aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/python/dialects/affine.py
blob: 9e2027937a09fe7b7805c9f11a342682eac76149 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# RUN: %PYTHON %s | FileCheck %s

from mlir.ir import *
from mlir.dialects import func
from mlir.dialects import arith
from mlir.dialects import memref
from mlir.dialects import affine
import mlir.extras.types as T


def constructAndPrintInModule(f):
    print("\nTEST:", f.__name__)
    with Context(), Location.unknown():
        module = Module.create()
        with InsertionPoint(module.body):
            f()
        print(module)
    return f


# CHECK-LABEL: TEST: testAffineStoreOp
@constructAndPrintInModule
def testAffineStoreOp():
    f32 = F32Type.get()
    index_type = IndexType.get()
    memref_type_out = MemRefType.get([12, 12], f32)

    # CHECK: func.func @affine_store_test(%[[ARG0:.*]]: index) -> memref<12x12xf32> {
    @func.FuncOp.from_py_func(index_type)
    def affine_store_test(arg0):
        # CHECK: %[[O_VAR:.*]] = memref.alloc() : memref<12x12xf32>
        mem = memref.AllocOp(memref_type_out, [], []).result

        d0 = AffineDimExpr.get(0)
        s0 = AffineSymbolExpr.get(0)
        map = AffineMap.get(1, 1, [s0 * 3, d0 + s0 + 1])

        # CHECK: %[[A1:.*]] = arith.constant 2.100000e+00 : f32
        a1 = arith.ConstantOp(f32, 2.1)

        # CHECK: affine.store %[[A1]], %alloc[symbol(%[[ARG0]]) * 3, %[[ARG0]] + symbol(%[[ARG0]]) + 1] : memref<12x12xf32>
        affine.AffineStoreOp(a1, mem, indices=[arg0, arg0], map=map)

        return mem


# CHECK-LABEL: TEST: testAffineLoadOp
@constructAndPrintInModule
def testAffineLoadOp():
    f32 = F32Type.get()
    index_type = IndexType.get()
    memref_type_in = MemRefType.get([10, 10], f32)

    # CHECK: func.func @affine_load_test(%[[I_VAR:.*]]: memref<10x10xf32>, %[[ARG0:.*]]: index) -> f32 {
    @func.FuncOp.from_py_func(memref_type_in, index_type)
    def affine_load_test(I, arg0):
        d0 = AffineDimExpr.get(0)
        s0 = AffineSymbolExpr.get(0)
        map = AffineMap.get(1, 1, [s0 * 3, d0 + s0 + 1])

        # CHECK: {{.*}} = affine.load %[[I_VAR]][symbol(%[[ARG0]]) * 3, %[[ARG0]] + symbol(%[[ARG0]]) + 1] : memref<10x10xf32>
        a1 = affine.AffineLoadOp(f32, I, indices=[arg0, arg0], map=map)

        return a1


# CHECK-LABEL: TEST: testAffineForOp
@constructAndPrintInModule
def testAffineForOp():
    f32 = F32Type.get()
    index_type = IndexType.get()
    memref_type = MemRefType.get([1024], f32)

    # CHECK: #[[MAP0:.*]] = affine_map<(d0)[s0] -> (0, d0 + s0)>
    # CHECK: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0 - 2, d1 * 32)>
    # CHECK: func.func @affine_for_op_test(%[[BUFFER:.*]]: memref<1024xf32>) {
    @func.FuncOp.from_py_func(memref_type)
    def affine_for_op_test(buffer):
        # CHECK: %[[C1:.*]] = arith.constant 1 : index
        c1 = arith.ConstantOp(index_type, 1)
        # CHECK: %[[C2:.*]] = arith.constant 2 : index
        c2 = arith.ConstantOp(index_type, 2)
        # CHECK: %[[C3:.*]] = arith.constant 3 : index
        c3 = arith.ConstantOp(index_type, 3)
        # CHECK: %[[C9:.*]] = arith.constant 9 : index
        c9 = arith.ConstantOp(index_type, 9)
        # CHECK: %[[AC0:.*]] = arith.constant 0.000000e+00 : f32
        ac0 = AffineConstantExpr.get(0)

        d0 = AffineDimExpr.get(0)
        d1 = AffineDimExpr.get(1)
        s0 = AffineSymbolExpr.get(0)
        lb = AffineMap.get(1, 1, [ac0, d0 + s0])
        ub = AffineMap.get(2, 0, [d0 - 2, 32 * d1])
        sum_0 = arith.ConstantOp(f32, 0.0)

        # CHECK: %0 = affine.for %[[INDVAR:.*]] = max #[[MAP0]](%[[C2]])[%[[C3]]] to min #[[MAP1]](%[[C9]], %[[C1]]) step 2 iter_args(%[[SUM0:.*]] = %[[AC0]]) -> (f32) {
        sum = affine.AffineForOp(
            lb,
            ub,
            2,
            iter_args=[sum_0],
            lower_bound_operands=[c2, c3],
            upper_bound_operands=[c9, c1],
        )

        with InsertionPoint(sum.body):
            # CHECK: %[[TMP:.*]] = memref.load %[[BUFFER]][%[[INDVAR]]] : memref<1024xf32>
            tmp = memref.LoadOp(buffer, [sum.induction_variable])
            sum_next = arith.AddFOp(sum.inner_iter_args[0], tmp)
            affine.AffineYieldOp([sum_next])


# CHECK-LABEL: TEST: testAffineForOpErrors
@constructAndPrintInModule
def testAffineForOpErrors():
    c1 = arith.ConstantOp(T.index(), 1)
    c2 = arith.ConstantOp(T.index(), 2)
    c3 = arith.ConstantOp(T.index(), 3)
    d0 = AffineDimExpr.get(0)

    try:
        affine.AffineForOp(
            c1,
            c2,
            1,
            lower_bound_operands=[c3],
            upper_bound_operands=[],
        )
    except ValueError as e:
        assert (
            e.args[0]
            == "Either a concrete lower bound or an AffineMap in combination with lower bound operands, but not both, is supported."
        )

    try:
        affine.AffineForOp(
            AffineMap.get_constant(1),
            c2,
            1,
            lower_bound_operands=[c3, c3],
            upper_bound_operands=[],
        )
    except ValueError as e:
        assert (
            e.args[0]
            == "Wrong number of lower bound operands passed to AffineForOp; Expected 0, got 2."
        )

    try:
        two_indices = affine.AffineDelinearizeIndexOp(
            [T.index(), T.index()], c1, [c1, c1]
        )
        affine.AffineForOp(
            two_indices,
            c2,
            1,
            lower_bound_operands=[],
            upper_bound_operands=[],
        )
    except ValueError as e:
        assert e.args[0] == "Only a single concrete value is supported for lower bound."

    try:
        affine.AffineForOp(
            1.0,
            c2,
            1,
            lower_bound_operands=[],
            upper_bound_operands=[],
        )
    except ValueError as e:
        assert e.args[0] == "lower bound must be int | ResultValueT | AffineMap."


@constructAndPrintInModule
def testForSugar():
    memref_t = T.memref(10, T.index())
    range = affine.for_

    # CHECK: #[[$ATTR_2:.+]] = affine_map<(d0) -> (d0)>

    # CHECK-LABEL:   func.func @range_loop_1(
    # CHECK-SAME:                            %[[VAL_0:.*]]: index, %[[VAL_1:.*]]: index, %[[VAL_2:.*]]: memref<10xindex>) {
    # CHECK:           affine.for %[[VAL_3:.*]] = #[[$ATTR_2]](%[[VAL_0]]) to #[[$ATTR_2]](%[[VAL_1]]) {
    # CHECK:             %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
    # CHECK:             memref.store %[[VAL_4]], %[[VAL_2]]{{\[}}%[[VAL_3]]] : memref<10xindex>
    # CHECK:           }
    # CHECK:           return
    # CHECK:         }
    @func.FuncOp.from_py_func(T.index(), T.index(), memref_t)
    def range_loop_1(lb, ub, memref_v):
        for i in range(lb, ub, step=1):
            add = arith.addi(i, i)
            memref.store(add, memref_v, [i])

            affine.yield_([])

    # CHECK-LABEL:   func.func @range_loop_2(
    # CHECK-SAME:                            %[[VAL_0:.*]]: index, %[[VAL_1:.*]]: index, %[[VAL_2:.*]]: memref<10xindex>) {
    # CHECK:           affine.for %[[VAL_3:.*]] = #[[$ATTR_2]](%[[VAL_0]]) to 10 {
    # CHECK:             %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
    # CHECK:             memref.store %[[VAL_4]], %[[VAL_2]]{{\[}}%[[VAL_3]]] : memref<10xindex>
    # CHECK:           }
    # CHECK:           return
    # CHECK:         }
    @func.FuncOp.from_py_func(T.index(), T.index(), memref_t)
    def range_loop_2(lb, ub, memref_v):
        for i in range(lb, 10, step=1):
            add = arith.addi(i, i)
            memref.store(add, memref_v, [i])
            affine.yield_([])

    # CHECK-LABEL:   func.func @range_loop_3(
    # CHECK-SAME:                            %[[VAL_0:.*]]: index, %[[VAL_1:.*]]: index, %[[VAL_2:.*]]: memref<10xindex>) {
    # CHECK:           affine.for %[[VAL_3:.*]] = 0 to #[[$ATTR_2]](%[[VAL_1]]) {
    # CHECK:             %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
    # CHECK:             memref.store %[[VAL_4]], %[[VAL_2]]{{\[}}%[[VAL_3]]] : memref<10xindex>
    # CHECK:           }
    # CHECK:           return
    # CHECK:         }
    @func.FuncOp.from_py_func(T.index(), T.index(), memref_t)
    def range_loop_3(lb, ub, memref_v):
        for i in range(0, ub, step=1):
            add = arith.addi(i, i)
            memref.store(add, memref_v, [i])
            affine.yield_([])

    # CHECK-LABEL:   func.func @range_loop_4(
    # CHECK-SAME:                            %[[VAL_0:.*]]: index, %[[VAL_1:.*]]: index, %[[VAL_2:.*]]: memref<10xindex>) {
    # CHECK:           affine.for %[[VAL_3:.*]] = 0 to 10 {
    # CHECK:             %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index
    # CHECK:             memref.store %[[VAL_4]], %[[VAL_2]]{{\[}}%[[VAL_3]]] : memref<10xindex>
    # CHECK:           }
    # CHECK:           return
    # CHECK:         }
    @func.FuncOp.from_py_func(T.index(), T.index(), memref_t)
    def range_loop_4(lb, ub, memref_v):
        for i in range(0, 10, step=1):
            add = arith.addi(i, i)
            memref.store(add, memref_v, [i])
            affine.yield_([])

    # CHECK-LABEL:   func.func @range_loop_8(
    # CHECK-SAME:                            %[[VAL_0:.*]]: index, %[[VAL_1:.*]]: index, %[[VAL_2:.*]]: memref<10xindex>) {
    # CHECK:           %[[VAL_3:.*]] = affine.for %[[VAL_4:.*]] = 0 to 10 iter_args(%[[VAL_5:.*]] = %[[VAL_2]]) -> (memref<10xindex>) {
    # CHECK:             %[[VAL_6:.*]] = arith.addi %[[VAL_4]], %[[VAL_4]] : index
    # CHECK:             memref.store %[[VAL_6]], %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<10xindex>
    # CHECK:             affine.yield %[[VAL_5]] : memref<10xindex>
    # CHECK:           }
    # CHECK:           return
    # CHECK:         }
    @func.FuncOp.from_py_func(T.index(), T.index(), memref_t)
    def range_loop_8(lb, ub, memref_v):
        for i, it in range(0, 10, iter_args=[memref_v]):
            add = arith.addi(i, i)
            memref.store(add, it, [i])
            affine.yield_([it])