aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp
blob: c09184148208036adf60d6dd6fd451c6287f5d87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
//===- SCFTransformOps.cpp - Implementation of SCF transformation ops -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformOps.h"
#include "mlir/Dialect/Transform/Interfaces/TransformInterfaces.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/OpDefinition.h"

using namespace mlir;
using namespace mlir::affine;

//===----------------------------------------------------------------------===//
// Apply...PatternsOp
//===----------------------------------------------------------------------===//

void transform::ApplyForLoopCanonicalizationPatternsOp::populatePatterns(
    RewritePatternSet &patterns) {
  scf::populateSCFForLoopCanonicalizationPatterns(patterns);
}

void transform::ApplySCFStructuralConversionPatternsOp::populatePatterns(
    TypeConverter &typeConverter, RewritePatternSet &patterns) {
  scf::populateSCFStructuralTypeConversions(typeConverter, patterns);
}

void transform::ApplySCFStructuralConversionPatternsOp::
    populateConversionTargetRules(const TypeConverter &typeConverter,
                                  ConversionTarget &conversionTarget) {
  scf::populateSCFStructuralTypeConversionTarget(typeConverter,
                                                 conversionTarget);
}

//===----------------------------------------------------------------------===//
// ForallToForOp
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure
transform::ForallToForOp::apply(transform::TransformRewriter &rewriter,
                                transform::TransformResults &results,
                                transform::TransformState &state) {
  auto payload = state.getPayloadOps(getTarget());
  if (!llvm::hasSingleElement(payload))
    return emitSilenceableError() << "expected a single payload op";

  auto target = dyn_cast<scf::ForallOp>(*payload.begin());
  if (!target) {
    DiagnosedSilenceableFailure diag =
        emitSilenceableError() << "expected the payload to be scf.forall";
    diag.attachNote((*payload.begin())->getLoc()) << "payload op";
    return diag;
  }

  rewriter.setInsertionPoint(target);

  if (!target.getOutputs().empty()) {
    return emitSilenceableError()
           << "unsupported shared outputs (didn't bufferize?)";
  }

  SmallVector<OpFoldResult> lbs = target.getMixedLowerBound();
  SmallVector<OpFoldResult> ubs = target.getMixedUpperBound();
  SmallVector<OpFoldResult> steps = target.getMixedStep();

  if (getNumResults() != lbs.size()) {
    DiagnosedSilenceableFailure diag =
        emitSilenceableError()
        << "op expects as many results (" << getNumResults()
        << ") as payload has induction variables (" << lbs.size() << ")";
    diag.attachNote(target.getLoc()) << "payload op";
    return diag;
  }

  auto loc = target.getLoc();
  SmallVector<Value> ivs;
  for (auto &&[lb, ub, step] : llvm::zip(lbs, ubs, steps)) {
    Value lbValue = getValueOrCreateConstantIndexOp(rewriter, loc, lb);
    Value ubValue = getValueOrCreateConstantIndexOp(rewriter, loc, ub);
    Value stepValue = getValueOrCreateConstantIndexOp(rewriter, loc, step);
    auto loop = rewriter.create<scf::ForOp>(
        loc, lbValue, ubValue, stepValue, ValueRange(),
        [](OpBuilder &, Location, Value, ValueRange) {});
    ivs.push_back(loop.getInductionVar());
    rewriter.setInsertionPointToStart(loop.getBody());
    rewriter.create<scf::YieldOp>(loc);
    rewriter.setInsertionPointToStart(loop.getBody());
  }
  rewriter.eraseOp(target.getBody()->getTerminator());
  rewriter.inlineBlockBefore(target.getBody(), &*rewriter.getInsertionPoint(),
                             ivs);
  rewriter.eraseOp(target);

  for (auto &&[i, iv] : llvm::enumerate(ivs)) {
    results.set(cast<OpResult>(getTransformed()[i]),
                {iv.getParentBlock()->getParentOp()});
  }
  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// LoopOutlineOp
//===----------------------------------------------------------------------===//

/// Wraps the given operation `op` into an `scf.execute_region` operation. Uses
/// the provided rewriter for all operations to remain compatible with the
/// rewriting infra, as opposed to just splicing the op in place.
static scf::ExecuteRegionOp wrapInExecuteRegion(RewriterBase &b,
                                                Operation *op) {
  if (op->getNumRegions() != 1)
    return nullptr;
  OpBuilder::InsertionGuard g(b);
  b.setInsertionPoint(op);
  scf::ExecuteRegionOp executeRegionOp =
      b.create<scf::ExecuteRegionOp>(op->getLoc(), op->getResultTypes());
  {
    OpBuilder::InsertionGuard g(b);
    b.setInsertionPointToStart(&executeRegionOp.getRegion().emplaceBlock());
    Operation *clonedOp = b.cloneWithoutRegions(*op);
    Region &clonedRegion = clonedOp->getRegions().front();
    assert(clonedRegion.empty() && "expected empty region");
    b.inlineRegionBefore(op->getRegions().front(), clonedRegion,
                         clonedRegion.end());
    b.create<scf::YieldOp>(op->getLoc(), clonedOp->getResults());
  }
  b.replaceOp(op, executeRegionOp.getResults());
  return executeRegionOp;
}

DiagnosedSilenceableFailure
transform::LoopOutlineOp::apply(transform::TransformRewriter &rewriter,
                                transform::TransformResults &results,
                                transform::TransformState &state) {
  SmallVector<Operation *> functions;
  SmallVector<Operation *> calls;
  DenseMap<Operation *, SymbolTable> symbolTables;
  for (Operation *target : state.getPayloadOps(getTarget())) {
    Location location = target->getLoc();
    Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(target);
    scf::ExecuteRegionOp exec = wrapInExecuteRegion(rewriter, target);
    if (!exec) {
      DiagnosedSilenceableFailure diag = emitSilenceableError()
                                         << "failed to outline";
      diag.attachNote(target->getLoc()) << "target op";
      return diag;
    }
    func::CallOp call;
    FailureOr<func::FuncOp> outlined = outlineSingleBlockRegion(
        rewriter, location, exec.getRegion(), getFuncName(), &call);

    if (failed(outlined))
      return emitDefaultDefiniteFailure(target);

    if (symbolTableOp) {
      SymbolTable &symbolTable =
          symbolTables.try_emplace(symbolTableOp, symbolTableOp)
              .first->getSecond();
      symbolTable.insert(*outlined);
      call.setCalleeAttr(FlatSymbolRefAttr::get(*outlined));
    }
    functions.push_back(*outlined);
    calls.push_back(call);
  }
  results.set(cast<OpResult>(getFunction()), functions);
  results.set(cast<OpResult>(getCall()), calls);
  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// LoopPeelOp
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure
transform::LoopPeelOp::applyToOne(transform::TransformRewriter &rewriter,
                                  scf::ForOp target,
                                  transform::ApplyToEachResultList &results,
                                  transform::TransformState &state) {
  scf::ForOp result;
  if (getPeelFront()) {
    LogicalResult status =
        scf::peelForLoopFirstIteration(rewriter, target, result);
    if (failed(status)) {
      DiagnosedSilenceableFailure diag =
          emitSilenceableError() << "failed to peel the first iteration";
      return diag;
    }
  } else {
    LogicalResult status =
        scf::peelForLoopAndSimplifyBounds(rewriter, target, result);
    if (failed(status)) {
      DiagnosedSilenceableFailure diag = emitSilenceableError()
                                         << "failed to peel the last iteration";
      return diag;
    }
  }

  results.push_back(target);
  results.push_back(result);

  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// LoopPipelineOp
//===----------------------------------------------------------------------===//

/// Callback for PipeliningOption. Populates `schedule` with the mapping from an
/// operation to its logical time position given the iteration interval and the
/// read latency. The latter is only relevant for vector transfers.
static void
loopScheduling(scf::ForOp forOp,
               std::vector<std::pair<Operation *, unsigned>> &schedule,
               unsigned iterationInterval, unsigned readLatency) {
  auto getLatency = [&](Operation *op) -> unsigned {
    if (isa<vector::TransferReadOp>(op))
      return readLatency;
    return 1;
  };

  DenseMap<Operation *, unsigned> opCycles;
  std::map<unsigned, std::vector<Operation *>> wrappedSchedule;
  for (Operation &op : forOp.getBody()->getOperations()) {
    if (isa<scf::YieldOp>(op))
      continue;
    unsigned earlyCycle = 0;
    for (Value operand : op.getOperands()) {
      Operation *def = operand.getDefiningOp();
      if (!def)
        continue;
      earlyCycle = std::max(earlyCycle, opCycles[def] + getLatency(def));
    }
    opCycles[&op] = earlyCycle;
    wrappedSchedule[earlyCycle % iterationInterval].push_back(&op);
  }
  for (const auto &it : wrappedSchedule) {
    for (Operation *op : it.second) {
      unsigned cycle = opCycles[op];
      schedule.emplace_back(op, cycle / iterationInterval);
    }
  }
}

DiagnosedSilenceableFailure
transform::LoopPipelineOp::applyToOne(transform::TransformRewriter &rewriter,
                                      scf::ForOp target,
                                      transform::ApplyToEachResultList &results,
                                      transform::TransformState &state) {
  scf::PipeliningOption options;
  options.getScheduleFn =
      [this](scf::ForOp forOp,
             std::vector<std::pair<Operation *, unsigned>> &schedule) mutable {
        loopScheduling(forOp, schedule, getIterationInterval(),
                       getReadLatency());
      };
  scf::ForLoopPipeliningPattern pattern(options, target->getContext());
  rewriter.setInsertionPoint(target);
  FailureOr<scf::ForOp> patternResult =
      scf::pipelineForLoop(rewriter, target, options);
  if (succeeded(patternResult)) {
    results.push_back(*patternResult);
    return DiagnosedSilenceableFailure::success();
  }
  return emitDefaultSilenceableFailure(target);
}

//===----------------------------------------------------------------------===//
// LoopPromoteIfOneIterationOp
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure transform::LoopPromoteIfOneIterationOp::applyToOne(
    transform::TransformRewriter &rewriter, LoopLikeOpInterface target,
    transform::ApplyToEachResultList &results,
    transform::TransformState &state) {
  (void)target.promoteIfSingleIteration(rewriter);
  return DiagnosedSilenceableFailure::success();
}

void transform::LoopPromoteIfOneIterationOp::getEffects(
    SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
  consumesHandle(getTarget(), effects);
  modifiesPayload(effects);
}

//===----------------------------------------------------------------------===//
// LoopUnrollOp
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure
transform::LoopUnrollOp::applyToOne(transform::TransformRewriter &rewriter,
                                    Operation *op,
                                    transform::ApplyToEachResultList &results,
                                    transform::TransformState &state) {
  LogicalResult result(failure());
  if (scf::ForOp scfFor = dyn_cast<scf::ForOp>(op))
    result = loopUnrollByFactor(scfFor, getFactor());
  else if (AffineForOp affineFor = dyn_cast<AffineForOp>(op))
    result = loopUnrollByFactor(affineFor, getFactor());

  if (failed(result)) {
    DiagnosedSilenceableFailure diag = emitSilenceableError()
                                       << "failed to unroll";
    return diag;
  }
  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// LoopCoalesceOp
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure
transform::LoopCoalesceOp::applyToOne(transform::TransformRewriter &rewriter,
                                      Operation *op,
                                      transform::ApplyToEachResultList &results,
                                      transform::TransformState &state) {
  LogicalResult result(failure());
  if (scf::ForOp scfForOp = dyn_cast<scf::ForOp>(op))
    result = coalescePerfectlyNestedLoops(scfForOp);
  else if (AffineForOp affineForOp = dyn_cast<AffineForOp>(op))
    result = coalescePerfectlyNestedLoops(affineForOp);

  results.push_back(op);
  if (failed(result)) {
    DiagnosedSilenceableFailure diag = emitSilenceableError()
                                       << "failed to coalesce";
    return diag;
  }
  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// TakeAssumedBranchOp
//===----------------------------------------------------------------------===//
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(RewriterBase &rewriter, Operation *op,
                                Region &region) {
  assert(llvm::hasSingleElement(region) && "expected single-region block");
  Block *block = &region.front();
  Operation *terminator = block->getTerminator();
  ValueRange results = terminator->getOperands();
  rewriter.inlineBlockBefore(block, op, /*blockArgs=*/{});
  rewriter.replaceOp(op, results);
  rewriter.eraseOp(terminator);
}

DiagnosedSilenceableFailure transform::TakeAssumedBranchOp::applyToOne(
    transform::TransformRewriter &rewriter, scf::IfOp ifOp,
    transform::ApplyToEachResultList &results,
    transform::TransformState &state) {
  rewriter.setInsertionPoint(ifOp);
  Region &region =
      getTakeElseBranch() ? ifOp.getElseRegion() : ifOp.getThenRegion();
  if (!llvm::hasSingleElement(region)) {
    return emitDefiniteFailure()
           << "requires an scf.if op with a single-block "
           << ((getTakeElseBranch()) ? "`else`" : "`then`") << " region";
  }
  replaceOpWithRegion(rewriter, ifOp, region);
  return DiagnosedSilenceableFailure::success();
}

void transform::TakeAssumedBranchOp::getEffects(
    SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
  onlyReadsHandle(getTarget(), effects);
  modifiesPayload(effects);
}

//===----------------------------------------------------------------------===//
// LoopFuseSiblingOp
//===----------------------------------------------------------------------===//

/// Check if `target` and `source` are siblings, in the context that `target`
/// is being fused into `source`.
///
/// This is a simple check that just checks if both operations are in the same
/// block and some checks to ensure that the fused IR does not violate
/// dominance.
static DiagnosedSilenceableFailure isOpSibling(Operation *target,
                                               Operation *source) {
  // Check if both operations are same.
  if (target == source)
    return emitSilenceableFailure(source)
           << "target and source need to be different loops";

  // Check if both operations are in the same block.
  if (target->getBlock() != source->getBlock())
    return emitSilenceableFailure(source)
           << "target and source are not in the same block";

  // Check if fusion will violate dominance.
  DominanceInfo domInfo(source);
  if (target->isBeforeInBlock(source)) {
    // Since `target` is before `source`, all users of results of `target`
    // need to be dominated by `source`.
    for (Operation *user : target->getUsers()) {
      if (!domInfo.properlyDominates(source, user, /*enclosingOpOk=*/false)) {
        return emitSilenceableFailure(target)
               << "user of results of target should be properly dominated by "
                  "source";
      }
    }
  } else {
    // Since `target` is after `source`, all values used by `target` need
    // to dominate `source`.

    // Check if operands of `target` are dominated by `source`.
    for (Value operand : target->getOperands()) {
      Operation *operandOp = operand.getDefiningOp();
      // Operands without defining operations are block arguments. When `target`
      // and `source` occur in the same block, these operands dominate `source`.
      if (!operandOp)
        continue;

      // Operand's defining operation should properly dominate `source`.
      if (!domInfo.properlyDominates(operandOp, source,
                                     /*enclosingOpOk=*/false))
        return emitSilenceableFailure(target)
               << "operands of target should be properly dominated by source";
    }

    // Check if values used by `target` are dominated by `source`.
    bool failed = false;
    OpOperand *failedValue = nullptr;
    visitUsedValuesDefinedAbove(target->getRegions(), [&](OpOperand *operand) {
      Operation *operandOp = operand->get().getDefiningOp();
      if (operandOp && !domInfo.properlyDominates(operandOp, source,
                                                  /*enclosingOpOk=*/false)) {
        // `operand` is not an argument of an enclosing block and the defining
        // op of `operand` is outside `target` but does not dominate `source`.
        failed = true;
        failedValue = operand;
      }
    });

    if (failed)
      return emitSilenceableFailure(failedValue->getOwner())
             << "values used inside regions of target should be properly "
                "dominated by source";
  }

  return DiagnosedSilenceableFailure::success();
}

/// Check if `target` scf.forall can be fused into `source` scf.forall.
///
/// This simply checks if both loops have the same bounds, steps and mapping.
/// No attempt is made at checking that the side effects of `target` and
/// `source` are independent of each other.
static bool isForallWithIdenticalConfiguration(Operation *target,
                                               Operation *source) {
  auto targetOp = dyn_cast<scf::ForallOp>(target);
  auto sourceOp = dyn_cast<scf::ForallOp>(source);
  if (!targetOp || !sourceOp)
    return false;

  return targetOp.getMixedLowerBound() == sourceOp.getMixedLowerBound() &&
         targetOp.getMixedUpperBound() == sourceOp.getMixedUpperBound() &&
         targetOp.getMixedStep() == sourceOp.getMixedStep() &&
         targetOp.getMapping() == sourceOp.getMapping();
}

/// Check if `target` scf.for can be fused into `source` scf.for.
///
/// This simply checks if both loops have the same bounds and steps. No attempt
/// is made at checking that the side effects of `target` and `source` are
/// independent of each other.
static bool isForWithIdenticalConfiguration(Operation *target,
                                            Operation *source) {
  auto targetOp = dyn_cast<scf::ForOp>(target);
  auto sourceOp = dyn_cast<scf::ForOp>(source);
  if (!targetOp || !sourceOp)
    return false;

  return targetOp.getLowerBound() == sourceOp.getLowerBound() &&
         targetOp.getUpperBound() == sourceOp.getUpperBound() &&
         targetOp.getStep() == sourceOp.getStep();
}

DiagnosedSilenceableFailure
transform::LoopFuseSiblingOp::apply(transform::TransformRewriter &rewriter,
                                    transform::TransformResults &results,
                                    transform::TransformState &state) {
  auto targetOps = state.getPayloadOps(getTarget());
  auto sourceOps = state.getPayloadOps(getSource());

  if (!llvm::hasSingleElement(targetOps) ||
      !llvm::hasSingleElement(sourceOps)) {
    return emitDefiniteFailure()
           << "requires exactly one target handle (got "
           << llvm::range_size(targetOps) << ") and exactly one "
           << "source handle (got " << llvm::range_size(sourceOps) << ")";
  }

  Operation *target = *targetOps.begin();
  Operation *source = *sourceOps.begin();

  // Check if the target and source are siblings.
  DiagnosedSilenceableFailure diag = isOpSibling(target, source);
  if (!diag.succeeded())
    return diag;

  Operation *fusedLoop;
  /// TODO: Support fusion for loop-like ops besides scf.for and scf.forall.
  if (isForWithIdenticalConfiguration(target, source)) {
    fusedLoop = fuseIndependentSiblingForLoops(
        cast<scf::ForOp>(target), cast<scf::ForOp>(source), rewriter);
  } else if (isForallWithIdenticalConfiguration(target, source)) {
    fusedLoop = fuseIndependentSiblingForallLoops(
        cast<scf::ForallOp>(target), cast<scf::ForallOp>(source), rewriter);
  } else
    return emitSilenceableFailure(target->getLoc())
           << "operations cannot be fused";

  assert(fusedLoop && "failed to fuse operations");

  results.set(cast<OpResult>(getFusedLoop()), {fusedLoop});
  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//

namespace {
class SCFTransformDialectExtension
    : public transform::TransformDialectExtension<
          SCFTransformDialectExtension> {
public:
  using Base::Base;

  void init() {
    declareGeneratedDialect<affine::AffineDialect>();
    declareGeneratedDialect<func::FuncDialect>();

    registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.cpp.inc"
        >();
  }
};
} // namespace

#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.cpp.inc"

void mlir::scf::registerTransformDialectExtension(DialectRegistry &registry) {
  registry.addExtensions<SCFTransformDialectExtension>();
}