aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
blob: 1bcc131781d34d2cb14e43ac78feab6f27bfb6ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
//===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewriting rules that are specific to sparse tensors.
//
//===----------------------------------------------------------------------===//

#include "Utils/CodegenUtils.h"
#include "Utils/LoopEmitter.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Support/LLVM.h"

using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::linalg;
using namespace mlir::sparse_tensor;

//===---------------------------------------------------------------------===//
// Helper methods for the actual rewriting rules.
//===---------------------------------------------------------------------===//

// Helper method to match any typed zero.
static bool isZeroValue(Value val) {
  return matchPattern(val, m_Zero()) || matchPattern(val, m_AnyZeroFloat());
}

// Helper to detect a sparse tensor type operand.
static bool isSparseTensor(Value v) {
  auto enc = getSparseTensorEncoding(v.getType());
  return enc && !llvm::all_of(enc.getLvlTypes(),
                              [](auto lt) { return lt == LevelFormat::Dense; });
}
static bool isSparseTensor(OpOperand *op) { return isSparseTensor(op->get()); }

// Helper method to find zero/uninitialized tensor materialization.
static bool isMaterializing(OpOperand *op, bool isZero) {
  Value val = op->get();
  // Check allocation, with zero alloc when required.
  if (auto alloc = val.getDefiningOp<AllocTensorOp>()) {
    Value copy = alloc.getCopy();
    if (isZero)
      return copy && isZeroValue(copy);
    return !copy;
  }
  // Check for empty tensor materialization.
  if (auto empty = val.getDefiningOp<tensor::EmptyOp>())
    return !isZero;
  // Last resort for zero alloc: the whole value is zero.
  return isZero && isZeroValue(val);
}

// Helper to detect sampling operation.
static bool isSampling(GenericOp op) {
  auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
  if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
    if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) {
      // Both scalar input arguments used exactly once.
      Value s1 = op.getBlock()->getArgument(0);
      Value s2 = op.getBlock()->getArgument(1);
      return (def->getOperand(0) == s1 && def->getOperand(1) == s2) ||
             (def->getOperand(1) == s1 && def->getOperand(0) == s2);
    }
  }
  return false;
}

// Helper to detect chain of multiplications that do not involve x.
static bool isMulChain(Value val, Value x) {
  if (auto arg = dyn_cast<BlockArgument>(val))
    return arg != x;
  if (auto *def = val.getDefiningOp()) {
    if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def))
      return isMulChain(def->getOperand(0), x) &&
             isMulChain(def->getOperand(1), x);
  }
  return false;
}

// Helper to detect x = x + <multiplications>.
static bool isSumOfMul(GenericOp op) {
  auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
  if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
    if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) {
      Value x = op.getBlock()->getArguments().back();
      return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) ||
             (def->getOperand(1) == x && isMulChain(def->getOperand(0), x));
    }
  }
  return false;
}

// Helper to detect direct yield of a zero value.
static bool isZeroYield(GenericOp op) {
  auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
  if (auto arg = dyn_cast<BlockArgument>(yieldOp.getOperand(0))) {
    if (arg.getOwner()->getParentOp() == op) {
      return isZeroValue(op->getOperand(arg.getArgNumber()));
    }
  }
  return isZeroValue(yieldOp.getOperand(0));
}

/// Populates given sizes array from type (for static sizes) and from
/// the tensor (for dynamic sizes).
static void sizesForTensor(OpBuilder &builder, SmallVectorImpl<Value> &sizes,
                           Location loc, ShapedType stp, Value tensor) {
  for (const auto &d : enumerate(stp.getShape())) {
    Value dim;
    if (d.value() == ShapedType::kDynamic)
      dim = builder.create<tensor::DimOp>(loc, tensor, d.index());
    else
      dim = constantIndex(builder, loc, d.value());
    sizes.push_back(dim);
  }
}

static RankedTensorType getBufferType(const SparseTensorType &stt,
                                      bool needTmpCOO) {
  return needTmpCOO ? stt.getCOOType(/*ordered=*/false)
                    : stt.getRankedTensorType();
}

/// Collects the dynamic dimension sizes for `tp` with the assumption that
/// `sizes` are the dimension sizes for the type. Stores the dynamic dimension
/// sizes to dynSizes.
static void getDynamicSizes(RankedTensorType tp, ValueRange sizes,
                            SmallVectorImpl<Value> &dynSizes) {
  for (const auto &d : enumerate(tp.getShape())) {
    if (d.value() == ShapedType::kDynamic)
      dynSizes.push_back(sizes[d.index()]);
  }
}

static LogicalResult genForeachOnSparseConstant(ForeachOp op,
                                                RewriterBase &rewriter,
                                                SparseElementsAttr attr) {
  auto loc = op.getLoc();
  SmallVector<Value> reduc = op.getInitArgs();

  // Foreach on constant.
  foreachInSparseConstant(
      rewriter, loc, attr, op.getOrder().value_or(AffineMap()),
      [&reduc, &rewriter, op](ArrayRef<Value> cvs, Value v) mutable {
        SmallVector<Value> args;
        args.append(cvs.begin(), cvs.end());
        args.push_back(v);
        args.append(reduc);
        // Clones the foreach op to get a copy of the loop body.
        auto cloned = cast<ForeachOp>(rewriter.clone(*op.getOperation()));
        assert(args.size() == cloned.getBody()->getNumArguments());
        Operation *yield = cloned.getBody()->getTerminator();
        rewriter.inlineBlockBefore(cloned.getBody(), op, args);
        // clean up
        rewriter.eraseOp(cloned);
        reduc = yield->getOperands();
        rewriter.eraseOp(yield);
      });

  rewriter.replaceOp(op, reduc);
  return success();
}

/// Populates the given sizes array for concatenation from types (for static
/// sizes) and from the source tensors (for dynamic sizes).
static void concatSizesFromInputs(OpBuilder &builder,
                                  SmallVectorImpl<Value> &sizes, Location loc,
                                  ShapedType dstTp, ValueRange srcs,
                                  unsigned dim) {
  auto dstShape = dstTp.getShape();
  sizesFromSrc(builder, sizes, loc, srcs[0]);

  // Sum up on the `dim` if the dimension is dynamic.
  if (dstShape[dim] != ShapedType::kDynamic) {
    // Faithfully take the static size.
    sizes[dim] = constantIndex(builder, loc, dstShape[dim]);
  } else {
    // Else, compute the shape dynamically.
    for (const auto &src : srcs.drop_front()) {
      Value srcSz = linalg::createOrFoldDimOp(builder, loc, src, dim);
      // Sum up all the sizes.
      sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz);
    }
  }
}

//===---------------------------------------------------------------------===//
// The actual sparse tensor rewriting rules.
//===---------------------------------------------------------------------===//

namespace {

/// Rewriting rule that converts direct yield of zero with initial allocation.
struct FoldInvariantYield : public OpRewritePattern<GenericOp> {
public:
  using OpRewritePattern<GenericOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(GenericOp op,
                                PatternRewriter &rewriter) const override {
    if (!op.hasPureTensorSemantics() || op.getNumResults() != 1 ||
        !isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) ||
        !isZeroYield(op) || !op.getDpsInitOperand(0)->get().hasOneUse())
      return failure();
    auto outputType = getRankedTensorType(op.getResult(0));
    // Yielding zero on newly materialized sparse tensor can be
    // optimized directly (regardless of dynamic or static size).
    if (getSparseTensorEncoding(outputType)) {
      rewriter.replaceOp(op, op.getDpsInitOperand(0)->get());
      return success();
    }
    // Use static zero value directly instead of materialization.
    if (!outputType.hasStaticShape())
      return failure();
    Operation *def = op.getDpsInitOperand(0)->get().getDefiningOp();
    rewriter.replaceOp(op, constantZero(rewriter, op.getLoc(), outputType));
    rewriter.eraseOp(def);
    return success();
  }
};

/// Rewriting rule that converts two kernels:
///
///      T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... )
///      X(i,j) = S(i,j) * T(i,j)
///
/// into a single kernel, using distributive law:
///
///      X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... )
///
/// This kind of fusion (merging two ops into one but using arithmetic
/// equalities that may not hold for floating-point computations) would
/// be undesirable in the dense case, since we distribute the multiplication
/// into the reduction loop. However, for sparse sampling tensor S, such
/// a fusion may actually reduce the asymptotic complexity of the kernel,
/// since intermediate results may be nullified.
struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> {
public:
  using OpRewritePattern<GenericOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(GenericOp op,
                                PatternRewriter &rewriter) const override {
    // Check consumer.
    if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 2 ||
        op.getNumResults() != 1 ||
        op.getNumParallelLoops() != op.getNumLoops() ||
        !op.getMatchingIndexingMap(op.getDpsInitOperand(0)).isIdentity() ||
        !op.getMatchingIndexingMap(op.getDpsInputOperand(0)).isIdentity() ||
        !op.getMatchingIndexingMap(op.getDpsInputOperand(1)).isIdentity())
      return failure();
    // Find consuming OP2(sparse, other) or OP2(other, sparse). The other
    // operand can be sparse or dense, since the point of this rewriting rule
    // is detecting a situation in which *more* sparsity is introduced into
    // a computation, be it already sparse or still dense.
    unsigned other = 0;
    if (isSparseTensor(op.getDpsInputOperand(0)))
      other = 1;
    else if (!isSparseTensor(op.getDpsInputOperand(1)))
      return failure();
    // Check producer.
    auto prod = dyn_cast_or_null<GenericOp>(
        op.getDpsInputOperand(other)->get().getDefiningOp());
    if (!prod || !prod.hasPureTensorSemantics() || prod.getNumResults() != 1 ||
        !prod.getResult(0).hasOneUse())
      return failure();
    // Sampling consumer and sum of multiplication chain producer.
    if (!isMaterializing(op.getDpsInitOperand(0), /*isZero=*/false) ||
        !isMaterializing(prod.getDpsInitOperand(0), /*isZero=*/true) ||
        !isSampling(op) || !isSumOfMul(prod))
      return failure();
    // Modify operand structure of producer and consumer.
    Location loc = prod.getLoc();
    SmallVector<Value> inputOps = prod.getInputs();
    SmallVector<Value> outputOps = op.getOutputs();
    SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray();
    inputOps.push_back(op.getDpsInputOperand(1 - other)->get());
    fusedIndexMaps.push_back(fusedIndexMaps.back()); // mimic other
    // Fuse producer and consumer into a new generic op.
    auto fusedOp = rewriter.create<GenericOp>(
        loc, op.getResult(0).getType(), inputOps, outputOps,
        rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.getIteratorTypes(),
        /*doc=*/nullptr, /*library_call=*/nullptr);
    Block &prodBlock = prod.getRegion().front();
    Block &consBlock = op.getRegion().front();
    IRMapping mapper;
    Block *fusedBlock = rewriter.createBlock(&fusedOp.getRegion());
    unsigned num = prodBlock.getNumArguments();
    for (unsigned i = 0; i < num - 1; i++)
      addArg(mapper, fusedBlock, prodBlock.getArgument(i));
    addArg(mapper, fusedBlock, consBlock.getArgument(1 - other));
    addArg(mapper, fusedBlock, prodBlock.getArgument(num - 1));
    // Clone bodies of the producer and consumer in new evaluation order.
    auto *acc = prodBlock.getTerminator()->getOperand(0).getDefiningOp();
    auto *sampler = consBlock.getTerminator()->getOperand(0).getDefiningOp();
    Value last;
    for (auto &op : prodBlock.without_terminator())
      if (&op != acc) {
        last = op.getResult(0);
        rewriter.clone(op, mapper);
      }
    mapper.map(consBlock.getArgument(other), fusedBlock->back().getResult(0));
    mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0));
    last = rewriter.clone(*acc, mapper)->getResult(0);
    rewriter.create<linalg::YieldOp>(loc, last);
    // Force initial value on merged allocation for dense outputs.
    // TODO: deal with non alloc tensor here one day
    if (!getSparseTensorEncoding(op.getResult(0).getType())) {
      Value init = prod.getDpsInitOperand(0)
                       ->get()
                       .getDefiningOp<AllocTensorOp>()
                       .getCopy();
      AllocTensorOp a =
          op.getDpsInitOperand(0)->get().getDefiningOp<AllocTensorOp>();
      rewriter.modifyOpInPlace(a, [&]() { a.getCopyMutable().assign(init); });
    }
    // Replace consumer with fused operation. Old producer
    // and consumer ops will be removed by DCE.
    rewriter.replaceOp(op, fusedOp->getResults());
    return success();
  }

private:
  // Helper to add argument and record the mapping.
  static void addArg(IRMapping &mapper, Block *b, BlockArgument a) {
    mapper.map(a, b->addArgument(a.getType(), a.getLoc()));
  }
};

// Fuse a tensor cast into producing operation. Note that a tensor.cast
// should really not be used to convert between sparse encodings. Since
// the pattern currently appears as a result of some prior rewriting
// we make an attempt to repair very obvious cases.
// TODO: audit the pure tensor dialect rewriting rules
struct FuseTensorCast : public OpRewritePattern<tensor::CastOp> {
public:
  using OpRewritePattern<tensor::CastOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::CastOp op,
                                PatternRewriter &rewriter) const override {
    Type srcType = op.getSource().getType();
    Type dstType = op.getDest().getType();
    // A nop cast simply folds away.
    if (srcType == dstType) {
      rewriter.replaceOp(op, op->getResults());
      return success();
    }
    // See if a sparsity changing cast can be fused into producer.
    if (tensor::isSameTypeWithoutEncoding(srcType, dstType)) {
      if (Operation *def = op.getSource().getDefiningOp()) {
        if (def->hasOneUse() && isa<tensor::ExtractSliceOp>(def)) {
          rewriter.modifyOpInPlace(def, [&]() {
            def->getResult(0).setType(op->getResultTypes()[0]);
          });
          rewriter.replaceOp(op, def->getResult(0));
          return success();
        }
      }
    }
    // Repair tensor casts with at least one sparse operand into the
    // the properly supported sparse_tensor.convert.
    if (getSparseTensorEncoding(srcType) || getSparseTensorEncoding(dstType)) {
      rewriter.replaceOpWithNewOp<ConvertOp>(op, dstType, op.getSource());
      return success();
    }
    // Fail otherwise.
    return failure();
  }
};

/// Rewrites a sequence of operations for sparse tensor selections in to
/// semi-ring operations such that they can be compiled correctly by the
/// sparsifier. E.g., transforming the following sequence
///
/// %sel = arith.select %cond, %sp1, %sp2
///
/// to
///
/// %sel = binary %sp1, %sp2:
///         both  (%l, %r) {yield select %cond, %l, %r}
///         left  (%l)     {yield select %cond, %l,  0}
///         right (%r)     {yield select %cond,  0, %r}
///
/// TODO: We require that the tensor used for extracting conditions to be dense
/// to sparsify the code. To support a sparse condition tensor, we need a
/// tri-nary operation.
struct GenSemiRingSelect : public OpRewritePattern<GenericOp> {
public:
  using OpRewritePattern<GenericOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GenericOp op,
                                PatternRewriter &rewriter) const override {
    // Rejects non sparse kernels.
    if (!op.hasPureTensorSemantics() || !hasAnySparseOperand(op))
      return failure();

    Location loc = op.getLoc();
    SmallVector<std::pair<Operation *, sparse_tensor::BinaryOp>> semiRings;
    for (Operation &inst : *op.getBody()) {
      // Matches pattern.
      auto matched = isRewritablePattern(op, &inst);
      if (!matched.has_value())
        continue;

      rewriter.setInsertionPoint(&inst);
      auto [c, t, f] = matched.value();
      assert(t.getType() == f.getType());
      auto selTp = t.getType();
      auto c0 = constantZero(rewriter, loc, selTp);
      auto binOp = rewriter.create<sparse_tensor::BinaryOp>(loc, selTp, t, f);
      // Initializes all the blocks.
      rewriter.createBlock(&binOp.getOverlapRegion(), {}, {selTp, selTp},
                           {t.getLoc(), f.getLoc()});
      rewriter.createBlock(&binOp.getRightRegion(), {}, selTp, f.getLoc());
      rewriter.createBlock(&binOp.getLeftRegion(), {}, selTp, t.getLoc());

      for (auto *r : binOp.getRegions()) {
        Block *b = &r->front();
        rewriter.setInsertionPointToStart(b);

        IRMapping irMap;
        // Clones the cmp operations into the region to make the binary op
        // admissible.
        Value newC = c;
        if (auto *def = c.getDefiningOp())
          newC = rewriter.clone(*def, irMap)->getResult(0);

        irMap.map(c, newC);
        if (r == &binOp.getLeftRegion()) {
          irMap.map(t, b->getArgument(0));
          irMap.map(f, c0);
        } else if (r == &binOp.getRightRegion()) {
          irMap.map(t, c0);
          irMap.map(f, b->getArgument(0));
        } else {
          irMap.map(t, b->getArgument(0));
          irMap.map(f, b->getArgument(1));
        }
        auto y = rewriter.clone(inst, irMap)->getResult(0);
        rewriter.create<sparse_tensor::YieldOp>(loc, y);
      }

      // We successfully rewrited a operation. We can not do replacement here
      // becuase it invalidate the iterator for the current loop to traverse
      // the instructions.
      semiRings.emplace_back(&inst, binOp);
    }

    // Finalizes the replacement.
    for (auto [sel, semi] : semiRings)
      rewriter.replaceOp(sel, semi->getResults());

    return success(!semiRings.empty());
  }

private:
  static std::optional<std::tuple<Value, BlockArgument, BlockArgument>>
  isRewritablePattern(GenericOp op, Operation *v) {
    auto sel = dyn_cast<arith::SelectOp>(v);
    if (!sel)
      return std::nullopt;

    auto tVal = sel.getTrueValue().dyn_cast<BlockArgument>();
    auto fVal = sel.getFalseValue().dyn_cast<BlockArgument>();
    // TODO: For simplicity, we only handle cases where both true/false value
    // are directly loaded the input tensor. We can probably admit more cases
    // in theory.
    if (!tVal || !fVal)
      return std::nullopt;

    // Helper lambda to determine whether the value is loaded from a dense input
    // or is a loop invariant.
    auto isValFromDenseInputOrInvariant = [&op](Value v) -> bool {
      if (auto bArg = v.dyn_cast<BlockArgument>();
          bArg && !isSparseTensor(op.getDpsInputOperand(bArg.getArgNumber())))
        return true;
      // If the value is defined outside the loop, it is a loop invariant.
      return v.getDefiningOp() && v.getDefiningOp()->getBlock() != op.getBody();
    };

    // If the condition value is load directly from a dense tensor or
    // loop-invariants, we can sparsify the kernel.
    auto cond = sel.getCondition();
    if (isValFromDenseInputOrInvariant(cond))
      return std::make_tuple(cond, tVal, fVal);

    Value cmpL, cmpR;
    if (matchPattern(cond, m_Op<arith::CmpIOp>(matchers::m_Any(&cmpL),
                                               matchers::m_Any(&cmpR))) ||
        matchPattern(cond, m_Op<arith::CmpFOp>(matchers::m_Any(&cmpL),
                                               matchers::m_Any(&cmpR)))) {
      // TODO: we can do it recursively to check whether all the leaf values are
      // loaded from dense tensors or are loop invariants.
      if (isValFromDenseInputOrInvariant(cmpL) ||
          isValFromDenseInputOrInvariant(cmpR))
        return std::make_tuple(cond, tVal, fVal);
    }

    return std::nullopt;
  };
};

/// Rewrites a sparse reduction that would not sparsify directly since
/// doing so would only iterate over the stored elements, ignoring the
/// implicit zeros, into a semi-ring. Applies to all prod/and/min/max
/// (note that reductions like add/sub/or/xor can directly be sparsified
/// since the implicit zeros do not contribute to the final result).
/// Note that prod/and are still included since, even though they often
/// are nullified in sparse data, they may still occur for special
/// situations in which e.g. some rows in a sparse matrix are fully
/// dense. For min/max, including the implicit zeros is a much more
/// common situation.
///
/// TODO: this essentially "densifies" the operation; we want to implement
///       this much more efficiently by performing the reduction over the
///       stored values, and feed in the zero once if there were *any*
///       implicit zeros as well; but for now, at least we provide
///       the functionality
///
struct GenSemiRingReduction : public OpRewritePattern<GenericOp> {
public:
  using OpRewritePattern<GenericOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(GenericOp op,
                                PatternRewriter &rewriter) const override {
    // Reject non-reductions.
    if (!op.hasPureTensorSemantics() || op.getNumDpsInputs() != 1 ||
        op.getNumReductionLoops() == 0 || op.getNumResults() != 1)
      return failure();
    auto *inp = op.getDpsInputOperand(0);
    auto *init = op.getDpsInitOperand(0);
    if (!isSparseTensor(inp))
      return failure();
    // Look for direct x = x OP y for semi-ring ready reductions.
    auto *red = cast<linalg::YieldOp>(op.getRegion().front().getTerminator())
                    .getOperand(0)
                    .getDefiningOp();
    if (!isa<arith::AndIOp, arith::MulIOp, arith::MulFOp, arith::MinimumFOp,
             arith::MinSIOp, arith::MinUIOp, arith::MaximumFOp, arith::MaxSIOp,
             arith::MaxUIOp>(red))
      return failure();
    Value s0 = op.getBlock()->getArgument(0);
    Value s1 = op.getBlock()->getArgument(1);
    if ((red->getOperand(0) != s0 || red->getOperand(1) != s1) &&
        (red->getOperand(0) != s1 || red->getOperand(1) != s0))
      return failure();
    // Identity.
    Location loc = op.getLoc();
    Value identity =
        rewriter.create<tensor::ExtractOp>(loc, init->get(), ValueRange());
    // Unary {
    //    present -> value
    //    absent  -> zero.
    // }
    Type rtp = s0.getType();
    rewriter.setInsertionPointToStart(&op.getRegion().front());
    auto semiring = rewriter.create<sparse_tensor::UnaryOp>(loc, rtp, s0);
    Block *present =
        rewriter.createBlock(&semiring.getPresentRegion(), {}, rtp, loc);
    rewriter.setInsertionPointToStart(&semiring.getPresentRegion().front());
    rewriter.create<sparse_tensor::YieldOp>(loc, present->getArgument(0));
    rewriter.createBlock(&semiring.getAbsentRegion(), {}, {}, {});
    rewriter.setInsertionPointToStart(&semiring.getAbsentRegion().front());
    auto zero =
        rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(rtp));
    rewriter.create<sparse_tensor::YieldOp>(loc, zero);
    rewriter.setInsertionPointAfter(semiring);
    // CustomReduce {
    //    x = x REDUC y, identity
    // }
    auto custom = rewriter.create<sparse_tensor::ReduceOp>(
        loc, rtp, semiring.getResult(), s1, identity);
    Block *region =
        rewriter.createBlock(&custom.getRegion(), {}, {rtp, rtp}, {loc, loc});
    rewriter.setInsertionPointToStart(&custom.getRegion().front());
    IRMapping irMap;
    irMap.map(red->getOperand(0), region->getArgument(0));
    irMap.map(red->getOperand(1), region->getArgument(1));
    auto *cloned = rewriter.clone(*red, irMap);
    rewriter.create<sparse_tensor::YieldOp>(loc, cloned->getResult(0));
    rewriter.setInsertionPointAfter(custom);
    rewriter.replaceOp(red, custom.getResult());
    return success();
  }
};

/// Sparse rewriting rule for sparse-to-sparse reshape operator.
struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> {
public:
  using OpRewritePattern<tensor::ReshapeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::ReshapeOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Value srcTensor = op.getSource();
    const auto srcTp = getSparseTensorType(srcTensor);
    const auto dstTp = getSparseTensorType(op.getResult());

    if (!srcTp.hasEncoding() || !dstTp.hasEncoding() ||
        !dstTp.hasStaticDimShape())
      return failure();

    SmallVector<Value> srcSizes;
    sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor);
    SmallVector<Value> dstSizes;
    for (Dimension d : dstTp.getDimShape())
      dstSizes.push_back(constantIndex(rewriter, loc, d));

    Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor);
    // Only need an unordered COO buffer if input and output are not sorted
    // in the same way.
    Type bufferTp = getBufferType(
        dstTp.withoutDimToLvl(),
        !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity());
    SmallVector<Value> dynSizes;
    Value buffer = rewriter
                       .create<AllocTensorOp>(loc, bufferTp, dynSizes, Value(),
                                              nnz, Attribute())
                       .getResult();

    // Convert src coordinates to dst coordinates by first collapsing it to 1D
    // and then expand it to the match the rank of the destination tensor.
    // Implemented as follows:
    //   foreach srcCoords %srcTensor
    //     collapsedCoords = reshapeCvs(srcCoords, [1, ..., srcRank])
    //     expandedCoords = reshapeCvs(collapsedCoords, [1, ..., dstRank])
    //     insert expandedCoords, %buffer
    //
    // followed by an optional
    //   %t = sparse_tensor.cast %tmp
    // depending on whether the input/output are sorted in the same way.
    const auto encSrc = srcTp.getEncoding();
    ForeachOp foreachOp = rewriter.create<ForeachOp>(
        loc, srcTensor, buffer,
        [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v,
            ValueRange reduc) {
          const Dimension srcRank = srcTp.getDimRank();
          SmallVector<Value> srcDcvs;
          srcDcvs.reserve(srcRank);
          for (Dimension d = 0; d < srcRank; d++) {
            Level lvl = toLvl(encSrc, d);
            srcDcvs.push_back(srcLcvs[lvl]);
          }

          Value collapseSize = constantIndex(builder, loc, 1);
          for (Dimension d = 0; d < srcRank; d++)
            collapseSize =
                builder.create<arith::MulIOp>(loc, collapseSize, srcSizes[d]);
          SmallVector<Value, 1> collapsedSizes = {collapseSize};

          ReassociationIndices collapseIdx;
          for (Dimension i = 0; i < srcRank; i++)
            collapseIdx.push_back(i);
          SmallVector<ReassociationIndices, 1> collapseReass = {collapseIdx};
          SmallVector<Value, 1> collapsedDcvs;
          reshapeCvs(builder, loc, collapseReass, srcSizes, srcDcvs,
                     collapsedSizes, collapsedDcvs);

          ReassociationIndices expandIdx;
          for (Dimension i = 0; i < dstTp.getDimRank(); i++)
            expandIdx.push_back(i);
          SmallVector<ReassociationIndices, 1> expandReass = {expandIdx};
          SmallVector<Value> dstDcvs;
          reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs,
                     dstSizes, dstDcvs);

          auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs);
          builder.create<sparse_tensor::YieldOp>(loc, t);
        });

    Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
    if (bufferTp != dstTp) {
      auto dstRTT = dstTp.getRankedTensorType();
      Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult();
      rewriter.create<DeallocTensorOp>(loc, t);
      t = converted;
    }
    rewriter.replaceOp(op, t);
    return success();
  }
};

/// Sparse rewriting rule for sparse-to-sparse reshape operator.
template <typename ReshapeOp>
struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> {
public:
  using OpRewritePattern<ReshapeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ReshapeOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Value srcTensor = op.getSrc();
    const auto srcTp = getSparseTensorType(srcTensor);
    const auto dstTp = getSparseTensorType(op.getResult());
    if (!srcTp.hasEncoding() || !dstTp.hasEncoding())
      return failure();

    // Generate code to represent the static dimension constants or compute
    // the dynamic dimension values.
    SmallVector<Value> srcSizes;
    sizesForTensor(rewriter, srcSizes, loc, srcTp, srcTensor);
    SmallVector<Value> dstSizes;
    SmallVector<Value> dstDynSizes;
    if (dstTp.hasStaticDimShape()) {
      for (Dimension d : dstTp.getDimShape())
        dstSizes.push_back(constantIndex(rewriter, loc, d));
    } else {
      ArrayRef<Size> dstShape = dstTp.getDimShape();
      genReshapeDstShape(rewriter, loc, dstSizes, srcSizes, dstShape,
                         op.getReassociationIndices());
      for (auto [idx, shape] : llvm::enumerate(dstShape)) {
        if (shape == ShapedType::kDynamic)
          dstDynSizes.push_back(dstSizes[idx]);
      }
    }
    Value nnz = rewriter.create<NumberOfEntriesOp>(loc, srcTensor);
    // Only need a unordered COO buffer if input and output are not sorted
    // in the same way.
    Type bufferTp = getBufferType(
        dstTp.withoutDimToLvl(),
        !srcTp.isAllOrdered() || !srcTp.isIdentity() || !dstTp.isIdentity());

    Value buffer =
        rewriter
            .create<AllocTensorOp>(loc, bufferTp, dstDynSizes, Value(),
                                   /*sizeHint=*/nnz, Attribute())
            .getResult();

    // Implement the sparse2sparse reshape as follows:
    //   foreach srcCoords %srcTensor
    //     insert reshapeCvs(srcCoords), %buffer
    //
    // followed by an optional
    //   %t = sparse_tensor.cast %tmp
    // depending on whether the input/output are sorted in the same way.
    const auto encSrc = srcTp.getEncoding();
    ForeachOp foreachOp = rewriter.create<ForeachOp>(
        loc, srcTensor, buffer,
        [&](OpBuilder &builder, Location loc, ValueRange srcLcvs, Value v,
            ValueRange reduc) {
          const Dimension dimRank = srcTp.getDimRank();
          SmallVector<Value> srcDcvs;
          srcDcvs.reserve(dimRank);
          for (Dimension d = 0; d < dimRank; d++) {
            Level lvl = toLvl(encSrc, d);
            srcDcvs.push_back(srcLcvs[lvl]);
          }
          SmallVector<Value> dstDcvs;
          reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes,
                     srcDcvs, dstSizes, dstDcvs);
          auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs);
          builder.create<sparse_tensor::YieldOp>(loc, t);
        });

    Value t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
    if (bufferTp != dstTp) {
      auto dstRTT = dstTp.getRankedTensorType();
      Value converted = rewriter.create<ConvertOp>(loc, dstRTT, t).getResult();
      rewriter.create<DeallocTensorOp>(loc, t);
      t = converted;
    }
    rewriter.replaceOp(op, t);
    return success();
  }
};

/// Sparse rewriting rule for sparse-to-dense and dense-to-sparse reshape
/// operator.
template <typename ReshapeOp>
struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> {
public:
  using OpRewritePattern<ReshapeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ReshapeOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    auto encDst = getSparseTensorEncoding(op.getResult().getType());
    auto encSrc = getSparseTensorEncoding(op.getSrc().getType());
    // Since a pure dense expansion is very cheap (change of view), for
    // a sparse2dense or dense2sparse, we can simply unfuse a sparse
    // conversion from the reshape operation itself.
    // All other cases are handled elsewhere.
    if (encDst && encSrc) {
      return failure();
    }
    if (encSrc) {
      auto rtp = getRankedTensorType(op.getSrc());
      auto denseTp =
          RankedTensorType::get(rtp.getShape(), rtp.getElementType());
      auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc());
      rewriter.modifyOpInPlace(op, [&]() { op->setOperand(0, convert); });
      return success();
    }
    if (encDst) {
      auto rtp = getRankedTensorType(op.getResult());
      auto denseTp =
          RankedTensorType::get(rtp.getShape(), rtp.getElementType());
      auto reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(),
                                                op.getReassociation());
      Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape);
      rewriter.replaceOp(op, convert);
      return success();
    }
    return failure();
  }
};

// A trivial wrapper to help generate different operations for dense/sparse
// tensors.
struct TensorLike {
  TensorLike(OpBuilder &builder, Location loc, RankedTensorType rtt,
             ValueRange sizes) {
    SmallVector<Value> dynSzs;
    getDynamicSizes(rtt, sizes, dynSzs);

    val = builder.create<AllocTensorOp>(loc, rtt, dynSzs);
    if (!isSparse()) {
      Value c0 = constantZero(builder, loc, rtt.getElementType());
      val = builder.create<linalg::FillOp>(loc, c0, val).getResult(0);
    }
  }

  void insert(OpBuilder &builder, Location loc, Value v, ValueRange crds) {
    val = builder.create<tensor::InsertOp>(loc, v, val, crds);
  }

  Value finalize(OpBuilder &builder, Location loc, RankedTensorType rtp) const {
    if (isSparse())
      return builder.create<LoadOp>(loc, val, true);
    return val;
  }

  bool isSparse() const {
    return getSparseTensorEncoding(val.getType()) != nullptr;
  }

  Value val;
};

struct SparseTensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> {
  using OpRewritePattern::OpRewritePattern;
  LogicalResult matchAndRewrite(tensor::DimOp op,
                                PatternRewriter &rewriter) const override {
    std::optional<int64_t> dim = op.getConstantIndex();
    auto stt = getSparseTensorType(op.getSource());
    if (!dim || !stt.hasEncoding())
      return failure();

    if (stt.isPermutation()) {
      rewriter.replaceOpWithNewOp<LvlOp>(op, op.getSource(),
                                         toLvl(stt.getEncoding(), *dim));
      return success();
    }

    // Non-permutation dim2lvl/lvl2dim maps.
    // Compute as follows:
    // affine.apply #map (l0 - 1, l1 - 1, ...) + 1
    // Note that it is not the most efficient way (but a more general one) for
    // the lvl to dim translation, e.g., for BSR, the dimension size for can be
    // computed simply by lvl_size * block_size.
    Location loc = op.getLoc();
    SmallVector<Value> maxLvlCrds;
    for (Level l = 0; l < stt.getLvlRank(); l++) {
      Value lvlSz = rewriter.create<LvlOp>(loc, op.getSource(), l);
      Value maxLvlCrd = rewriter.create<arith::SubIOp>(
          loc, lvlSz, constantOne(rewriter, loc, rewriter.getIndexType()));
      maxLvlCrds.push_back(maxLvlCrd);
    }

    AffineExpr lvl2DimExp = stt.getLvlToDim().getResult(*dim);
    Value maxDimCrd = rewriter.create<affine::AffineApplyOp>(
        op.getLoc(), AffineMap::get(stt.getLvlRank(), 0, lvl2DimExp),
        maxLvlCrds);

    Value dimSz = rewriter.create<arith::AddIOp>(
        loc, maxDimCrd, constantOne(rewriter, loc, rewriter.getIndexType()));
    rewriter.replaceOp(op, dimSz);
    return success();
  }
};

struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
  using OpRewritePattern::OpRewritePattern;
  LogicalResult matchAndRewrite(ConcatenateOp op,
                                PatternRewriter &rewriter) const override {
    if (op.needsExtraSort())
      op.emitError("ConcatenateOp not staged");

    const Location loc = op.getLoc();
    const auto dstTp = getSparseTensorType(op);
    const Dimension conDim = op.getDimension();
    SmallVector<Value> sizes;
    concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(), conDim);

    // %t = concatenate %s1, %s2, %s3 {dim = 1}
    // ==>
    // if (isSparseDst)
    //   if (allDense)
    //     %tmp = bufferization.alloc_tensor dstTp
    //   else
    //     %tmp = bufferization.alloc_tensor : unordered COO
    // else
    //   %tmp = memref.alloc : dense tensor
    // foreach in %s1 : insert d0, d1, %tmp
    // foreach in %s2 : insert d0, d1 + size(s1), %tmp
    // foreach in %s3 : insert d0, d1 + size(s1) + size(s2), %tmp

    TensorLike dstBuf(rewriter, loc, dstTp.getRankedTensorType(), sizes);
    Value offset = constantIndex(rewriter, loc, 0);
    Value iterArg = dstBuf.val;

    ForeachOp foreachOp;
    for (Value input : op.getInputs()) {
      // Builds a for op for each input tensor to append new values into the
      // output tensor.
      foreachOp = rewriter.create<ForeachOp>(
          loc, input, iterArg,
          [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
              ValueRange reduc) {
            SmallVector<Value> offDimCrd(dcvs);
            offDimCrd[conDim] =
                builder.create<arith::AddIOp>(loc, offDimCrd[conDim], offset);

            // Enters foreach, updates the SSA chain.
            dstBuf.val = reduc.front();
            if (!dstTp.isAllDense()) {
              Value cond = genIsNonzero(builder, loc, v);
              auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
                                                    /*else*/ true);
              builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
              builder.create<scf::YieldOp>(loc, dstBuf.val);

              builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
              dstBuf.insert(builder, loc, v, offDimCrd);
              builder.create<scf::YieldOp>(loc, dstBuf.val);

              // Exits the ifOp, update the sparse tensor SSA value.
              builder.setInsertionPointAfter(ifOp);
              dstBuf.val = ifOp.getResult(0);
            } else {
              dstBuf.insert(builder, loc, v, offDimCrd);
            }
            builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
          });
      // Accumulates the offset. Note that only static-shaped inputs are allowed
      // by concatenate op verifier, which saves us from computing the offset
      // dynamically.
      const Size sz = getSparseTensorType(input).getDynamicDimSize(conDim);
      assert(!ShapedType::isDynamic(sz));
      offset = rewriter.create<arith::AddIOp>(loc, offset,
                                              constantIndex(rewriter, loc, sz));
      iterArg = foreachOp.getResult(0);
      dstBuf.val = iterArg;
    }

    dstBuf.val = iterArg;
    Value ret = dstBuf.finalize(rewriter, loc, dstTp.getRankedTensorType());
    rewriter.replaceOp(op, ret);
    return success();
  }
};

struct DirectConvertRewriter : public OpRewritePattern<ConvertOp> {
  using OpRewritePattern::OpRewritePattern;
  LogicalResult matchAndRewrite(ConvertOp op,
                                PatternRewriter &rewriter) const override {
    if (op.needsExtraSort())
      return op.emitError("ConvertOp not staged.");

    // TODO: Maybe we want a different operation for this too.
    auto encDst = getSparseTensorEncoding(op.getType());
    auto encSrc = getSparseTensorEncoding(op.getSource().getType());
    if (encDst && encSrc && !encSrc.isSlice() &&
        encSrc.withoutBitWidths() == encDst.withoutBitWidths()) {
      // Trivial tensor conversion and simple element type conversion is handled
      // in codegen.
      return failure();
    }

    Location loc = op.getLoc();
    Value src = op.getSource();

    SparseTensorType srcStt = getSparseTensorType(op.getSource());
    SparseTensorType dstStt = getSparseTensorType(op.getDest());

    bool fromSparseConst = false;
    if (auto constOp = op.getSource().getDefiningOp<arith::ConstantOp>())
      if (dyn_cast<SparseElementsAttr>(constOp.getValue()))
        fromSparseConst = true;

    const AffineMapAttr foreachOrder =
        (!dstStt.isIdentity() && fromSparseConst)
            ? AffineMapAttr::get(dstStt.getExpandedDimToLvl())
            : nullptr;

    bool skipZeroCheck = srcStt.hasEncoding() || fromSparseConst;

    SmallVector<Value> sizes;
    sizesFromSrc(rewriter, sizes, loc, src);
    ValueRange vs;
    TensorLike dstBuf(rewriter, loc, dstStt.getRankedTensorType(), sizes);

    auto foreachOp = rewriter.create<ForeachOp>(
        loc, src, dstBuf.val, foreachOrder,
        [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
            ValueRange reduc) {
          // Enters the loop, update the SSA value for insertion chain.
          dstBuf.val = reduc.front();
          if (!skipZeroCheck) {
            Value cond = genIsNonzero(builder, loc, v);
            auto ifOp = builder.create<scf::IfOp>(loc, reduc.getTypes(), cond,
                                                  /*else*/ true);
            builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
            builder.create<scf::YieldOp>(loc, dstBuf.val);

            builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
            dstBuf.insert(builder, loc, v, dcvs);
            builder.create<scf::YieldOp>(loc, dstBuf.val);

            // Exits the ifOp, update the sparse tensor SSA value.
            builder.setInsertionPointAfter(ifOp);
            dstBuf.val = ifOp.getResult(0);
          } else {
            dstBuf.insert(builder, loc, v, dcvs);
          }
          builder.create<sparse_tensor::YieldOp>(loc, dstBuf.val);
        });

    rewriter.setInsertionPointAfter(foreachOp);

    // Exits the for loop, links the SSA chain.
    dstBuf.val = foreachOp.getResult(0);

    Value ret = dstBuf.finalize(rewriter, loc, dstStt.getRankedTensorType());
    rewriter.replaceOp(op, ret);
    return success();
  }
};

struct CrdTranslateRewriter : public OpRewritePattern<CrdTranslateOp> {
  using OpRewritePattern::OpRewritePattern;
  LogicalResult matchAndRewrite(CrdTranslateOp op,
                                PatternRewriter &rewriter) const override {
    AffineMap map = op.getDirection() == CrdTransDirectionKind::dim2lvl
                        ? op.getEncoder().getDimToLvl()
                        : op.getEncoder().getLvlToDim();

    SmallVector<Value> outCrds;
    for (AffineExpr result : map.getResults()) {
      // TODO: we should probably expand the affine map to IR using our own
      // rules, since affine.apply assume signed value, while the cooridinates
      // we provided must always be signless.
      Value trans = rewriter.create<affine::AffineApplyOp>(
          op.getLoc(), AffineMap::get(map.getNumDims(), 0, result),
          op.getInCrds());
      outCrds.push_back(trans);
    }
    rewriter.replaceOp(op, outCrds);
    return success();
  }
};

/// Sparse rewriting rule for the foreach operator.
struct ForeachRewriter : public OpRewritePattern<ForeachOp> {
public:
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(ForeachOp op,
                                PatternRewriter &rewriter) const override {

    auto loc = op.getLoc();
    Value input = op.getTensor();
    SmallVector<Value> reduc = op.getInitArgs();
    const auto stt = getSparseTensorType(input);
    const Level lvlRank = stt.getLvlRank();

    // Special-case: for each over a sparse constant uses its own rewriting
    // rule.
    if (auto constOp = input.getDefiningOp<arith::ConstantOp>()) {
      if (auto attr = dyn_cast<SparseElementsAttr>(constOp.getValue())) {
        return genForeachOnSparseConstant(op, rewriter, attr);
      }
    }

    // Otherwise, use loop emitter to generate loops.
    const auto enc = stt.getEncoding();

    // 1. Generates loop for the sparse input.
    LoopEmitter loopEmitter(
        ValueRange{input},
        StringAttr::get(getContext(), ForeachOp::getOperationName()));
    loopEmitter.initializeLoopEmit(rewriter, loc);
    for (Level l = 0; l < lvlRank; l++) {
      // TODO: provide utility function for loop sequences that only contains
      // one for loop?
      const SmallVector<TensorLevel, 1> tidLvls{
          loopEmitter.makeTensorLevel(0, l)};
      loopEmitter.enterNewLoopSeq(rewriter, loc, tidLvls);
      // Note that reduc will be taken care of by loop emitter and get updated
      // in place.
      loopEmitter.enterCoIterationOverTensorsAtLvls(rewriter, loc, tidLvls,
                                                    reduc);
    }

    SmallVector<Value> lcvs = loopEmitter.getLoopIVs();
    if (op.getOrder()) {
      // TODO: Support it so that we can do direct conversion from CSR->BSR.
      llvm_unreachable(
          "Level order not yet implemented on non-constant input tensors.");
    }

    Value vals = loopEmitter.getValBuffer()[0];
    Value pos = loopEmitter.getValPosits(0);
    // Loads the value from sparse tensor using position-index;
    // loads the value from dense tensor using coords.
    Value val = enc ? rewriter.create<memref::LoadOp>(loc, vals, pos)
                    : rewriter.create<memref::LoadOp>(loc, vals, lcvs);

    // 2. Inline the block in the foreach operator.
    Block *srcBlock = op.getBody();

    // Remap coordinates.
    SmallVector<Value> args =
        enc.translateCrds(rewriter, loc, lcvs, CrdTransDirectionKind::lvl2dim);

    // Remap value.
    args.push_back(val);
    // Remap reduction variables.
    args.append(reduc);

    // Remove sparse_tensor.yield.
    SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands();
    rewriter.eraseOp(srcBlock->getTerminator());

    Operation &last = rewriter.getBlock()->back();
    if (llvm::isa<scf::YieldOp>(last)) {
      // Because `scf.for` inserts an implicit yield op when there is no
      // reduction variable upon creation, we reset the insertion point such
      // that the block is inlined before *before* the yield op.
      rewriter.setInsertionPoint(&last);
    }

    rewriter.inlineBlockBefore(srcBlock, rewriter.getBlock(),
                               rewriter.getInsertionPoint(), args);
    rewriter.setInsertionPointToEnd(rewriter.getBlock());
    for (Level l = 0; l < lvlRank; l++) {
      // Link the reduction chain. Note that loop emitter update the reducValue
      // in place.
      loopEmitter.exitCurrentLoop(rewriter, loc, reducValue);
      loopEmitter.exitCurrentLoopSeq(rewriter, loc);
    }

    // Replace the foreach operator with the value returned by the outtermost
    // for loop.
    rewriter.replaceOp(op, reducValue);
    return success();
  }
};

/// Sparse rewriting rule for the new operator.
struct NewRewriter : public OpRewritePattern<NewOp> {
  using OpRewritePattern::OpRewritePattern;
  LogicalResult matchAndRewrite(NewOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    auto stt = getSparseTensorType(op.getResult());
    if (!stt.hasEncoding() || stt.getAoSCOOStart() == 0)
      return failure();

    // Implement the NewOp as follows:
    //   %orderedCoo = sparse_tensor.new %filename
    //   %t = sparse_tensor.convert %orderedCoo
    // with enveloping reinterpreted_map ops for non-permutations.
    RankedTensorType dstTp = stt.getRankedTensorType();
    RankedTensorType cooTp = stt.getCOOType(/*ordered=*/true);
    Value cooTensor = rewriter.create<NewOp>(loc, cooTp, op.getSource());
    Value convert = cooTensor;
    auto enc = stt.getEncoding();
    if (!stt.isPermutation()) { // demap coo, demap dstTp
      auto coo = getSparseTensorType(cooTensor).getEncoding().withoutDimToLvl();
      convert = rewriter.create<ReinterpretMapOp>(loc, coo, convert);
      dstTp = getSparseTensorType(convert).withEncoding(enc.withoutDimToLvl());
    }
    convert = rewriter.create<ConvertOp>(loc, dstTp, convert);
    if (!stt.isPermutation()) // remap to original enc
      convert = rewriter.create<ReinterpretMapOp>(loc, enc, convert);
    rewriter.replaceOp(op, convert);

    // Release the temporary ordered COO tensor.
    rewriter.setInsertionPointAfterValue(convert);
    rewriter.create<DeallocTensorOp>(loc, cooTensor);

    return success();
  }
};

/// Sparse rewriting rule for the out operator.
struct OutRewriter : public OpRewritePattern<OutOp> {
  using OpRewritePattern::OpRewritePattern;
  LogicalResult matchAndRewrite(OutOp op,
                                PatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    // Calculate NNZ.
    Value src = op.getTensor();
    Value nnz = rewriter.create<NumberOfEntriesOp>(loc, src);

    // Allocate a temporary buffer for storing dimension-sizes/coordinates.
    const auto srcTp = getSparseTensorType(src);
    const Dimension dimRank = srcTp.getDimRank();
    Type indexTp = rewriter.getIndexType();
    Value dimSizes = genAlloca(rewriter, loc, dimRank, indexTp);

    // Generate code to calculate dimension size values and store the values to
    // the buffer.
    SmallVector<Value> dims;
    sizesForTensor(rewriter, dims, loc, srcTp, src);
    for (Dimension d = 0; d < dimRank; d++) {
      rewriter.create<memref::StoreOp>(loc, dims[d], dimSizes,
                                       constantIndex(rewriter, loc, d));
    }

    // Create a sparse tensor writer and output meta data.
    Type opaqueTp = getOpaquePointerType(rewriter);
    Value writer =
        createFuncCall(rewriter, loc, "createSparseTensorWriter", {opaqueTp},
                       {op.getDest()}, EmitCInterface::Off)
            .getResult(0);
    Value rankValue = constantIndex(rewriter, loc, dimRank);
    createFuncCall(rewriter, loc, "outSparseTensorWriterMetaData", {},
                   {writer, rankValue, nnz, dimSizes}, EmitCInterface::On);

    Value dimCoords = dimSizes; // Reuse the dimSizes buffer for dimCoords.
    Type eltTp = srcTp.getElementType();
    SmallString<29> outNextFuncName{"outSparseTensorWriterNext",
                                    primaryTypeFunctionSuffix(eltTp)};
    Value value = genAllocaScalar(rewriter, loc, eltTp);
    ModuleOp module = op->getParentOfType<ModuleOp>();

    // For each element in the source tensor, output the element.
    rewriter.create<ForeachOp>(
        loc, src, std::nullopt,
        [&](OpBuilder &builder, Location loc, ValueRange dcvs, Value v,
            ValueRange reduc) {
          for (Dimension d = 0; d < dimRank; d++) {
            rewriter.create<memref::StoreOp>(loc, dcvs[d], dimCoords,
                                             constantIndex(builder, loc, d));
          }
          rewriter.create<memref::StoreOp>(loc, v, value);
          SmallVector<Value> operands{writer, rankValue, dimCoords, value};
          FlatSymbolRefAttr fn = getFunc(module, outNextFuncName, {}, operands,
                                         EmitCInterface::On);
          builder.create<func::CallOp>(loc, TypeRange(), fn, operands);
          builder.create<sparse_tensor::YieldOp>(loc);
        });

    // Release the writer.
    createFuncCall(rewriter, loc, "delSparseTensorWriter", {}, {writer},
                   EmitCInterface::Off);

    rewriter.eraseOp(op);
    return success();
  }
};

} // namespace

//===---------------------------------------------------------------------===//
// Methods that add patterns described in this file to a pattern list.
//===---------------------------------------------------------------------===//

void mlir::populatePreSparsificationRewriting(RewritePatternSet &patterns) {
  patterns.add<FoldInvariantYield, FuseSparseMultiplyOverAdd, FuseTensorCast,
               GenSemiRingReduction, GenSemiRingSelect>(patterns.getContext());
}

void mlir::populateLowerSparseOpsToForeachPatterns(RewritePatternSet &patterns,
                                                   bool enableRT,
                                                   bool enableConvert) {
  patterns.add<ConcatenateRewriter, ReshapeRewriter<tensor::ExpandShapeOp>,
               ReshapeRewriter<tensor::CollapseShapeOp>,
               Sparse2SparseReshapeRewriter<tensor::ExpandShapeOp>,
               Sparse2SparseReshapeRewriter<tensor::CollapseShapeOp>,
               SparseTensorDimOpRewriter, TensorReshapeRewriter, OutRewriter>(
      patterns.getContext());

  if (enableConvert)
    patterns.add<DirectConvertRewriter>(patterns.getContext());
  if (!enableRT)
    patterns.add<NewRewriter>(patterns.getContext());
}

void mlir::populateLowerForeachToSCFPatterns(RewritePatternSet &patterns) {
  // Run CrdTranslateRewriter later in the pipeline so that operation can be
  // folded before lowering to affine.apply
  patterns.add<CrdTranslateRewriter, ForeachRewriter>(patterns.getContext());
}