aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/SparseTensor/Transforms/SparseGPUCodegen.cpp
blob: cdee8a46f551b8142da058da7daf5afb5e9ea5f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
//===- SparseGPUCodegen.cpp - Generates GPU code --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a prototype GPU codegenerator for the sparsifier.
// The objective is to eventually use the right combination of
// direct code generation and libary calls into vendor-specific
// highly optimized sparse libraries (e.g. cuSparse for CUDA).
//
//===----------------------------------------------------------------------===//

#include "Utils/CodegenUtils.h"
#include "Utils/LoopEmitter.h"

#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"

using namespace mlir;
using namespace mlir::sparse_tensor;

namespace {

// Sparse formats supported by cuSparse.
enum class CuSparseFormat {
  kNone,
  kCOO,
  kCSR,
  kCSC,
  kBSR,
};

//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//

/// Marks the given top module as a GPU container module.
static void markAsGPUContainer(ModuleOp topModule) {
  topModule->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
                     UnitAttr::get(topModule->getContext()));
}

/// Constructs a new GPU module (for GPU kernels) inside the given top module,
/// or returns an existing GPU module if one was built previously.
static gpu::GPUModuleOp genGPUModule(OpBuilder &builder, ModuleOp topModule) {
  for (auto op : topModule.getBodyRegion().getOps<gpu::GPUModuleOp>())
    return op; // existing
  markAsGPUContainer(topModule);
  builder.setInsertionPointToStart(&topModule.getBodyRegion().front());
  return builder.create<gpu::GPUModuleOp>(topModule->getLoc(),
                                          "sparse_kernels");
}

/// Constructs a new GPU kernel in the given GPU module.
static gpu::GPUFuncOp genGPUFunc(OpBuilder &builder, gpu::GPUModuleOp gpuModule,
                                 SmallVectorImpl<Value> &args) {
  // Get a unique kernel name. Not very creative,
  // but we simply try kernel0, kernel1, etc.
  unsigned kernelNumber = 0;
  SmallString<16> kernelName;
  do {
    kernelName.clear();
    ("kernel" + Twine(kernelNumber++)).toStringRef(kernelName);
  } while (gpuModule.lookupSymbol(kernelName));
  // Then we insert a new kernel with given arguments into the module.
  builder.setInsertionPointToStart(&gpuModule.getBodyRegion().front());
  SmallVector<Type> argsTp;
  for (auto arg : args)
    argsTp.push_back(arg.getType());
  FunctionType type = FunctionType::get(gpuModule->getContext(), argsTp, {});
  auto gpuFunc =
      builder.create<gpu::GPUFuncOp>(gpuModule->getLoc(), kernelName, type);
  gpuFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
                   builder.getUnitAttr());
  return gpuFunc;
}

/// Constructs code to launch GPU kernel.
static Value genLaunchGPUFunc(OpBuilder &builder, gpu::GPUFuncOp gpuFunc,
                              SmallVectorImpl<Value> &args,
                              SmallVectorImpl<Value> &tokens,
                              unsigned numThreads) {
  Location loc = gpuFunc->getLoc();
  Value none = TypedValue<::mlir::IntegerType>{};
  Value one = constantIndex(builder, loc, 1);
  Value numT = constantIndex(builder, loc, numThreads);
  gpu::KernelDim3 gridSize = {one, one, one};
  gpu::KernelDim3 blckSize = {numT, one, one};
  return builder
      .create<gpu::LaunchFuncOp>(loc, gpuFunc, gridSize, blckSize,
                                 /*dynSharedMemSz*/ none, args,
                                 builder.getType<gpu::AsyncTokenType>(), tokens)
      .getAsyncToken();
}

/// Maps the provided ranked host buffer into the device address space.
/// Writes from the host are guaranteed to be visible to device kernels
/// that are launched afterwards. Writes from the device are guaranteed
/// to be visible on the host after synchronizing with the device kernel
/// completion. Needs to cast the buffer to a unranked buffer.
static Value genHostRegisterMemref(OpBuilder &builder, Location loc,
                                   Value mem) {
  MemRefType memTp = cast<MemRefType>(mem.getType());
  UnrankedMemRefType resTp =
      UnrankedMemRefType::get(memTp.getElementType(), /*memorySpace=*/0);
  Value cast = builder.create<memref::CastOp>(loc, resTp, mem);
  builder.create<gpu::HostRegisterOp>(loc, cast);
  return cast;
}

/// Unmaps the provided buffer, expecting the casted buffer.
static void genHostUnregisterMemref(OpBuilder &builder, Location loc,
                                    Value cast) {
  builder.create<gpu::HostUnregisterOp>(loc, cast);
}

/// Generates first wait in an asynchronous chain.
static Value genFirstWait(OpBuilder &builder, Location loc) {
  Type tokenType = builder.getType<gpu::AsyncTokenType>();
  return builder.create<gpu::WaitOp>(loc, tokenType, ValueRange())
      .getAsyncToken();
}

/// Generates last, blocking wait in an asynchronous chain.
static void genBlockingWait(OpBuilder &builder, Location loc,
                            ValueRange operands) {
  builder.create<gpu::WaitOp>(loc, Type(), operands);
}

/// Allocates memory on the device.
/// TODO: A `host_shared` attribute could be used to indicate that
///       the buffer is visible by both host and device, but lowering
///       that feature does not seem to be fully supported yet.
static gpu::AllocOp genAllocMemRef(OpBuilder &builder, Location loc, Value mem,
                                   Value token) {
  auto tp = cast<ShapedType>(mem.getType());
  auto elemTp = tp.getElementType();
  auto shape = tp.getShape();
  auto memTp = MemRefType::get(shape, elemTp);
  SmallVector<Value> dynamicSizes;
  for (unsigned r = 0, rank = tp.getRank(); r < rank; r++) {
    if (shape[r] == ShapedType::kDynamic) {
      Value dimOp = linalg::createOrFoldDimOp(builder, loc, mem, r);
      dynamicSizes.push_back(dimOp);
    }
  }
  return builder.create<gpu::AllocOp>(loc, TypeRange({memTp, token.getType()}),
                                      token, dynamicSizes, ValueRange());
}

// Allocates a typed buffer on the host with given size.
static Value genHostBuffer(OpBuilder &builder, Location loc, Type type,
                           Value size) {
  const auto memTp = MemRefType::get({ShapedType::kDynamic}, type);
  return builder.create<memref::AllocOp>(loc, memTp, size).getResult();
}

// Allocates a typed buffer on the device with given size.
static gpu::AllocOp genAllocBuffer(OpBuilder &builder, Location loc, Type type,
                                   Value size, Value token) {
  const auto memTp = MemRefType::get({ShapedType::kDynamic}, type);
  return builder.create<gpu::AllocOp>(loc, TypeRange({memTp, token.getType()}),
                                      token, size, ValueRange());
}

// Allocates a void buffer on the device with given size.
static gpu::AllocOp genAllocBuffer(OpBuilder &builder, Location loc, Value size,
                                   Value token) {
  return genAllocBuffer(builder, loc, builder.getI8Type(), size, token);
}

/// Deallocates memory from the device.
static Value genDeallocMemRef(OpBuilder &builder, Location loc, Value mem,
                              Value token) {
  return builder.create<gpu::DeallocOp>(loc, token.getType(), token, mem)
      .getAsyncToken();
}

/// Copies memory between host and device (direction is implicit).
static Value genCopyMemRef(OpBuilder &builder, Location loc, Value dst,
                           Value src, Value token) {
  return builder.create<gpu::MemcpyOp>(loc, token.getType(), token, dst, src)
      .getAsyncToken();
}

/// Generates an alloc/copy pair.
static Value genAllocCopy(OpBuilder &builder, Location loc, Value b,
                          SmallVectorImpl<Value> &tokens) {
  Value firstToken = genFirstWait(builder, loc);
  auto alloc = genAllocMemRef(builder, loc, b, firstToken);
  Value devMem = alloc.getResult(0);
  Value depToken = alloc.getAsyncToken(); // copy-after-alloc
  tokens.push_back(genCopyMemRef(builder, loc, devMem, b, depToken));
  return devMem;
}

/// Generates a memref from tensor operation.
static Value genTensorToMemref(PatternRewriter &rewriter, Location loc,
                               Value tensor) {
  auto tensorType = llvm::cast<ShapedType>(tensor.getType());
  auto memrefType =
      MemRefType::get(tensorType.getShape(), tensorType.getElementType());
  return rewriter.create<bufferization::ToMemrefOp>(loc, memrefType, tensor);
}

/// Prepares the outlined arguments, passing scalars and buffers in. Here we
/// assume that the first buffer is the one allocated for output. We create
/// a set of properly chained asynchronous allocation/copy pairs to increase
/// overlap before launching the kernel.
static Value genParametersIn(OpBuilder &builder, Location loc,
                             SmallVectorImpl<Value> &scalars,
                             SmallVectorImpl<Value> &buffers,
                             SmallVectorImpl<Value> &args,
                             SmallVectorImpl<Value> &tokens,
                             bool useHostRegistrationForOut) {
  Value out;
  // Scalars are passed by value.
  for (Value s : scalars)
    args.push_back(s);
  // Buffers are need to be made visible on device.
  for (Value b : buffers) {
    if (useHostRegistrationForOut) {
      out = genHostRegisterMemref(builder, loc, b);
      args.push_back(b);
      useHostRegistrationForOut = false;
      continue;
    }
    args.push_back(genAllocCopy(builder, loc, b, tokens));
  }
  return out;
}

/// Finalizes the outlined arguments. The output buffer is copied depending
/// on the kernel token and then deallocated. All other buffers are simply
/// deallocated. Then we wait for all operations to complete.
static void genParametersOut(OpBuilder &builder, Location loc, Value out,
                             Value kernelToken, SmallVectorImpl<Value> &scalars,
                             SmallVectorImpl<Value> &buffers,
                             SmallVectorImpl<Value> &args,
                             SmallVectorImpl<Value> &tokens) {
  unsigned base = scalars.size();
  for (unsigned i = base, e = args.size(); i < e; i++) {
    Value firstToken;
    if (i == base) {
      // Assumed output parameter: unregister or copy-out.
      if (out) {
        genHostUnregisterMemref(builder, loc, out);
        out = Value();
        continue;
      }
      firstToken =
          genCopyMemRef(builder, loc, buffers[0], args[i], kernelToken);
    } else {
      firstToken = genFirstWait(builder, loc);
    }
    tokens.push_back(genDeallocMemRef(builder, loc, args[i], firstToken));
  }
}

/// Constructs code for new GPU kernel.
static void genGPUCode(PatternRewriter &rewriter, gpu::GPUFuncOp gpuFunc,
                       scf::ParallelOp forallOp,
                       SmallVectorImpl<Value> &constants,
                       SmallVectorImpl<Value> &scalars,
                       SmallVectorImpl<Value> &buffers) {
  Location loc = gpuFunc->getLoc();
  Block &block = gpuFunc.getBody().front();
  rewriter.setInsertionPointToStart(&block);

  // Re-generate the constants, recapture all arguments.
  unsigned arg = 0;
  IRMapping irMap;
  for (Value c : constants)
    irMap.map(c, rewriter.clone(*c.getDefiningOp())->getResult(0));
  for (Value s : scalars)
    irMap.map(s, block.getArgument(arg++));
  for (Value b : buffers)
    irMap.map(b, block.getArgument(arg++));

  // Assume 1-dimensional grid/block configuration (only x dimension),
  // so that:
  //   row = blockIdx.x * blockDim.x + threadIdx.x
  //   inc = blockDim.x * gridDim.x
  Value bid = rewriter.create<gpu::BlockIdOp>(loc, gpu::Dimension::x);
  Value bsz = rewriter.create<gpu::BlockDimOp>(loc, gpu::Dimension::x);
  Value tid = rewriter.create<gpu::ThreadIdOp>(loc, gpu::Dimension::x);
  Value gsz = rewriter.create<gpu::GridDimOp>(loc, gpu::Dimension::x);
  Value mul = rewriter.create<arith::MulIOp>(loc, bid, bsz);
  Value row = rewriter.create<arith::AddIOp>(loc, mul, tid);
  Value inc = rewriter.create<arith::MulIOp>(loc, bsz, gsz);

  // Construct the iteration over the computational space that
  // accounts for the fact that the total number of threads and
  // the amount of work to be done usually do not match precisely.
  //   for (r = row; r < N; r += inc) {
  //     <loop-body>
  //   }
  Value upper = irMap.lookup(forallOp.getUpperBound()[0]);
  scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, row, upper, inc);
  // The scf.for builder creates an empty block. scf.for does not allow multiple
  // blocks in its region, so delete the block before `cloneRegionBefore` adds
  // an additional block.
  rewriter.eraseBlock(forOp.getBody());
  rewriter.cloneRegionBefore(forallOp.getRegion(), forOp.getRegion(),
                             forOp.getRegion().begin(), irMap);
  // Replace the scf.reduce terminator.
  rewriter.setInsertionPoint(forOp.getBody()->getTerminator());
  rewriter.replaceOpWithNewOp<scf::YieldOp>(forOp.getBody()->getTerminator());

  // Done.
  rewriter.setInsertionPointAfter(forOp);
  rewriter.create<gpu::ReturnOp>(gpuFunc->getLoc());
}

//===----------------------------------------------------------------------===//
// Library helper methods.
//===----------------------------------------------------------------------===//

/// Helper to detect a + b with arguments taken from given block.
static bool matchAddOfArgs(Block *block, Value val) {
  if (auto *def = val.getDefiningOp()) {
    if (isa<arith::AddFOp, arith::AddIOp>(def)) {
      Value a = block->getArguments()[0];
      Value b = block->getArguments()[1];
      return (def->getOperand(0) == a && def->getOperand(1) == b) ||
             (def->getOperand(0) == b && def->getOperand(1) == a);
    }
  }
  return false;
}

/// Helper to detect a * b with arguments taken from given block.
static bool matchMulOfArgs(Block *block, Value val) {
  if (auto *def = val.getDefiningOp()) {
    if (isa<arith::MulFOp, arith::MulIOp>(def)) {
      Value a = block->getArguments()[0];
      Value b = block->getArguments()[1];
      return (def->getOperand(0) == a && def->getOperand(1) == b) ||
             (def->getOperand(0) == b && def->getOperand(1) == a);
    }
  }
  return false;
}

/// Helper to detect x = x + a * b
static bool matchSumOfMultOfArgs(linalg::GenericOp op) {
  auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
  if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
    if (isa<arith::AddFOp, arith::AddIOp>(def)) {
      Value x = op.getBlock()->getArguments()[2];
      return (def->getOperand(0) == x &&
              matchMulOfArgs(op.getBlock(), def->getOperand(1))) ||
             (def->getOperand(1) == x &&
              matchMulOfArgs(op.getBlock(), def->getOperand(0)));
    }
  }
  return false;
}

// Helper to detect c += spy(s) x (a * b)
static bool matchSumReductionOfMulUnary(linalg::GenericOp op) {
  auto yieldOp = cast<linalg::YieldOp>(op.getRegion().front().getTerminator());
  // The linalg yields a custom reduce result.
  Value s_out = op.getBlock()->getArguments()[2];
  if (auto redOp =
          yieldOp.getOperand(0).getDefiningOp<sparse_tensor::ReduceOp>()) {
    // The reduce consumes the output.
    Value other;
    if (s_out == redOp->getOperand(0))
      other = redOp->getOperand(1);
    else if (s_out == redOp->getOperand(1))
      other = redOp->getOperand(0);
    else
      return false;
    // The reduce op also consumes an unary which also consumes the output
    // and does not define an absent value.
    if (auto unOp = other.getDefiningOp<sparse_tensor::UnaryOp>()) {
      if (s_out != unOp->getOperand(0) || !unOp.getAbsentRegion().empty())
        return false;
      // And the bodies are as expected.
      auto yieldUn = cast<sparse_tensor::YieldOp>(
          unOp.getRegion(0).front().getTerminator());
      auto yieldRed = cast<sparse_tensor::YieldOp>(
          redOp.getRegion().front().getTerminator());
      return matchMulOfArgs(op.getBlock(), yieldUn.getOperand(0)) &&
             matchAddOfArgs(&redOp.getRegion().front(), yieldRed.getOperand(0));
    }
  }
  return false;
}

/// Test for dense tensor.
static bool isDenseTensor(Value v) {
  auto sTp = getSparseTensorType(v);
  return sTp.getDimRank() == sTp.getLvlRank() && sTp.isAllDense();
}

/// Test for suitable positions/coordinates width.
static bool isAdmissibleMetaData(SparseTensorType &aTp) {
  return (aTp.getPosWidth() == 0 || aTp.getPosWidth() >= 16) &&
         (aTp.getCrdWidth() == 0 || aTp.getCrdWidth() >= 16);
}

/// Test for sorted COO matrix with suitable metadata.
static bool isAdmissibleCOO(SparseTensorType &aTp) {
  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 2 && aTp.isIdentity() &&
         aTp.isCompressedLvl(0) && aTp.isOrderedLvl(0) && !aTp.isUniqueLvl(0) &&
         aTp.isSingletonLvl(1) && aTp.isOrderedLvl(1) && aTp.isUniqueLvl(1) &&
         isAdmissibleMetaData(aTp);
}

/// Test for CSR matrix with suitable metadata.
static bool isAdmissibleCSR(SparseTensorType &aTp) {
  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 2 && aTp.isIdentity() &&
         aTp.isDenseLvl(0) && aTp.isCompressedLvl(1) && aTp.isOrderedLvl(1) &&
         aTp.isUniqueLvl(1) && isAdmissibleMetaData(aTp);
}

/// Test for CSC matrix with suitable metadata.
static bool isAdmissibleCSC(SparseTensorType &aTp) {
  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 2 && !aTp.isIdentity() &&
         aTp.isPermutation() && aTp.isDenseLvl(0) && aTp.isCompressedLvl(1) &&
         aTp.isOrderedLvl(1) && aTp.isUniqueLvl(1) && isAdmissibleMetaData(aTp);
}

/// Test for BSR matrix with suitable metadata.
static bool isAdmissibleBSR(SparseTensorType &aTp) {
  if (aTp.getDimRank() == 2 && aTp.getLvlRank() == 4 && aTp.isDenseLvl(0) &&
      aTp.isCompressedLvl(1) && aTp.isOrderedLvl(1) && aTp.isUniqueLvl(1) &&
      aTp.isDenseLvl(2) && aTp.isDenseLvl(3) && isAdmissibleMetaData(aTp)) {
    // CuSparse only supports "square" blocks currently.
    SmallVector<unsigned> dims = getBlockSize(aTp.getDimToLvl());
    assert(dims.size() == 2);
    return dims[0] == dims[1] && dims[0] > 1;
  }
  return false;
}

/// Test for 2:4 matrix with suitable metadata.
static bool isAdmissible24(SparseTensorType &aTp) {
  return aTp.getDimRank() == 2 && aTp.getLvlRank() == 3 && aTp.isDenseLvl(0) &&
         aTp.isDenseLvl(1) && aTp.isNOutOfMLvl(2) && isAdmissibleMetaData(aTp);
}

/// Test for conversion into 2:4 matrix.
static bool isConversionInto24(Value v) {
  if (auto cnv = v.getDefiningOp<ConvertOp>()) {
    Value a = cnv.getResult();
    Value d = cnv.getSource();
    SparseTensorType aTp = getSparseTensorType(a);
    return isDenseTensor(d) && isAdmissible24(aTp);
  }
  return false;
}

/// Returns a suitable sparse format for the operation and given operand
/// types with cuSparse, or kNone if none is available.
static CuSparseFormat getCuSparseFormat(SparseTensorType aTp,
                                        SparseTensorType bTp,
                                        SparseTensorType cTp, bool enableRT,
                                        bool isMatVec) {
  // The other operands have a dense type.
  if (bTp.hasEncoding() || cTp.hasEncoding())
    return CuSparseFormat::kNone;
  // Now check for suitable operand type for the main operand.
  if (isAdmissibleCOO(aTp))
#ifdef CUSPARSE_COO_AOS
    return isMatVec ? CuSparseFormat::kCOO : CuSparseFormat::kNone;
#else
    return enableRT ? CuSparseFormat::kCOO : CuSparseFormat::kNone;
#endif
  if (isAdmissibleCSR(aTp))
    return CuSparseFormat::kCSR;
  if (isAdmissibleCSC(aTp))
    return CuSparseFormat::kCSC;
  if (isAdmissibleBSR(aTp))
    return CuSparseFormat::kBSR;
  return CuSparseFormat::kNone;
}

/// Generates the first positions/coordinates of a sparse matrix.
static Value genFirstPosOrCrds(OpBuilder &builder, Location loc, Value a,
                               CuSparseFormat format, bool enableRT) {
  if (format == CuSparseFormat::kCOO) {
    // Library uses SoA COO, direct IR uses AoS COO.
    if (enableRT)
      return genToCoordinates(builder, loc, a, 0);
    return genToCoordinatesBuffer(builder, loc, a);
  }
  // Formats CSR/CSC and BSR use positions at 1.
  return genToPositions(builder, loc, a, 1);
}

/// Generates the second coordinates of a sparse matrix.
static Value genSecondCrds(OpBuilder &builder, Location loc, Value a,
                           CuSparseFormat format, bool enableRT) {
  bool isCOO = format == CuSparseFormat::kCOO;
  if (isCOO && !enableRT)
    return Value(); // nothing needed
  // Formats CSR/CSC and BSR use coordinates at 1.
  return genToCoordinates(builder, loc, a, 1);
}

/// Generates the sparse matrix handle.
static Operation *genSpMat(OpBuilder &builder, Location loc,
                           SparseTensorType &aTp, Type handleTp, Type tokenTp,
                           Value token, Value sz1, Value sz2, Value nseA,
                           Value rowA, Value colA, Value valA,
                           CuSparseFormat format, bool enableRT) {
  if (format == CuSparseFormat::kCOO) {
    // Library uses SoA COO, direct IR uses AoS COO.
    if (enableRT) {
      assert(colA);
      return builder.create<gpu::CreateCooOp>(loc, handleTp, tokenTp, token,
                                              sz1, sz2, nseA, rowA, colA, valA);
    }
#ifdef CUSPARSE_COO_AOS
    assert(!colA);
    return builder.create<gpu::CreateCooAoSOp>(loc, handleTp, tokenTp, token,
                                               sz1, sz2, nseA, rowA, valA);
#else
    llvm_unreachable("gpu::CreateCooAoSOp is deprecated");
#endif
  }
  assert(colA);
  if (format == CuSparseFormat::kCSR)
    return builder.create<gpu::CreateCsrOp>(loc, handleTp, tokenTp, token, sz1,
                                            sz2, nseA, rowA, colA, valA);
  if (format == CuSparseFormat::kCSC)
    return builder.create<gpu::CreateCscOp>(loc, handleTp, tokenTp, token, sz1,
                                            sz2, nseA, rowA, colA, valA);
  // BSR requires a bit more work since we need to pass in the block size
  // and all others sizes in terms of blocks (#block-rows, #block-cols,
  // #nonzero-blocks).
  assert(format == CuSparseFormat::kBSR);
  SmallVector<unsigned> dims = getBlockSize(aTp.getDimToLvl());
  assert(dims.size() == 2 && dims[0] == dims[1]);
  uint64_t b = dims[0];
  Value bSz = constantIndex(builder, loc, b);
  Value bRows = builder.create<arith::DivUIOp>(loc, sz1, bSz);
  Value bCols = builder.create<arith::DivUIOp>(loc, sz2, bSz);
  Value bNum = builder.create<arith::DivUIOp>(
      loc, nseA, constantIndex(builder, loc, b * b));
  return builder.create<gpu::CreateBsrOp>(loc, handleTp, tokenTp, token, bRows,
                                          bCols, bNum, bSz, bSz, rowA, colA,
                                          valA);
}

/// Match and rewrite SpMV kernel.
static LogicalResult rewriteSpMV(PatternRewriter &rewriter,
                                 linalg::GenericOp op, bool enableRT) {
  Location loc = op.getLoc();
  Value a = op.getOperand(0);
  Value x = op.getOperand(1);
  Value y = op.getOperand(2); // we have y = Ax
  SmallVector<Value> tokens;

  // Only admissible sparse matrix format and dense vectors (no BSR).
  SparseTensorType aTp = getSparseTensorType(a);
  SparseTensorType xTp = getSparseTensorType(x);
  SparseTensorType yTp = getSparseTensorType(y);
  auto format = getCuSparseFormat(aTp, xTp, yTp, enableRT, /*isMatVec=*/true);
  if (format == CuSparseFormat::kNone || format == CuSparseFormat::kBSR)
    return failure();

  // Start sparse kernel and copy data from host to device.
  //   a : memR/memC/memV -> rowA,colA,valA
  //   x : memX           -> vecX
  //   y : memY           -> vecY
  Value nseA = rewriter.create<NumberOfEntriesOp>(loc, a);
  Value szY = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
  Value szX = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
  Value memR = genFirstPosOrCrds(rewriter, loc, a, format, enableRT);
  Value memC = genSecondCrds(rewriter, loc, a, format, enableRT); // or empty
  Value memV = genToValues(rewriter, loc, a);
  Value rowA = genAllocCopy(rewriter, loc, memR, tokens);
  Value colA = memC ? genAllocCopy(rewriter, loc, memC, tokens) : Value();
  Value valA = genAllocCopy(rewriter, loc, memV, tokens);
  Value memX = genTensorToMemref(rewriter, loc, x);
  Value vecX = genAllocCopy(rewriter, loc, memX, tokens);
  Value memY = genTensorToMemref(rewriter, loc, y);
  Value vecY = genAllocCopy(rewriter, loc, memY, tokens);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Create sparse environment and sparse matrix/dense vector handles.
  Type indexTp = rewriter.getIndexType();
  Type dnTensorHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
  Type spmatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
  Value token = genFirstWait(rewriter, loc);
  Operation *spGenA =
      genSpMat(rewriter, loc, aTp, spmatHandleTp, tokenTp, token, szY, szX,
               nseA, rowA, colA, valA, format, enableRT);
  Value spMatA = spGenA->getResult(0);
  token = spGenA->getResult(1);
  auto dvecX = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnTensorHandleTp, tokenTp, token, vecX, szX);
  Value dnX = dvecX.getResult(0);
  token = dvecX.getAsyncToken();
  auto dvecY = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnTensorHandleTp, tokenTp, token, vecY, szY);
  Value dnY = dvecY.getResult(0);
  token = dvecY.getAsyncToken();
  auto dnYType = llvm::cast<ShapedType>(y.getType()).getElementType();

  // Precompute buffersize for SpMV.
  auto bufferComp = rewriter.create<gpu::SpMVBufferSizeOp>(
      loc, indexTp, tokenTp, token, spMatA, dnX, dnY,
      /*computeType=*/dnYType);
  Value bufferSz = bufferComp.getResult(0);
  token = bufferComp.getAsyncToken();
  auto buf = genAllocBuffer(rewriter, loc, bufferSz, token);
  Value buffer = buf.getResult(0);
  token = buf.getAsyncToken();

  // Perform the SpMV.
  auto spmvComp = rewriter.create<gpu::SpMVOp>(
      loc, tokenTp, token, spMatA, dnX, dnY, /*computeType=*/dnYType, buffer);
  token = spmvComp.getAsyncToken();

  // Copy data back to host and free all the resoures.
  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnX)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnY)
              .getAsyncToken();
  token = genDeallocMemRef(rewriter, loc, rowA, token);
  if (colA)
    token = genDeallocMemRef(rewriter, loc, colA, token);
  token = genDeallocMemRef(rewriter, loc, valA, token);
  token = genDeallocMemRef(rewriter, loc, buffer, token);
  token = genDeallocMemRef(rewriter, loc, vecX, token);
  token = genCopyMemRef(rewriter, loc, memY, vecY, token);
  token = genDeallocMemRef(rewriter, loc, vecY, token);
  tokens.push_back(token);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Done.
  rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, memY);
  return success();
}

/// Match and rewrite SpMM kernel.
static LogicalResult rewriteSpMM(PatternRewriter &rewriter,
                                 linalg::GenericOp op, bool enableRT) {
  Location loc = op.getLoc();
  Value a = op.getOperand(0);
  Value b = op.getOperand(1);
  Value c = op.getOperand(2); // we have C = AB
  SmallVector<Value> tokens;

  // Only admissible sparse matrix format and dense matrices (no BSR).
  SparseTensorType aTp = getSparseTensorType(a);
  SparseTensorType bTp = getSparseTensorType(b);
  SparseTensorType cTp = getSparseTensorType(c);
  auto format = getCuSparseFormat(aTp, bTp, cTp, enableRT, /*isMatVec=*/false);
  if (format == CuSparseFormat::kNone || format == CuSparseFormat::kBSR)
    return failure();

  // Start sparse kernel and copy data from host to device.
  //   a : memR/memC/memV -> rowA,colA,valA
  //   b : bufB           -> matB
  //   c : bufC           -> matC
  Value nseA = rewriter.create<NumberOfEntriesOp>(loc, a);
  Value szm = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
  Value szk = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
  Value szn = linalg::createOrFoldDimOp(rewriter, loc, b, 1);
  Value memR = genFirstPosOrCrds(rewriter, loc, a, format, enableRT);
  Value memC = genSecondCrds(rewriter, loc, a, format, enableRT); // or empty
  Value memV = genToValues(rewriter, loc, a);
  Value rowA = genAllocCopy(rewriter, loc, memR, tokens);
  Value colA = memC ? genAllocCopy(rewriter, loc, memC, tokens) : Value();
  Value valA = genAllocCopy(rewriter, loc, memV, tokens);
  Value bufB = genTensorToMemref(rewriter, loc, b);
  Value matB = genAllocCopy(rewriter, loc, bufB, tokens);
  Value bufC = genTensorToMemref(rewriter, loc, c);
  Value matC = genAllocCopy(rewriter, loc, bufC, tokens);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Create sparse environment and sparse matrix/dense matrix handles.
  Type indexTp = rewriter.getIndexType();
  Type dnTensorHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
  Type spMatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
  Value token = genFirstWait(rewriter, loc);
  Operation *spGenA =
      genSpMat(rewriter, loc, aTp, spMatHandleTp, tokenTp, token, szm, szk,
               nseA, rowA, colA, valA, format, enableRT);
  Value spMatA = spGenA->getResult(0);
  token = spGenA->getResult(1);
  auto dmatB = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnTensorHandleTp, tokenTp, token, matB,
      SmallVector<Value>{szk, szn});
  Value dnB = dmatB.getResult(0);
  token = dmatB.getAsyncToken();
  auto dmatC = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnTensorHandleTp, tokenTp, token, matC,
      SmallVector<Value>{szm, szn});
  Value dnC = dmatC.getResult(0);
  token = dmatC.getAsyncToken();
  auto dmatCType = llvm::cast<ShapedType>(c.getType()).getElementType();

  // Precompute buffersize for SpMM.
  auto bufferComp = rewriter.create<gpu::SpMMBufferSizeOp>(
      loc, indexTp, tokenTp, token, spMatA, dnB, dnC,
      /*computeType=*/dmatCType);
  Value bufferSz = bufferComp.getResult(0);
  token = bufferComp.getAsyncToken();
  auto buf = genAllocBuffer(rewriter, loc, bufferSz, token);
  Value buffer = buf.getResult(0);
  token = buf.getAsyncToken();
  auto dnCType = llvm::cast<ShapedType>(c.getType()).getElementType();

  // Perform the SpMM.
  auto spmmComp = rewriter.create<gpu::SpMMOp>(
      loc, tokenTp, token, spMatA, dnB, dnC, /*computeType=*/dnCType, buffer);
  token = spmmComp.getAsyncToken();

  // Copy data back to host and free all the resoures.
  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnB)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnC)
              .getAsyncToken();
  token = genDeallocMemRef(rewriter, loc, rowA, token);
  if (colA)
    token = genDeallocMemRef(rewriter, loc, colA, token);
  token = genDeallocMemRef(rewriter, loc, valA, token);
  token = genDeallocMemRef(rewriter, loc, buffer, token);
  token = genDeallocMemRef(rewriter, loc, matB, token);
  token = genCopyMemRef(rewriter, loc, bufC, matC, token);
  token = genDeallocMemRef(rewriter, loc, matC, token);
  tokens.push_back(token);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Done.
  rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, bufC);
  return success();
}

// Match and rewrite SpGEMM kernel.
static LogicalResult rewriteSpGEMM(PatternRewriter &rewriter,
                                   linalg::GenericOp op, bool enableRT) {
  Location loc = op.getLoc();
  Value a = op.getOperand(0);
  Value b = op.getOperand(1);
  Value c = op.getOperand(2); // we have C = AB
  SmallVector<Value> tokens;

  // Only CSR <- CSR x CSR supported.
  auto format = CuSparseFormat::kCSR;
  SparseTensorType aTp = getSparseTensorType(a);
  SparseTensorType bTp = getSparseTensorType(b);
  SparseTensorType cTp = getSparseTensorType(c);
  if (!isAdmissibleCSR(aTp) || !isAdmissibleCSR(bTp) || !isAdmissibleCSR(cTp))
    return failure();

  // Start sparse kernel and copy data from host to device.
  //   a : amemR/amemC/amemV -> rowA,colA,valA
  //   b : bmemR/bmemC/bmemV -> rowB,colB,valB
  //   c : materializes
  auto dnCType = cTp.getElementType();
  Value nseA = rewriter.create<NumberOfEntriesOp>(loc, a);
  Value nseB = rewriter.create<NumberOfEntriesOp>(loc, b);
  Value szm = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
  Value szk = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
  Value szn = linalg::createOrFoldDimOp(rewriter, loc, b, 1);
  Value amemR = genFirstPosOrCrds(rewriter, loc, a, format, enableRT);
  Value amemC = genSecondCrds(rewriter, loc, a, format, enableRT); // not empty
  Value amemV = genToValues(rewriter, loc, a);
  Value bmemR = genFirstPosOrCrds(rewriter, loc, b, format, enableRT);
  Value bmemC = genSecondCrds(rewriter, loc, b, format, enableRT); // not empty
  Value bmemV = genToValues(rewriter, loc, b);
  Value rowA = genAllocCopy(rewriter, loc, amemR, tokens);
  Value colA = genAllocCopy(rewriter, loc, amemC, tokens);
  Value valA = genAllocCopy(rewriter, loc, amemV, tokens);
  Value rowB = genAllocCopy(rewriter, loc, bmemR, tokens);
  Value colB = genAllocCopy(rewriter, loc, bmemC, tokens);
  Value valB = genAllocCopy(rewriter, loc, bmemV, tokens);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Create sparse environment and sparse matrix/dense vector handles.
  Type indexTp = rewriter.getIndexType();
  Type spmatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
  Type descTp = rewriter.getType<gpu::SparseSpGEMMOpHandleType>();
  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
  Value token = genFirstWait(rewriter, loc);
  Operation *spGenA =
      genSpMat(rewriter, loc, aTp, spmatHandleTp, tokenTp, token, szm, szk,
               nseA, rowA, colA, valA, format, enableRT);
  Value spMatA = spGenA->getResult(0);
  token = spGenA->getResult(1);
  Operation *spGenB =
      genSpMat(rewriter, loc, bTp, spmatHandleTp, tokenTp, token, szk, szn,
               nseB, rowB, colB, valB, format, enableRT);
  Value spMatB = spGenB->getResult(0);
  token = spGenB->getResult(1);

  // Sparse matrix C materializes (also assumes beta == 0).
  Value zero = constantIndex(rewriter, loc, 0);
  Value one = constantIndex(rewriter, loc, 1);
  Value mplus1 = rewriter.create<arith::AddIOp>(loc, szm, one);
  auto e1 = genAllocBuffer(rewriter, loc, cTp.getPosType(), mplus1, token);
  Value rowC = e1.getResult(0);
  token = e1.getAsyncToken();
  auto e2 = genAllocBuffer(rewriter, loc, cTp.getCrdType(), zero, token);
  Value colC = e2.getResult(0); // no free needed
  token = e2.getAsyncToken();
  auto e3 = genAllocBuffer(rewriter, loc, dnCType, zero, token);
  Value valC = e3.getResult(0); // no free needed
  token = e3.getAsyncToken();
  Operation *spGenC =
      genSpMat(rewriter, loc, cTp, spmatHandleTp, tokenTp, token, szm, szn,
               zero, rowC, colC, valC, format, enableRT);
  Value spMatC = spGenC->getResult(0);
  token = spGenC->getResult(1);

  // Precompute buffersizes for SpGEMM.
  Operation *descOp =
      rewriter.create<gpu::SpGEMMCreateDescrOp>(loc, descTp, tokenTp, token);
  Value desc = descOp->getResult(0);
  token = descOp->getResult(1);
  Operation *work1 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
      loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
      gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType, zero,
      valC, gpu::SpGEMMWorkEstimationOrComputeKind::WORK_ESTIMATION);
  Value bufferSz1 = work1->getResult(0);
  token = work1->getResult(1);
  auto buf1 = genAllocBuffer(rewriter, loc, bufferSz1, token);
  Value buffer1 = buf1.getResult(0);
  token = buf1.getAsyncToken();
  Operation *work2 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
      loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
      gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType,
      bufferSz1, buffer1,
      gpu::SpGEMMWorkEstimationOrComputeKind::WORK_ESTIMATION);
  token = work2->getResult(1);

  // Compute step.
  Operation *compute1 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
      loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
      gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType, zero,
      valC, gpu::SpGEMMWorkEstimationOrComputeKind::COMPUTE);
  Value bufferSz2 = compute1->getResult(0);
  token = compute1->getResult(1);
  auto buf2 = genAllocBuffer(rewriter, loc, bufferSz2, token);
  Value buffer2 = buf2.getResult(0);
  token = buf2.getAsyncToken();
  Operation *compute2 = rewriter.create<gpu::SpGEMMWorkEstimationOrComputeOp>(
      loc, indexTp, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
      gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType,
      bufferSz2, buffer2, gpu::SpGEMMWorkEstimationOrComputeKind::COMPUTE);
  token = compute2->getResult(1);

  // Get sizes.
  Operation *sizes = rewriter.create<gpu::SpMatGetSizeOp>(
      loc, indexTp, indexTp, indexTp, tokenTp, token, spMatC);
  Value nnz = sizes->getResult(2);
  token = sizes->getResult(3);
  auto a2 = genAllocBuffer(rewriter, loc, cTp.getCrdType(), nnz, token);
  colC = a2.getResult(0);
  token = a2.getAsyncToken();
  auto a3 = genAllocBuffer(rewriter, loc, dnCType, nnz, token);
  valC = a3.getResult(0);
  token = a3.getAsyncToken();

  // Update C with new pointers and copy final product back into C.
  Operation *update = rewriter.create<gpu::SetCsrPointersOp>(
      loc, tokenTp, token, spMatC, rowC, colC, valC);
  token = update->getResult(0);
  Operation *copy = rewriter.create<gpu::SpGEMMCopyOp>(
      loc, tokenTp, token, desc, gpu::TransposeMode::NON_TRANSPOSE,
      gpu::TransposeMode::NON_TRANSPOSE, spMatA, spMatB, spMatC, dnCType);
  token = copy->getResult(0);

  // Allocate buffers on host.
  Value rowH = genHostBuffer(rewriter, loc, cTp.getPosType(), mplus1);
  Value colH = genHostBuffer(rewriter, loc, cTp.getCrdType(), nnz);
  Value valH = genHostBuffer(rewriter, loc, dnCType, nnz);

  // Copy data back to host and free all the resoures.
  token = rewriter.create<gpu::SpGEMMDestroyDescrOp>(loc, tokenTp, token, desc)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatB)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatC)
              .getAsyncToken();
  token = genCopyMemRef(rewriter, loc, rowH, rowC, token);
  token = genCopyMemRef(rewriter, loc, colH, colC, token);
  token = genCopyMemRef(rewriter, loc, valH, valC, token);
  token = genDeallocMemRef(rewriter, loc, rowA, token);
  token = genDeallocMemRef(rewriter, loc, colA, token);
  token = genDeallocMemRef(rewriter, loc, valA, token);
  token = genDeallocMemRef(rewriter, loc, rowB, token);
  token = genDeallocMemRef(rewriter, loc, colB, token);
  token = genDeallocMemRef(rewriter, loc, valB, token);
  token = genDeallocMemRef(rewriter, loc, rowC, token);
  token = genDeallocMemRef(rewriter, loc, colC, token);
  token = genDeallocMemRef(rewriter, loc, valC, token);
  token = genDeallocMemRef(rewriter, loc, buffer1, token);
  token = genDeallocMemRef(rewriter, loc, buffer2, token);
  tokens.push_back(token);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Done.
  Value vt = rewriter.create<bufferization::ToTensorOp>(loc, valH);
  Value rt = rewriter.create<bufferization::ToTensorOp>(loc, rowH);
  Value ct = rewriter.create<bufferization::ToTensorOp>(loc, colH);
  rewriter.replaceOpWithNewOp<AssembleOp>(op, c.getType(), vt,
                                          ValueRange{rt, ct});
  return success();
}

// Match and rewrite 2:4 SpMM kernel.
static LogicalResult rewrite2To4SpMM(PatternRewriter &rewriter,
                                     linalg::GenericOp op) {
  Location loc = op.getLoc();
  Value A = op.getOperand(0);
  Value B = op.getOperand(1);
  Value C = op.getOperand(2); // we have C = AB
  SmallVector<Value> tokens;

  // The cuSparselt API currently only allows pruning and compression
  // to occur on the device. So we recognize the pattern
  //    A' = convert A  ; dense to 2:4
  //    C  = A'B        ; 2:4 matrix mult
  // and then perform compression and matrix multiplication on device.
  auto cnv = A.getDefiningOp<ConvertOp>();
  assert(cnv);
  A = cnv.getSource();

  // All input should be dense tensors.
  if (!isDenseTensor(A) || !isDenseTensor(B) || !isDenseTensor(C))
    return failure();

  // Start sparse kernel and copy data from host to device.
  //   a : bufA -> matA
  //   b : bufB -> matB
  //   c : bufC -> matC
  Value bufA = genTensorToMemref(rewriter, loc, A);
  Value matA = genAllocCopy(rewriter, loc, bufA, tokens);
  Value bufB = genTensorToMemref(rewriter, loc, B);
  Value matB = genAllocCopy(rewriter, loc, bufB, tokens);
  Value bufC = genTensorToMemref(rewriter, loc, C);
  Value matC = genAllocCopy(rewriter, loc, bufC, tokens);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Create sparse environment and sparse matrix/dense vector handles.
  Value szm = linalg::createOrFoldDimOp(rewriter, loc, matA, 0);
  Value szk = linalg::createOrFoldDimOp(rewriter, loc, matB, 0);
  Value szn = linalg::createOrFoldDimOp(rewriter, loc, matC, 1);
  Type indexTp = rewriter.getIndexType();
  Type dnTensorHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
  Type spMatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
  Value token = genFirstWait(rewriter, loc);
  Operation *spGenA = rewriter.create<gpu::Create2To4SpMatOp>(
      loc, spMatHandleTp, tokenTp, token, szm, szk,
      gpu::Prune2To4SpMatFlag::PRUNE_AND_CHECK, matA);
  Value spMatA = spGenA->getResult(0);
  token = spGenA->getResult(1);
  auto dmatB = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnTensorHandleTp, tokenTp, token, matB,
      SmallVector<Value>{szk, szn});
  Value dnB = dmatB.getResult(0);
  token = dmatB.getAsyncToken();
  auto dmatC = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnTensorHandleTp, tokenTp, token, matC,
      SmallVector<Value>{szm, szn});
  Value dnC = dmatC.getResult(0);
  token = dmatC.getAsyncToken();
  auto dmatCType = llvm::cast<ShapedType>(matC.getType()).getElementType();

  // Precompute buffersize for SpMM.
  SmallVector<Type> bufferTypes_{indexTp, indexTp, indexTp};
  TypeRange bufferTypes(bufferTypes_);
  auto bufferComp = rewriter.create<gpu::SpMMBufferSizeOp>(
      loc, bufferTypes, tokenTp, token, gpu::TransposeMode::NON_TRANSPOSE,
      gpu::TransposeMode::NON_TRANSPOSE, spMatA, dnB, dnC,
      /*computeType=*/dmatCType);
  token = bufferComp.getAsyncToken();

  // Allocate buffers on host.
  Value bufferSz1 = bufferComp.getResult(0);
  auto buf1 = genAllocBuffer(rewriter, loc, bufferSz1, token);
  Value buffer1 = buf1.getResult(0);
  token = buf1.getAsyncToken();
  Value bufferSz2 = bufferComp.getResult(1);
  auto buf2 = genAllocBuffer(rewriter, loc, bufferSz2, token);
  Value buffer2 = buf2.getResult(0);
  token = buf2.getAsyncToken();
  Value bufferSz3 = bufferComp.getResult(2);
  auto buf3 = genAllocBuffer(rewriter, loc, bufferSz3, token);
  Value buffer3 = buf3.getResult(0);
  token = buf3.getAsyncToken();

  // Perform the SpMM.
  auto dnCType = llvm::cast<ShapedType>(matC.getType()).getElementType();
  auto spmmComp = rewriter.create<gpu::SpMMOp>(
      loc, tokenTp, token, spMatA, dnB, dnC, /*computeType=*/dnCType,
      SmallVector<Value>{buffer1, buffer2, buffer3});
  token = spmmComp.getAsyncToken();

  // Copy data back to host and free all the resources.
  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatA)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnB)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnC)
              .getAsyncToken();
  SmallVector<Value> newDynamicSizes;
  token = genDeallocMemRef(rewriter, loc, buffer1, token);
  token = genDeallocMemRef(rewriter, loc, buffer2, token);
  token = genDeallocMemRef(rewriter, loc, buffer3, token);
  token = genDeallocMemRef(rewriter, loc, matA, token);
  token = genDeallocMemRef(rewriter, loc, matB, token);
  token = genCopyMemRef(rewriter, loc, bufC, matC, token);
  token = genDeallocMemRef(rewriter, loc, matC, token);
  tokens.push_back(token);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Done.
  rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, bufC);
  return success();
}

/// Match and rewrite SDDMM kernel.
static LogicalResult rewriteSDDMM(PatternRewriter &rewriter,
                                  linalg::GenericOp op, bool enableRT) {
  Location loc = op.getLoc();
  Value a = op.getOperand(0);
  Value b = op.getOperand(1);
  Value c = op.getOperand(2);
  SmallVector<Value> tokens;

  // Only admissible sparse matrix format (no COO/CSC) and dense matrices.
  SparseTensorType aTp = getSparseTensorType(a);
  SparseTensorType bTp = getSparseTensorType(b);
  SparseTensorType cTp = getSparseTensorType(c);
  auto format = getCuSparseFormat(cTp, bTp, aTp, enableRT, /*isMatVec=*/false);
  if (format == CuSparseFormat::kNone || format == CuSparseFormat::kCOO ||
      format == CuSparseFormat::kCSC)
    return failure();

  // The SDDMM does the in-place operation.
  // Start sparse kernel and copy data from host to device.
  //   a : bufA           -> matA
  //   b : bufB           -> matB
  //   c : memR/memC/memV -> rowC,colC,valC
  Value nseC = rewriter.create<NumberOfEntriesOp>(loc, c);
  Value szm = linalg::createOrFoldDimOp(rewriter, loc, a, 0);
  Value szk = linalg::createOrFoldDimOp(rewriter, loc, a, 1);
  Value szn = linalg::createOrFoldDimOp(rewriter, loc, b, 1);
  Value bufA = genTensorToMemref(rewriter, loc, a);
  Value matA = genAllocCopy(rewriter, loc, bufA, tokens);
  Value bufB = genTensorToMemref(rewriter, loc, b);
  Value matB = genAllocCopy(rewriter, loc, bufB, tokens);
  Value memR = genFirstPosOrCrds(rewriter, loc, c, format, enableRT);
  Value memC = genSecondCrds(rewriter, loc, c, format, enableRT); // or empty
  Value memV = genToValues(rewriter, loc, c);
  Value rowC = genAllocCopy(rewriter, loc, memR, tokens);
  Value colC = memC ? genAllocCopy(rewriter, loc, memC, tokens) : Value();
  Value valC = genAllocCopy(rewriter, loc, memV, tokens);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Create sparse environment and sparse matrix/dense matrix handles.
  Type indexTp = rewriter.getIndexType();
  Type dnMatHandleTp = rewriter.getType<gpu::SparseDnTensorHandleType>();
  Type spMatHandleTp = rewriter.getType<gpu::SparseSpMatHandleType>();
  Type tokenTp = rewriter.getType<gpu::AsyncTokenType>();
  Value token = genFirstWait(rewriter, loc);
  auto dmatA = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnMatHandleTp, tokenTp, token, matA, SmallVector<Value>{szm, szk});
  Value dnA = dmatA.getResult(0);
  token = dmatA.getAsyncToken();
  auto dmatB = rewriter.create<gpu::CreateDnTensorOp>(
      loc, dnMatHandleTp, tokenTp, token, matB, SmallVector<Value>{szk, szn});
  Value dnB = dmatB.getResult(0);
  token = dmatB.getAsyncToken();
  Operation *spGenC =
      genSpMat(rewriter, loc, cTp, spMatHandleTp, tokenTp, token, szm, szn,
               nseC, rowC, colC, valC, format, enableRT);
  Value spMatC = spGenC->getResult(0);
  token = spGenC->getResult(1);
  auto dnCType = llvm::cast<ShapedType>(c.getType()).getElementType();

  // Precompute buffersize for SDDMM.
  auto bufferComp = rewriter.create<gpu::SDDMMBufferSizeOp>(
      loc, indexTp, tokenTp, token, dnA, dnB, spMatC, dnCType);
  Value bufferSz = bufferComp.getResult(0);
  token = bufferComp.getAsyncToken();
  auto buf = genAllocBuffer(rewriter, loc, bufferSz, token);
  Value buffer = buf.getResult(0);
  token = buf.getAsyncToken();

  // Perform the SDDMM.
  auto sddmmComp = rewriter.create<gpu::SDDMMOp>(loc, tokenTp, token, dnA, dnB,
                                                 spMatC, dnCType, buffer);
  token = sddmmComp.getAsyncToken();

  // Copy data back to host and free all the resoures.
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnA)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroyDnTensorOp>(loc, tokenTp, token, dnB)
              .getAsyncToken();
  token = rewriter.create<gpu::DestroySpMatOp>(loc, tokenTp, token, spMatC)
              .getAsyncToken();
  token = genDeallocMemRef(rewriter, loc, buffer, token);
  token = genDeallocMemRef(rewriter, loc, matA, token);
  token = genDeallocMemRef(rewriter, loc, matB, token);
  token = genDeallocMemRef(rewriter, loc, rowC, token);
  if (colC)
    token = genDeallocMemRef(rewriter, loc, colC, token);
  token = genCopyMemRef(rewriter, loc, memV, valC, token);
  token = genDeallocMemRef(rewriter, loc, valC, token);
  tokens.push_back(token);
  genBlockingWait(rewriter, loc, tokens);
  tokens.clear();

  // Done.
  rewriter.replaceOpWithNewOp<sparse_tensor::LoadOp>(op, c);
  return success();
}

//===----------------------------------------------------------------------===//
// Rewriting rules for direct code generation.
//===----------------------------------------------------------------------===//

/// Proof-of-concept rewriter. This rule generates a GPU implementation
/// for each outermost forall loop generated by the sparsifier.
/// TODO: right now works with parallelization-strategy=dense-outer-loop
///       but give this its own flags in the future
struct ForallRewriter : public OpRewritePattern<scf::ParallelOp> {
  using OpRewritePattern<scf::ParallelOp>::OpRewritePattern;

  ForallRewriter(MLIRContext *context, unsigned nT)
      : OpRewritePattern(context), numThreads(nT){};

  LogicalResult matchAndRewrite(scf::ParallelOp forallOp,
                                PatternRewriter &rewriter) const override {
    // Reject inadmissible loop form.
    // Essentially only accept a loop, generated by the sparsifier,
    // of the form
    //   forall (i = 0; i < N; i++)
    // so that cyclic scheduling over the threads is easy.
    if (!forallOp->hasAttr(LoopEmitter::getLoopEmitterLoopAttrName()) ||
        forallOp.getNumReductions() != 0 || forallOp.getNumLoops() != 1 ||
        !matchPattern(forallOp.getLowerBound()[0], m_Zero()) ||
        !matchPattern(forallOp.getStep()[0], m_One()))
      return failure();
    // Collect every value that is computed outside the parallel loop.
    SetVector<Value> invariants; // stable iteration!
    forallOp->walk([&](Operation *op) {
      // Collect all values of admissible ops.
      for (OpOperand &o : op->getOpOperands()) {
        Value val = o.get();
        Block *block;
        if (auto arg = dyn_cast<BlockArgument>(val))
          block = arg.getOwner();
        else
          block = val.getDefiningOp()->getBlock();
        if (!forallOp.getRegion().findAncestorBlockInRegion(*block))
          invariants.insert(val);
      }
    });
    // Outline the outside values as proper parameters. Fail when sharing
    // value between host and device is not straightforward.
    SmallVector<Value> constants;
    SmallVector<Value> scalars;
    SmallVector<Value> buffers;
    for (Value val : invariants) {
      Type tp = val.getType();
      if (val.getDefiningOp<arith::ConstantOp>())
        constants.push_back(val);
      else if (isa<FloatType>(tp) || tp.isIntOrIndex())
        scalars.push_back(val);
      else if (isa<MemRefType>(tp))
        buffers.push_back(val);
      else
        return failure(); // don't know how to share
    }
    // Pass outlined non-constant values.
    // TODO: Experiment with `useHostRegistrationForOut` to see if we want to
    //       keep the feature at all (either through a heuristic or compiler
    //       option for gpu codegen).
    Location loc = forallOp->getLoc();
    SmallVector<Value> args;
    SmallVector<Value> tokens;
    Value out = genParametersIn(rewriter, loc, scalars, buffers, args, tokens,
                                /*useHostRegistrationForOut=*/false);
    // Set up GPU module and construct GPU function.
    auto saveIp = rewriter.saveInsertionPoint();
    ModuleOp topModule = forallOp->getParentOfType<ModuleOp>();
    auto gpuModule = genGPUModule(rewriter, topModule);
    auto gpuFunc = genGPUFunc(rewriter, gpuModule, args);
    genGPUCode(rewriter, gpuFunc, forallOp, constants, scalars, buffers);
    // Generate code that launches the kernel asynchronously, blocking on all
    // opens tokens and yielding a new token for the output.
    // TODO: Passing in tokens to launch up does not seem to be properly lowered
    //       by cubin yet, hence the current blocking wait.
    rewriter.restoreInsertionPoint(saveIp);
    genBlockingWait(rewriter, loc, tokens);
    tokens.clear();
    Value kernelToken =
        genLaunchGPUFunc(rewriter, gpuFunc, args, tokens, numThreads);
    // Finalize the outlined arguments.
    genParametersOut(rewriter, loc, out, kernelToken, scalars, buffers, args,
                     tokens);
    genBlockingWait(rewriter, loc, tokens);
    rewriter.eraseOp(forallOp);
    return success();
  }

private:
  unsigned numThreads;
};

//===----------------------------------------------------------------------===//
// Rewriting rules for library recognition and code generation.
//===----------------------------------------------------------------------===//

/// Proof-of-concept rewriter. This rule recognizes certain math kernels
/// and replaces these with corresponding calls into a sparse library.
struct LinalgOpRewriter : public OpRewritePattern<linalg::GenericOp> {
  using OpRewritePattern<linalg::GenericOp>::OpRewritePattern;

  LinalgOpRewriter(MLIRContext *context, bool rt)
      : OpRewritePattern(context), enableRT(rt) {}

  LogicalResult matchAndRewrite(linalg::GenericOp op,
                                PatternRewriter &rewriter) const override {
    if (op.getNumDpsInits() != 1)
      return failure(); // reject multi-output

    const unsigned numLoops = op.getNumLoops();
    const unsigned numTensors = op->getNumOperands();
    const auto iteratorTypes = op.getIteratorTypesArray();
    SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray();

    using MapList = ArrayRef<ArrayRef<AffineExpr>>;
    auto infer = [&](MapList m) {
      return AffineMap::inferFromExprList(m, op.getContext());
    };
    AffineExpr i, j, k;
    bindDims(getContext(), i, j, k);

    // TODO: more robust patterns, tranposed versions, more kernels,
    //       identify alpha and beta and pass them to the CUDA calls.

    // Recognize a SpMV kernel.
    if (numLoops == 2 && numTensors == 3 &&
        linalg::isParallelIterator(iteratorTypes[0]) &&
        linalg::isReductionIterator(iteratorTypes[1]) &&
        maps == infer({{i, j}, {j}, {i}}) && matchSumOfMultOfArgs(op)) {
      return rewriteSpMV(rewriter, op, enableRT);
    }

    // Recognize a SpGEMM, 2:4-SpMM, or SpMM kernel.
    if (numLoops == 3 && numTensors == 3 &&
        linalg::isParallelIterator(iteratorTypes[0]) &&
        linalg::isParallelIterator(iteratorTypes[1]) &&
        linalg::isReductionIterator(iteratorTypes[2]) &&
        maps == infer({{i, k}, {k, j}, {i, j}}) && matchSumOfMultOfArgs(op)) {
      if (!isDenseTensor(op.getOperand(0)) && !isDenseTensor(op.getOperand(1)))
        return rewriteSpGEMM(rewriter, op, enableRT);
      if (isConversionInto24(op.getOperand(0)))
        return rewrite2To4SpMM(rewriter, op);
      return rewriteSpMM(rewriter, op, enableRT);
    }

    // Recognize a SDDMM kernel.
    if (numLoops == 3 && numTensors == 3 &&
        linalg::isParallelIterator(iteratorTypes[0]) &&
        linalg::isParallelIterator(iteratorTypes[1]) &&
        linalg::isReductionIterator(iteratorTypes[2]) &&
        maps == infer({{i, k}, {k, j}, {i, j}}) &&
        matchSumReductionOfMulUnary(op)) {
      return rewriteSDDMM(rewriter, op, enableRT);
    }

    return failure();
  }

private:
  bool enableRT;
};

} // namespace

//===----------------------------------------------------------------------===//
// Public method for populating GPU rewriting rules.
//
// Currently two set of rewriting rules are made available. The first set
// implements direct code generation, currently by means of convering the
// outermost paralell loop into GPU threads. The second set implements
// libary recognition of a set of sparse operations. Eventually, the right
// combination of these two approaches has to be found.
//===----------------------------------------------------------------------===//

void mlir::populateSparseGPUCodegenPatterns(RewritePatternSet &patterns,
                                            unsigned numThreads) {
  patterns.add<ForallRewriter>(patterns.getContext(), numThreads);
}

void mlir::populateSparseGPULibgenPatterns(RewritePatternSet &patterns,
                                           bool enableRT) {
  patterns.add<LinalgOpRewriter>(patterns.getContext(), enableRT);
}