aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Tensor/Utils/Utils.cpp
blob: 15381ec520e21194fbacd94baee8689e8fd2bd09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
//===- Utils.cpp - Utilities to support the Tensor dialect ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the Tensor dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Tensor/Utils/Utils.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"

using namespace mlir;
using namespace mlir::tensor;

PadOp mlir::tensor::createPadHighOp(RankedTensorType type, Value source,
                                    Value pad, bool nofold, Location loc,
                                    OpBuilder &b) {
  SmallVector<OpFoldResult> low(type.getRank(), b.getIndexAttr(0));
  SmallVector<OpFoldResult> high(type.getRank(), b.getIndexAttr(0));
  for (const auto &en : enumerate(type.getShape())) {
    // Pad only the static dimensions of the result tensor type.
    if (ShapedType::isDynamic(en.value()))
      continue;
    // Compute the padding width.
    AffineExpr d0;
    bindDims(b.getContext(), d0);
    OpFoldResult sz = tensor::getMixedSize(b, loc, source, en.index());
    high[en.index()] =
        affine::makeComposedFoldedAffineApply(b, loc, en.value() - d0, {sz});
  }
  return b.create<PadOp>(loc, type, source, low, high, pad, nofold);
}

SmallVector<Value> mlir::tensor::createDynamicDimValues(OpBuilder &b,
                                                        Location loc,
                                                        Value rankedTensor) {
  auto tensorTy = cast<RankedTensorType>(rankedTensor.getType());
  SmallVector<Value> dynamicDims;
  for (const auto &en : llvm::enumerate(tensorTy.getShape())) {
    if (en.value() == ShapedType::kDynamic)
      dynamicDims.push_back(
          b.create<tensor::DimOp>(loc, rankedTensor, en.index()));
  }
  return dynamicDims;
}

FailureOr<RankedTensorType>
mlir::tensor::computeTransposedType(RankedTensorType rankedTensorType,
                                    ArrayRef<int64_t> transposeVector) {
  if (transposeVector.empty())
    return rankedTensorType;

  if (!isPermutationVector(transposeVector) ||
      transposeVector.size() != static_cast<size_t>(rankedTensorType.getRank()))
    return failure();

  SmallVector<int64_t> transposedShape(rankedTensorType.getShape().begin(),
                                       rankedTensorType.getShape().end());
  applyPermutationToVector(transposedShape, transposeVector);

  using RTTBuilder = RankedTensorType::Builder;
  RankedTensorType transposedTensorType =
      RTTBuilder(rankedTensorType).setShape(transposedShape);
  return transposedTensorType;
}
/// The permutation can be obtained from two permutations:
///   a) Compute the permutation vector to move the last `numPackedDims` into
///      the `innerPosDims` of a shape of rank `rank`.
///   b) Compute the permutation vector to move outer dims if the
///      `outerPerm` parameter is not empty.
/// Apply (b) permutation on (a) permutation to get the final permutation.
static SmallVector<int64_t>
computePackUnPackPerm(int64_t rank, ArrayRef<int64_t> &innerDimsPos,
                      ArrayRef<int64_t> &outerPerm,
                      PackingMetadata &packingMetadata) {
  int64_t numPackedDims = innerDimsPos.size();
  auto lastDims =
      llvm::to_vector(llvm::seq<int64_t>(rank - numPackedDims, rank));
  packingMetadata = computePackingMetadata(rank, innerDimsPos);
  SmallVector<int64_t> innerPositionsPerm =
      computePermutationVector(rank, lastDims, packingMetadata.insertPositions);

  SmallVector<int64_t> outerPos = packingMetadata.outerPositions;
  if (!outerPerm.empty())
    applyPermutationToVector(outerPos, outerPerm);
  SmallVector<int64_t> outerPositionPerm =
      computePermutationVector(rank, packingMetadata.outerPositions, outerPos);

  SmallVector<int64_t> packInverseDestPermutation = innerPositionsPerm;
  applyPermutationToVector(packInverseDestPermutation, outerPositionPerm);
  return packInverseDestPermutation;
}

/// Shell function to compute the Destination Permutation of PackOp
/// This function uses the helper function `computePackUnPackPerm` to get
/// the permutation vector. Only major difference between UnPack and Pack is
/// that packOp uses destination rank whereas unpack Uses source rank.
SmallVector<int64_t> mlir::tensor::getPackInverseDestPerm(PackOp packOp) {

  PackingMetadata pMetadata;
  int64_t packedRank = packOp.getDestType().getRank();
  ArrayRef<int64_t> innerDimPos = packOp.getInnerDimsPos();
  ArrayRef<int64_t> outerPerm = packOp.getOuterDimsPerm();
  SmallVector<int64_t> packInvDestPerm =
      computePackUnPackPerm(packedRank, innerDimPos, outerPerm, pMetadata);
  return packInvDestPerm;
}

/// Shell function to compute the Source Permutation of unPackOp.
/// This function, like the getPackInverseDestPerm uses the helper function
/// computePackUnPackPerm` to get the permutation vector.
/// Only major difference between UnPack and Pack is that packOp uses
/// destination rank whereas unpack Uses source rank.
SmallVector<int64_t> mlir::tensor::getUnPackInverseSrcPerm(UnPackOp unpackOp) {
  PackingMetadata metadata;
  return mlir::tensor::getUnPackInverseSrcPerm(unpackOp, metadata);
}

/// Shell function to compute the Source rank permutation for unpackOp
/// Unpack requires some packing metadata data information, so created
/// another function where this value is passed by reference.
SmallVector<int64_t>
mlir::tensor::getUnPackInverseSrcPerm(UnPackOp unpackOp,
                                      PackingMetadata &metadata) {
  int64_t unpackRank = unpackOp.getSourceType().getRank();
  ArrayRef<int64_t> innerDimPos = unpackOp.getInnerDimsPos();
  ArrayRef<int64_t> outerPerm = unpackOp.getOuterDimsPerm();
  SmallVector<int64_t> unpackInvSrcPerm =
      computePackUnPackPerm(unpackRank, innerDimPos, outerPerm, metadata);
  return unpackInvSrcPerm;
}

bool mlir::tensor::isCastLikeInsertSliceOp(InsertSliceOp op) {
  llvm::SmallBitVector droppedDims = op.getDroppedDims();
  int64_t srcDim = 0;
  RankedTensorType resultType = op.getDestType();
  // Source dims and destination dims (apart from dropped dims) must have the
  // same size.
  for (int64_t resultDim = 0; resultDim < resultType.getRank(); ++resultDim) {
    if (droppedDims.test(resultDim)) {
      // InsertSlice may expand unit dimensions that result from inserting a
      // size-1 slice into a non-size-1 result dimension.
      if (resultType.getDimSize(resultDim) != 1)
        return false;
      continue;
    }
    FailureOr<bool> equalDimSize = ValueBoundsConstraintSet::areEqual(
        {op.getSource(), srcDim}, {op.getResult(), resultDim});
    if (failed(equalDimSize) || !*equalDimSize)
      return false;
    ++srcDim;
  }

  return true;
}

bool mlir::tensor::isCastLikeExtractSliceOp(ExtractSliceOp op) {
  llvm::SmallBitVector droppedDims = op.getDroppedDims();
  int64_t resultDim = 0;
  // Source dims and result dims (apart from dropped dims) must have the same
  // size.
  RankedTensorType sourceType = op.getSourceType();
  for (int64_t dim = 0, e = sourceType.getRank(); dim < e; ++dim) {
    if (droppedDims.test(dim)) {
      // ExtractSlice may drop unit dimensions that result from taking a size-1
      // slice from a non-size-1 source dimension.
      if (sourceType.getDimSize(dim) != 1)
        return false;
      continue;
    }
    FailureOr<bool> equalDimSize = ValueBoundsConstraintSet::areEqual(
        {op.getSource(), dim}, {op.getResult(), resultDim});
    if (failed(equalDimSize) || !*equalDimSize)
      return false;
    ++resultDim;
  }

  return true;
}