aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/Transforms/promote-buffers-to-stack.mlir
blob: f7f2d2ec114ca820bff1aeb3f94328ede568a1d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
// RUN: mlir-opt -promote-buffers-to-stack -split-input-file %s | FileCheck %s --check-prefix=CHECK --check-prefix DEFINDEX
// RUN: mlir-opt -promote-buffers-to-stack="max-alloc-size-in-bytes=64" -split-input-file %s | FileCheck %s --check-prefix=CHECK --check-prefix LOWLIMIT
// RUN: mlir-opt -promote-buffers-to-stack="max-rank-of-allocated-memref=2" -split-input-file %s | FileCheck %s --check-prefix=CHECK --check-prefix RANK

// This file checks the behavior of PromoteBuffersToStack pass for converting
// AllocOps into AllocaOps, if possible.

// Test Case:
//    bb0
//   /   \
//  bb1  bb2 <- Initial position of AllocOp
//   \   /
//    bb3
// PromoteBuffersToStack expected behavior: It should convert %0 into an
// AllocaOp.

// CHECK-LABEL: func @condBranch
func.func @condBranch(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
  cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
  cf.br ^bb3(%arg1 : memref<2xf32>)
^bb2:
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
  cf.br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
  test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: cf.cond_br {{.*}}
//      CHECK: ^bb2
// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
//      CHECK: test.copy
// CHECK-NEXT: return

// -----

// Test Case:
//    bb0
//   /   \
//  bb1  bb2 <- Initial position of AllocOp
//   \   /
//    bb3
// PromoteBuffersToStack expected behavior:
// Since the alloc has dynamic type, it is not converted into an alloca.

// CHECK-LABEL: func @condBranchDynamicType
func.func @condBranchDynamicType(
  %arg0: i1,
  %arg1: memref<?xf32>,
  %arg2: memref<?xf32>,
  %arg3: index) {
  cf.cond_br %arg0, ^bb1, ^bb2(%arg3: index)
^bb1:
  cf.br ^bb3(%arg1 : memref<?xf32>)
^bb2(%0: index):
  %1 = memref.alloc(%0) : memref<?xf32>
  test.buffer_based in(%arg1: memref<?xf32>) out(%1: memref<?xf32>)
  cf.br ^bb3(%1 : memref<?xf32>)
^bb3(%2: memref<?xf32>):
  test.copy(%2, %arg2) : (memref<?xf32>, memref<?xf32>)
  return
}

// CHECK-NEXT: cf.cond_br
//      CHECK: ^bb2
//      CHECK: ^bb2(%[[IDX:.*]]:{{.*}})
// CHECK-NEXT: %[[ALLOC0:.*]] = memref.alloc(%[[IDX]])
// CHECK-NEXT: test.buffer_based
//      CHECK: cf.br ^bb3
// CHECK-NEXT: ^bb3(%[[ALLOC0:.*]]:{{.*}})
//      CHECK: test.copy(%[[ALLOC0]],
// CHECK-NEXT: return

// -----

// CHECK-LABEL: func @dynamicRanked
func.func @dynamicRanked(%memref: memref<*xf32>) {
  %0 = memref.rank %memref : memref<*xf32>
  %1 = memref.alloc(%0) : memref<?xindex>
  return
}

// CHECK-NEXT: %[[RANK:.*]] = memref.rank %{{.*}} : memref<*xf32>
// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca(%[[RANK]])

// -----

// CHECK-LABEL: func @dynamicRanked2D
func.func @dynamicRanked2D(%memref: memref<*xf32>) {
  %0 = memref.rank %memref : memref<*xf32>
  %1 = memref.alloc(%0, %0) : memref<?x?xindex>
  return
}

// CHECK-NEXT: %[[RANK:.*]] = memref.rank %{{.*}} : memref<*xf32>
//  RANK-NEXT: %[[ALLOC:.*]] = memref.alloca(%[[RANK]], %[[RANK]])
// DEFINDEX-NEXT: %[[ALLOC:.*]] = memref.alloc(%[[RANK]], %[[RANK]])

// -----

// CHECK-LABEL: func @dynamicNoRank
func.func @dynamicNoRank(%arg0: index) {
  %0 = memref.alloc(%arg0) : memref<?xindex>
  return
}

// CHECK-NEXT: %[[ALLOC:.*]] = memref.alloc

// -----

// Test Case: Existing AllocOp with no users.
// PromoteBuffersToStack expected behavior: It should convert it to an
// AllocaOp.

// CHECK-LABEL: func @emptyUsesValue
func.func @emptyUsesValue(%arg0: memref<4xf32>) {
  %0 = memref.alloc() : memref<4xf32>
  return
}
// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
// CHECK-NEXT: return

// -----

// Test Case:
//    bb0
//   /   \
//  |    bb1 <- Initial position of AllocOp
//   \   /
//    bb2
// PromoteBuffersToStack expected behavior: It should convert it into an
// AllocaOp.

// CHECK-LABEL: func @criticalEdge
func.func @criticalEdge(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
  cf.cond_br %arg0, ^bb1, ^bb2(%arg1 : memref<2xf32>)
^bb1:
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
  cf.br ^bb2(%0 : memref<2xf32>)
^bb2(%1: memref<2xf32>):
  test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: cf.cond_br {{.*}}
//      CHECK: ^bb1
// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
//      CHECK: test.copy
// CHECK-NEXT: return

// -----

// Test Case:
//    bb0 <- Initial position of AllocOp
//   /   \
//  |    bb1
//   \   /
//    bb2
// PromoteBuffersToStack expected behavior: It converts the alloc in an alloca.

// CHECK-LABEL: func @invCriticalEdge
func.func @invCriticalEdge(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
  cf.cond_br %arg0, ^bb1, ^bb2(%arg1 : memref<2xf32>)
^bb1:
  cf.br ^bb2(%0 : memref<2xf32>)
^bb2(%1: memref<2xf32>):
  test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
//      CHECK: cf.cond_br
//      CHECK: test.copy
// CHECK-NEXT: return

// -----

// Test Case:
//    bb0 <- Initial position of the first AllocOp
//   /   \
//  bb1  bb2
//   \   /
//    bb3 <- Initial position of the second AllocOp
// PromoteBuffersToStack expected behavior: It converts the allocs into allocas.

// CHECK-LABEL: func @ifElse
func.func @ifElse(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
  cf.cond_br %arg0,
    ^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
    ^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
  cf.br ^bb3(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
  cf.br ^bb3(%3, %4 : memref<2xf32>, memref<2xf32>)
^bb3(%5: memref<2xf32>, %6: memref<2xf32>):
  %7 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%5: memref<2xf32>) out(%7: memref<2xf32>)
  test.copy(%7, %arg2) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: %[[ALLOCA0:.*]] = memref.alloca()
// CHECK-NEXT: test.buffer_based
//      CHECK: %[[ALLOCA1:.*]] = memref.alloca()
//      CHECK: test.buffer_based
//      CHECK: test.copy(%[[ALLOCA1]]
// CHECK-NEXT: return

// -----

// Test Case: No users for buffer in if-else CFG
//    bb0 <- Initial position of AllocOp
//   /   \
//  bb1  bb2
//   \   /
//    bb3
// PromoteBuffersToStack expected behavior: It converts the alloc into alloca.

// CHECK-LABEL: func @ifElseNoUsers
func.func @ifElseNoUsers(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
  cf.cond_br %arg0,
    ^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
    ^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
  cf.br ^bb3(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
  cf.br ^bb3(%3, %4 : memref<2xf32>, memref<2xf32>)
^bb3(%5: memref<2xf32>, %6: memref<2xf32>):
  test.copy(%arg1, %arg2) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
//      CHECK: return

// -----

// Test Case:
//      bb0 <- Initial position of the first AllocOp
//     /    \
//   bb1    bb2
//    |     /  \
//    |   bb3  bb4
//    \     \  /
//     \     /
//       bb5 <- Initial position of the second AllocOp
// PromoteBuffersToStack expected behavior: The two allocs should be converted
// into allocas.

// CHECK-LABEL: func @ifElseNested
func.func @ifElseNested(%arg0: i1, %arg1: memref<2xf32>, %arg2: memref<2xf32>) {
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>)
  cf.cond_br %arg0,
    ^bb1(%arg1, %0 : memref<2xf32>, memref<2xf32>),
    ^bb2(%0, %arg1 : memref<2xf32>, memref<2xf32>)
^bb1(%1: memref<2xf32>, %2: memref<2xf32>):
  cf.br ^bb5(%1, %2 : memref<2xf32>, memref<2xf32>)
^bb2(%3: memref<2xf32>, %4: memref<2xf32>):
  cf.cond_br %arg0, ^bb3(%3 : memref<2xf32>), ^bb4(%4 : memref<2xf32>)
^bb3(%5: memref<2xf32>):
  cf.br ^bb5(%5, %3 : memref<2xf32>, memref<2xf32>)
^bb4(%6: memref<2xf32>):
  cf.br ^bb5(%3, %6 : memref<2xf32>, memref<2xf32>)
^bb5(%7: memref<2xf32>, %8: memref<2xf32>):
  %9 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%7: memref<2xf32>) out(%9: memref<2xf32>)
  test.copy(%9, %arg2) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: %[[ALLOCA0:.*]] = memref.alloca()
// CHECK-NEXT: test.buffer_based
//      CHECK: %[[ALLOCA1:.*]] = memref.alloca()
//      CHECK: test.buffer_based
//      CHECK: test.copy(%[[ALLOCA1]]
// CHECK-NEXT: return

// -----

// Test Case: Dead operations in a single block.
// PromoteBuffersToStack expected behavior: It converts the two AllocOps into
// allocas.

// CHECK-LABEL: func @redundantOperations
func.func @redundantOperations(%arg0: memref<2xf32>) {
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg0: memref<2xf32>) out(%0: memref<2xf32>)
  %1 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%0: memref<2xf32>) out(%1: memref<2xf32>)
  return
}

//      CHECK: (%[[ARG0:.*]]: {{.*}})
// CHECK-NEXT: %[[ALLOCA0:.*]] = memref.alloca()
// CHECK-NEXT: test.buffer_based in(%[[ARG0]]{{.*}} out(%[[ALLOCA0]]
//      CHECK: %[[ALLOCA1:.*]] = memref.alloca()
// CHECK-NEXT: test.buffer_based in(%[[ALLOCA0]]{{.*}} out(%[[ALLOCA1]]
//      CHECK: return

// -----

// Test Case:
//                                     bb0
//                                    /   \
// Initial pos of the 1st AllocOp -> bb1  bb2 <- Initial pos of the 2nd AllocOp
//                                    \   /
//                                     bb3
// PromoteBuffersToStack expected behavior: Both AllocOps are converted into
// allocas.

// CHECK-LABEL: func @moving_alloc_and_inserting_missing_dealloc
func.func @moving_alloc_and_inserting_missing_dealloc(
  %cond: i1,
    %arg0: memref<2xf32>,
    %arg1: memref<2xf32>) {
  cf.cond_br %cond, ^bb1, ^bb2
^bb1:
  %0 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg0: memref<2xf32>) out(%0: memref<2xf32>)
  cf.br ^exit(%0 : memref<2xf32>)
^bb2:
  %1 = memref.alloc() : memref<2xf32>
  test.buffer_based in(%arg0: memref<2xf32>) out(%1: memref<2xf32>)
  cf.br ^exit(%1 : memref<2xf32>)
^exit(%arg2: memref<2xf32>):
  test.copy(%arg2, %arg1) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: cf.cond_br {{.*}}
//      CHECK: ^bb1
// CHECK-NEXT: %{{.*}} = memref.alloca()
//      CHECK: ^bb2
// CHECK-NEXT: %{{.*}} = memref.alloca()
//      CHECK: test.copy
// CHECK-NEXT: return

// -----

// Test Case: Nested regions - This test defines a BufferBasedOp inside the
// region of a RegionBufferBasedOp.
// PromoteBuffersToStack expected behavior: The AllocOps are converted into
// allocas.

// CHECK-LABEL: func @nested_regions_and_cond_branch
func.func @nested_regions_and_cond_branch(
  %arg0: i1,
  %arg1: memref<2xf32>,
  %arg2: memref<2xf32>) {
  cf.cond_br %arg0, ^bb1, ^bb2
^bb1:
  cf.br ^bb3(%arg1 : memref<2xf32>)
^bb2:
  %0 = memref.alloc() : memref<2xf32>
  test.region_buffer_based in(%arg1: memref<2xf32>) out(%0: memref<2xf32>) {
  ^bb0(%gen1_arg0: f32, %gen1_arg1: f32):
    %1 = memref.alloc() : memref<2xf32>
    test.buffer_based in(%arg1: memref<2xf32>) out(%1: memref<2xf32>)
    %tmp1 = math.exp %gen1_arg0 : f32
    test.region_yield %tmp1 : f32
  }
  cf.br ^bb3(%0 : memref<2xf32>)
^bb3(%1: memref<2xf32>):
  test.copy(%1, %arg2) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT:   cf.cond_br {{.*}}
//      CHECK:   ^bb2
// CHECK-NEXT:   %[[ALLOCA0:.*]] = memref.alloca()
//      CHECK:   ^bb0
// CHECK-NEXT:   %[[ALLOCA1:.*]] = memref.alloc()

// -----

// Test Case: buffer deallocation escaping
// PromoteBuffersToStack expected behavior: The first alloc is returned, so
// there is no conversion allowed. The second alloc is converted, since it
// only remains in the scope of the function.

// CHECK-LABEL: func @memref_in_function_results
func.func @memref_in_function_results(
  %arg0: memref<5xf32>,
  %arg1: memref<10xf32>,
  %arg2: memref<5xf32>) -> (memref<10xf32>, memref<15xf32>) {
  %x = memref.alloc() : memref<15xf32>
  %y = memref.alloc() : memref<5xf32>
  test.buffer_based in(%arg0: memref<5xf32>) out(%y: memref<5xf32>)
  test.copy(%y, %arg2) : (memref<5xf32>, memref<5xf32>)
  return %arg1, %x : memref<10xf32>, memref<15xf32>
}
//      CHECK: (%[[ARG0:.*]]: memref<5xf32>, %[[ARG1:.*]]: memref<10xf32>,
// CHECK-SAME: %[[RESULT:.*]]: memref<5xf32>)
//      CHECK: %[[ALLOC:.*]] = memref.alloc()
//      CHECK: %[[ALLOCA:.*]] = memref.alloca()
//      CHECK: test.copy
//      CHECK: return %[[ARG1]], %[[ALLOC]]

// -----

// Test Case: nested region control flow
// The allocation in the nested if branch cannot be converted to an alloca
// due to its dynamic memory allocation behavior.

// CHECK-LABEL: func @nested_region_control_flow
func.func @nested_region_control_flow(
  %arg0 : index,
  %arg1 : index) -> memref<?x?xf32> {
  %0 = arith.cmpi eq, %arg0, %arg1 : index
  %1 = memref.alloc(%arg0, %arg0) : memref<?x?xf32>
  %2 = scf.if %0 -> (memref<?x?xf32>) {
    scf.yield %1 : memref<?x?xf32>
  } else {
    %3 = memref.alloc(%arg0, %arg1) : memref<?x?xf32>
    scf.yield %1 : memref<?x?xf32>
  }
  return %2 : memref<?x?xf32>
}

//      CHECK: %[[ALLOC0:.*]] = memref.alloc(%arg0, %arg0)
// CHECK-NEXT: %[[ALLOC1:.*]] = scf.if
//      CHECK: scf.yield %[[ALLOC0]]
//      CHECK: %[[ALLOC2:.*]] = memref.alloc(%arg0, %arg1)
// CHECK-NEXT: scf.yield %[[ALLOC0]]
//      CHECK: return %[[ALLOC1]]

// -----

// Test Case: nested region control flow within a region interface.
// The alloc %0 does not need to be converted in this case since the
// allocation finally escapes the method.

// CHECK-LABEL: func @inner_region_control_flow
func.func @inner_region_control_flow(%arg0 : index) -> memref<2x2xf32> {
  %0 = memref.alloc() : memref<2x2xf32>
  %1 = test.region_if %0 : memref<2x2xf32> -> (memref<2x2xf32>) then {
    ^bb0(%arg1 : memref<2x2xf32>):
      test.region_if_yield %arg1 : memref<2x2xf32>
  } else {
    ^bb0(%arg1 : memref<2x2xf32>):
      test.region_if_yield %arg1 : memref<2x2xf32>
  } join {
    ^bb0(%arg1 : memref<2x2xf32>):
      test.region_if_yield %arg1 : memref<2x2xf32>
  }
  return %1 : memref<2x2xf32>
}

//      CHECK: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: %[[ALLOC1:.*]] = test.region_if
// CHECK-NEXT: ^bb0(%[[ALLOC2:.*]]:{{.*}}):
// CHECK-NEXT: test.region_if_yield %[[ALLOC2]]
//      CHECK: ^bb0(%[[ALLOC3:.*]]:{{.*}}):
// CHECK-NEXT: test.region_if_yield %[[ALLOC3]]
//      CHECK: ^bb0(%[[ALLOC4:.*]]:{{.*}}):
// CHECK-NEXT: test.region_if_yield %[[ALLOC4]]
//      CHECK: return %[[ALLOC1]]

// -----

// Test Case: structured control-flow loop using a nested alloc.
// Alloc %0 will be converted to an alloca. %3 is not transformed.

// CHECK-LABEL: func @loop_alloc
func.func @loop_alloc(
  %lb: index,
  %ub: index,
  %step: index,
  %buf: memref<2xf32>,
  %res: memref<2xf32>) {
  %0 = memref.alloc() : memref<2xf32>
  %1 = scf.for %i = %lb to %ub step %step
    iter_args(%iterBuf = %buf) -> memref<2xf32> {
    %2 = arith.cmpi eq, %i, %ub : index
    %3 = memref.alloc() : memref<2xf32>
    scf.yield %3 : memref<2xf32>
  }
  test.copy(%1, %res) : (memref<2xf32>, memref<2xf32>)
  return
}

// CHECK-NEXT: %[[ALLOCA:.*]] = memref.alloca()
// CHECK-NEXT: scf.for
//      CHECK: %[[ALLOC:.*]] = memref.alloc()

// -----

// Test Case: structured control-flow loop with a nested if operation.
// The loop yields buffers that have been defined outside of the loop and the
// backedges only use the iteration arguments (or one of its aliases).
// Therefore, we do not have to (and are not allowed to) free any buffers
// that are passed via the backedges. The alloc is converted to an AllocaOp.

// CHECK-LABEL: func @loop_nested_if_no_alloc
func.func @loop_nested_if_no_alloc(
  %lb: index,
  %ub: index,
  %step: index,
  %buf: memref<2xf32>,
  %res: memref<2xf32>) {
  %0 = memref.alloc() : memref<2xf32>
  %1 = scf.for %i = %lb to %ub step %step
    iter_args(%iterBuf = %buf) -> memref<2xf32> {
    %2 = arith.cmpi eq, %i, %ub : index
    %3 = scf.if %2 -> (memref<2xf32>) {
      scf.yield %0 : memref<2xf32>
    } else {
      scf.yield %iterBuf : memref<2xf32>
    }
    scf.yield %3 : memref<2xf32>
  }
  test.copy(%1, %res) : (memref<2xf32>, memref<2xf32>)
  return
}

//      CHECK: %[[ALLOCA0:.*]] = memref.alloca()
// CHECK-NEXT: %[[ALLOCA1:.*]] = scf.for {{.*}} iter_args(%[[IALLOCA:.*]] =
//      CHECK: %[[ALLOCA2:.*]] = scf.if
//      CHECK: scf.yield %[[ALLOCA0]]
//      CHECK: scf.yield %[[IALLOCA]]
//      CHECK: scf.yield %[[ALLOCA2]]
//      CHECK: test.copy(%[[ALLOCA1]], %arg4)

// -----

// Test Case: structured control-flow loop with a nested if operation using
// a deeply nested buffer allocation.
// The allocs are not converted in this case.

// CHECK-LABEL: func @loop_nested_if_alloc
func.func @loop_nested_if_alloc(
  %lb: index,
  %ub: index,
  %step: index,
  %buf: memref<2xf32>) -> memref<2xf32> {
  %0 = memref.alloc() : memref<2xf32>
  %1 = scf.for %i = %lb to %ub step %step
    iter_args(%iterBuf = %buf) -> memref<2xf32> {
    %2 = arith.cmpi eq, %i, %ub : index
    %3 = scf.if %2 -> (memref<2xf32>) {
      %4 = memref.alloc() : memref<2xf32>
      scf.yield %4 : memref<2xf32>
    } else {
      scf.yield %0 : memref<2xf32>
    }
    scf.yield %3 : memref<2xf32>
  }
  return %1 : memref<2xf32>
}

//      CHECK: %[[ALLOC0:.*]] = memref.alloc()
// CHECK-NEXT: %[[ALLOC1:.*]] = scf.for {{.*}}
//      CHECK: %[[ALLOC2:.*]] = scf.if
//      CHECK: %[[ALLOC3:.*]] = memref.alloc()
// CHECK-NEXT: scf.yield %[[ALLOC3]]
//      CHECK: scf.yield %[[ALLOC0]]
//      CHECK: scf.yield %[[ALLOC2]]
//      CHECK: return %[[ALLOC1]]

// -----

// Test Case: The allocated buffer is too large and, hence, it is not
// converted. In the actual implementation the largest size is 1KB.

// CHECK-LABEL: func @large_buffer_allocation
func.func @large_buffer_allocation(%arg0: memref<2048xf32>) {
  %0 = memref.alloc() : memref<2048xf32>
  test.copy(%0, %arg0) : (memref<2048xf32>, memref<2048xf32>)
  return
}

// CHECK-NEXT: %[[ALLOC:.*]] = memref.alloc()
// CHECK-NEXT: test.copy

// -----

// Test Case: AllocOp with element type index.
// PromoteBuffersToStack expected behavior: It should convert it to an
// AllocaOp.

// CHECK-LABEL: func @indexElementType
func.func @indexElementType() {
  %0 = memref.alloc() : memref<4xindex>
  return
}
// DEFINDEX-NEXT: memref.alloca()
// LOWLIMIT-NEXT: memref.alloca()
// RANK-NEXT: memref.alloca()
// CHECK-NEXT: return

// -----

// CHECK-LABEL: func @bigIndexElementType
module attributes { dlti.dl_spec = #dlti.dl_spec<#dlti.dl_entry<index, 256>>} {
  func.func @bigIndexElementType() {
    %0 = memref.alloc() {alignment = 64 : i64, custom_attr} : memref<4xindex>
    return
  }
}
// DEFINDEX-NEXT: memref.alloca() {alignment = 64 : i64, custom_attr}
// LOWLIMIT-NEXT: memref.alloc() {alignment = 64 : i64, custom_attr}
// RANK-NEXT: memref.alloca() {alignment = 64 : i64, custom_attr}
// CHECK-NEXT: return