > 0) {
    flag.execute_tasks(thread, gtid, FALSE,
                       &thread_finished USE_ITT_BUILD_ARG(NULL),
                       __kmp_task_stealing_constraint);
  }

#if OMPT_SUPPORT
  __ompt_taskwait_dep_finish(current_task, taskwait_task_data);
#endif /* OMPT_SUPPORT */
  KA_TRACE(10, ("__kmpc_omp_taskwait_deps(exit): T#%d finished waiting : loc=%p\
                \n",
                gtid, loc_ref));
}