aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp
blob: 0ffef6aabccc18cf0e2caaa2f983b2999c26a7ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
//===- VectorTransferOpTransforms.cpp - transfer op transforms ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with optimizing transfer_read and
// transfer_write ops.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "vector-transfer-opt"

#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")

using namespace mlir;

/// Return the ancestor op in the region or nullptr if the region is not
/// an ancestor of the op.
static Operation *findAncestorOpInRegion(Region *region, Operation *op) {
  for (; op != nullptr && op->getParentRegion() != region;
       op = op->getParentOp())
    ;
  return op;
}

namespace {

class TransferOptimization {
public:
  TransferOptimization(RewriterBase &rewriter, Operation *op)
      : rewriter(rewriter), dominators(op), postDominators(op) {}
  void deadStoreOp(vector::TransferWriteOp);
  void storeToLoadForwarding(vector::TransferReadOp);
  void removeDeadOp() {
    for (Operation *op : opToErase)
      rewriter.eraseOp(op);
    opToErase.clear();
  }

private:
  RewriterBase &rewriter;
  bool isReachable(Operation *start, Operation *dest);
  DominanceInfo dominators;
  PostDominanceInfo postDominators;
  std::vector<Operation *> opToErase;
};

} // namespace
/// Return true if there is a path from start operation to dest operation,
/// otherwise return false. The operations have to be in the same region.
bool TransferOptimization::isReachable(Operation *start, Operation *dest) {
  assert(start->getParentRegion() == dest->getParentRegion() &&
         "This function only works for ops i the same region");
  // Simple case where the start op dominate the destination.
  if (dominators.dominates(start, dest))
    return true;
  Block *startBlock = start->getBlock();
  Block *destBlock = dest->getBlock();
  SmallVector<Block *, 32> worklist(startBlock->succ_begin(),
                                    startBlock->succ_end());
  SmallPtrSet<Block *, 32> visited;
  while (!worklist.empty()) {
    Block *bb = worklist.pop_back_val();
    if (!visited.insert(bb).second)
      continue;
    if (dominators.dominates(bb, destBlock))
      return true;
    worklist.append(bb->succ_begin(), bb->succ_end());
  }
  return false;
}

/// For transfer_write to overwrite fully another transfer_write must:
/// 1. Access the same memref with the same indices and vector type.
/// 2. Post-dominate the other transfer_write operation.
/// If several candidates are available, one must be post-dominated by all the
/// others since they are all post-dominating the same transfer_write. We only
/// consider the transfer_write post-dominated by all the other candidates as
/// this will be the first transfer_write executed after the potentially dead
/// transfer_write.
/// If we found such an overwriting transfer_write we know that the original
/// transfer_write is dead if all reads that can be reached from the potentially
/// dead transfer_write are dominated by the overwriting transfer_write.
void TransferOptimization::deadStoreOp(vector::TransferWriteOp write) {
  LLVM_DEBUG(DBGS() << "Candidate for dead store: " << *write.getOperation()
                    << "\n");
  llvm::SmallVector<Operation *, 8> blockingAccesses;
  Operation *firstOverwriteCandidate = nullptr;
  Value source = write.getSource();
  // Skip subview ops.
  while (auto subView = source.getDefiningOp<memref::SubViewOp>())
    source = subView.getSource();
  llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
                                           source.getUsers().end());
  llvm::SmallDenseSet<Operation *, 32> processed;
  while (!users.empty()) {
    Operation *user = users.pop_back_val();
    // If the user has already been processed skip.
    if (!processed.insert(user).second)
      continue;
    if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
      users.append(subView->getUsers().begin(), subView->getUsers().end());
      continue;
    }
    if (isMemoryEffectFree(user))
      continue;
    if (user == write.getOperation())
      continue;
    if (auto nextWrite = dyn_cast<vector::TransferWriteOp>(user)) {
      // Check candidate that can override the store.
      if (write.getSource() == nextWrite.getSource() &&
          checkSameValueWAW(nextWrite, write) &&
          postDominators.postDominates(nextWrite, write)) {
        if (firstOverwriteCandidate == nullptr ||
            postDominators.postDominates(firstOverwriteCandidate, nextWrite))
          firstOverwriteCandidate = nextWrite;
        else
          assert(
              postDominators.postDominates(nextWrite, firstOverwriteCandidate));
        continue;
      }
    }
    if (auto transferOp = dyn_cast<VectorTransferOpInterface>(user)) {
      // Don't need to consider disjoint accesses.
      if (vector::isDisjointTransferSet(
              cast<VectorTransferOpInterface>(write.getOperation()),
              cast<VectorTransferOpInterface>(transferOp.getOperation()),
              /*testDynamicValueUsingBounds=*/true))
        continue;
    }
    blockingAccesses.push_back(user);
  }
  if (firstOverwriteCandidate == nullptr)
    return;
  Region *topRegion = firstOverwriteCandidate->getParentRegion();
  Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
  assert(writeAncestor &&
         "write op should be recursively part of the top region");

  for (Operation *access : blockingAccesses) {
    Operation *accessAncestor = findAncestorOpInRegion(topRegion, access);
    // TODO: if the access and write have the same ancestor we could recurse in
    // the region to know if the access is reachable with more precision.
    if (accessAncestor == nullptr ||
        !isReachable(writeAncestor, accessAncestor))
      continue;
    if (!dominators.dominates(firstOverwriteCandidate, accessAncestor)) {
      LLVM_DEBUG(DBGS() << "Store may not be dead due to op: "
                        << *accessAncestor << "\n");
      return;
    }
  }
  LLVM_DEBUG(DBGS() << "Found dead store: " << *write.getOperation()
                    << " overwritten by: " << *firstOverwriteCandidate << "\n");
  opToErase.push_back(write.getOperation());
}

/// A transfer_write candidate to storeToLoad forwarding must:
/// 1. Access the same memref with the same indices and vector type as the
/// transfer_read.
/// 2. Dominate the transfer_read operation.
/// If several candidates are available, one must be dominated by all the others
/// since they are all dominating the same transfer_read. We only consider the
/// transfer_write dominated by all the other candidates as this will be the
/// last transfer_write executed before the transfer_read.
/// If we found such a candidate we can do the forwarding if all the other
/// potentially aliasing ops that may reach the transfer_read are post-dominated
/// by the transfer_write.
void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
  if (read.hasOutOfBoundsDim())
    return;
  LLVM_DEBUG(DBGS() << "Candidate for Forwarding: " << *read.getOperation()
                    << "\n");
  SmallVector<Operation *, 8> blockingWrites;
  vector::TransferWriteOp lastwrite = nullptr;
  Value source = read.getSource();
  // Skip subview ops.
  while (auto subView = source.getDefiningOp<memref::SubViewOp>())
    source = subView.getSource();
  llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
                                           source.getUsers().end());
  llvm::SmallDenseSet<Operation *, 32> processed;
  while (!users.empty()) {
    Operation *user = users.pop_back_val();
    // If the user has already been processed skip.
    if (!processed.insert(user).second)
      continue;
    if (auto subView = dyn_cast<memref::SubViewOp>(user)) {
      users.append(subView->getUsers().begin(), subView->getUsers().end());
      continue;
    }
    if (auto collapsed = dyn_cast<memref::CollapseShapeOp>(user)) {
      users.append(collapsed->getUsers().begin(), collapsed->getUsers().end());
      continue;
    }
    if (isMemoryEffectFree(user) || isa<vector::TransferReadOp>(user))
      continue;
    if (auto write = dyn_cast<vector::TransferWriteOp>(user)) {
      // If there is a write, but we can prove that it is disjoint we can ignore
      // the write.
      if (vector::isDisjointTransferSet(
              cast<VectorTransferOpInterface>(write.getOperation()),
              cast<VectorTransferOpInterface>(read.getOperation()),
              /*testDynamicValueUsingBounds=*/true))
        continue;
      if (write.getSource() == read.getSource() &&
          dominators.dominates(write, read) && checkSameValueRAW(write, read)) {
        if (lastwrite == nullptr || dominators.dominates(lastwrite, write))
          lastwrite = write;
        else
          assert(dominators.dominates(write, lastwrite));
        continue;
      }
    }
    blockingWrites.push_back(user);
  }

  if (lastwrite == nullptr)
    return;

  Region *topRegion = lastwrite->getParentRegion();
  Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
  assert(readAncestor &&
         "read op should be recursively part of the top region");

  for (Operation *write : blockingWrites) {
    Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
    // TODO: if the store and read have the same ancestor we could recurse in
    // the region to know if the read is reachable with more precision.
    if (writeAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
      continue;
    if (!postDominators.postDominates(lastwrite, write)) {
      LLVM_DEBUG(DBGS() << "Fail to do write to read forwarding due to op: "
                        << *write << "\n");
      return;
    }
  }

  LLVM_DEBUG(DBGS() << "Forward value from " << *lastwrite.getOperation()
                    << " to: " << *read.getOperation() << "\n");
  read.replaceAllUsesWith(lastwrite.getVector());
  opToErase.push_back(read.getOperation());
}

/// Converts OpFoldResults to int64_t shape without unit dims.
static SmallVector<int64_t> getReducedShape(ArrayRef<OpFoldResult> mixedSizes) {
  SmallVector<int64_t> reducedShape;
  for (const auto size : mixedSizes) {
    if (llvm::dyn_cast_if_present<Value>(size)) {
      reducedShape.push_back(ShapedType::kDynamic);
      continue;
    }

    auto value = cast<IntegerAttr>(size.get<Attribute>()).getValue();
    if (value == 1)
      continue;
    reducedShape.push_back(value.getSExtValue());
  }
  return reducedShape;
}

/// Drops unit dimensions from the input MemRefType.
static MemRefType dropUnitDims(MemRefType inputType,
                               ArrayRef<OpFoldResult> offsets,
                               ArrayRef<OpFoldResult> sizes,
                               ArrayRef<OpFoldResult> strides) {
  auto targetShape = getReducedShape(sizes);
  Type rankReducedType = memref::SubViewOp::inferRankReducedResultType(
      targetShape, inputType, offsets, sizes, strides);
  return canonicalizeStridedLayout(cast<MemRefType>(rankReducedType));
}

/// Creates a rank-reducing memref.subview op that drops unit dims from its
/// input. Or just returns the input if it was already without unit dims.
static Value rankReducingSubviewDroppingUnitDims(PatternRewriter &rewriter,
                                                 mlir::Location loc,
                                                 Value input) {
  MemRefType inputType = cast<MemRefType>(input.getType());
  SmallVector<OpFoldResult> offsets(inputType.getRank(),
                                    rewriter.getIndexAttr(0));
  SmallVector<OpFoldResult> sizes = memref::getMixedSizes(rewriter, loc, input);
  SmallVector<OpFoldResult> strides(inputType.getRank(),
                                    rewriter.getIndexAttr(1));
  MemRefType resultType = dropUnitDims(inputType, offsets, sizes, strides);

  if (canonicalizeStridedLayout(resultType) ==
      canonicalizeStridedLayout(inputType))
    return input;
  return rewriter.create<memref::SubViewOp>(loc, resultType, input, offsets,
                                            sizes, strides);
}

/// Returns the number of dims that aren't unit dims.
static int getReducedRank(ArrayRef<int64_t> shape) {
  return llvm::count_if(shape, [](int64_t dimSize) { return dimSize != 1; });
}

/// Trims non-scalable one dimensions from `oldType` and returns the result
/// type.
static VectorType trimNonScalableUnitDims(VectorType oldType) {
  SmallVector<int64_t> newShape;
  SmallVector<bool> newScalableDims;
  for (auto [dimIdx, dimSize] : llvm::enumerate(oldType.getShape())) {
    if (dimSize == 1 && !oldType.getScalableDims()[dimIdx])
      continue;
    newShape.push_back(dimSize);
    newScalableDims.push_back(oldType.getScalableDims()[dimIdx]);
  }
  return VectorType::get(newShape, oldType.getElementType(), newScalableDims);
}

// Rewrites vector.create_mask 'op' to drop non-scalable one dimensions.
static FailureOr<Value>
createMaskDropNonScalableUnitDims(PatternRewriter &rewriter, Location loc,
                                  vector::CreateMaskOp op) {
  auto type = op.getType();
  VectorType reducedType = trimNonScalableUnitDims(type);
  if (reducedType.getRank() == type.getRank())
    return failure();

  SmallVector<Value> reducedOperands;
  for (auto [dim, dimIsScalable, operand] : llvm::zip_equal(
           type.getShape(), type.getScalableDims(), op.getOperands())) {
    if (dim == 1 && !dimIsScalable) {
      // If the mask for the unit dim is not a constant of 1, do nothing.
      auto constant = operand.getDefiningOp<arith::ConstantIndexOp>();
      if (!constant || (constant.value() != 1))
        return failure();
      continue;
    }
    reducedOperands.push_back(operand);
  }
  return rewriter
      .create<vector::CreateMaskOp>(loc, reducedType, reducedOperands)
      .getResult();
}

namespace {

/// Rewrites `vector.transfer_read` ops where the source has unit dims, by
/// inserting a memref.subview dropping those unit dims. The vector shapes are
/// also reduced accordingly.
class TransferReadDropUnitDimsPattern
    : public OpRewritePattern<vector::TransferReadOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
                                PatternRewriter &rewriter) const override {
    auto loc = transferReadOp.getLoc();
    Value vector = transferReadOp.getVector();
    VectorType vectorType = cast<VectorType>(vector.getType());
    Value source = transferReadOp.getSource();
    MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
    // TODO: support tensor types.
    if (!sourceType)
      return failure();
    // TODO: generalize this pattern, relax the requirements here.
    if (transferReadOp.hasOutOfBoundsDim())
      return failure();
    if (!transferReadOp.getPermutationMap().isMinorIdentity())
      return failure();
    // Check if the source shape can be further reduced.
    int reducedRank = getReducedRank(sourceType.getShape());
    if (reducedRank == sourceType.getRank())
      return failure();
    // Check if the reduced vector shape matches the reduced source shape.
    // Otherwise, this case is not supported yet.
    VectorType reducedVectorType = trimNonScalableUnitDims(vectorType);
    if (reducedRank != reducedVectorType.getRank())
      return failure();
    if (llvm::any_of(transferReadOp.getIndices(), [](Value v) {
          return getConstantIntValue(v) != static_cast<int64_t>(0);
        }))
      return failure();

    Value maskOp = transferReadOp.getMask();
    if (maskOp) {
      auto createMaskOp = maskOp.getDefiningOp<vector::CreateMaskOp>();
      if (!createMaskOp)
        return rewriter.notifyMatchFailure(
            transferReadOp, "unsupported mask op, only 'vector.create_mask' is "
                            "currently supported");
      FailureOr<Value> rankReducedCreateMask =
          createMaskDropNonScalableUnitDims(rewriter, loc, createMaskOp);
      if (failed(rankReducedCreateMask))
        return failure();
      maskOp = *rankReducedCreateMask;
    }

    Value reducedShapeSource =
        rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
    Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
    SmallVector<Value> zeros(reducedRank, c0);
    auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
    SmallVector<bool> inBounds(reducedVectorType.getRank(), true);
    auto newTransferReadOp = rewriter.create<vector::TransferReadOp>(
        loc, reducedVectorType, reducedShapeSource, zeros, identityMap,
        transferReadOp.getPadding(), maskOp,
        rewriter.getBoolArrayAttr(inBounds));
    auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
        loc, vectorType, newTransferReadOp);
    rewriter.replaceOp(transferReadOp, shapeCast);

    return success();
  }
};

/// Rewrites `vector.transfer_write` ops where the "source" (i.e. destination)
/// has unit dims, by inserting a `memref.subview` dropping those unit dims. The
/// vector shapes are also reduced accordingly.
class TransferWriteDropUnitDimsPattern
    : public OpRewritePattern<vector::TransferWriteOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
                                PatternRewriter &rewriter) const override {
    auto loc = transferWriteOp.getLoc();
    Value vector = transferWriteOp.getVector();
    VectorType vectorType = cast<VectorType>(vector.getType());
    Value source = transferWriteOp.getSource();
    MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
    // TODO: support tensor type.
    if (!sourceType)
      return failure();
    // TODO: generalize this pattern, relax the requirements here.
    if (transferWriteOp.hasOutOfBoundsDim())
      return failure();
    if (!transferWriteOp.getPermutationMap().isMinorIdentity())
      return failure();
    // Check if the destination shape can be further reduced.
    int reducedRank = getReducedRank(sourceType.getShape());
    if (reducedRank == sourceType.getRank())
      return failure();
    // Check if the reduced vector shape matches the reduced destination shape.
    // Otherwise, this case is not supported yet.
    VectorType reducedVectorType = trimNonScalableUnitDims(vectorType);
    if (reducedRank != reducedVectorType.getRank())
      return failure();
    if (llvm::any_of(transferWriteOp.getIndices(), [](Value v) {
          return getConstantIntValue(v) != static_cast<int64_t>(0);
        }))
      return failure();

    Value maskOp = transferWriteOp.getMask();
    if (maskOp) {
      auto createMaskOp = maskOp.getDefiningOp<vector::CreateMaskOp>();
      if (!createMaskOp)
        return rewriter.notifyMatchFailure(
            transferWriteOp,
            "unsupported mask op, only 'vector.create_mask' is "
            "currently supported");
      FailureOr<Value> rankReducedCreateMask =
          createMaskDropNonScalableUnitDims(rewriter, loc, createMaskOp);
      if (failed(rankReducedCreateMask))
        return failure();
      maskOp = *rankReducedCreateMask;
    }
    Value reducedShapeSource =
        rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
    Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
    SmallVector<Value> zeros(reducedRank, c0);
    auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
    SmallVector<bool> inBounds(reducedVectorType.getRank(), true);
    auto shapeCast = rewriter.createOrFold<vector::ShapeCastOp>(
        loc, reducedVectorType, vector);
    rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
        transferWriteOp, Type(), shapeCast, reducedShapeSource, zeros,
        identityMap, maskOp, rewriter.getBoolArrayAttr(inBounds));

    return success();
  }
};

} // namespace

/// Creates a memref.collapse_shape collapsing all inner dimensions of the
/// input starting at `firstDimToCollapse`.
static Value collapseInnerDims(PatternRewriter &rewriter, mlir::Location loc,
                               Value input, int64_t firstDimToCollapse) {
  ShapedType inputType = cast<ShapedType>(input.getType());
  if (inputType.getRank() == 1)
    return input;
  SmallVector<ReassociationIndices> reassociation;
  for (int64_t i = 0; i < firstDimToCollapse; ++i)
    reassociation.push_back(ReassociationIndices{i});
  ReassociationIndices collapsedIndices;
  for (int64_t i = firstDimToCollapse; i < inputType.getRank(); ++i)
    collapsedIndices.push_back(i);
  reassociation.push_back(collapsedIndices);
  return rewriter.create<memref::CollapseShapeOp>(loc, input, reassociation);
}

/// Checks that the indices corresponding to dimensions starting at
/// `firstDimToCollapse` are constant 0, and writes to `outIndices`
/// the truncated indices where `firstDimToCollapse` is now the innermost dim.
/// TODO: Extract the logic that writes to outIndices so that this method
/// simply checks one pre-condition.
static LogicalResult
checkAndCollapseInnerZeroIndices(ValueRange indices, int64_t firstDimToCollapse,
                                 SmallVector<Value> &outIndices) {
  int64_t rank = indices.size();
  if (firstDimToCollapse >= rank)
    return failure();
  for (int64_t i = firstDimToCollapse; i < rank; ++i) {
    std::optional<int64_t> cst = getConstantIntValue(indices[i]);
    if (!cst || cst.value() != 0)
      return failure();
  }
  outIndices = indices;
  outIndices.resize(firstDimToCollapse + 1);
  return success();
}

namespace {

/// Rewrites contiguous row-major vector.transfer_read ops by inserting
/// memref.collapse_shape on the source so that the resulting
/// vector.transfer_read has a 1D source. Requires the source shape to be
/// already reduced i.e. without unit dims.
/// If `targetVectorBitwidth` is provided, the flattening will only happen if
/// the trailing dimension of the vector read is smaller than the provided
/// bitwidth.
class FlattenContiguousRowMajorTransferReadPattern
    : public OpRewritePattern<vector::TransferReadOp> {
public:
  FlattenContiguousRowMajorTransferReadPattern(MLIRContext *context,
                                               unsigned vectorBitwidth,
                                               PatternBenefit benefit)
      : OpRewritePattern<vector::TransferReadOp>(context, benefit),
        targetVectorBitwidth(vectorBitwidth) {}

  LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
                                PatternRewriter &rewriter) const override {
    auto loc = transferReadOp.getLoc();
    Value vector = transferReadOp.getVector();
    VectorType vectorType = cast<VectorType>(vector.getType());
    auto source = transferReadOp.getSource();
    MemRefType sourceType = dyn_cast<MemRefType>(source.getType());

    // 0. Check pre-conditions
    // Contiguity check is valid on tensors only.
    if (!sourceType)
      return failure();
    // If this is already 0D/1D, there's nothing to do.
    if (vectorType.getRank() <= 1)
      return failure();
    if (!vectorType.getElementType().isSignlessIntOrFloat())
      return failure();
    unsigned trailingVectorDimBitwidth =
        vectorType.getShape().back() * vectorType.getElementTypeBitWidth();
    if (trailingVectorDimBitwidth >= targetVectorBitwidth)
      return failure();
    if (!vector::isContiguousSlice(sourceType, vectorType))
      return failure();
    // TODO: generalize this pattern, relax the requirements here.
    if (transferReadOp.hasOutOfBoundsDim())
      return failure();
    if (!transferReadOp.getPermutationMap().isMinorIdentity())
      return failure();
    if (transferReadOp.getMask())
      return failure();

    int64_t firstDimToCollapse = sourceType.getRank() - vectorType.getRank();

    // 1. Collapse the source memref
    Value collapsedSource =
        collapseInnerDims(rewriter, loc, source, firstDimToCollapse);
    MemRefType collapsedSourceType =
        dyn_cast<MemRefType>(collapsedSource.getType());
    int64_t collapsedRank = collapsedSourceType.getRank();
    assert(collapsedRank == firstDimToCollapse + 1);

    // 2. Generate input args for a new vector.transfer_read that will read
    // from the collapsed memref.
    // 2.1. New dim exprs + affine map
    SmallVector<AffineExpr, 1> dimExprs{
        getAffineDimExpr(firstDimToCollapse, rewriter.getContext())};
    auto collapsedMap =
        AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());

    // 2.2 New indices
    // If all the collapsed indices are zero then no extra logic is needed.
    // Otherwise, a new offset/index has to be computed.
    SmallVector<Value> collapsedIndices;
    if (failed(checkAndCollapseInnerZeroIndices(transferReadOp.getIndices(),
                                                firstDimToCollapse,
                                                collapsedIndices))) {
      // Copy all the leading indices.
      SmallVector<Value> indices = transferReadOp.getIndices();
      collapsedIndices.append(indices.begin(),
                              indices.begin() + firstDimToCollapse);

      // Compute the remaining trailing index/offset required for reading from
      // the collapsed memref:
      //
      //    offset = 0
      //    for (i = firstDimToCollapse; i < outputRank; ++i)
      //      offset += sourceType.getDimSize(i) * transferReadOp.indices[i]
      //
      // For this example:
      //   %2 = vector.transfer_read %arg4[%c0, %arg0, %c0] (...) :
      //      memref<1x43x2xi32>, vector<1x2xi32>
      // which would be collapsed to:
      //   %1 = vector.transfer_read %collapse_shape[%c0, %offset] (...) :
      //      memref<1x86xi32>, vector<2xi32>
      // one would get the following offset:
      //    %offset = %arg0 * 43
      OpFoldResult collapsedOffset =
          rewriter.create<arith::ConstantIndexOp>(loc, 0).getResult();

      auto sourceShape = sourceType.getShape();
      auto collapsedStrides = computeSuffixProduct(ArrayRef<int64_t>(
          sourceShape.begin() + firstDimToCollapse, sourceShape.end()));

      // Compute the collapsed offset.
      ArrayRef<Value> indicesToCollapse(indices.begin() + firstDimToCollapse,
                                        indices.end());
      auto &&[collapsedExpr, collapsedVals] = computeLinearIndex(
          collapsedOffset, collapsedStrides, indicesToCollapse);
      collapsedOffset = affine::makeComposedFoldedAffineApply(
          rewriter, loc, collapsedExpr, collapsedVals);

      if (collapsedOffset.is<Value>()) {
        collapsedIndices.push_back(collapsedOffset.get<Value>());
      } else {
        collapsedIndices.push_back(rewriter.create<arith::ConstantIndexOp>(
            loc, *getConstantIntValue(collapsedOffset)));
      }
    }

    // 3. Create new vector.transfer_read that reads from the collapsed memref
    VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
                                                vectorType.getElementType());
    vector::TransferReadOp flatRead = rewriter.create<vector::TransferReadOp>(
        loc, flatVectorType, collapsedSource, collapsedIndices, collapsedMap);
    flatRead.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));

    // 4. Replace the old transfer_read with the new one reading from the
    // collapsed shape
    rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
        transferReadOp, cast<VectorType>(vector.getType()), flatRead);
    return success();
  }

private:
  // Minimum bitwidth that the trailing vector dimension should have after
  // flattening.
  unsigned targetVectorBitwidth;
};

/// Rewrites contiguous row-major vector.transfer_write ops by inserting
/// memref.collapse_shape on the source so that the resulting
/// vector.transfer_write has a 1D source. Requires the source shape to be
/// already reduced i.e. without unit dims.
class FlattenContiguousRowMajorTransferWritePattern
    : public OpRewritePattern<vector::TransferWriteOp> {
public:
  FlattenContiguousRowMajorTransferWritePattern(MLIRContext *context,
                                                unsigned vectorBitwidth,
                                                PatternBenefit benefit)
      : OpRewritePattern<vector::TransferWriteOp>(context, benefit),
        targetVectorBitwidth(vectorBitwidth) {}

  LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
                                PatternRewriter &rewriter) const override {
    auto loc = transferWriteOp.getLoc();
    Value vector = transferWriteOp.getVector();
    VectorType vectorType = cast<VectorType>(vector.getType());
    Value source = transferWriteOp.getSource();
    MemRefType sourceType = dyn_cast<MemRefType>(source.getType());
    // Contiguity check is valid on tensors only.
    if (!sourceType)
      return failure();
    if (vectorType.getRank() <= 1)
      // Already 0D/1D, nothing to do.
      return failure();
    if (!vectorType.getElementType().isSignlessIntOrFloat())
      return failure();
    unsigned trailingVectorDimBitwidth =
        vectorType.getShape().back() * vectorType.getElementTypeBitWidth();
    if (trailingVectorDimBitwidth >= targetVectorBitwidth)
      return failure();
    if (!vector::isContiguousSlice(sourceType, vectorType))
      return failure();
    int64_t firstContiguousInnerDim =
        sourceType.getRank() - vectorType.getRank();
    // TODO: generalize this pattern, relax the requirements here.
    if (transferWriteOp.hasOutOfBoundsDim())
      return failure();
    if (!transferWriteOp.getPermutationMap().isMinorIdentity())
      return failure();
    if (transferWriteOp.getMask())
      return failure();
    SmallVector<Value> collapsedIndices;
    if (failed(checkAndCollapseInnerZeroIndices(transferWriteOp.getIndices(),
                                                firstContiguousInnerDim,
                                                collapsedIndices)))
      return failure();

    Value collapsedSource =
        collapseInnerDims(rewriter, loc, source, firstContiguousInnerDim);
    MemRefType collapsedSourceType =
        cast<MemRefType>(collapsedSource.getType());
    int64_t collapsedRank = collapsedSourceType.getRank();
    assert(collapsedRank == firstContiguousInnerDim + 1);
    SmallVector<AffineExpr, 1> dimExprs{
        getAffineDimExpr(firstContiguousInnerDim, rewriter.getContext())};
    auto collapsedMap =
        AffineMap::get(collapsedRank, 0, dimExprs, rewriter.getContext());
    VectorType flatVectorType = VectorType::get({vectorType.getNumElements()},
                                                vectorType.getElementType());
    Value flatVector =
        rewriter.create<vector::ShapeCastOp>(loc, flatVectorType, vector);
    vector::TransferWriteOp flatWrite =
        rewriter.create<vector::TransferWriteOp>(
            loc, flatVector, collapsedSource, collapsedIndices, collapsedMap);
    flatWrite.setInBoundsAttr(rewriter.getBoolArrayAttr({true}));
    rewriter.eraseOp(transferWriteOp);
    return success();
  }

private:
  // Minimum bitwidth that the trailing vector dimension should have after
  // flattening.
  unsigned targetVectorBitwidth;
};

/// Base class for `vector.extract/vector.extract_element(vector.transfer_read)`
/// to `memref.load` patterns. The `match` method is shared for both
/// `vector.extract` and `vector.extract_element`.
template <class VectorExtractOp>
class RewriteScalarExtractOfTransferReadBase
    : public OpRewritePattern<VectorExtractOp> {
  using Base = OpRewritePattern<VectorExtractOp>;

public:
  RewriteScalarExtractOfTransferReadBase(MLIRContext *context,
                                         PatternBenefit benefit,
                                         bool allowMultipleUses)
      : Base::OpRewritePattern(context, benefit),
        allowMultipleUses(allowMultipleUses) {}

  LogicalResult match(VectorExtractOp extractOp) const override {
    auto xferOp =
        extractOp.getVector().template getDefiningOp<vector::TransferReadOp>();
    if (!xferOp)
      return failure();
    // Check that we are extracting a scalar and not a sub-vector.
    if (isa<VectorType>(extractOp.getResult().getType()))
      return failure();
    // If multiple uses are not allowed, check if xfer has a single use.
    if (!allowMultipleUses && !xferOp.getResult().hasOneUse())
      return failure();
    // If multiple uses are allowed, check if all the xfer uses are extract ops.
    if (allowMultipleUses &&
        !llvm::all_of(xferOp->getUses(), [](OpOperand &use) {
          return isa<vector::ExtractOp, vector::ExtractElementOp>(
              use.getOwner());
        }))
      return failure();
    // Mask not supported.
    if (xferOp.getMask())
      return failure();
    // Map not supported.
    if (!xferOp.getPermutationMap().isMinorIdentity())
      return failure();
    // Cannot rewrite if the indices may be out of bounds.
    if (xferOp.hasOutOfBoundsDim())
      return failure();
    return success();
  }

private:
  bool allowMultipleUses;
};

/// Rewrite `vector.extractelement(vector.transfer_read)` to `memref.load`.
///
/// All the users of the transfer op must be either `vector.extractelement` or
/// `vector.extract` ops. If `allowMultipleUses` is set to true, rewrite
/// transfer ops with any number of users. Otherwise, rewrite only if the
/// extract op is the single user of the transfer op. Rewriting a single
/// vector load with multiple scalar loads may negatively affect performance.
class RewriteScalarExtractElementOfTransferRead
    : public RewriteScalarExtractOfTransferReadBase<vector::ExtractElementOp> {
  using RewriteScalarExtractOfTransferReadBase::
      RewriteScalarExtractOfTransferReadBase;

  void rewrite(vector::ExtractElementOp extractOp,
               PatternRewriter &rewriter) const override {
    // Construct scalar load.
    auto loc = extractOp.getLoc();
    auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
    SmallVector<Value> newIndices(xferOp.getIndices().begin(),
                                  xferOp.getIndices().end());
    if (extractOp.getPosition()) {
      AffineExpr sym0, sym1;
      bindSymbols(extractOp.getContext(), sym0, sym1);
      OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
          rewriter, loc, sym0 + sym1,
          {newIndices[newIndices.size() - 1], extractOp.getPosition()});
      if (ofr.is<Value>()) {
        newIndices[newIndices.size() - 1] = ofr.get<Value>();
      } else {
        newIndices[newIndices.size() - 1] =
            rewriter.create<arith::ConstantIndexOp>(loc,
                                                    *getConstantIntValue(ofr));
      }
    }
    if (isa<MemRefType>(xferOp.getSource().getType())) {
      rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
                                                  newIndices);
    } else {
      rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
          extractOp, xferOp.getSource(), newIndices);
    }
  }
};

/// Rewrite `vector.extractelement(vector.transfer_read)` to `memref.load`.
/// Rewrite `vector.extract(vector.transfer_read)` to `memref.load`.
///
/// All the users of the transfer op must be either `vector.extractelement` or
/// `vector.extract` ops. If `allowMultipleUses` is set to true, rewrite
/// transfer ops with any number of users. Otherwise, rewrite only if the
/// extract op is the single user of the transfer op. Rewriting a single
/// vector load with multiple scalar loads may negatively affect performance.
class RewriteScalarExtractOfTransferRead
    : public RewriteScalarExtractOfTransferReadBase<vector::ExtractOp> {
  using RewriteScalarExtractOfTransferReadBase::
      RewriteScalarExtractOfTransferReadBase;

  void rewrite(vector::ExtractOp extractOp,
               PatternRewriter &rewriter) const override {
    // Construct scalar load.
    auto xferOp = extractOp.getVector().getDefiningOp<vector::TransferReadOp>();
    SmallVector<Value> newIndices(xferOp.getIndices().begin(),
                                  xferOp.getIndices().end());
    for (auto [i, pos] : llvm::enumerate(extractOp.getMixedPosition())) {
      assert(pos.is<Attribute>() && "Unexpected non-constant index");
      int64_t offset = cast<IntegerAttr>(pos.get<Attribute>()).getInt();
      int64_t idx = newIndices.size() - extractOp.getNumIndices() + i;
      OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
          rewriter, extractOp.getLoc(),
          rewriter.getAffineSymbolExpr(0) + offset, {newIndices[idx]});
      if (ofr.is<Value>()) {
        newIndices[idx] = ofr.get<Value>();
      } else {
        newIndices[idx] = rewriter.create<arith::ConstantIndexOp>(
            extractOp.getLoc(), *getConstantIntValue(ofr));
      }
    }
    if (isa<MemRefType>(xferOp.getSource().getType())) {
      rewriter.replaceOpWithNewOp<memref::LoadOp>(extractOp, xferOp.getSource(),
                                                  newIndices);
    } else {
      rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
          extractOp, xferOp.getSource(), newIndices);
    }
  }
};

/// Rewrite transfer_writes of vectors of size 1 (e.g., vector<1x1xf32>)
/// to memref.store.
class RewriteScalarWrite : public OpRewritePattern<vector::TransferWriteOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(vector::TransferWriteOp xferOp,
                                PatternRewriter &rewriter) const override {
    // Must be a scalar write.
    auto vecType = xferOp.getVectorType();
    if (!llvm::all_of(vecType.getShape(), [](int64_t sz) { return sz == 1; }))
      return failure();
    // Mask not supported.
    if (xferOp.getMask())
      return failure();
    // Map not supported.
    if (!xferOp.getPermutationMap().isMinorIdentity())
      return failure();
    // Only float and integer element types are supported.
    Value scalar;
    if (vecType.getRank() == 0) {
      // vector.extract does not support vector<f32> etc., so use
      // vector.extractelement instead.
      scalar = rewriter.create<vector::ExtractElementOp>(xferOp.getLoc(),
                                                         xferOp.getVector());
    } else {
      SmallVector<int64_t> pos(vecType.getRank(), 0);
      scalar = rewriter.create<vector::ExtractOp>(xferOp.getLoc(),
                                                  xferOp.getVector(), pos);
    }
    // Construct a scalar store.
    if (isa<MemRefType>(xferOp.getSource().getType())) {
      rewriter.replaceOpWithNewOp<memref::StoreOp>(
          xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
    } else {
      rewriter.replaceOpWithNewOp<tensor::InsertOp>(
          xferOp, scalar, xferOp.getSource(), xferOp.getIndices());
    }
    return success();
  }
};

} // namespace

void mlir::vector::transferOpflowOpt(RewriterBase &rewriter,
                                     Operation *rootOp) {
  TransferOptimization opt(rewriter, rootOp);
  // Run store to load forwarding first since it can expose more dead store
  // opportunity.
  rootOp->walk([&](vector::TransferReadOp read) {
    if (isa<MemRefType>(read.getShapedType()))
      opt.storeToLoadForwarding(read);
  });
  opt.removeDeadOp();
  rootOp->walk([&](vector::TransferWriteOp write) {
    if (isa<MemRefType>(write.getShapedType()))
      opt.deadStoreOp(write);
  });
  opt.removeDeadOp();
}

void mlir::vector::populateScalarVectorTransferLoweringPatterns(
    RewritePatternSet &patterns, PatternBenefit benefit,
    bool allowMultipleUses) {
  patterns.add<RewriteScalarExtractElementOfTransferRead,
               RewriteScalarExtractOfTransferRead>(patterns.getContext(),
                                                   benefit, allowMultipleUses);
  patterns.add<RewriteScalarWrite>(patterns.getContext(), benefit);
}

void mlir::vector::populateVectorTransferDropUnitDimsPatterns(
    RewritePatternSet &patterns, PatternBenefit benefit) {
  patterns
      .add<TransferReadDropUnitDimsPattern, TransferWriteDropUnitDimsPattern>(
          patterns.getContext(), benefit);
  populateShapeCastFoldingPatterns(patterns);
}

void mlir::vector::populateFlattenVectorTransferPatterns(
    RewritePatternSet &patterns, unsigned targetVectorBitwidth,
    PatternBenefit benefit) {
  patterns.add<FlattenContiguousRowMajorTransferReadPattern,
               FlattenContiguousRowMajorTransferWritePattern>(
      patterns.getContext(), targetVectorBitwidth, benefit);
  populateShapeCastFoldingPatterns(patterns, benefit);
  populateDropUnitDimWithShapeCastPatterns(patterns, benefit);
}