aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/ExecutionEngine/SparseTensorRuntime.cpp
blob: 0bc90b281b7ced2c2cfc333f135684b69ec2040e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
//===- SparseTensorRuntime.cpp - SparseTensor runtime support lib ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library for
// manipulating sparse tensors from MLIR.  More specifically, it provides
// C-API wrappers so that MLIR-generated code can call into the C++ runtime
// support library.  The functionality provided in this library is meant
// to simplify benchmarking, testing, and debugging of MLIR code operating
// on sparse tensors.  However, the provided functionality is **not**
// part of core MLIR itself.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
//     sorting a sparse tensor by coordinate (SparseTensorCOO).
//
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
//     per-dimension sparse/dense annnotations together with a dimension
//     ordering used by MLIR compiler-generated code (SparseTensorStorage).
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
//     https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
//     http://frostt.io/tensors/file-formats.html
//
// Two public APIs are supported:
//
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
//     tensors. These methods should be used exclusively by MLIR
//     compiler-generated code.
//
// (II) Methods that accept C-style data structures to interact with sparse
//      tensors. These methods can be used by any external runtime that wants
//      to interact with MLIR compiler-generated code.
//
// In both cases (I) and (II), the SparseTensorStorage format is externally
// only visible as an opaque pointer.
//
//===----------------------------------------------------------------------===//

#include "mlir/ExecutionEngine/SparseTensorRuntime.h"

#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS

#include "mlir/ExecutionEngine/SparseTensor/ArithmeticUtils.h"
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
#include "mlir/ExecutionEngine/SparseTensor/ErrorHandling.h"
#include "mlir/ExecutionEngine/SparseTensor/File.h"
#include "mlir/ExecutionEngine/SparseTensor/Storage.h"

#include <cstring>
#include <numeric>

using namespace mlir::sparse_tensor;

//===----------------------------------------------------------------------===//
//
// Utilities for manipulating `StridedMemRefType`.
//
//===----------------------------------------------------------------------===//

namespace {

#define ASSERT_NO_STRIDE(MEMREF)                                               \
  do {                                                                         \
    assert((MEMREF) && "Memref is nullptr");                                   \
    assert(((MEMREF)->strides[0] == 1) && "Memref has non-trivial stride");    \
  } while (false)

#define MEMREF_GET_USIZE(MEMREF)                                               \
  detail::checkOverflowCast<uint64_t>((MEMREF)->sizes[0])

#define ASSERT_USIZE_EQ(MEMREF, SZ)                                            \
  assert(detail::safelyEQ(MEMREF_GET_USIZE(MEMREF), (SZ)) &&                   \
         "Memref size mismatch")

#define MEMREF_GET_PAYLOAD(MEMREF) ((MEMREF)->data + (MEMREF)->offset)

/// Initializes the memref with the provided size and data pointer. This
/// is designed for functions which want to "return" a memref that aliases
/// into memory owned by some other object (e.g., `SparseTensorStorage`),
/// without doing any actual copying.  (The "return" is in scarequotes
/// because the `_mlir_ciface_` calling convention migrates any returned
/// memrefs into an out-parameter passed before all the other function
/// parameters.)
template <typename DataSizeT, typename T>
static inline void aliasIntoMemref(DataSizeT size, T *data,
                                   StridedMemRefType<T, 1> &ref) {
  ref.basePtr = ref.data = data;
  ref.offset = 0;
  using MemrefSizeT = std::remove_reference_t<decltype(ref.sizes[0])>;
  ref.sizes[0] = detail::checkOverflowCast<MemrefSizeT>(size);
  ref.strides[0] = 1;
}

} // anonymous namespace

extern "C" {

//===----------------------------------------------------------------------===//
//
// Public functions which operate on MLIR buffers (memrefs) to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//

#define CASE(p, c, v, P, C, V)                                                 \
  if (posTp == (p) && crdTp == (c) && valTp == (v)) {                          \
    switch (action) {                                                          \
    case Action::kEmpty: {                                                     \
      return SparseTensorStorage<P, C, V>::newEmpty(                           \
          dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim);   \
    }                                                                          \
    case Action::kFromReader: {                                                \
      assert(ptr && "Received nullptr for SparseTensorReader object");         \
      SparseTensorReader &reader = *static_cast<SparseTensorReader *>(ptr);    \
      return static_cast<void *>(reader.readSparseTensor<P, C, V>(             \
          lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim));                     \
    }                                                                          \
    case Action::kPack: {                                                      \
      assert(ptr && "Received nullptr for SparseTensorStorage object");        \
      intptr_t *buffers = static_cast<intptr_t *>(ptr);                        \
      return SparseTensorStorage<P, C, V>::packFromLvlBuffers(                 \
          dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim,    \
          dimRank, buffers);                                                   \
    }                                                                          \
    case Action::kSortCOOInPlace: {                                            \
      assert(ptr && "Received nullptr for SparseTensorStorage object");        \
      auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr);        \
      tensor.sortInPlace();                                                    \
      return ptr;                                                              \
    }                                                                          \
    }                                                                          \
    MLIR_SPARSETENSOR_FATAL("unknown action: %d\n",                            \
                            static_cast<uint32_t>(action));                    \
  }

#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)

// Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
// can safely rewrite kIndex to kU64.  We make this assertion to guarantee
// that this file cannot get out of sync with its header.
static_assert(std::is_same<index_type, uint64_t>::value,
              "Expected index_type == uint64_t");

// The Swiss-army-knife for sparse tensor creation.
void *_mlir_ciface_newSparseTensor( // NOLINT
    StridedMemRefType<index_type, 1> *dimSizesRef,
    StridedMemRefType<index_type, 1> *lvlSizesRef,
    StridedMemRefType<LevelType, 1> *lvlTypesRef,
    StridedMemRefType<index_type, 1> *dim2lvlRef,
    StridedMemRefType<index_type, 1> *lvl2dimRef, OverheadType posTp,
    OverheadType crdTp, PrimaryType valTp, Action action, void *ptr) {
  ASSERT_NO_STRIDE(dimSizesRef);
  ASSERT_NO_STRIDE(lvlSizesRef);
  ASSERT_NO_STRIDE(lvlTypesRef);
  ASSERT_NO_STRIDE(dim2lvlRef);
  ASSERT_NO_STRIDE(lvl2dimRef);
  const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
  const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
  ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
  ASSERT_USIZE_EQ(dim2lvlRef, lvlRank);
  ASSERT_USIZE_EQ(lvl2dimRef, dimRank);
  const index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
  const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
  const LevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
  const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
  const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);

  // Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
  // This is safe because of the static_assert above.
  if (posTp == OverheadType::kIndex)
    posTp = OverheadType::kU64;
  if (crdTp == OverheadType::kIndex)
    crdTp = OverheadType::kU64;

  // Double matrices with all combinations of overhead storage.
  CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
       uint64_t, double);
  CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
       uint32_t, double);
  CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
       uint16_t, double);
  CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
       uint8_t, double);
  CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
       uint64_t, double);
  CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
       uint32_t, double);
  CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
       uint16_t, double);
  CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
       uint8_t, double);
  CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
       uint64_t, double);
  CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
       uint32_t, double);
  CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
       uint16_t, double);
  CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
       uint8_t, double);
  CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
       uint64_t, double);
  CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
       uint32_t, double);
  CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
       uint16_t, double);
  CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
       uint8_t, double);

  // Float matrices with all combinations of overhead storage.
  CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
       uint64_t, float);
  CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
       uint32_t, float);
  CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
       uint16_t, float);
  CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
       uint8_t, float);
  CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
       uint64_t, float);
  CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
       uint32_t, float);
  CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
       uint16_t, float);
  CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
       uint8_t, float);
  CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
       uint64_t, float);
  CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
       uint32_t, float);
  CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
       uint16_t, float);
  CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
       uint8_t, float);
  CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
       uint64_t, float);
  CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
       uint32_t, float);
  CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
       uint16_t, float);
  CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
       uint8_t, float);

  // Two-byte floats with both overheads of the same type.
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
  CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
  CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
  CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
  CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
  CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
  CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);

  // Integral matrices with both overheads of the same type.
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI64, uint32_t, int64_t);
  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
  CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI64, uint16_t, int64_t);
  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
  CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI64, uint8_t, int64_t);
  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
  CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);

  // Complex matrices with wide overhead.
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64);
  CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32);

  // Unsupported case (add above if needed).
  MLIR_SPARSETENSOR_FATAL(
      "unsupported combination of types: <P=%d, C=%d, V=%d>\n",
      static_cast<int>(posTp), static_cast<int>(crdTp),
      static_cast<int>(valTp));
}
#undef CASE
#undef CASE_SECSAME

#define IMPL_SPARSEVALUES(VNAME, V)                                            \
  void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref,          \
                                        void *tensor) {                        \
    assert(ref &&tensor);                                                      \
    std::vector<V> *v;                                                         \
    static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v);             \
    assert(v);                                                                 \
    aliasIntoMemref(v->size(), v->data(), *ref);                               \
  }
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_SPARSEVALUES)
#undef IMPL_SPARSEVALUES

#define IMPL_GETOVERHEAD(NAME, TYPE, LIB)                                      \
  void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor,      \
                           index_type lvl) {                                   \
    assert(ref &&tensor);                                                      \
    std::vector<TYPE> *v;                                                      \
    static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, lvl);              \
    assert(v);                                                                 \
    aliasIntoMemref(v->size(), v->data(), *ref);                               \
  }
#define IMPL_SPARSEPOSITIONS(PNAME, P)                                         \
  IMPL_GETOVERHEAD(sparsePositions##PNAME, P, getPositions)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEPOSITIONS)
#undef IMPL_SPARSEPOSITIONS

#define IMPL_SPARSECOORDINATES(CNAME, C)                                       \
  IMPL_GETOVERHEAD(sparseCoordinates##CNAME, C, getCoordinates)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATES)
#undef IMPL_SPARSECOORDINATES
#undef IMPL_GETOVERHEAD

#define IMPL_LEXINSERT(VNAME, V)                                               \
  void _mlir_ciface_lexInsert##VNAME(                                          \
      void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef,                 \
      StridedMemRefType<V, 0> *vref) {                                         \
    assert(t &&vref);                                                          \
    auto &tensor = *static_cast<SparseTensorStorageBase *>(t);                 \
    ASSERT_NO_STRIDE(lvlCoordsRef);                                            \
    index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef);                  \
    assert(lvlCoords);                                                         \
    V *value = MEMREF_GET_PAYLOAD(vref);                                       \
    tensor.lexInsert(lvlCoords, *value);                                       \
  }
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_LEXINSERT)
#undef IMPL_LEXINSERT

#define IMPL_EXPINSERT(VNAME, V)                                               \
  void _mlir_ciface_expInsert##VNAME(                                          \
      void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef,                 \
      StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref,         \
      StridedMemRefType<index_type, 1> *aref, index_type count) {              \
    assert(t);                                                                 \
    auto &tensor = *static_cast<SparseTensorStorageBase *>(t);                 \
    ASSERT_NO_STRIDE(lvlCoordsRef);                                            \
    ASSERT_NO_STRIDE(vref);                                                    \
    ASSERT_NO_STRIDE(fref);                                                    \
    ASSERT_NO_STRIDE(aref);                                                    \
    ASSERT_USIZE_EQ(vref, MEMREF_GET_USIZE(fref));                             \
    index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef);                  \
    V *values = MEMREF_GET_PAYLOAD(vref);                                      \
    bool *filled = MEMREF_GET_PAYLOAD(fref);                                   \
    index_type *added = MEMREF_GET_PAYLOAD(aref);                              \
    uint64_t expsz = vref->sizes[0];                                           \
    tensor.expInsert(lvlCoords, values, filled, added, count, expsz);          \
  }
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_EXPINSERT)
#undef IMPL_EXPINSERT

void *_mlir_ciface_createCheckedSparseTensorReader(
    char *filename, StridedMemRefType<index_type, 1> *dimShapeRef,
    PrimaryType valTp) {
  ASSERT_NO_STRIDE(dimShapeRef);
  const uint64_t dimRank = MEMREF_GET_USIZE(dimShapeRef);
  const index_type *dimShape = MEMREF_GET_PAYLOAD(dimShapeRef);
  auto *reader = SparseTensorReader::create(filename, dimRank, dimShape, valTp);
  return static_cast<void *>(reader);
}

void _mlir_ciface_getSparseTensorReaderDimSizes(
    StridedMemRefType<index_type, 1> *out, void *p) {
  assert(out && p);
  SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
  auto *dimSizes = const_cast<uint64_t *>(reader.getDimSizes());
  aliasIntoMemref(reader.getRank(), dimSizes, *out);
}

#define IMPL_GETNEXT(VNAME, V, CNAME, C)                                       \
  bool _mlir_ciface_getSparseTensorReaderReadToBuffers##CNAME##VNAME(          \
      void *p, StridedMemRefType<index_type, 1> *dim2lvlRef,                   \
      StridedMemRefType<index_type, 1> *lvl2dimRef,                            \
      StridedMemRefType<C, 1> *cref, StridedMemRefType<V, 1> *vref) {          \
    assert(p);                                                                 \
    auto &reader = *static_cast<SparseTensorReader *>(p);                      \
    ASSERT_NO_STRIDE(dim2lvlRef);                                              \
    ASSERT_NO_STRIDE(lvl2dimRef);                                              \
    ASSERT_NO_STRIDE(cref);                                                    \
    ASSERT_NO_STRIDE(vref);                                                    \
    const uint64_t dimRank = reader.getRank();                                 \
    const uint64_t lvlRank = MEMREF_GET_USIZE(dim2lvlRef);                     \
    const uint64_t cSize = MEMREF_GET_USIZE(cref);                             \
    const uint64_t vSize = MEMREF_GET_USIZE(vref);                             \
    ASSERT_USIZE_EQ(lvl2dimRef, dimRank);                                      \
    assert(cSize >= lvlRank * reader.getNSE());                                \
    assert(vSize >= reader.getNSE());                                          \
    (void)dimRank;                                                             \
    (void)cSize;                                                               \
    (void)vSize;                                                               \
    index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);                      \
    index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);                      \
    C *lvlCoordinates = MEMREF_GET_PAYLOAD(cref);                              \
    V *values = MEMREF_GET_PAYLOAD(vref);                                      \
    return reader.readToBuffers<C, V>(lvlRank, dim2lvl, lvl2dim,               \
                                      lvlCoordinates, values);                 \
  }
MLIR_SPARSETENSOR_FOREVERY_V_O(IMPL_GETNEXT)
#undef IMPL_GETNEXT

void _mlir_ciface_outSparseTensorWriterMetaData(
    void *p, index_type dimRank, index_type nse,
    StridedMemRefType<index_type, 1> *dimSizesRef) {
  assert(p);
  ASSERT_NO_STRIDE(dimSizesRef);
  assert(dimRank != 0);
  index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
  std::ostream &file = *static_cast<std::ostream *>(p);
  file << dimRank << " " << nse << '\n';
  for (index_type d = 0; d < dimRank - 1; d++)
    file << dimSizes[d] << " ";
  file << dimSizes[dimRank - 1] << '\n';
}

#define IMPL_OUTNEXT(VNAME, V)                                                 \
  void _mlir_ciface_outSparseTensorWriterNext##VNAME(                          \
      void *p, index_type dimRank,                                             \
      StridedMemRefType<index_type, 1> *dimCoordsRef,                          \
      StridedMemRefType<V, 0> *vref) {                                         \
    assert(p &&vref);                                                          \
    ASSERT_NO_STRIDE(dimCoordsRef);                                            \
    const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef);            \
    std::ostream &file = *static_cast<std::ostream *>(p);                      \
    for (index_type d = 0; d < dimRank; d++)                                   \
      file << (dimCoords[d] + 1) << " ";                                       \
    V *value = MEMREF_GET_PAYLOAD(vref);                                       \
    file << *value << '\n';                                                    \
  }
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTNEXT)
#undef IMPL_OUTNEXT

//===----------------------------------------------------------------------===//
//
// Public functions which accept only C-style data structures to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//

index_type sparseLvlSize(void *tensor, index_type l) {
  return static_cast<SparseTensorStorageBase *>(tensor)->getLvlSize(l);
}

index_type sparseDimSize(void *tensor, index_type d) {
  return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
}

void endLexInsert(void *tensor) {
  return static_cast<SparseTensorStorageBase *>(tensor)->endLexInsert();
}

void delSparseTensor(void *tensor) {
  delete static_cast<SparseTensorStorageBase *>(tensor);
}

char *getTensorFilename(index_type id) {
  constexpr size_t bufSize = 80;
  char var[bufSize];
  snprintf(var, bufSize, "TENSOR%" PRIu64, id);
  char *env = getenv(var);
  if (!env)
    MLIR_SPARSETENSOR_FATAL("Environment variable %s is not set\n", var);
  return env;
}

index_type getSparseTensorReaderNSE(void *p) {
  return static_cast<SparseTensorReader *>(p)->getNSE();
}

void delSparseTensorReader(void *p) {
  delete static_cast<SparseTensorReader *>(p);
}

void *createSparseTensorWriter(char *filename) {
  std::ostream *file =
      (filename[0] == 0) ? &std::cout : new std::ofstream(filename);
  *file << "# extended FROSTT format\n";
  return static_cast<void *>(file);
}

void delSparseTensorWriter(void *p) {
  std::ostream *file = static_cast<std::ostream *>(p);
  file->flush();
  assert(file->good());
  if (file != &std::cout)
    delete file;
}

} // extern "C"

#undef MEMREF_GET_PAYLOAD
#undef ASSERT_USIZE_EQ
#undef MEMREF_GET_USIZE
#undef ASSERT_NO_STRIDE

#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS