aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/Integration/Dialect/Vector/CPU/X86Vector/sparse-dot-product.mlir
blob: f665891536ada23206e5df1e9e9c0e0fcc0afb07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
// RUN: mlir-opt %s -convert-scf-to-cf -convert-vector-to-llvm="enable-x86vector" -finalize-memref-to-llvm -convert-func-to-llvm -reconcile-unrealized-casts  | \
// RUN: mlir-translate  --mlir-to-llvmir | \
// RUN: %lli --entry-function=entry --mattr="avx512bw,avx512vp2intersect" --dlopen=%mlir_c_runner_utils | \
// RUN: FileCheck %s

// This test shows how to implement a sparse vector-vector dot product with
// AVX512. It uses vp2intersect, mask.compress and vector.contract to compute
// the dot product of two sparse HW vectors of 8 float64 elements ("segment").
// Each sparse vector is represented by an index memref (A or C) and by a data
// memref (B or D), containing M or N elements.
//
// There are four different implementations:
// * `memref_dot_simple`: Simple O(N*M) implementation with two for loops.
// * `memref_dot_optimized`: An optimized O(N*M) version of the previous
//   implementation, where the second for loop skips over some elements.
// * `memref_dot_while`: An optimized O(N+M) implementation that utilizes a
//   single while loop, coiterating over both vectors.
// * `memref_dot_while_branchless`: An optimized O(N+M) implementation that
//   consists of a single while loop and has no branches within the loop.
//
// Output of llvm-mca:
// https://gist.github.com/matthias-springer/72e7ee1b3c467e7aefb6e1fd862e4841

#contraction_accesses = [
 affine_map<(i) -> (i)>,
 affine_map<(i) -> (i)>,
 affine_map<(i) -> ()>
]
#contraction_trait = {
  indexing_maps = #contraction_accesses,
  iterator_types = ["reduction"]
}

// Sparse vector dot product of two vectors.
func.func @vector_dot(%v_A : vector<8xi64>, %v_B : vector<8xf64>,
                 %v_C : vector<8xi64>, %v_D : vector<8xf64>) -> f64 {
  // Compute intersection of indices.
  %k0, %k1 = x86vector.avx512.vp2intersect %v_A, %v_C : vector<8xi64>

  // Filter out values without match and compress vector.
  %p0 = x86vector.avx512.mask.compress %k0, %v_B : vector<8xf64>
  %p1 = x86vector.avx512.mask.compress %k1, %v_D : vector<8xf64>

  // Dense vector dot product.
  %acc = arith.constant 0.0 : f64
  %r = vector.contract #contraction_trait %p0, %p1, %acc
      : vector<8xf64>, vector<8xf64> into f64

  return %r : f64
}

// Fill input memrefs will all zeros, so that they can be used with arbitrary
// input sizes up to 128 elements per sparse vector.
func.func @init_input(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
                 %m_C : memref<?xi64>, %m_D : memref<?xf64>) {
  %c0 = arith.constant 0 : index
  %v_data = arith.constant dense<0.0> : vector<128xf64>
  %v_index = arith.constant dense<9223372036854775807> : vector<128xi64>

  vector.transfer_write %v_index, %m_A[%c0] : vector<128xi64>, memref<?xi64>
  vector.transfer_write %v_data, %m_B[%c0] : vector<128xf64>, memref<?xf64>
  vector.transfer_write %v_index, %m_C[%c0] : vector<128xi64>, memref<?xi64>
  vector.transfer_write %v_data, %m_D[%c0] : vector<128xf64>, memref<?xf64>

  return
}

func.func @fill_input_1(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
                   %m_C : memref<?xi64>, %m_D : memref<?xf64>)
    -> (index, index){
  func.call @init_input(%m_A, %m_B, %m_C, %m_D)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>) -> ()

  %c0 = arith.constant 0 : index

  %v_A = arith.constant dense<[0,  1,  10, 12, 13, 17, 18, 21,
                            51, 52, 57, 61, 62, 82, 98, 99]> : vector<16xi64>
  %v_B = arith.constant dense<[1., 5., 8., 3., 2., 1., 0., 9.,
                            6., 7., 7., 3., 5., 2., 9., 1.]> : vector<16xf64>
  %v_C = arith.constant dense<[1,  2,  5,  10, 11, 12, 47, 48,
                            67, 68, 69, 70, 71, 72, 77, 78,
                            79, 82, 83, 84, 85, 90, 91, 98]> : vector<24xi64>
  %v_D = arith.constant dense<[1., 5., 8., 3., 2., 1., 2., 9.,
                            6., 7., 7., 3., 5., 2., 9., 1.,
                            2., 9., 8., 7., 2., 0., 0., 4.]> : vector<24xf64>

  vector.transfer_write %v_A, %m_A[%c0] : vector<16xi64>, memref<?xi64>
  vector.transfer_write %v_B, %m_B[%c0] : vector<16xf64>, memref<?xf64>
  vector.transfer_write %v_C, %m_C[%c0] : vector<24xi64>, memref<?xi64>
  vector.transfer_write %v_D, %m_D[%c0] : vector<24xf64>, memref<?xf64>

  %M = arith.constant 16 : index
  %N = arith.constant 24 : index

  return %M, %N : index, index
}

func.func @fill_input_2(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
                   %m_C : memref<?xi64>, %m_D : memref<?xf64>)
    -> (index, index){
  func.call @init_input(%m_A, %m_B, %m_C, %m_D)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>) -> ()

  %c0 = arith.constant 0 : index

  %v_A = arith.constant dense<[0,  1,  3,  5,  6,  7,  8,  9,
                            51, 52, 57, 61, 62, 63, 65, 66]> : vector<16xi64>
  %v_B = arith.constant dense<[1., 5., 8., 3., 2., 1., 2., 9.,
                            6., 7., 7., 3., 5., 2., 9., 1.]> : vector<16xf64>
  %v_C = arith.constant dense<[6,  7,  11, 12, 15, 17, 19, 21,
                            30, 31, 33, 34, 37, 39, 40, 41,
                            42, 44, 45, 46, 47, 48, 49, 50,
                            62, 63, 64, 65, 66, 67, 68, 69,
                            70, 77, 78, 79, 81, 82, 89, 99]> : vector<40xi64>
  %v_D = arith.constant dense<[1., 5., 8., 3., 2., 1., 2., 9.,
                            6., 7., 7., 3., 5., 2., 9., 1.,
                            2., 9., 8., 7., 2., 1., 2., 4.,
                            4., 5., 8., 8., 2., 3., 5., 1.,
                            8., 6., 6., 4., 3., 8., 9., 2.]> : vector<40xf64>

  vector.transfer_write %v_A, %m_A[%c0] : vector<16xi64>, memref<?xi64>
  vector.transfer_write %v_B, %m_B[%c0] : vector<16xf64>, memref<?xf64>
  vector.transfer_write %v_C, %m_C[%c0] : vector<40xi64>, memref<?xi64>
  vector.transfer_write %v_D, %m_D[%c0] : vector<40xf64>, memref<?xf64>

  %M = arith.constant 16 : index
  %N = arith.constant 40 : index

  return %M, %N : index, index
}

// Simple vector dot product implementation: Intersect every segment of size 8
// in (%m_A, %m_B) with every segment of size 8 in (%m_C, %m_D).
func.func @memref_dot_simple(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
                        %m_C : memref<?xi64>, %m_D : memref<?xf64>,
                        %M : index, %N : index)
    -> f64 {
  // Helper constants for loops.
  %c0 = arith.constant 0 : index
  %c8 = arith.constant 8 : index

  %data_zero = arith.constant 0.0 : f64
  %index_padding = arith.constant 9223372036854775807 : i64

  // Notation: %sum is the current (partial) aggregated dot product sum.

  %r0 = scf.for %a = %c0 to %M step %c8
      iter_args(%sum0 = %data_zero) -> (f64) {
    %v_A = vector.transfer_read %m_A[%a], %index_padding
        : memref<?xi64>, vector<8xi64>
    %v_B = vector.transfer_read %m_B[%a], %data_zero
        : memref<?xf64>, vector<8xf64>

    %r1 = scf.for %b = %c0 to %N step %c8
        iter_args(%sum1 = %sum0) -> (f64) {
      %v_C = vector.transfer_read %m_C[%b], %index_padding
          : memref<?xi64>, vector<8xi64>
      %v_D = vector.transfer_read %m_D[%b], %data_zero
          : memref<?xf64>, vector<8xf64>

      %subresult = func.call @vector_dot(%v_A, %v_B, %v_C, %v_D)
          : (vector<8xi64>, vector<8xf64>, vector<8xi64>, vector<8xf64>) -> f64
      %r2 = arith.addf %sum1, %subresult : f64
      scf.yield %r2 : f64
    }

    scf.yield %r1 : f64
  }

  return %r0 : f64
}

// Optimized vector dot product implementation: Taking advantage of the fact
// that indices in %m_A and %m_C are sorted ascendingly, skip over segments
// in (%m_C, %m_D) that are know to have no intersection with the current
// segment from (%m_A, %m_B).
func.func @memref_dot_optimized(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
                           %m_C : memref<?xi64>, %m_D : memref<?xf64>,
                           %M : index, %N : index)
    -> f64 {
  // Helper constants for loops.
  %c0 = arith.constant 0 : index
  %i0 = arith.constant 0 : i32
  %i7 = arith.constant 7 : i32
  %c8 = arith.constant 8 : index

  %data_zero = arith.constant 0.0 : f64
  %index_padding = arith.constant 9223372036854775807 : i64

  // Notation: %sum is the current (partial) aggregated dot product sum.
  // %j_start is the value from which the inner for loop starts iterating. This
  // value keeps increasing if earlier segments of (%m_C, %m_D) are known to
  // be no longer needed.

  %r0, %t0 = scf.for %a = %c0 to %M step %c8
      iter_args(%sum0 = %data_zero, %b_start0 = %c0) -> (f64, index) {
    %v_A = vector.transfer_read %m_A[%a], %index_padding
        : memref<?xi64>, vector<8xi64>
    %segA_min = vector.extractelement %v_A[%i0 : i32] : vector<8xi64>

    %r1, %next_b_start0 = scf.for %b = %b_start0 to %N step %c8
        iter_args(%sum1 = %sum0, %b_start1 = %b_start0) -> (f64, index) {
      %v_C = vector.transfer_read %m_C[%b], %index_padding
          : memref<?xi64>, vector<8xi64>
      %segB_max = vector.extractelement %v_C[%i7 : i32] : vector<8xi64>
      %seg1_done = arith.cmpi "slt", %segB_max, %segA_min : i64

      %r2, %next_b_start1 = scf.if %seg1_done -> (f64, index) {
        // %v_C segment is done, no need to examine this one again (ever).
        %next_b_start2 = arith.addi %b_start1, %c8 : index
        scf.yield %sum1, %next_b_start2 : f64, index
      } else {
        %v_B = vector.transfer_read %m_B[%a], %data_zero
            : memref<?xf64>, vector<8xf64>
        %v_D = vector.transfer_read %m_D[%b], %data_zero
            : memref<?xf64>, vector<8xf64>

        %subresult = func.call @vector_dot(%v_A, %v_B, %v_C, %v_D)
            : (vector<8xi64>, vector<8xf64>, vector<8xi64>, vector<8xf64>)
                -> f64
        %r3 = arith.addf %sum1, %subresult : f64
        scf.yield %r3, %b_start1 : f64, index
      }

      scf.yield %r2, %next_b_start1 : f64, index
    }

    scf.yield %r1, %next_b_start0 : f64, index
  }

  return %r0 : f64
}

// Vector dot product with a while loop. Implemented as follows:
//
// r = 0.0, a = 0, b = 0
// while (a < M && b < N) {
//   segA = A[a:a+8], segB = B[b:b+8]
//   if   (segB[7] < segA[0]) b += 8
//   elif (segA[7] < segB[0]) a += 8
//   else {
//     r += vector_dot(...)
//     if   (segA[7] < segB[7]) a += 8
//     elif (segB[7] < segA[7]) b += 8
//     else                     a += 8, b += 8
//   }
// }
func.func @memref_dot_while(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
                       %m_C : memref<?xi64>, %m_D : memref<?xf64>,
                       %M : index, %N : index)
    -> f64 {
  // Helper constants for loops.
  %c0 = arith.constant 0 : index
  %i0 = arith.constant 0 : i32
  %i7 = arith.constant 7 : i32
  %c8 = arith.constant 8 : index

  %data_zero = arith.constant 0.0 : f64
  %index_padding = arith.constant 9223372036854775807 : i64

  %r0, %a0, %b0 = scf.while (%r1 = %data_zero, %a1 = %c0, %b1 = %c0)
      : (f64, index, index) -> (f64, index, index) {
    %cond_i = arith.cmpi "slt", %a1, %M : index
    %cond_j = arith.cmpi "slt", %b1, %N : index
    %cond = arith.andi %cond_i, %cond_j : i1
    scf.condition(%cond) %r1, %a1, %b1 : f64, index, index
  } do {
  ^bb0(%r1 : f64, %a1 : index, %b1 : index):
    // v_A, v_B, seg*_* could be part of the loop state to avoid a few
    // redundant reads.
    %v_A = vector.transfer_read %m_A[%a1], %index_padding
        : memref<?xi64>, vector<8xi64>
    %v_C = vector.transfer_read %m_C[%b1], %index_padding
        : memref<?xi64>, vector<8xi64>

    %segA_min = vector.extractelement %v_A[%i0 : i32] : vector<8xi64>
    %segA_max = vector.extractelement %v_A[%i7 : i32] : vector<8xi64>
    %segB_min = vector.extractelement %v_C[%i0 : i32] : vector<8xi64>
    %segB_max = vector.extractelement %v_C[%i7 : i32] : vector<8xi64>

    %seg1_done = arith.cmpi "slt", %segB_max, %segA_min : i64
    %r2, %a2, %b2 = scf.if %seg1_done -> (f64, index, index) {
      %b3 = arith.addi %b1, %c8 : index
      scf.yield %r1, %a1, %b3 : f64, index, index
    } else {
      %seg0_done = arith.cmpi "slt", %segA_max, %segB_min : i64
      %r4, %a4, %b4 = scf.if %seg0_done -> (f64, index, index) {
        %a5 = arith.addi %a1, %c8 : index
        scf.yield %r1, %a5, %b1 : f64, index, index
      } else {
        %v_B = vector.transfer_read %m_B[%a1], %data_zero
            : memref<?xf64>, vector<8xf64>
        %v_D = vector.transfer_read %m_D[%b1], %data_zero
            : memref<?xf64>, vector<8xf64>

        %subresult = func.call @vector_dot(%v_A, %v_B, %v_C, %v_D)
            : (vector<8xi64>, vector<8xf64>, vector<8xi64>, vector<8xf64>)
                -> f64
        %r6 = arith.addf %r1, %subresult : f64

        %incr_a = arith.cmpi "slt", %segA_max, %segB_max : i64
        %a6, %b6 = scf.if %incr_a -> (index, index) {
          %a7 = arith.addi %a1, %c8 : index
          scf.yield %a7, %b1 : index, index
        } else {
          %incr_b = arith.cmpi "slt", %segB_max, %segA_max : i64
          %a8, %b8 = scf.if %incr_b -> (index, index) {
            %b9 = arith.addi %b1, %c8 : index
            scf.yield %a1, %b9 : index, index
          } else {
            %a10 = arith.addi %a1, %c8 : index
            %b10 = arith.addi %b1, %c8 : index
            scf.yield %a10, %b10 : index, index
          }
          scf.yield %a8, %b8 : index, index
        }
        scf.yield %r6, %a6, %b6 : f64, index, index
      }
      scf.yield %r4, %a4, %b4 : f64, index, index
    }
    scf.yield %r2, %a2, %b2 : f64, index, index
  }

  return %r0 : f64
}

// Vector dot product with a while loop that has no branches (apart from the
// while loop itself). Implemented as follows:
//
// r = 0.0, a = 0, b = 0
// while (a < M && b < N) {
//   segA = A[a:a+8], segB = B[b:b+8]
//   r += vector_dot(...)
//   a += (segA[7] <= segB[7]) * 8
//   b += (segB[7] <= segA[7]) * 8
// }
func.func @memref_dot_while_branchless(%m_A : memref<?xi64>, %m_B : memref<?xf64>,
                                  %m_C : memref<?xi64>, %m_D : memref<?xf64>,
                                  %M : index, %N : index)
    -> f64 {
  // Helper constants for loops.
  %c0 = arith.constant 0 : index
  %i7 = arith.constant 7 : i32
  %c8 = arith.constant 8 : index

  %data_zero = arith.constant 0.0 : f64
  %index_padding = arith.constant 9223372036854775807 : i64

  %r0, %a0, %b0 = scf.while (%r1 = %data_zero, %a1 = %c0, %b1 = %c0)
      : (f64, index, index) -> (f64, index, index) {
    %cond_i = arith.cmpi "slt", %a1, %M : index
    %cond_j = arith.cmpi "slt", %b1, %N : index
    %cond = arith.andi %cond_i, %cond_j : i1
    scf.condition(%cond) %r1, %a1, %b1 : f64, index, index
  } do {
  ^bb0(%r1 : f64, %a1 : index, %b1 : index):
    // v_A, v_B, seg*_* could be part of the loop state to avoid a few
    // redundant reads.
    %v_A = vector.transfer_read %m_A[%a1], %index_padding
        : memref<?xi64>, vector<8xi64>
    %v_B = vector.transfer_read %m_B[%a1], %data_zero
        : memref<?xf64>, vector<8xf64>
    %v_C = vector.transfer_read %m_C[%b1], %index_padding
        : memref<?xi64>, vector<8xi64>
    %v_D = vector.transfer_read %m_D[%b1], %data_zero
        : memref<?xf64>, vector<8xf64>

    %subresult = func.call @vector_dot(%v_A, %v_B, %v_C, %v_D)
        : (vector<8xi64>, vector<8xf64>, vector<8xi64>, vector<8xf64>)
            -> f64
    %r2 = arith.addf %r1, %subresult : f64

    %segA_max = vector.extractelement %v_A[%i7 : i32] : vector<8xi64>
    %segB_max = vector.extractelement %v_C[%i7 : i32] : vector<8xi64>

    %cond_a = arith.cmpi "sle", %segA_max, %segB_max : i64
    %cond_a_i64 = arith.extui %cond_a : i1 to i64
    %cond_a_idx = arith.index_cast %cond_a_i64 : i64 to index
    %incr_a = arith.muli %cond_a_idx, %c8 : index
    %a2 = arith.addi %a1, %incr_a : index

    %cond_b = arith.cmpi "sle", %segB_max, %segA_max : i64
    %cond_b_i64 = arith.extui %cond_b : i1 to i64
    %cond_b_idx = arith.index_cast %cond_b_i64 : i64 to index
    %incr_b = arith.muli %cond_b_idx, %c8 : index
    %b2 = arith.addi %b1, %incr_b : index

    scf.yield %r2, %a2, %b2 : f64, index, index
  }

  return %r0 : f64
}

func.func @entry() -> i32 {
  // Initialize large buffers that can be used for multiple test cases of
  // different sizes.
  %b_A = memref.alloc() : memref<128xi64>
  %b_B = memref.alloc() : memref<128xf64>
  %b_C = memref.alloc() : memref<128xi64>
  %b_D = memref.alloc() : memref<128xf64>

  %m_A = memref.cast %b_A : memref<128xi64> to memref<?xi64>
  %m_B = memref.cast %b_B : memref<128xf64> to memref<?xf64>
  %m_C = memref.cast %b_C : memref<128xi64> to memref<?xi64>
  %m_D = memref.cast %b_D : memref<128xf64> to memref<?xf64>

  // --- Test case 1 ---.
  // M and N must be a multiple of 8 if smaller than 128.
  // (Because padding kicks in only for out-of-bounds accesses.)
  %M1, %N1 = func.call @fill_input_1(%m_A, %m_B, %m_C, %m_D)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>)
          -> (index, index)

  %r0 = func.call @memref_dot_simple(%m_A, %m_B, %m_C, %m_D, %M1, %N1)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r0 : f64
  // CHECK: 86

  %r1 = func.call @memref_dot_optimized(%m_A, %m_B, %m_C, %m_D, %M1, %N1)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r1 : f64
  // CHECK: 86

  %r2 = func.call @memref_dot_while(%m_A, %m_B, %m_C, %m_D, %M1, %N1)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r2 : f64
  // CHECK: 86

  %r6 = func.call @memref_dot_while_branchless(%m_A, %m_B, %m_C, %m_D, %M1, %N1)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r6 : f64
  // CHECK: 86

  // --- Test case 2 ---.
  // M and N must be a multiple of 8 if smaller than 128.
  // (Because padding kicks in only for out-of-bounds accesses.)
  %M2, %N2 = func.call @fill_input_2(%m_A, %m_B, %m_C, %m_D)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>)
          -> (index, index)

  %r3 = func.call @memref_dot_simple(%m_A, %m_B, %m_C, %m_D, %M2, %N2)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r3 : f64
  // CHECK: 111

  %r4 = func.call @memref_dot_optimized(%m_A, %m_B, %m_C, %m_D, %M2, %N2)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r4 : f64
  // CHECK: 111

  %r5 = func.call @memref_dot_while(%m_A, %m_B, %m_C, %m_D, %M2, %N2)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r5 : f64
  // CHECK: 111

  %r7 = func.call @memref_dot_while_branchless(%m_A, %m_B, %m_C, %m_D, %M2, %N2)
      : (memref<?xi64>, memref<?xf64>, memref<?xi64>, memref<?xf64>,
         index, index) -> f64
  vector.print %r7 : f64
  // CHECK: 111

  // Release all resources.
  memref.dealloc %b_A : memref<128xi64>
  memref.dealloc %b_B : memref<128xf64>
  memref.dealloc %b_C : memref<128xi64>
  memref.dealloc %b_D : memref<128xf64>

  %r = arith.constant 0 : i32
  return %r : i32
}